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The interaction of a magnetic insulator with the helical electronic edge of a two-dimensional topological in-
sulator has been shown to lead to many interesting phenomena. One of these is that for a suitable orientation
of the magnetic anisotropy axis, the exchange coupling to an easy-plane magnet has no effect on DC electrical
transport through a helical edge, despite the fact that it opens a gap in the spectrum of the helical edge [Meng et
al., Phys. Rev. B 90, 205403 (2014)]. Here, we theoretically consider such a magnet embedded in an interfer-
ometer, consisting of a pair of helical edge states connected by two tunneling contacts, at which electrons can
tunnel between the two edges. Using a scattering matrix approach, we show that the presence of the magnet
in one of the interferometer arms gives rise to AC currents in response to an applied DC voltage. On the other
hand, the DC Aharonov-Bohm effect is absent at zero temperature and small DC voltages, and only appears if
the applied voltage or the temperature exceeds the magnet-induced excitation gap.

I. INTRODUCTION

Since backscattering of electrons in the helical edge of a
two-dimensional topological insulator is forbidden by time-
reversal symmetry, breaking time-reversal symmetry by an
applied magnetic field or by coupling of the helical edge to
the exchange field of a magnet or a magnetic impurity is the
only mechanism by which electrons in a helical edge can be
backscattered.1–6 The purposeful coupling of the helical edge
to magnetic insulators has been shown to result in fascinating
properties, such as the appearance of Majorana zero modes
at the boundary between segments with a magnet-induced
gap and with proximity-induced superconductivity,7 various
thermoelectric effects,8,9 or the possibility to convert elec-
trical energy to mechanical motion in an adiabatic quantum
motor.10,11 Magnetic impurities exchange-coupled to the he-
lical edge states exhibit characteristic Kondo effects12–15 and
electrically controlled dynamics of the impurity spin due to
backscattering of helical edge state electrons.16,17

The application of a magnetic field or the exchange cou-
pling of a helical edge to a magnetic insulator opens a gap in
the spectrum of the helical edge if the direction of the (ex-
change) field is not collinear with the spin quantization axis
of the helical edge states. In this context, it can be seen as
a surprise that an electric current carried by a helical edge is
transmitted perfectly across a region coupled to a magnetic in-
sulator, if the magnet has an easy-plane anisotropy with easy
plane perpendicular to the quantization axis of the helical edge
states.18,19 The electrical current flows despite the presence of
an excitation gap in the spectrum of the helical edge, in such
a way that the electrical current “lost” by the backscattering
of electronic quasiparticles at the gapped region is compen-
sated by the flow of a dissipationless spin current carried by
the precessing magnetization and facilitated by charge-to-spin
and spin-to-charge conversion at the magnet interface. The
charge-to-spin conversion at the magnet interface is perfect
because of the helical nature of the edge;20 the absence of
losses for the spin transport through the magnet is a manifesta-
tion of “superfluid” spin transport in easy-plane magnets.21–26

Since the electrical current is carried by a collective mode of
the magnetization, it takes place without shot noise and with
strongly suppressed thermal noise at finite frequencies.19 The
coupling of a helical edge to a magnetic insulator has also
been proposed as a method for nondissipative current-driven
magnetization precession.10,27

The perfect compensation of the current backscattered from
the magnet-induced gap leaves the open question: How can
the presence of the easy-plane magnet be detected, if the cur-
rent through the edge is not influenced by it? In order to
answer this question we theoretically consider an Aharonov-
Bohm interferometer28 consisting of two tunnel-coupled he-
lical edge modes, one of which is covered by an easy-plane
magnet like in Refs. 18 and 19.

We predict the two main characteristic features: First, we
show that this interferometer setup, if subjected to a constant
(DC) voltage bias, responds with a time-dependent (AC) cur-
rent component (in addition to a large DC response), due to
the coupling to the precessing magnetization. Depending on
system parameters, the AC currents occur at the precession
frequency ωM of the magnet or, additionally, at twice that fre-
quency. For comparison: No AC current response exists in
the setup analyzed in Refs. 18 and 19. Second, the Aharonov-
Bohm oscillations in the DC current, usually seen as a sig-
nature of coherent quasiparticle transport, are exponentially
suppressed for small bias voltages and temperatures if the
Fermi level is in the magnet-induced gap. The suppression of
Aharonov-Bohm oscillations is consistent with the existence
of an excitation gap in the spectrum where the helical edge is
in contact with the magnet. Despite the absence of a conven-
tional Aharonov-Bohm effect, in our geometry the AC cur-
rents can be seen as a manifestation of coherence: they result
from the interference of electrons scattered at the tunnel con-
tacts and electrons backscattered from the magnet interface,
where they change their energy by the amount ~ωM.

The appearance of AC currents in response to a DC voltage
bias is remotely reminiscent of the Josephson effect, where
applying a constant voltage bias to a superconducting tunnel
junction leads to time-dependent currents.29 It may be seen
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as another manifestation of “spin superfluidity” in easy-plane
ferromagnets.21–26

Electron interferometers with helical edge states, but with-
out exchange coupling to a magnetic insulator, have been
investigated theoretically in the literature. The characteris-
tic temperature and interaction-induced dephasing30 of charge
and spin excitations were identified, as well as controllable
spin properties.31–33 On the experimental side, quantum point
contacts between two helical edge channels have been real-
ized recently in HgTe-based quantum wells and DC transport
through the constriction has been measured.34 The possibility
to produce AC currents if these systems are exchange-coupled
to magnetic insulators provides a promising novel route for
interference-based quantum devices.

This work is organized as follows: In Sec. II the interfer-
ometer setup is described in detail and the scattering-matrix
approach is introduced, extending the method of Ref. 19. In
Secs. III, IV, and V we present calculations of the current in
response to a DC bias in one of the interferometer arms. Sec-
tion III A addresses a simplified setup in which one of the two
tunnel contacts is “open,” which has AC currents at frequency
ωM only, but allows all calculations to be performed analyt-
ically. This analytical result allows us to elucidate the dif-
ference between the DC current pumped through the magnet
and the interference AC current created upon reflection from
the rotating magnetization vector. Section III B provides addi-
tional details on the interpretation of these results. Section IV
considers the special case that one of the two tunnel contacts
is “closed,” which shows the full phenomenology of AC cur-
rents at frequencies ωM and 2ωM and still admits a partially
analytical treatment. Section V contains our results for an in-
terferometer with a generic choice of parameters. In Section
VI the anomalous temperature dependence of DC Aharonov-
Bohm current contributions is discussed. We conclude in Sec.
VII.

II. MODEL

We consider an interferometer built from two opposing he-
lical edge modes of a quantum spin Hall insulator. One of the
arms of the interferometer is partially covered by an insulating
magnet. Following Refs. 18 and 19 we consider a magnet with
an easy plane anisotropy, such that the easy-plane is oriented
perpendicular to the spin quantization axis of the helical edge
mode. Establishing contact between the two edge channels on
both sides of the magnet then results in the typical interferom-
eter geometry (see Fig. 1). The interferometer is connected to
four ideal leads, as shown schematically in the figure.

In practice, such a geometry may be realized by taking the
helical edge modes on the two sides of the same quantum spin
Hall insulator [see Fig. 1 (left)]. In this case, only part of the
insulator is covered by the magnetic insulator. In this geome-
try, a “point contact” between the two sets of edge modes can
be achieved, e.g., by locally reducing the insulator width by
lithographic methods or by electrostatic gating of the device.
Alternatively, the helical states can be edges of different spin
Hall insulators, and contacting the to edge modes is achieved

Figure 1. Schematic picture of the interferometer considered here.
The interferometer can be realized by bringing helical edge chan-
nels of the same quantum spin Hall insulator sufficiently close to-
gether that they can make electrical contact (left), or by bringing the
edge channels of different quantum spin Hall insulators into con-
tact (right). Both panels show the location of eight reference points
i = 1, 2, . . . , 8 used for the calculations in the main text. The “posi-
tive” current direction for i = 1, 2, 3, 4 and for i = 5, 6, 7, 8 is to the
right and to the left, respectively. The interferometer is threaded by
a magnetic flux Φ.

by bringing the edges close together [see Fig. 1 (right)].
A magnetic flux Φ is threaded through the area enclosed

by the interfering edge modes. Apart from the magnetic flux
and the coupling to the magnetic insulator, time-reversal sym-
metry is unbroken, so that backscattering into the same edge
mode is forbidden everywhere in the device (except in the
vicinity of the magnetic insulator).

The magnet is assumed to be small enough, that it may be
described by a single moment M. We choose the (spin) co-
ordinate axes such that the easy plane is the xy plane and the
quantization axis for the spin in the helical edge mode is the
z axis. With this choice, the magnet and its interaction with
the helical edge state are described by the second-quantized
Hamiltonian18,19

Ĥ =

∫
dxψ̂(x)†[−i~vF∂xσz + h(x)σ ·M]ψ̂(x)

+
D

2
M2
z , (1)

where vF is the Fermi velocity, D the strength of the easy-
plane anisotropy, σx,y,z are the Pauli matrices, h(x) is a
function that describes the exchange coupling between the
magnetic moment M and the spin of electrons at the helical

edge state, and ψ̂(x) =
[
ψ̂↑(x), ψ̂↓(x)

]T
is a two-component

spinor describing electrons in the helical edge. Away from the
magnet, the exchange coupling h(x) → 0. The assumption
that the easy plane is perpendicular to the spin quantization
axis is generic for a thin magnetic film35 exchange coupled to
the helical edge modes of a quantum spin Hall material, such
as a HgTe quantum well.36 The application of a finite bias
across the magnet causes the magnetization to cant out of the
xy plane,18,19 which sets the magnet in a precessional motion
with frequency

ωM = DMz. (2)

We describe coherent transport through the interferometer
using scattering theory. To this end, we mark eight refer-
ence positions labeled i = 1, 2, . . . , 8 in the device (see Fig.
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1). The reference positions are chosen in close proximity to
the point-contact region, where scattering between the helical
edge states is possible. At each reference position i we con-
sider creation and annihilation operators â†i,±(ε) and âi,±(ε)
for an electron in a (particle-flux normalized) scattering state
at energy ε, moving in the same (+) or opposite (−) direction
as the reference arrows in Fig. 2. The operators âi±(ε) and
the corresponding creation operators â†i±(ε) are related to the
current Ii(ω) at reference position i and at frequency ω as37,38

Ii(ω) =
e

h

∫
dε (3)

×
[
â†i+(ε)âi+(ε+ ~ω)− â†i−(ε)âi−(ε+ ~ω)

]
.

Here, · · · denotes the expectation value. Electrons coming in
from the four ideal leads (corresponding to the reference posi-
tions i = 1, 2, 7, 8) are in thermal equilibrium at temperature
Ti and chemical potential eVi,

â†i+(ε)âi+(ε′) = fi(ε)δ(ε− ε′), i = 1, 2, 7, 8, (4)

where fi(ε) = [1 + e(ε−eVi)/kBTi ]−1 is the Fermi-Dirac dis-
tribution function.

Scattering is elastic everywhere in the device, except at the
magnet, where electrons can absorb or emit an energy quan-
tum ~ωM upon reflection.19 Elastic scattering from the two
point-contact regions is described by 4×4 scattering matrices
S(C1) and S(C2). We assume that the point-contact regions are
small enough that S(C1) and S(C2) may be taken independent
of the energy ε,â1−(ε)

â2−(ε)
â3+(ε)
â4+(ε)

 =S(C1)

â1+(ε)
â2+(ε)
â3−(ε)
â4−(ε)

 ,

â5+(ε)
â6+(ε)
â7−(ε)
â8−(ε)

 =S(C2)

â5−(ε)
â6−(ε)
â7+(ε)
â8+(ε)

 . (5)

Time-reversal symmetry imposes the antisymmetry con-
straints

S(Cj) = −(S(Cj))T. (6)

Absorbing eventual phase factors in the definitions of the op-
erators âi±, this implies that without loss of generality these
matrices can be parametrized as

S(Cj) =


0

√
Rj −i

√
T ′j −

√
Tj

−
√
Rj 0 −

√
Tj −i

√
T ′j

i
√
T ′j

√
Tj 0

√
Rj√

Tj i
√
T ′j −

√
Rj 0

 , (7)

with Rj + Tj + T ′j = 1 and j = 1, 2. As can be seen in Fig.
2, Rj , Tj and T ′j are the probabilities for reflection via point-
contact j (changing the edge), transmission along the same

Figure 2. In the theoretical description, currents are calculated for
eight reference points i = 1, 2, . . . , 8, as shown in the left panel. The
“positive” current direction for i = 1, 2, 3, 4 and for i = 5, 6, 7, 8 is
to the right and to the left, respectively. The two tunneling point
contacts between the opposing helical edge states are described by
scattering matrices S(C1) and S(C2). The definitions of the transmis-
sion coefficients T1 and T ′1 and the reflection coefficient R1 for the
left tunneling point contact are shown in the right panel.

edge, and transmission through the point-contact j (chang-
ing the edge), respectively. Note that Rj and Tj describe
both spin-conserving processes, whereas the process due to
T ′j flips the electron spin. The latter process is possible even
if time-reversal symmetry is conserved but needs a breaking
of inversion symmetry39–41. Tunable spin-flip processes due
to Rashba spin-orbit coupling become possible by an electric
field40–42 that could be induced locally by gates. We will see in
the upcoming sections that a characteristic AC part of the cur-
rent becomes possible due to interference between two scat-
tering paths: one that includes reflection at the magnet, and
another that does not. These interference contributions neces-
sarily involve processes with amplitude

√
T ′j .

Since there is no backscattering for propagation along the
helical edge, the operators at the two ends of the upper inter-
ferometer arm at reference positions “4” and “5” are simply
related by a phase factor,

â5−(ε) = eik(ε)L+iφâ4+(ε),

â4−(ε) = eik(ε)L−iφâ5+(ε). (8)

Here we have chosen a gauge such that the Aharonov-Bohm
(AB) phase shift φ = eΦ/~ from the magnetic flux Φ is accu-
mulated for the propagation between reference positions “4”
and “5”. Further, L is the length of the interferometer arm and
k(ε) = kF + ε/~vF, with kF the Fermi wavenumber and vF

the Fermi velocity. The energy ε is measured with respect to
the Fermi level.

Because of the spin-momentum locking in the helical edge
modes, a reflection from the magnetic insulator necessarily
comes with a spin flip of the edge electrons. As a result, re-
flection from the magnetic insulator involves an increase or
decrease of Mz by one and, hence, the absorption or emis-
sion of an energy quantum ~ωM by the reflected electron.18,19

These processes are described by the relation19

(
â3−(ε−)
â6−(ε+)

)
= S(M)(ε)

(
â3+(ε+)
â6+(ε−)

)
, (9)
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where ε± = ε± ~ωM/2 and the 2× 2 matrix S(M)(ε) reads

S(M)(ε) =

(
rM(ε)m̂+ t′M(ε)
tM(ε) r′M(ε)m̂−

)
. (10)

Here rM, r′M, tM, and t′M are reflection and transmission
amplitudes with a “frozen” magnetization of the magnet,19

and m̂± are ladder operators that change Mz by ±~ nor-
malized as m̂−m̂+ = 1. The amplitudes rM, r′M, tM, and
t′M also include phase shifts accumulated during the prop-
agation between the point contacts and the insulating mag-
net. Unitarity gives the conditions |rM(ε)|2 = |r′M(ε)|2 =
1−|tM(ε)|2 = 1−|t′M(ε)|2. We will assume that |rM(ε)| → 0
for energies ε far above and below the Fermi level. This is
consistent with the model (1), which has |rM(ε)| → 0 for
|ε| � maxx |h(x)||M |.

Upon reflection off of the magnet, an electron changes its
energy by the amount ±~ωM, where the sign of the change is
opposite for reflection from the left and from the right [see Eq.
(9)]. Since backscattering in the helical channels away from
the magnet is forbidden, the difference of the total numbers of
reflections of an electron from the left and from the right sides
of the magnet cannot be larger than one, so that an electron
can not change its energy by more than ~ωM upon moving
through the interferometer.

Taken together, Eqs. (5), (8), and (9) give a set of 12 lin-
ear equations, which allow one to express all operators âi±
at the reference positions i = 1, 2, . . . , 8 in terms of the four
operators â1+, â2+, â7+, and â8+ describing electrons inci-
dent from the reservoirs. Since the energy ε can not change
by more than one discrete quantum ~ωM, the solution of the
set of linear equations (5), (8), and (9) can be cast in the form

âj−(ε) =

1∑
n=−1

∑
k=1,2,7,8

S
(n)
j;k (ε)âk+(ε+ n~ωM), (11)

where S(n)
j;k (ε) is the “scattering matrix” of the device. Since

the current I(ω) is bilinear in the creation and annihilation
operators [see Eq. (3)], it then follows that at any position
in the device the current Ij(ω) can be nonzero for ω = 0,
ω = ±ωM, or ±2ωM only. This allows us to write

Ij(ω) =

2∑
n=−2

Ij(nωM)δ(ω − nωM). (12)

Higher harmonics than |n| = 2 are not possible, as electrons
cannot change their energy by more than ~ωM upon passing
through the interferometer device. It follows that the DC cur-
rent in lead j (j = 1, 2, 7, 8) is

Ij(0) =
e

h

∫
dε

∑
k=1,2,7,8

1∑
n=−1

|S(n)
j;k (ε)|2

× [fj(ε)− fk(ε+ n~ωM)] , (13)

where we used that
∑
k,n |S

(n)
j;k (ε)|2 = 1. Similarly, the AC

currents at frequency ωM and 2ωM read

Ij(ωM) = − e

h

∫
dε

∑
k=1,2,7,8

1∑
n=0

S
(n)
j;k (ε)∗

× S(n−1)
j;k (ε+ ~ωM)fk(ε+ n~ωM), (14)

Ij(2ωM) = − e

h

∫
dε

∑
k=1,2,7,8

S
(1)
j;k(ε)∗

× S(−1)
j;k (ε+ 2~ωM)fk(ε+ ~ωM). (15)

The steady-state precession frequency ωM is an unknown in
this procedure and must be determined self-consistently using
Eq. (2) and the steady-state condition

Ṁz(t) = 0. (16)

The net rate of change of Mz is proportional to the net current
reflected from the magnet Ir,18,19,43

Ṁz(t) =
Ir(t)

e
. (17)

The Fourier transform Ir(ω) of the current reflected from the
magnet is given by

Ir(ω) =
e

h

∫
dε
[
â†3+(ε+)â3+(ε+ + ~ω)

− â†6+(ε−)â6+(ε− + ~ω)
]
. (18)

Electron paths contributing to Ir(ω) can differ by at most one
reflection from the magnet, so that only Fourier compoments
at ω = nωM with n = −1, 0, 1 contribute to Ir(ω),

Ir(ω) =

1∑
n=−1

Ir(nωM)δ(ω − nωM). (19)

The Fourier components Ir(nωM) depend on the precession
frequency ωM. They can be calculated using the scattering
formalism outlined above. The Fourier components Ir(nωM)
with n = ±1 give rise to small oscillations of Mz , which
do not affect the precession frequency ωM for a macroscopic
magnet. Keeping the zero-frequency component only, we find
that the steady-state condition for Mz , from which the preces-
sion frequency ωM can be determined, reads

Ir(0) = 0. (20)

In the remaining sections we present explicit analytical and
numerical results of this procedure for several representative
choices of the scattering matrices SC1 and SC2 of the point
contact regions.

III. RIGHT POINT CONTACT “OPEN”

A. Calculation of DC and AC currents

As an analytically tractable geometry, we first consider a
setup in which the right point-contact in Fig. 1 is fully “open,”
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Figure 3. Schematic picture of the “right point contact open” geom-
etry for a realization in which the interfering edge channels are on
the same quantum spin Hall insulator (left) and on different quantum
spin Hall insulators (right). The positions labeled i = 1, 2, . . . , 8
refer to the reference positions used for the calculations in the main
text.

so that effectively there is a single point-contact region only
(see Fig. 3). In this geometry, electrons incident from reser-
voirs “1”, “2”, and “8” can only reflect off the left end of
the magnet, whereas electrons incident from reservoir “7” can
only reflect off the right end of the magnet. This rules out in-
terference processes with a total energy difference of 2~ωM,
so that only harmonics Ij(nωM) with n = 0, ±1 need to be
considered.

For the scattering matrix SC2 the condition that the right
point contact is “open” implies R2 = T ′2 = 0, so that
â5±(ε) = ∓â8±(ε) and â6±(ε) = ∓â7±(ε). We can ex-

press the remaining operators âj±(ε) in terms of the opera-
tors â1+(ε), â2+(ε), â7+(ε), and â8+(ε) describing electrons
coming in from the reservoirs by solving Eqs. (5) and (9) for
this case.

We first calculate the operators â3+(ε) and â6+(ε) describ-
ing electrons incident on the magnet, because these determine
the precession frequency ωM,

â3+(ε) = iâ1+(ε)
√
T ′1 + â2+(ε)

√
T1

− â8+(ε)
√
R1e

ik(ε)L−iφ, (21)
â6+(ε) = − â7+(ε). (22)

The steady-state precession frequency ωM can be calculated
from Eq. (20) upon setting Ṁz = 0,

0 =

∫
dε|rM(ε)|2 [f3+(ε+)− f7(ε−)] , (23)

where we abbreviated

f3+(ε) = R1f8(ε) + T1f2(ε) + T ′1f1(ε). (24)

The results for the operators âj−(ε) in the leads (j =
1, 2, 7, 8) are then expressed in terms of the matrices of co-
efficients S(n)

j;k (ε) [see Eq. (11)], which read

S(−)(ε) = rM(ε−)m̂−

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 ,

S(0)(ε) =


0

√
R1 it′M(ε+)

√
T ′1 eikL−iφ

√
T1

−√R1 0 t′M(ε+)
√
T1 ieikL−iφ

√
T ′1

itM(ε−)
√
T ′1 tM(ε−)

√
T1 0 tM(ε−)eikL−iφ

√
R1

eikL+iφ
√
T1 ieikL+iφ

√
T ′1 −t′M(ε+)eikL+iφ

√
R1 0

 , (25)

S(+)(ε) = rM(ε+)m̂+


T ′1 −i

√
T1T ′1 0 ieik+L−iφ

√
T ′1R1

−i
√
T1T ′1 −T1 0 eik+L−iφ

√
T1R1

0 0 0 0

−ieik+iφ
√
T ′1R1 −eikL+iφ

√
T1R1 0 ei(k+k+)LR1

 ,

where we abbreviated ε± = ε ± (1/2)~ωM, k = k(ε), and
k± = k(ε± ~ωM).

For the currents in the four leads we then obtain the DC

components from Eq. (13):

I1(0) =
e

h

∫
dε [f1(ε)−R1f2(ε)− T1f8(ε)− T ′1f7(ε)] ,

I2(0) =
e

h

∫
dε [f2(ε)−R1f1(ε)− T1f7(ε)− T ′1f8(ε)] ,

I7(0) =
e

h

∫
dε [f7(ε)− f3+(ε)] ,

I8(0) =
e

h

∫
dε [f8(ε)−R1f7(ε)− T1f1(ε)− T ′1f2(ε)] ,

(26)



6

where f3+(ε) is given in Eq. (24). Since the DC cur-
rent components do not depend on the reflection amplitude
rM of the magnet—which is consistent with the observation
that the magnet does not reflect current in the steady-state
regime18,19—the integrations over energy can be carried out
explicitly and one finds the simple result

I1(0) =
e2

h
(V1 −R1V2 − T1V8 − T ′1V7),

I2(0) =
e2

h
(V2 −R1V1 − T1V7 − T ′1V8),

I7(0) =
e2

h
(V7 −R1V8 − T1V2 − T ′1V1),

I8(0) =
e2

h
(V8 −R1V7 − T1V1 − T ′1V2).

(27)

Interference between transmission paths that reflect from the
magnet and paths that do not reflect from the magnet gives an
AC contribution to the current at frequency ω = ±ωM. For
the AC components at frequency ω = ωM we find

I1(ωM) = − im̂−
e

h

√
T1T ′1R1

∫
dεrM(ε)∗

× [f2(ε+)− f8(ε+)] ,

I2(ωM) = − im̂−
e

h

√
T1T ′1R1

∫
dεrM(ε)∗

× [f8(ε+)− f1(ε+)] ,

I7(ωM) = 0, (28)

I8(ωM) = − im̂−
e

h

√
T1T ′1R1

∫
dεrM(ε)∗

× eik(ε+)L−ik(ε−)L [f1(ε+)− f2(ε+)] .

[The components at ω = −ωM are obtained by complex con-
jugation, Ij(−ωM) = Ij(ωM)∗.] One verifies that the DC
currents sum to zero. Current conservation also applies to the
AC current components, if one corrects I8(ωM) for the time
delay accumulated during the propagation along the upper in-
terferometer arm.

To make the results for the AC current component more
explicit, we now consider a simple model for the reflection
from the magnetic insulator,

rM(ε) = e2ik(ε)L3θ(∆− |ε|), (29)

where ∆ is the magnitude of the magnet-induced exchange
gap in the helical edge, L3 is the length of the interferometer
arm between the left point contact and the magnet, and the
Heaviside function θ(x) = 1 if x > 0 and 0 otherwise. We
further set the temperatures Ti to zero, choose V1 = V > 0,
V2 = V7 = V8 = 0, and approximate k(ε) = kF + ε/~vF.
Solving the precession frequency ωM from Eq. (23) then gives

~ωM = T ′1 min

(
eV,

2∆

2− T ′1

)
. (30)

Schematic pictures of the distribution functions f3+(ε+) and
f7(ε−) for eV < 2∆/(2 − T ′1) and eV > 2∆/(2 − T ′1) are
shown in Fig. 4.

In the limit T ′1 → 1 the right point contact “open” geometry
studied in this section corresponds to the two-terminal setup
studied in Ref. 19. However, in that work the precession fre-
quency is found to be ~ωM = eV and does not saturate for
eV > 2∆, as it does here [see Eq. (30)]. This difference can
be understood as follows: In the two-terminal geometry of
Ref. 19, when a stationary state of the magnet is reached, the
current reflected by the magnet that adds angular momentum
to the magnet is balanced by the current that removes angular
momentum from the magnet. Both reflected currents are pro-
portional to |rM(ε)|2. Since it is assumed that the reflection
amplitude rM(ε) is nonzero for all energies, rM(ε) drops out
from the stationarity condition, giving the result ~ωM = eV .
In the four-terminal geometry studied in the present work, the
magnet has additional channels available, through which it
can “lose” angular momentum. These loss channels dominate
over the gain-channel in our simple model, Eq. (29), where
|rM(ε)|2 → 0 for ε > ∆. Hence, ωM saturates for sufficiently
large eV . If we were to take the limit T ′1 → 1 in the beginning
of the calculation, thereby a priori reducing the four-terminal
geometry to the two-terminal geometry of Ref. 19, before
making any additional assumptions about the reflection am-
plitude rM(ε), we would find the same result ~ωM = eV as
in Ref. 19.

For the AC current components we then find I1(ωM) =
I7(ωM) = 0 and

I2(ωM) = − I8(ωM)e−iωML/vF

=
eivF

2πL3
m̂−
√
T1T ′1R1 sin

ωML3

vFT ′1

× e−iL3[2kF+ωM(R1+T1)/T ′1vF]. (31)

For a small applied bias and/or for a small induced gap ∆,
one may approximate ωML3/vFT

′
1, ωML/vF � 1 for typical

device sizes, so that one has

I2(ωM) ≈ − I8(ωM)

≈ eiωM

2πT ′1
m̂−
√
T1T ′1R1e

−2ikFL3 . (32)

For a discussion of the physical origin of the alternating
current contribution in this interferometer, we focus on I2
and note that the transmission amplitude between contacts
“1” and “2” is the sum of two interfering contributions: A
direct contribution with amplitude ∝ √R1 and a contribution
∝ m̂−

√
T ′1T1 with electrons reflected off the precessing mag-

net. Because the reflection phase depends on the magnetiza-
tion direction (via the expectation value of m̂−), electrons that
reflect from the magnet pick up a time-dependent phase fac-
tor ∝ e−iωMt. As a result, the interference contribution to the
transmission probability between the reservoirs “1” (at which
the voltage bias is applied) and “2” (at which the current is
measured) oscillates with frequency ωM. At a constant bias
voltage, this periodic modulation of the (Landauer-Büttiker)
transmission probability between reservoirs leads to an alter-
nating contribution to the current I2 at frequency ωM.

That the alternating current component is a time-dependent
interference-related modulation of the transmission between
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Figure 4. Distribution functions f3+(ε+) and f7(ε−) for bias volt-
age eV < 2 ∆′/(2 − T ′1) (top panel) and eV > 2∆′/(2 − T ′1)
(bottom panel). The bias voltage V is applied to lead “1” only; the
(electro)chemical potentials of leads “2,” “7,” and “8” are held con-
stant at the value µ = 0.

reservoirs and not the consequence of a periodic spin cur-
rent pumped by a precessing magnetization [44] and then
converted into a charge current by spin-dependent scattering,
can be seen from the presence of the additional phase factor
e−2ikFL3 and the corresponding suppression of the alternat-
ing current component if eV & ~L3/vF [see Eq. (31)]. Such
phase factors are absent in the theory of spin pumping and re-
lated phenomena [45]. It can also be seen by comparing the
magnitudes of the alternating current component I2(ωM) and
the direct current I2(0). Unlike the AC contribution, the di-
rect current may be interpreted in terms of pumping by the
precessing magnetization.18 For the two-terminal geometry
of Refs. 18 and 19, the precession frequency of the magnet
equals the applied bias, ~ωM = eV , so that in the steady
state there is exactly one electron transferred in a period of the
precessing magnetization. (This places the throughput of this
device in the same category as the electron current pumped
through a Coulomb-blockaded quantum dot.46–48) The same
universal estimate, one electron per period, also holds for the
DC currents in the interferometer devices considered in our
paper, when applied to the contribution of the DC current
I3(0) = I6(0) = I7(0) transmitted through the magnet for
bias voltage |eV | < ∆ below the magnet-induced gap. The
AC current component I2(ωM), however, may be much larger
than this, depending on the values of the transmission coeffi-
cients T1, T ′1, and R1: From Eq. (32) one sees that I2(ωM)

may be as large as a charge ∼ e
√
R1T1/T ′1 per period of the

precessing magnetization. This charge may be much larger
than e in the limit T ′1 � 1, ruling out pumping as an origin of
I2(ωM). [The AC current I2(ωM) is always smaller than the
total DC current I1(0) injected in lead “1”.] We note that the
limit T ′1 � 1 is a physically relevant limit, since, as discussed
in Sec. II, for scattering between helical edges with equal spin
polarization T ′1 is related to spin-flip processes. Such pro-
cesses originate from the Rashba spin-orbit interaction, sen-
sitive to the inversion-breaking electric field in the contact
region. Since such a field is intrinsically weak compared to

the crystal fields, one may expect the spin-flip processes to be
suppressed, hence T ′1 � 1. On the other hand, T ′1 may be
effectively tuned by external electric fields.

B. “Classical” vs. “quantum” magnet

The expressions for the AC contributions I2(ωM) given in
Eq. (31) are proportional to the lowering operator m̂−. The
proper interpretation of these equations requires a brief dis-
cussion how expressions for (expectation values of) current
components Ij(nωM) that contain the operators m̂− and m̂+

should be understood. Hereto, we distinguish the “classical”
case that M is (effectively) a classical vector with a well-
defined direction and the “quantum” case that M must be
considered an operator and the magnet is in a state with well-
defined Mz , whereas the components Mx and My are maxi-
mally uncertain.

If the magnet is in a “classical” state |C〉 describing a
macroscopic magnetization, then the magnetization has a
well-defined direction at any time t, parametrized by the polar
angle θ with the z axis and the azimuthal angle ϕ. In that case,
although |C〉 is not an eigenstate of any component of the
magnetization operator M, all three components of M have
a finite expectation value. In particular, the expectation value
〈C|m̂−|C〉 ≡ 〈m̂−〉C of the projection of M on the xy plane
takes the nonzero value

〈m̂−〉C = eiϕ. (33)

[Note that the ladder operators m̂± are defined as m̂± =
(mx± imy)/|mx± imy|, which is why the expectation value
(33) does not depend on the polar angle θ.]

If the magnet is in a “quantum” state |Q〉 with a sharply-
defined quantized value of Mz , the azimuthal angle ϕ of the
magnetization is unknown. In this case one must average over
all phase angles ϕ, so that the expectation value 〈m̂−〉Q = 0.
Then, the quantity that should be considered to characterize
the AC currents is not the expectation value 〈Ij(ω)〉Q, but the
current correlations

〈I(ωM)I(−ωM)〉Q = 〈I(ωM)I†(ωM)〉Q. (34)

The current correlations are proportional to 〈m̂−m̂+〉Q = 1.
For example, from Eq. (31) one then obtains

〈I2(ωM)I†2(ωM)〉Q =
e2v2

F

4π2L2
3

T1T
′
1R1 sin2 ωML3

vFT ′1
. (35)

In the same way, the other results for AC currents in Sec. III
and in the following sections can be interpreted in terms of a
current correlator. Note that the exchange of energy between
the magnet and the helical edge state electrons upon reflection
from the magnet is given by Eqs. (9)-(16), which are inde-
pendent of the state of the magnet (“classical” vs “quantum”).
Therefore the analysis of the scattering problem works in both
cases discussed in this section.
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Figure 5. Schematic picture of the “right point contact closed” ge-
ometry for a realization in which the interfering edge channels are on
the same quantum spin Hall insulator (left) and on different quantum
spin Hall insulators (right). The positions labeled i = 1, 2, . . . , 8
refer to the reference positions used for the calculations in the main
text.

IV. RIGHT POINT CONTACT “CLOSED”

As a second example we consider a setup in which the point
contact to the right of the magnet is fully “closed” (see Fig. 5).
Although this is effectively a two-terminal geometry (in con-
trast to the four-terminal geometry of the previous section),
it has a richer phenomenology, since it allows for AC cur-

rent components at frequencies ωM as well as 2ωM. The cur-
rent component at frequency 2ωM comes from interference of
electrons reflecting off the left end of the magnet (where en-
ergy is decreased by ~ωM upon reflection) and the right end of
the magnet (where an energy quantum ~ωM is absorbed upon
reflection), so that the net energy difference in the interference
process is 2ωM.

For the scattering matrix SC2 the condition that the right
point contact is “closed” translates to R2 = 1, T2 = T ′2 = 0,
so that â5±(ε) = ±â6∓(ε). As we will show below, in this
setup the current has AC components at frequencies ωM and
2ωM. To keep the expressions simple, we will assume that the
left point contact is close to being “open,” R1, T ′1 � 1, and
give final expressions to lowest nontrivial order inR1, T ′1. The
leads labeled “7” and “8” are disconnected from the magnet
and will not be considered here.

By solving Eqs. (5) and (9), the operators â3+(ε) and
â6+(ε) for electrons incident on the magnet can be expressed
in terms of the operators â1+(ε) and â2+(ε) for electrons in-
coming from the reservoirs on the left side. To first order in√
R1,

√
T ′1 we find

â3+(ε+) = − â1+(ε−)eik(ε−)L+ik(ε+)Lm̂−r
′
M(ε)

√
R1 + â2+(ε+)

[
1 + e−iφ+ik(ε+)LtM(ε)

√
R1

]
+ iâ1+(ε+)

√
T ′1, (36)

â6+(ε−) = eiφ+ik(ε−)L
{
iâ2+(ε−)

√
T ′1 − â1+(ε−)

[
1 + eiφ+ik(ε−)Lt′M(ε)

√
R1

]
− â2+(ε+)m̂−rM(ε)

√
R
}
. (37)

The results for the operators âj−(ε) for the outgoing modes in the leads j = 1, 2 are again expressed in terms of the matrices of
coefficients S(n)

j;k (ε), which are effectively 2x2-matrices for the geometry we consider here. These matrices read

S(−)(ε) = r′M(ε−)m̂−e
i(k+k−)L

(
1 +
√
R1[tM(ε−)e−i(φ−kL) + t′M(ε−)ei(φ+k−L)] i

√
T ′1

i
√
T ′1 −T ′1

)
,

S(0)(ε) = eikL
(
i
√
T ′1[eiφt′M(ε+)− e−iφtM(ε−)] −e−iφtM(ε−)

eiφt′M(ε+) i
√
T ′1[eiφt′M(ε+)− e−iφtM(ε−)]

)
+
√
R1

(√
T ′1
∑
±[±ei(k+k±)LrM(ε±)r′M(ε±)] i[ei(k+k−)LrM(ε−)r′M(ε−)− 1]

i[1− ei(k+k+)LrM(ε+)r′M(ε+)]
√
T ′1
∑
±[±ei(k+k±)LrM(ε±)r′M(ε±)]

)
,

S(+)(ε) = rM(ε+)m̂+

(
T ′1 −i

√
T ′1

−i
√
T ′1 −1−√R1[tM(ε+)e−i(φ−k+L) + t′M(ε+)ei(φ+kL)]

)
, (38)

where we again abbreviated ε± = ε ± (1/2)~ωM, k = k(ε), and k± = k(ε ± ~ωM). We have kept contributions beyond the
lowest order in

√
R1 and

√
T ′1 as far as these are important for a consistent expansion of the currents for small

√
R1 and

√
T ′1

and for small bias voltage.
We proceed to calculate the steady-state precession frequency ωM and the currents I1 and I2. The steady-state precession

frequency ωM is calculated from Eq. (20) upon setting Ṁz = 0. In the limit T ′1, R1 � 1 Eq. (20) gives

0 =

∫
dε|rM(ε)|2[f2(ε+)− f1(ε−)], (39)

from which ωM can be determined. (Explicit results for a simple model will be given below.) The DC current components I1(0)
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and I2(0) now acquire a weak dependence on the reflection amplitude rM of the magnet,

I1(0) = − I2(0)

=
e2

h
(V1 − V2) +

e

h

√
R1

∫
dε|rM(ε−)|2[f2(ε)− f1(ε− ~ωM)]

×
{
t′M(ε−)ei(φ+k−L) + t′∗M(ε−)e−i(φ+k−L) + tM(ε−)e−i(φ−kL) + t∗M(ε−)ei(φ−kL)

}
, (40)

where we kept only those correction terms that depend on the Aharonov-Bohm phase φ. Note that ωM = 0 if V1 = V2, so
thatIj(0) = 0, j = 1, 2 in the absence of an applied bias. The AC components at frequency ω = ωM are

I1(ωM) = im̂−
√
T ′1
e

h

∫
dε
{
r′M(ε−)t′∗M(ε−)e−iφeikL [f1(ε− ~ωM)− f2(ε)]− r′M(ε+)eiφeik+Lt∗M(ε−) [f1(ε)− f2(ε))]

}
+ im̂−

√
T ′1R1

e

h

∫
dε
{
−ei(k+−k−)Lr′M(ε+)r′∗M(ε−)r∗M(ε−) [f1(ε)− f2(ε)]

+ r∗M(ε−) [f1(ε− ~ωM)− f2(ε)]− ei(k−+k)Lr′M(ε−) [f2(ε− ~ωM)− f2(ε)]
}
,

I2(ωM) = im̂−
√
T ′1
e

h

∫
dε
{
r∗M(ε−)tM(ε−)e−iφeikL [f1(ε− ~ωM)− f2(ε)]− r∗M(ε−)eiφeikLt′M(ε+) [f1(ε)− f2(ε)]

}
+ im̂−

√
T ′1R1

e

h

∫
dε
{
−ei(k+k+)LrM(ε+)r′M(ε+)r∗M(ε−) [f1(ε)− f2(ε)]

+ ei(k−+k)Lr′M(ε−) [f1(ε− ~ωM)− f2(ε)]− r∗M(ε−) [f1(ε− ~ωM)− f1(ε)]
}
,

(41)

where we have also included a subleading contribution in the expansion for
√
T ′1,
√
R1, which we consider, because the leading

Figure 6. Contributions to the AC current amplitude I1(ωM) in lead “1” that depend on the distribution function f2(ε) in lead “2.” The panels
(a)–(f) are in the same order as the terms of Eq. (41), but when attempting to match the expressions from the panels to Eq. (41) care must be
taken as explained in the following. An overall minus sign that comes from the definition of the current I1(ω) in Eq. (3) is not included. In
panel (a) unitarity of S(M) must be used to make the replacement −r∗M(ε−)tM(ε−) = r′M(ε−)t′∗M(ε−) to arrive at the corresponding term in
Eq. (41). In comparison to Eq. (41), the contribution from panel (f) contains an extra factor of |rM(ε−)|2. This factor has been dropped in
Eq. (41), as

√
T ′1R1r

′
M(ε−)|rM(ε−)|2 ≈

√
T ′1R1r

′
M(ε−) to the level of approximation made in Eq. (41). In panels (c) and (f) the property

m̂−m̂+ = 1 is used, as the red or blue paths reflect off both sides of the magnet. The factors of −1,
√
R1, and i

√
T ′1 printed along the paths

come from the scattering matrix elements of S(C1) and S(C2) related to the paths that are shown in the limits considered.

contribution vanishes for small bias voltage if the Fermi energy is in the magnet-induced spectral gap. As an illustration, the
six configurations of transmission paths that give the f2(ε)-dependent contributions to I1(ωM) are shown in Fig. 6. The AC
components at frequency ω = 2ωM are

I1(2ωM) = − I2(2ωM)

= im̂2
−T
′
1

e

h

∫
dεei(k+k+)Lr′M(ε+)

× r∗M(ε−) [f2(ε)− f1(ε)] . (42)

These AC current components at frequency 2ωM can be un-
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derstood just as in Fig. 6, the difference being that the red and
blue paths must now be reflected from opposite sides of the
magnet so that their total energy difference is 2~ωM and not
~ωM, as it is for the interference partners shown in Fig. 6. To
obtain explicit results, we again consider a simplified model
for the reflection and transmission from the magnetic insula-
tor,

rM(ε) = e2ikFL3θ(∆− |ε|),
r′M(ε) = θ(∆− |ε|),
tM(ε) = t′M(ε) = ieikFL3θ(|ε| −∆). (43)

In comparison to the model, Eq. (29), used in the previous sec-
tion, we have made the further simplification that ωML3/vF,
ωML/vF � 1 already at the beginning of the calculation,

which allows us to replace k(ε) by kF in the expression for
rM(ε) and in the phase factor eik(ε)L for transmission through
the interferometer arm. The phase shift associated with r′M(ε)
is absorbed into the phase factor eikL, i.e., the length L of
the upper arm is extended to include the distance between the
(closed) right point contact and the magnet. The correction
to the DC current, Eq. (40), vanishes in the simple model
because the product rM(ε)tM(ε) = rM(ε)t′M(ε) = 0 at all
energies ε. To keep the final expressions for the AC current
components simple, we also set the temperature to zero, and
choose V1 = V and V2 = V7 = V8 = 0. Solving Eq. (39) for
the precession frequency ωM gives

~ωM = −min[eV, 2∆]. (44)

The AC components at ω = ωM are then given by

I1(ωM) = m̂−
√
T ′1
e

h
eiφ+ikF (L−L3)min[∆ + 3~ωM/2, 0]

− im̂−
√
T ′1R1

e

h

{
e−2ikFL3min[−~ωM,∆ + ~ωM/2] + e2ikFL~ωM

}
,

I2(ωM) = − im̂−
√
T ′1R1

e

h

(
e2ikFL − e−2ikFL3

)
min[−~ωM,∆ + ~ωM/2]. (45)

The AC components at ω = 2ωM are

I1(2ωM) = − I2(2ωM)

= − im̂2
−
e

h
T ′1e
−2ikF (L−L3)min[−~ωM,∆ + ~ωM/2]. (46)

The remarks from Sec. III B apply when interpreting these AC current contributions in the case of a “quantum” magnet with
sharply defined Mz .

V. FULL INTERFEROMETER

In this section we will now present results for the full interferometer (see Fig. 1), for which all reflection and transmission
coefficientsRj , Tj , and T ′j , j = 1, 2, are nonzero. To keep the expressions concise, we give analytical results to lowest nontrivial
order in Rj , T ′j , j = 1, 2, only. These are compared with a numerical evaluation of the full expression in Fig. 7.

As before, the precession frequency of the magnet is obtained from the relation Ṁz = 0. To first nonzero order on either side
of the magnet we obtain

0 =

∫
dε
{
|rM(ε)|2[f2(ε+)− f7(ε−)] + T ′1[f1(ε+)− f2(ε+)] +R1[f8(ε+)− f2(ε+)]

+ T ′2[f7(ε−)− f8(ε−)] +R2[f7(ε−)− f1(ε−)]} , (47)

where we also kept subleading terms because the leading contribution may vanish if V2 = V7. The leading contribution to the
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DC currents in the four leads is then

I1(0) =
e

h

∫
dε {f1(ε)− f8(ε)}

+
2e

h
Re
∫
dε
{√

R1R2tM(ε−)e−i(φ−kL)[f2(ε)− f8(ε)] +
√
T ′1T

′
2t
′
M(ε+)ei(φ−kL)[f8(ε)− f7(ε)]

}
,

I2(0) =
e

h

∫
dε
{
f2(ε)− f7(ε) + |rM(ε−)|2[f7(ε− ~ωM)− f2(ε)]

}
+

2e

h
Re
∫
dε
{√

R1R2t
′
M(ε+)ei(φ+kL)[f1(ε)− f7(ε)] +

√
T ′1T

′
2t
′
M(ε+)ei(φ−kL)[f7(ε)− f8(ε)]

+
√
R1R2|rM(ε−)|2[tM(ε−)e−i(φ−kL) + t′M(ε−)ei(φ+k−L)][f7(ε− ~ωM)− f2(ε)]

}
,

I7(0) =
e

h

∫
dε
{
f7(ε)− f2(ε)− |rM(ε−)|2[f7(ε− ~ωM)− f2(ε)]

}
+

2e

h
Re
∫
dε
{√

R1R2tM(ε−)e−i(φ−kL)[f8(ε)− f2(ε)] +
√
T ′1T

′
2tM(ε−)e−i(φ+kL)[f2(ε)− f1(ε)]

+
√
R1R2|rM(ε−)|2[tM(ε−)e−i(φ−kL) + t′M(ε−)ei(φ+k−L)][f2(ε)− f7(ε− ~ωM)]

}
,

I8(0) =
e

h

∫
dε {f8(ε)− f1(ε)}

+
2e

h
Re
∫
dε
{√

R1R2t
′
M(ε+)ei(φ+kL)[f7(ε)− f1(ε)] +

√
T ′1T

′
2tM(ε−)e−i(φ+kL)[f1(ε)− f2(ε)]

}
, (48)

where the subleading terms contain the φ-dependent contribution to the DC current only. Similarly, for the AC currents we find

I1(ωM) = im̂−
e

h

∫
dε
{√

R2T ′2r
′
M(ε+)e−iL(k−k+) [f7(ε)− f8(ε)] +

√
R1T ′1r

∗
M(ε−) [f8(ε)− f2(ε)]

}
,

I2(ωM) = im̂−
√
R1T ′1

e

h

∫
dεr∗M(ε−) [f1(ε)− f8(ε)] ,

I7(ωM) = − im̂−
√
R2T ′2

e

h

∫
dεr′M(ε+) [f1(ε)− f8(ε)] ,

I8(ωM) = im̂−
e

h

∫
dε
{√

R2T ′2r
′
M(ε+) [f1(ε)− f7(ε)] +

√
R1T ′1r

∗
M(ε−)e−iL(k−−k) [f2(ε)− f1(ε)]

}
, (49)

I1(2ωM) = − I2(2ωM)

= − m̂2
−
e

h

∫
dεe−iL(k−k+)r′M(ε+)r∗M(ε−)

{
R2T

′
1e

2iLk[f1(ε)− f2(ε)] +
√
R1R2T ′1T

′
2[f8(ε)− f7(ε)]

}
,

I7(2ωM) = − I8(2ωM)

= m̂2
−
e

h

∫
dεe−iL(k−+k)r′M(ε+)r∗M(ε−)

{√
R1R2T ′1T

′
2e

2iLk[f1(ε)− f2(ε)] +R1T
′
2[f8(ε)− f7(ε)]

}
. (50)

For the simplified model defined by Eq. (43) and the sub-
sequent discussion we compare the expressions (47)–(50) for
small T ′j , Rj , j = 1, 2, with a numerical evaluation of the
full solution of the scattering problem. Figure 7 shows the
result of this comparison for the bias voltages V1 = V > 0,
V2 = V7 = V8 = 0. The φ-dependent contribution to the DC
current in lead “2” shown in Fig. 7 is calculated as

I2,AB(0) ≡ 1

2π

{∫ 2π

0

dφ
[
I2(0)2 − 〈I2(0)〉2

]}1/2

, (51)

where

〈I2(0)〉 =
1

2π

∫ 2π

0

dφI2(0). (52)

VI. FINITE-T ENHANCEMENT OF DC
AHARONOV-BOHM CURRENTS

All previous explicit results for the simple model, Eq. (43),
were calculated at zero temperature (T = 0). In this section
we consider the effect of the Aharonov-Bohm phase φ on the
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Figure 7. From top to bottom: Precession frequency ωM, DC cur-
rent I2(0) at zero Aharonov-Bohm phase φ, φ-dependent contribu-
tion to DC current defined in Eq. (51), and the magnitude |I2(ωM)|
and |I2(2ωM)| of the AC current components at frequency ωM and
2ωM, as a function of the bias voltage V at lead “1.” All currents
are evaluated in lead “2.” The solid curves show the numerical eval-
uation of the full solution without the approximation of small Rj ,
T ′j , j = 1, 2. The dashed curves are obtained using the analyti-
cal expressions (47)–(50), with the exception of the second panel,
where we have included all φ-independent terms up to second order
in (Rj)

1/2, (T ′j)1/2, not only those of lowest nontrivial order given
in I2(0) in Eqs. (48). The parameters are chosen as T1 = 0.79,
R1 = 0.09, T ′1 = 0.12, T2 = 0.78, R2 = 0.06, T ′1 = 0.16,
kFL = 1, and kFL3 = 0.1.

DC current at finite temperature. We find that, if the Fermi
energy is in the magnet-induced gap, increasing T leads to
an increase of the φ-dependent Aharonov-Bohm contributions
to the DC current. The reason is that coherent transmission

through the magnet, which is required for a dependence on
the Aharanov-Bohm phase φ, exists for above-gap energies
only. The population of the above-gap states increases with
temperature, which causes the φ-dependent current contribu-
tion to increase. The visibility of the Aharonov-Bohm oscil-
lations decreases again at higher temperatures, when thermal
smearing effects start to dominate. As before, we choose the
biases V1 = V > 0 and V2 = V7 = V8 = 0 and use the
simple model given in Eq. (43) to calculate the φ-dependent
contributions to the DC current. At finite temperature, the
distribution functions are fj(ε) = [1 + e(ε−eVj)/kBT ]−1 with

0.00 0.25 0.50 0.75 1.00
eV/∆

0

1

2

3

−
δI

2
(0
,φ

)/
(2
√
R

1
R

2
e/
h

)

Figure 8. Aharonov-Bohm current δI2(0, φ) from Eq. (54) as a func-
tion of applied bias V in lead “1” for several values of kBT/∆; from
bottom to top they are 0.01, 0.1, 0.25, 0.5 and 2. The precession
frequency ωM is determined from the solution of Eq. (47) at finite T .
The phases are chosen such that sin[kF (L3 + L) + φ] = 1.

equal temperature T applied to all four leads j = 1, 2, 7, 8.

Flux-dependent contributions to the DC current do not ap-
pear in the “open” geometry of Sec. III. They do appear in
principle for the “closed” geometry of Sec. IV, but not for
the simple model given in Eq. (43), since all the φ-dependent
terms of Eq. (40) are proportional to rM(ε−)tM(ε−), which
is zero for that model. Hence, the discussion here focuses on
the full interferometer geometry of Sec. V. The starting point
of our analysis is Eq. (48), which gives the DC currents Ij(0)
for general distribution functions fj(ε). Specializing to the
simple model, Eq. (43), and restricting to the flux-dependent
part δIj(0, φ) of the DC current, we find

δI1(0, φ) = 0,

δI2(0, φ) = − 2e

h

√
R1R2 sin [kF (L3 + L) + φ]

{∫ −∆−~ωM/2

−∞
dε[f1(ε)− f7(ε)] +

∫ ∞
∆−~ωM/2

dε[f1(ε)− f7(ε)]

}
,

δI7(0, φ) = − 2e

h

√
T ′1T

′
2 sin [kF (L3 − L)− φ]

{∫ −∆+~ωM/2

−∞
dε[f2(ε)− f1(ε)] +

∫ ∞
∆+~ωM/2

dε[f2(ε)− f1(ε)]

}
,

δI8(0, φ) = − I2(0, φ)− I7(0, φ). (53)
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The integrals can be performed analytically and for our choice of biases they are

δI2(0, φ) = − 2ekBT

h

√
R1R2 sin [kF (L3 + L) + φ]

[
eV

kBT
+ ln cosh

∆ + ~ωM/2

2kBT
− ln cosh

eV + ∆ + ~ωM/2

2kBT

− ln cosh
∆− ~ωM/2

2kBT
+ ln cosh

eV −∆ + ~ωM/2

2kBT

]
,

δI7(0, φ) =
2ekBT

h

√
T ′1T

′
2 sin [kF (L3 − L)− φ]

[
eV

kBT
+ ln cosh

∆− ~ωM/2

2kBT
− ln cosh

eV + ∆− ~ωM/2

2kBT

− ln cosh
∆ + ~ωM/2

2kBT
+ ln cosh

eV −∆− ~ωM/2

2kBT

]
,

. (54)

In the limit of kBT � ∆, eV, ~ωM, these expressions reduce
to

δI2(0, φ) = − V 2e2

h

√
R1R2 sin [kF (L3 + L) + φ],

δI7(0, φ) =V
2e2

h

√
T ′1T

′
2 sin [kF (L3 − L)− φ], (55)

whereas in the opposite limit kBT → 0, we find
that the currents vanish, consistent with our previous re-
sults. The existence of a temperature-independent visibil-
ity of the Aharonov-Bohm oscillations of the DC current
at high temperatures continues up to temperatures kBT ∼
min(L,L3)/~vF where L and L3 are the lengths of the seg-
ments of the Aharonov-Bohm ring. The visibility of the
Aharonov-Bohm effect is suppressed at higher temperatures
because of thermal smearing effects [not present in the simple
model (43)]. In Fig. 8, we show δI2(0, φ) from Eq. (54), con-
firming the enhancement of the Aharonov-Bohm oscillations
compared to the zero-temperature result of panel 3 of Fig. 7.

VII. CONCLUSION

In this work, we analyzed electrical transport through
a helical edge of a two-dimensional topological insulator
exchange-coupled to a magnetic insulator. Despite the pres-
ence of an excitation gap, the magnet has no effect on the
current if it has an easy-plane anisotropy with the easy plane
perpendicular to the spin quantization axis of the helical
edge.18,19 Here, we show that the exchange coupling to the
magnet does affect electrical transport in an interferometer ge-
ometry: (1) In a four-terminal geometry, the application of a
DC voltage leads to AC currents at frequencies ωM and 2ωM

with ωM being the precession frequency of the magnet’s mag-
netization and (2) if the Fermi energy is in the magnet-induced
gap, the usual Aharonov-Bohm-flux dependent oscillations of
the DC current are strongly suppressed at zero temperature or
bias voltage and show a maximum at temperature or voltage
comparable to the magnet-induced gap.

Time-reversal symmetry prohibits backscattering at the two
point contacts that define the interferometer. In the limit of he-
lical edges with a well-defined spin polarization, forward scat-
tering between different edges is also suppressed (although it

will still be finite), because it requires a spin flip. The alternat-
ing currents exist only if there is such spin-flip scattering at the
point contacts. They can be traced back to an interference con-
tribution between transmission paths through the interferome-
ter that involve a (spin-flipping) reflection from the precessing
magnet and a spin-flip scattering at the contacts. The precess-
ing magnetization inserts a time-dependent phase factor in this
interference contribution, thus causing an alternating current
contribution for a time-independent applied bias. This origin
of the alternating current contribution as a periodic modula-
tion of the interference correction to the (steady-state) conduc-
tance must be contrasted with the origin of the direct current
through the magnet, which can be seen as a current “pumped”
by the precession magnetization.18 Consequentially, the mag-
nitude of the direct current through the magnet is closely re-
lated to the precession frequency—it is one electron per period
of the precessing magnetization—whereas, depending on the
properties of the point contacts and the specific way of bias-
ing the interferometer, the magnitude of the alternating current
components can be smaller or larger than that.

An easy-plane ferromagnet exhibits a “spin superfluid”
state,21,23 which has its origin in the formal analogy between
the U(1) low-energy degree of freedom of a magnetic mo-
ment with easy-plane anisotropy and the U(1) freedom of
the superfluid phase.22 Under suitable external driving, such a
spin superfluid can enter into a spiral state in which it carries
a dissipationless spin current.21 In nontopological systems,
the bottleneck for observing this dissipationless current is its
conversion to measurable spin or change currents outside the
magnet.24,25 The system that we consider here (and that was
previously considered in Refs. 18 and 19) offers a scenario for
a perfect conversion between the charge current in the helical
edge of a two-dimensional topological insulator and the “spin
superfluid” of the easy-plane ferromagnet. In addition to the
absence of shot noise predicted in Ref. 19, the transport prop-
erties we identify in this paper are unique signatures of the
anomalous electric transport in this system.
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