
1. Introduction
Modeling and predicting rainfall, and in particular heavy rainfall events, remains is challenging. The relevant 
multi-scale dynamics range from small-scale droplet interactions to large-scale weather systems. Further, the 
high intermittency in space and time, as well the strongly non-Gaussian, right-skewed distribution (Koutsoyian-
nis, 2004a, 2004b) make accurate predictions difficult.

The thermodynamic Clausius-Clapeyron relation (Allan & Soden, 2008; Donat et al., 2013; Guerreiro et al., 2018), 
and comprehensive model simulations (Masson-Delmotte, V. et al., 2021) suggest that the frequency and sever-
ity of heavy rainfall are expected to increase in a warming atmosphere (Fischer & Knutti, 2016). It should be 
noted, however, that the spatial patterns of these increases are expected to be heterogeneous and complex (Ali 
et al., 2018; Traxl et al., 2021). Correspondingly, accurate forecasts of heavy rainfall events will become ever 
more crucial for disaster prevention and mitigation.

Numerical weather prediction (NWP) models solve the fluid dynamical equations governing the dynamics of the 
atmosphere. They are essential for weather forecasting, including the prediction of heavy rainfall events. Despite 
the large improvements made over the past decades (Bauer et al., 2015), considerable sources of error remain 
in most of the models, in particular for rainfall (Boyle & Klein, 2010). Global NWP models, with a resolution 
of about 20 km, cannot explicitly resolve many of the relevant small-scale processes. These processes need to 
be included as sub-grid parameterizations, that is, they are written as functions of the explicitly resolved (grid-
scale) variables. These parameterizations of important processes involved in the generation of rainfall introduces 
biases and errors that can lead to an under- or overestimation of the magnitudes of heavy rainfall events (Wilcox 
& Donner, 2007).
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Post-processing methods are commonly applied to the simulated model output to correct for such biases (Berg 
et al., 2012; Maraun, 2016; Wilks, 2011; Xu, 1999). Traditional approaches relate the biases to differences in 
long-term statistics of the simulated and observed variable. Among them, quantile mapping (QM) has become 
particularly popular for weather and climate model applications (Cannon et al., 2015; Déqué, 2007; Gudmunds-
son et al., 2012; Tong et al., 2021), as it allows to correct for biases over the entire distribution. While correcting 
the general long-term statistics, these methods, however, do not directly correct for spatial biases in synchronous 
events that are both modeled and observed.

Recent work has shown promising results by including data-driven machine learning methods including neural 
networks (LeCun et al., 2015), into the traditional NWP workflow. Well-suited applications of neural networks 
range from data-assimilation (Bocquet et al., 2020), purely data-driven and hybrid weather prediction and climate 
modeling (Brenowitz & Bretherton, 2019; Rasp et al., 2018; Rasp & Thuerey, 2021; Watt-Meyer et al., 2021; 
Weyn et al., 2020; Yuval & O’Gorman, 2020) to post-processing NWP output (Grönquist et al., 2021; Rasp & 
Lerch, 2018).

Here we correct the European Center for Medium-Range Weather Forecasting (ECMWF) (European Centre for 
Medium-Range Weather Forecasts, 2012) Integrated Forecast System (IFS) for biases in both general statistics 
and local events, by post-processing its rainfall output with a deep neural network (DNN).

When DNNs are tasked to infer a variable with large intermittency and a heavy-tailed distribution, such as rain-
fall, the optimization with the widely employed mean squared error (MSE) loss function often leads to a good 
approximate of the distribution's mean. By simply averaging over a sample batch, the loss is dominated by the 
most frequent values, while outliers in the tail of the target distribution only have a comparably small contribu-
tion. This can lead to blurring of the spatial patterns and a less accurate prediction of the high values in the tail, 
as the model focuses mainly on accurate predicting the most frequent values near the mean.

For rainfall, this problem has been addressed in different ways, for example, by translating the regression task 
into a classification problem (Agrawal et al., 2019; Sønderby et al., 2020), by using methods from image qual-
ity assessment in computer vision (Tran & Song, 2019), and by employing a weighted loss function (Franch 
et al., 2020; Shi et al., 2017). The latter being composed of a weighted MSE and mean absolute error (MAE), with 
a set of five discrete weights determined by binned rainfall intensities. We show that the U-Net DNN architecture 
is able to infer high values in the far right tail of the target distribution from remotely sensed rainfall data. Notably, 
we use NWP ensemble simulations as input features, which do not exhibit an accurate representation of heavy 
rainfall events. To capture the heavy rainfall events and the intermittent spatial patterns, we introduce a new loss 
function, which combines a continuously weighted MSE with a structural similarity measure.

2. Materials and Methods
2.1. Integrated Forecast System

Atmospheric variables simulated as reforecasts by a ten-member ensemble of the IFS of the model cycle CY41R2 
from the ECMWF (European Centre for Medium-Range Weather Forecasts, 2012) are taken as inputs of the 
DNN. The data is provided by the ECMWF at three-hourly time steps and 0.5° horizontal resolution. It is initial-
ized twice daily at 06 and 18 UTC with a 12 hr lead time and small perturbations in the initial conditions. In this 
work, the ensemble mean of the variables is used, since taking the individual ensemble members as inputs would 
not be computationally feasible at present.

2.2. Training Data

The input features of the DNN are the three-hourly accumulated rainfall and vertical velocities of the IFS ensem-
ble mean at the respective lead time. The forecast consists of three-hourly steps up to 12 hr lead time. The ensem-
ble mean is taken from eleven pressure levels: 200, 250, 300, 400, 500, 600, 700, 800, 900, 950, and 1,000 hPa. 
The vertical velocity is dynamically linked to rainfall through convective processes and large-scale updrafts of 
warm, moist air (Müller et al., 2020; O’Gorman & Schneider, 2009; Pfahl et al., 2017). The satellite-based Tropi-
cal Rainfall Measurement Mission (TRMM) 3B42 V7 product (Huffman et al., 2007) is used as a training ground 
truth at three-hourly temporal resolution. Following (Beck et al., 2019; Rasp et al., 2020) the spatial resolution is 
regridded to 0.5° using bilinear interpolation to match the IFS grid. The TRMM data is considered to have high 
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accuracy especially for heavy rainfall events (Boers et al., 2015). The geographic region of this study is the entire 
spatial coverage of the TRMM product, which ranges from 50° S to 50° N and 180° W to 180° W. Further, the 
June, July and August season is used and split into a training set of 8,096 samples (1998–2008), a validation set 
containing 2208 samples (2009–2011) to optimize the hyperparameters of the DNN model, and a test set with an 
equal number of samples for evaluation (2012–2014). Although the TRMM product is continued till present, a 
change of the satellites in 2014 has introduced significant biases, as shown in Figure S6 in Supporting Informa-
tion S1, and the period after 2014 was therefore excluded.

2.3. Definition of Heavy Rainfall Events

We define heavy rainfall events as those 3-hourly time steps for which the rainfall sums exceed a pre-defined 
threshold. This threshold is determined individually for each grid cell in terms of percentiles. The percentiles are 
computed from the entire TRMM time series from 1998 to 2014 of 3-hourly time steps with rainfall amounts 
above 0.1 [mm/3h]. This allows to determined the event thresholds in the most accurate way by leveraging all the 
available data, which is important for the heavy rainfall events considered in this study.

2.4. Neural Network Architecture

The DNN architecture is based on the U-Net (Ronneberger et al., 2015), a convolutional neural network that 
can capture multi-scale spatial patterns. The U-Net includes a combination of pooling operations for large-scale 
feature extraction and skip-connections to preserve small-scale, high-frequency information. The U-Net architec-
ture has shown good performance in weather prediction and post-processing tasks (Grönquist et al., 2021; Weyn 
et al., 2020). The model, shown in Figure 1, takes the standardized spatial fields of the atmospheric variables 
as input. The number of 12 input channels equals the number of variables times the corresponding number of 
pressure levels. The output layer has a single channel and spatial dimensions identical to the global rainfall grid. 
It applies a rectified linear unit (ReLU) to ensure non-negative output values. The number of weights per layer 
is reduced by half compared to the original model from (Ronneberger et al., 2015), and only two max pooling 
operations are found to be optimal for all the models in this study. This effectively reduces the model parameters 
size compared to the original U-Net. Adding more layers did not lead to improvements, as similarly found in 
(Grönquist et al., 2021; Weyn et al., 2020). The ADAM optimizer (Kingma & Ba, 2017) was employed for train-
ing the networks. We use a batch size of 64, an initial learning rate of 10 −4, and early stopping with a patience of 
20 epochs without improvement of the loss function on the validation data set to prevent overfitting. The learning 

Figure 1. Sketch of the U-Net-based deep neural network (DNN) architecture. IFS output for rainfall and vertical velocities is passed to the DNN, which produces 
rainfall output optimized to approximate corresponding spatial fields from a satellite-based, quasi-global high-resolution rainfall data set. The number of channels in the 
DNN is indicated inside each layer. The horizontal dimensions per pooling level are given on the left. The arrows show the operations applied after each layer. Green 
arrows indicate convolutional operations followed by a ReLU activation function. The skip-connections are shown as gray arrows, transferring the hidden state across 
the bottleneck. Orange and purple arrows indicate max pooling and transposed convolutions respectively. For a more detailed explanation of a similar sketch we refer 
the original U-Net publication (Ronneberger et al., 2015).
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rate is reduced during training using a scheduler. It decreases by a factor of 0.1 after a period of 10 epochs without 
improvement on the validation loss.

2.5. Loss Function

To improve the training regarding high values and intermittency, we propose the weighted loss function

𝐿𝐿𝜆𝜆 (𝑦𝑦𝑦 𝑦𝑦𝑦) =
𝜆𝜆

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑤𝑤 (𝑦𝑦𝑖𝑖) (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑖𝑖)
2
+ (1 − 𝜆𝜆)MS-SSIM (𝑦𝑦𝑦 𝑦𝑦𝑦) 𝑦 (1)

where N is the number of training examples, w is a weight function and y and 𝐴𝐴 𝐴𝐴𝐴 are the target and prediction, 
respectively. The cost function is thus a convex sum of the weighted MSE and the so-called multi-scale structural 
similarity measure MS-SSIM (Wang et al., 2003) (named WMSE-MS-SSIM in the following), introducing an 
additional hyperparameter λ. The weights w are defined as

𝑤𝑤 (𝑦𝑦𝑖𝑖) = min
(

𝛼𝛼𝛼𝛼𝛽𝛽𝑦𝑦𝑖𝑖 , 1
)

, (2)

where α and β are hyperparameters. We optimize all the network hyperparameters on the validation set using 
random search with uniform distributions for each loss function. The intervals of the parameter distribution 
were adapted during the optimization procedure. For the loss in Equation 1, we find through manual evaluation 
α = 0.007, β = 0.048 and λ = 0.158 to be optimal with respect to continuous metrics such as root mean square 
error (RMSE) and mean error (ME) as well as categorical skill scores such as F1 and CSI. Since the rela-
tive frequency of 3-hourly rainfall events decreases approximately exponentially with increasing magnitude, the 
weights aim to account for the statistical imbalance. Ebert-Uphoff et al. (Ebert-Uphoff & Hilburn, 2020) also use 
an exponentially weighted MSE loss to emphasise less frequent and high values when training a DNN to estimate 
radar composite reflectivity from satellite imagery. While the weighted MSE accounts for the skewed rainfall 
frequency distribution, the MS-SSIM evaluates the mean, standard deviation and covariance in the predicted 
rainfall output and ground truth. This is done through an iterative comparison of luminance, contrast and structure 
on different scales by downsampling and low-pass filtering the image signals (see supporting information). It is 
highly sensitive to blurring in images, as opposed to the MSE loss term. This can be seen for example, in Figure 
2 in (Wang et al., 2004), showing a comparison of the sensitivity of MSE and MS-SSIM for different image 
distortions. Intuitively, one might hope that including the MS-SSIM will improve the spatial patterns of the DNN 
output, which is important for an accurate reproduction of heavy rainfall events. In our case, we indeed find that 
only optimizing with the weighted MSE leads to large biases, which can be removed through the addition of 
the MS-SSIM into the loss, with the role to improve the structural similarity. Further introducing bounds on the 
weights was crucial for a robust optimization of the network.

2.6. Baseline

We compare our method to two different baselines. A linear ridge regression (Hoerl & Kennard, 1970) with the 
IFS ensemble mean rainfall of a single grid-cell as input is used as the first baseline model. The regularization 
constant of 10 −3 was found to be optimal using the same validation method as for the DNNs. Including the verti-
cal velocity fields did not improve the performance of this baseline model. In addition, we use QM (Déqué, 2007) 
as a second baseline. The period from 1998 to 2011 is used to estimate the cumulative distribution functions 
(CDFs) of the simulated Fhist and observed Fobs data with 750 discretized quantiles, which are found to be optimal. 
The CDFs are then used to match the corresponding quantiles via

�̃�𝑝𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹 −1

𝑜𝑜𝑜𝑜𝑠𝑠
(𝐹𝐹ℎ𝑠𝑠𝑠𝑠𝑖𝑖 (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠)) . (3)

Here, 𝐴𝐴 𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 and psim are the quantile-mapping corrected and simulated rainfall values, respectively.
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3. Results
3.1. Evaluation of the Continuous Forecast Skill of the Deep Learning Model

The evaluation results reported in the following are computed on the test data set. We first compare the histo-
grams of the relative frequencies of the 3-hourly rainfall values for the outputs from IFS, the different post-pro-
cessing models, and the ground truth given by the TRMM remote sensing product (Figures 2a and 2b). The 
histograms of grid-cell values are computed over the entire part of the globe covered by the TRMM data (50°S to 
50°N) and test set period. Training the DNN with an MSE or a MS-SSIM loss leads to a similar rainfall frequency 
distribution as the IFS ensemble mean and the linear ridge regression baseline, with over-representation of low 
rainfall frequencies and underestimation of the tail, as compared to the observational TRMM target. Training 
with the WMSE-MS-SSIM loss function in Equation 1, instead, enables the DNN to infer a distribution that is 
substantially closer to the target distribution. The frequencies of low rainfall rates are correctly reduced, while at 
the same time achieving a better statistical representation of the heavy rainfall events in the tail. The ridge regres-
sion shows the largest bias toward low rainfall rates, hence not improving the IFS output at all. Applying QM to 
the IFS output on the other hand leads to an accurate representation of rainfall frequencies over the entire range 
of values - also for low values, as expected by construction.

We assess the continuous forecast skill of the different models by computing the RMSE, ME and the complex-wave-
let structural similarity index (CW-SSIM; Sampat et  al.,  2009; see supporting information). The CW-SSIM 
allows a structural comparison of two images that is insensitive to small non-structural transformations such 
as rotation and translation, but sensitive to structural changes such as sharpness. Time steps with rainfall below 

Figure 2. Relative rainfall frequencies and categorical heavy rainfall event forecast scores for the different post-processing models compared to the IFS. (a) The 
Heidke Skill Score (HSS) for events above increasing percentile thresholds is shown for the IFS (blue), ridge regression (orange), DNN trained with the mean squared 
error loss (green), the MS-SSIM loss (purple), with the WMSE-MS-SSIM loss proposed here (red) and quantile mapping (brown). A HSS greater than zero implies 
an improvement over a random forecast, and HSS = 1 would imply a perfect forecast (see supporting information). (b) The relative improvement of the HSS for the 
different machine learning methods over the IFS mean, is shown in percentages. Histograms of three-hourly rainfall event magnitudes are shown on a linear y-axis (c) 
and a logarithmic y-axis (d) for Tropical Rainfall Measurement Mission (black), IFS (blue), ridge regression (orange), DNN trained with the MSE loss (green), the 
MS-SSIM loss (purple) and the WMSE-MS-SSIM loss (red). The bins were chosen to be evenly spaced with a width of 1 mm/day.
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a threshold of 0.1 [mm/3h] have been excluded before applying the error metrics. Rainfall on such low scales 
cannot be measured accurately by satellite-based remote sensing (Huffman et al., 2007). Hence, completely dry 
times are not represented in the error statistics. The results are summarized in Table 1 as averages of the absolute 
cell-wise metrics. Training the DNN with the MS-SSIM leads to the lowest RMSE, while the WMSE-MS-SSIM 
loss function shows a ME similar to the MS-SSIM, and the highest structural similarity. Processing the IFS 
output with the ridge regression does not lead to improvements. Omitting rainfall from the input features and thus 
purely focusing on the vertical wind velocities W is not substantially affecting the performance of the model. The 
WMSE-MS-SSIM loss function combined with the MS-SSIM leads to an improvement of the ME by almost 23% 
and an improvement of the CW-SSIM metric by more than 50%. Besides the metrics discussed above, rainfall 
maps produced by the IFS, DNN and TRMM are shown in Figure S1 in Supporting Information S1 for a quali-
tative comparison. While QM is not able to reduce the RMSE of the IFS, it strongly reduces the ME and leads to 
high similarity values, reflected in the CW-SSIM.

3.2. Evaluation of the Forecast Skill of the Deep Learning Model for Heavy Rainfall Events

To evaluate the forecast skill for heavy rainfall events, categorical statistics can be computed from the contin-
gency table containing the true positives and negatives, as well as the false positives and negatives (Table S1 in 
Supporting Information S1). A detailed definition of the events is given in Section 2.3 and the skill scores are 
defined in the Supporting Information. Table 2 summarizes the skill scores for events above the 95th percentile. 
The HSS, defined in the SI (Text S2 in Supporting Information S1), which is equal to zero for a random forecast 
and equal to one for a perfect forecast, is shown in Figure 2c for thresholds ranging from the 75th to the 99th 
percentile. Corresponding results for the other scores are given in the Figures S2 to S5 in Supporting Informa-
tion S1. The DNNs improve the scores compared to the IFS mean and ridge regression, in particular for events 
above the 90th and higher percentiles (Figure 2c). Quantile mapping results in HSS, F1 and CSI values higher 
than for the MSE-trained DNN, but stays below the other two networks. While QM leads to a high probability of 
detection, it also shows a large FAR score indicating a high number of false positives. The DNN trained using the 

Model Loss Input RMSE % ME % CW-SSIM %

IFS - - 1.457 - 0.175 - 0.359 -

Qantile map. - P 2.071 −42.1 0.149 14.9 0.511 42.3

Ridge Regr. MSE P 1.473 −1.1 0.209 −19.4 0.359 0

DNN MSE W 1.375 5.6 0.165 5.7 0.388 8.1

DNN MSE P, W 1.372 5.8 0.166 5.1 0.395 10

DNN MS-SSIM P, W 1.368 6.1 0.136 22.3 0.441 22.8

DNN WMSE-MS-SSIM P, W 1.439 1.2 0.135 22.9 0.545 51.8

Table 1 
Continuous Validation Statistics Are Given for the Integrated Forecast System Ensemble Mean, Quantile Mapping, Ridge 
Regression, and the DNNs Trained With Different Loss Functions and the Input Variables Rainfall (P) and Vertical Velocity 
(W) From the IFS

Model Loss HSS % F1 % CSI % POD % FAR %

IFS - 0.067 - 0.069 - 0.036 - 0.041 - 0.778 -

Quantile map. - 0.156 133 0.161 135 0.088 144.4 0.163 299 0.840 −8

Ridge Regr. MSE 0.040 −40 0.041 −41 0.021 −42 0.022 −46 0.775 0

DNN MSE 0.113 69 0.115 67 0.061 69 0.066 61 0.567 27

DNN MS-SSIM 0.174 160 0.177 157 0.097 169 0.115 180 0.622 20

DNN WMSE-MS-SSIM 0.192 187 0.195 183 0.108 200 0.139 239 0.673 13

Note. The percentage columns give the relative improvement over the IFS mean for each error metric and skill score.

Table 2 
Event-Based Forecast Skill Scores for Rainfall Events Above the 95th Percentile
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MS-SSIM alone as loss shows the highest scores below the 95th threshold. The proposed WMSE-MS-SSIM loss 
leads to significant improvements even above the 95th percentile (improving the IFS forecast by 192% in terms 
of the HSS) and yields the most skillfull forecast for events above the 99th percentile (improving the IFS forecast 
by more than 500% in terms of the HSS). Note that the FAR score is not as strongly improved as the other skills, 
indicating slightly more frequent false alarms when optimizing with the WMSE-MS-SSIM loss. We attribute this 
to the highly localized, intermittent nature of heavy rainfall events and emphasize that - in view of the results for 
the other error metrics - the increased number of false positives is more than balanced by the increased number of 
true positives. The DNN trained with the WMSE-MS-SSIM loss introduced above leads to substantial improve-
ments also for the spatial patterns of heavy rainfall events. In particular for regions with stronger heavy rainfall 
events (Figure 3) the skill improvement increases. This is also visible in Figure 4 showing longitudinal averages 
of the 95th rainfall percentile and the HSS scores of the IFS and the DNNs trained with MSE and the WMSE-
MS-SSIM loss function. There remain regions, however, where the HSS is not substantially improved. These are 

Figure 3. Spatial distribution of the 95th rainfall percentile and Heidke Skill Score (HSS) for events above the 95th percentile. (a) The 95th percentile of the rainfall 
distribution at each grid cell of the Tropical Rainfall Measurement Mission data set. (b) The spatially resolved HSS for the IFS mean. (c) The spatially resolved HSS 
for the deep neural network post-processed forecast, trained with the proposed WMSE-MS-SSIM loss. Hatched areas indicate grid-cells where the HSS could not be 
evaluated. This is due to the low number of wet times in these locations, so that the percentile thresholds could not be determined.
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mainly given by areas for which the IFS itself already has particularly low forecast skill (Figure S7 in Supporting 
Information S1), including a large fraction of the land masses between 30°S and 30°N. The rainfall frequencies 
are still improved in this region (Figure S8 in Supporting Information S1), although less strongly than over the 
entire global domain.

4. Discussion
We introduced a DNN to model heavy rainfall from short-range numerical weather ensemble forecasts. To 
address the strong statistical imbalance of the training data, a loss function is introduced that combines a weighted 
MSE with a structural similarity measure (WMSE-MS-SSIM). The proposed WMSE-MS-SSIM loss function is 
found to substantially improve the training with respect to high values compared to using the MSE and MS-SSIM 
individually, which are two commonly used loss functions. For comparison, we show that post-processing the 
IFS mean with a ridge regression model does not lead to any improvements. This motivates the importance of 
a non-linear DNN architecture such as the U-Net. Moreover, our results suggest that the U-Net architecture is 
indeed capable of capturing the multi-scale spatial structure of rainfall accurately.

The WMSE-MS-SSIM loss substantially improves relative rainfall frequencies in the DNN output, the ME and 
CW-SSIM of overall rainfall fields, as well as categorical skill scores for heavy rainfall events above the 90th and 
higher percentile, with strongly increasing relative rate of improvement for higher thresholds. As seen in Figure 3 
and Figure 4 the skill improvement follows largely regions with higher rainfall percentiles. A possible explanation 
could be that the WMSE-MS-SSIM loss is particularly successful at locations with high rainfall values. This is 
supported be the seemingly lower correlation of the MSE-trained DNN's HSS with the rainfall percentiles as 
shown in Figure 4. In regions, where the IFS predictions are not much better than a random forecast (Heidke skill 
score close to 0), our DNN-based post-processing that uses these IFS prediction as input is not be able to improve 
these IFS forecasts significantly. A direction for future research could thus be the improvement of our method in 
tropical regions where the skill is lower than in higher latitudes.

As noted by several authors, a single metric that captures all characteristics of a forecast does not exist, which 
renders the evaluation of purely data-driven weather forecasts particularly challenging (Ebert-Uphoff & 
Hilburn,  2020; Rasp & Thuerey,  2021; Ravuri et  al.,  2021). In particular, physical consistency, that is often 
assumed in established metrics, is not always guaranteed in neural network-based predictions. In this study, the 
DNN performance was manually evaluated using several metrics, both continuous and categorical. We believe 
that the development of more suitable and comprehensive evaluation metrics, or combinations thereof, will be an 
important direction of future research. It would enable a fully automatic hyperparameter tuning with respect to 
the various forecast qualities, which is, however, outside the scope of this study.

Figure 4. Zonal mean of the Heidke Skill Score for events above the 95th percentile for the Integrated Forecast System mean 
(blue), the deep neural network (DNNs) trained with the mean squared error (MSE) (green) and WMSE-MS-SSIM loss (red). 
The zonal mean of the Tropical Rainfall Measurement Mission (TRMM) 95th rainfall percentiles are shown in black. Note. 
That the averaged HSS of the DNN (WMSE-MS-SSIM) is approximately proportional to the 95th rainfall percentiles of 
TRMM.
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Taking the mean of the IFS ensemble is expected to damp the high rainfall values in the forecast. Hence, the 
results of the IFS shown here do not represent the skill of single ensemble members to forecast heavy rainfall 
events, which do not show this damping. The comparison of the bias correction methods presented in this study 
to the IFS ensemble mean therefore aim to show the respective relative improvements. Nevertheless, our results 
demonstrate the ability of the proposed DNN architecture to learn high rainfall values that are not produced by the 
existing precipitation parameterization of the IFS model, and to substantially improve their prediction.

The satellite-based TRMM rainfall data is used in this study as a ground truth. However, since different obser-
vational rainfall datasets usually agree only on much larger spatial and time scales than considered in this study, 
this should not be taken literally. The high resolution chosen for this study is important to capture the intermit-
tent variability of heavy rainfall events. Since our method can be retrained in a flexible manner, it is possible to 
re-calibrate it to other observational data set as well. This allows for a continuous update of the DNN once more 
accurate observational datasets become available.

Interestingly, the error statistics did not change significantly when rainfall was excluded and only the vertical 
wind speed were considered as input features. This indicates that the DNN can learn a good representation of 
rainfall and especially its high values from the vertical velocity alone. This is also in agreement with previous 
works (Müller et al., 2020; O’Gorman & Schneider, 2009) on the link of the vertical velocity to heavy rainfall 
events.

An improved structural similarity in terms of the CW-SSIM is achieved when using the WMSE-MS-SSIM loss, 
compared to using the MS-SSIM alone as loss function. Adding the weighted MSE to the MS-SSIM loss might 
not be expected to increase the overall structural similarity of the DNN output. We speculate that the increased 
structural similarity we found might be related to the DNNs ability to improve the standard deviation that is 
measured in the CW-SSIM and to perform a transformation of the rainfall distribution similar to the QM method. 
Both our DNN and QM show accurate frequency distributions as well as relatively high structural similarity 
compared to the other models. Nevertheless, when trained using the WMSE-MS-SSIM loss, the forecast skill 
of our DNN-based post processing outperforms all other methods including QM, for almost all continuous and 
event-based validation metrics (see Tables 1 and 2).

A qualitative comparison of the DNN output with the TRMM target (Figure S1 in Supporting Information S1) 
shows that there remain small-scale features that are not captured by our method. This lack of high-frequency 
details in the output can be attributed to the deterministic nature of our neural network model. Here, generative 
models that learn stochastic functions and are therefore able to produce realistic small-scale features might offer a 
direction toward further improvements. However, producing stochastic small-scale features does not necessarily 
lead to a better forecast skill of the model, in particular for high rainfall events (Ravuri et al., 2021). We therefore 
believe that the results presented here could also be relevant for such stochastic approaches.

Although the considered forecast has a high temporal resolution of three hours, the forecast lead time of up to 
twelve hours is still comparably short. With applications to disaster prevention in mind, an extension of the study 
to longer forecast lead times will be an important direction for future research.

With ongoing global warming, the characteristics of heavy rainfall events are expected to change. To account for 
this non-stationarity, the training of the proposed method can in principle be continued over time when new train-
ing data becomes available. Further, making use of the entire IFS ensemble will allow to incorporate uncertainties 
into the framework, which are essential for operational forecasting of heavy rainfall events.

Data Availability Statement
Data pre-processing was done using the Climate Data Operator (CDO) software (Schulzweida, 2019) for regrid-
ding as well as the Xarray 0.15.1 package. The Pytroch 1.7.0 (Paszke et al., 2019) source code for training and data 
processing will be available at (https://zenodo.org/badge/latestdoi/457716105) on publication. The QM method 
was implemented using the Xclim 0.25.0 Python package (Logan et al., 2021). The IFS training data is avail-
able for download at the Copernicus Climate Change Service (C3S; Hersbach et al., 2020; https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels). The TRMM (TMPA) data can be obtained at 
the Goddard Earth Sciences Data and Information Services Center (GES DISC; Leptoukh, 2005; https://disc.
gsfc.nasa.gov/datasets/TRMM_3B42_7/summary).

https://zenodo.org/badge/latestdoi/457716105
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary
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