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Preface

This thesis consists of five chapters. The first three chapters serve an introductory

purpose and describe the author’s perspective on a well-known numerical problem. To

the best of the author’s knowledge, some viewpoints and results in the third chapter are

new in this very specific context. The last two chapters contain results of mathematical

research which were obtained in the following work:

(i) M. Mollenhauer and P. Koltai. Nonparametric approximation of conditional expectation

operators. arXiv preprint arXiv:2012.12917, 2020,

(ii) M. Mollenhauer, S. Klus, C. Schütte, and P. Koltai. Kernel autocovariance operators of

stationary processes: Estimation and convergence. arXiv preprint arXiv:2004.00891, 2020a.

The author of this thesis is responsible for the basic concept, the mathematical research

and the writing of the manuscripts listed above. At the time of writing this thesis, both

papers are undergoing a scientific peer review process.

Some parts of this thesis are identical to the content of the papers (i) and

(ii). We indicate the connection between these papers and this thesis at the

beginning of each chapter. All the passages taken from the above papers and

all presented results are ultimately due to the author of this thesis.

The perspectives and ideas in this thesis are strongly influenced by some of the results

from the author’s earlier collaborations which are not presented in this thesis:

(i) I. Schuster, M. Mollenhauer, S. Klus, and K. Muandet. Kernel conditional density operators.

In S. Chiappa and R. Calandra, editors, Proceedings of the 23rd International Conference

on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning

Research, pages 993–1004. PMLR, 2020,

(ii) M. Mollenhauer, I. Schuster, S. Klus, and C. Schütte. Singular value decomposition of

operators on reproducing kernel Hilbert spaces. In O. Junge, O. Schütze, G. Froyland,

S. Ober-Blobaum, and K. Padberg-Gehle, editors, Advances on Dynamics, Optimization

and Computation. Series: Studies in Systems, Decision and Control, volume 304, pages

109–131. Springer, 2020b and

(iii) S. Klus, B. E. Husic, M. Mollenhauer, and F. Noé. Kernel methods for detecting coherent

structures in dynamical data. Chaos: An Interdisciplinary Journal of Nonlinear Science,

29(12):123112, 2019.

In the main text, we refer to all of the above preprints and publications by their individual

entry in the bibliography of this thesis.
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Zusammenfassung

Diese Dissertation erörtert die datengetriebene Approximation des sogenannten conditio-

nal expectation operators, welcher den Erwartungswert einer reellwertigen Transformation

einer Zufallsvariablen bedingt auf eine zweite Zufallsvariable beschreibt. Sie stellt dieses

klassische numerische Problem in einem neuen theoretischen Zusammenhang dar und

beleuchtet es mit verschiedenen ausgewählten Methoden der modernen statistischen

Lerntheorie. Es werden sowohl ein bekannter parametrischer Projektionsansatz aus dem

numerischen Bereich als auch ein nichtparametrisches Modell auf Basis eines reproducing

kernel Hilbert space untersucht.

Die Untersuchungen dieser Arbeit werden motiviert duch den speziellen Fall, in dem der

conditional expectation operator die Übergangswahrscheinlichkeiten eines Markovprozesses

beschreibt. In diesem Kontext sind die Spektraleigenschaften des resultierenden Markov

transition operators von großem praktischen Interesse zur datenbasierten Untersuchung

von komplexer Dynamik. Die oben genannten vorgestellten Schätzer werden in diesem

Szenario in der Praxis verwendet.

Es werden diverse neue Konvergenz- und Approximationsresultate sowohl für stochastisch

unabhängige als auch abhängige Daten gezeigt. Als Werkzeuge für diese Ergebnisse

dienen Konzepte aus den Theorien inverser Probleme, schwach abhängiger stochastischer

Prozesse, der Störung von Spektraleigenschaften und der Konzentration von Wahr-

scheinlichkeitsmaßen. Zur theoretischen Rechtfertigung des nichtparametrischen Modells

wird das Schätzen von kernel autocovariance operators von stationären Zeitreihen un-

tersucht. Diese Betrachtung kann zusätzlich vielfältig in anderen Zusammenhängen

genutzt werden, was anhand von neuen Ergebnissen zur Konsistenz von kernelbasierter

Hauptkomponentenanalyse mit schwach abhängigen Daten demonstriert wird.

Diese Dissertation ist theoretischer Natur und dient nicht zur unmittelbaren Umsetzung

von neuen numerischen Methoden. Sie stellt jedoch den direkten Zusammenhang von

bekannten Ansätzen in diesem Feld zu relevanten statistischen Arbeiten der letzten

Jahre her, welche sowohl stärkere theoretische Ergebnisse als auch effizientere praktische

Schätzer für dieses Problem in der Zukunft möglich machen.
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1. Introduction

This chapter contains passages taken from Mollenhauer et al. (2020a).

Given the joint distribution of two random variables X and Y taking values in some

standard Borel space (E,FE) with marginal distributions X ∼ π and Y ∼ ν, we

investigate the statistical approximation of the linear conditional expectation operator

P : L2(ν)→ L2(π) defined by

[Pf ](x) := E[f(Y ) | X = x].

The conditional expectation operator can be understood as the functional-analytic

analogue of the Markov transition kernel p : E ×FE → [0, 1] given by

p(x,A) = P[Y ∈ A | X = x] for all x ∈ E and A ∈ FE ,

which describes the stochastic connection between X and Y . In contrast to the somewhat

intangible measure-theoretic properties of the Markov transition kernel however, the

operator P offers an accessible perspective in terms of the comprehensive functional

analytic theory of linear operators.

For example, when P describes the transition probabilities of a Markov process, its spectral

properties allow to characterize a wide variety of important features of the underlying

dynamics. Due to this fact, the data-driven approximation of P based on empirical

observations drawn from the joint distribution of X and Y has become ubiquitous in the

numerical theory of dynamical systems and Markov processes. Interestingly, although the

approximation of P is of a statistical nature in its essence, even well-known numerical

approximation schemes have not yet been rigorously investigated from a statistical

perspective.

Consequently, our primary goal in this thesis is to bridge the gap between the classi-

cal numerical approximation of P and developments in modern high-dimensional and

nonparametric statistics. In particular, we derive results for the estimation of P and its

spectral properties by accessing tools from important fields such as the concentration

of measure, random matrices, spectral perturbation theory, kernel-based nonparametric

inference and regularization theory. Our main motivation for this analysis are practi-

cal applications in which P describes the transitions of a Markov process or random

1



1. Introduction

dynamical system. Therefore, our consistency results explicitly cover the case that the

underlying data consists of subsequent observations from an empirical realization of a

Markov process. We neither claim to present an exhaustive theory of statistically optimal

results nor derive new numerical methods for immediate practical applications in this

thesis. Instead, we develop a mathematical perspective which allows the application of

more sophisticated estimators and sampling techniques from the aforementioned statistical

fields to the data-driven approximation of P in the future.

This thesis is structured as follows. In Chapter 2, we introduce the necessary mathematical

background and review the most important concepts from measure theory, integration

and linear functional analysis.

In Chapter 3, we introduce the conditional expectation operator P and its properties.

We investigate its singular value decomposition in the context of the so-called canonical

components and address the empirical estimation of the singular functions of P in terms

of a spectral perturbation result. We connect this general framework to the special case

when P describes the transition probabilities of a Markov process. In particular, we

discuss a parametric projection method for the empirical analysis of random dynamical

systems which enjoys widespread practical use. We establish asymptotic as well as non-

asymptotic convergence results for both independent and dependent observations and

elaborate on theoretical limitations of these results from a statistical perspective.

In Chapter 4, we develop a framework for the nonparametric estimation of P based

on a reproducing kernel Hilbert space. We establish a connection to the theory of

regularized least squares regression with vector-valued kernels and related concepts from

nonparametric inference such as the kernel mean embedding and the maximum mean

discrepancy. We show that the nonparametric approximation of P admits a closed

form solution for the special case of Tikhonov–Phillips regularization. We conclude by

highlighting that this closed form solution and its empirical estimate are connected to a

class of popular kernel-based spectral analysis techniques for dynamical systems.

In Chapter 5, we address the estimation of kernel autocovariance operators, which

are strongly connected to the nonparametric approximation of P and several other

statistical models for stationary time series. We prove various convergence results under

the assumptions of ergodicity and mixing. As an application, we use these results to

show consistency of kernel principal component analysis when the underlying data is

dependent.

Each of the last three chapters concludes with an individual summary and provides an

outlook on open problems and possible topics for future research.
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2. Mathematical preliminaries

This chapter contains passages taken from the preliminary sections of

Mollenhauer et al. (2020a) and Mollenhauer and Koltai (2020).

We briefly introduce the needed concepts from measure theory and integration (Diestel

and Uhl, 1977), compact linear operators and spectral theory in Hilbert spaces (Dunford

and Schwartz, 1988a,b; Reed and Simon, 1980) and basic probability theory (Dudley,

2002; Kallenberg, 2002). Although we aim to provide a mathematical exposition in the

most general form possible, we may occasionally choose readability and clarity over an

extreme degree of abstractness. Therefore, some details in our presentation can certainly

be transferred to a more general scenario without significant technical effort.

2.1. Topology, measure and integration

For any topological space (E, τ), we will write FE := B(E) for its associated Borel

field. For any collection M of subsets of E, σ(M) denotes the intersection of all σ-fields

containing M. For any σ-field F on E and countable index set I, we write F⊗I as the

product σ-field on the product space EI (i.e., the smallest σ-field with respect to which

all coordinate projections on EI are measurable). If (E, τ) is separable and completely

metrizable, it is called a Polish space. If (E, τ) is a Polish space, we have B(EI) = B(E)⊗I ,

i.e. the Borel field on the product space generated by the product topology and the

product of the individual Borel fields are equal (Dudley, 2002, Proposition 4.1.17). A

Polish space equipped with its Borel field is called a standard Borel space. If (E,FE) is a

standard Borel space, then the space (EI ,F⊗IE ) is again a standard Borel space.

In what follows, we write B for a separable real Banach space with norm ‖·‖B, and H

for a separable real Hilbert space with inner product 〈·, ·〉H . Let (Ω,F , π) be a measure

space. For 1 ≤ q ≤ ∞, let Lq(Ω,F , π;B) denote the Banach space of equivalence classes

of F − FB measurable and Bochner q-integrable functions f : Ω→ B equipped with the

norms

‖f‖qLq(Ω,F ,π;B)
:=

∫
Ω
‖f(ω)‖qB dπ(ω) 1 ≤ q <∞,

‖f‖L∞(Ω,F ,π;B) := ess sup
ω∈Ω

‖f(ω)‖B .

3



2. Mathematical preliminaries

In the case of B = R, we simply write Lq(π) := Lq(Ω,F , π;R) for the standard space of

real-valued Lebesgue q-integrable functions when the choice of σ-field on Ω is clear. For

F −FB measurable functions f : Ω→ B, the map ω → ‖f(ω)‖B is F −B(R) measurable

and the conditions f ∈ Lq(Ω,F , π;B) and ‖f‖B ∈ Lq(π) are equivalent.

If A : B → B′ is a bounded linear operator between Banach spaces and f ∈ L1(Ω,F , π;B),

then Af(·) ∈ L1(Ω,F , π;B′) and we have

A

(∫
E
f(ω) dπ(ω)

)
=

∫
E
Af(ω) dπ(ω).

When B = H is a Hilbert space, the choice of q = 2 defines the Hilbert space

L2(Ω,F , π;H), where the above norm is induced by the inner product

〈f, g〉L2(Ω,F ,π;H) :=

∫
Ω
〈f(ω), g(ω)〉H dπ(ω).

2.2. Linear operators and spectral theory

The expression B(B,B′) denotes the Banach space of bounded linear operators from B

to another Banach space B′ and is equipped with the operator norm ‖·‖. For the case

B = B′, we abbreviate B(B,B′) = B(B). We will also write ‖·‖ = ‖·‖B→B′ , if the choice

of norms on the underlying spaces B,B′ needs to be emphasized.

Tensor product spaces. The expression H ′⊗H denotes the tensor product of Hilbert

spaces H,H ′. The Hilbert space H ′⊗H is the completion of the algebraic tensor product

with respect to the inner product 〈x′1 ⊗ x1, x
′
2 ⊗ x2〉H′⊗H = 〈x′1, x′2〉H′ 〈x1, x2〉H for

x1, x2 ∈ H and x′1, x
′
2 ∈ H ′. We interpret the element x′ ⊗ x ∈ H ′ ⊗ H as the linear

rank-one operator x′ ⊗ x : H → H ′ defined by x̃ 7→ 〈x̃, x〉H x′ for all x̃ ∈ H. Whenever

(ei)i∈I , (e′j)j∈J are complete orthonormal systems (CONSs) in H and H ′, (e′j ⊗ ei)i∈I,j∈J
is a CONS in H ′ ⊗H. Thus, when H and H ′ are separable, H ′ ⊗H is separable.

Spectral theorem for compact self-adjoint operators. An operator A : H → H ′

is called compact if it maps bounded sets in H to relatively compact sets in H ′. That

is, for every bounded sequence (xn)n∈N in H, the sequence (Axn)n∈N in H ′ contains a

converging subsequence. For every compact self-adjoint operator A : H → H, there exists

an either finite or countably infinite index set I = {1, 2, . . . } and an orthonormal system

of eigenvectors {vi}i∈I ⊂ H with a corresponding sequence of real eigenvalues (µi(A))i∈I
such that A admits the spectral decomposition

A =
∑
i∈I

µi(A) vi ⊗ vi, (2.1)

4



2.2. Linear operators and spectral theory

where the above sum converges in the operator norm. If the index set I is infinite, then

the only possible accumulation point of (µi)i∈I is 0. For simplicity, we may assume in

some situations that the eigenvalues are ordered nonincreasingly in absolute value, i.e., we

have |µi(A)| ≥ |µi+1(A)| such that (µi)i∈I converges to 0 if I is infinite. This convention

is particularly convenient if A is positive, i.e. µi(A) ≥ 0 for all i ∈ I.

Singular value decomposition. Every compact operator A : H → H ′ on Hilbert

spaces admits a singular value decomposition. That is, there exist an either finite or

countably infinite index set I = {1, 2, . . . } and orthonormal systems of left singular

vectors (ui)i∈I ⊂ H ′ and right singular vectors (vi)i∈I ⊂ H such that

A =
∑
i∈I

ρi(A)ui ⊗ vi, (2.2)

where (ρi(A))i∈I ⊂ R+ are the strictly positive and nonincreasingly ordered singular

values of A. The convergence in (2.2) is again meant with respect to the operator norm.

The rank of A is defined as the cardinality of I and written as rank(A). We additionally

set rank(A) =∞ if A is noncompact. The singular values of A can be obtained from the

nonincreasingly ordered nonzero eigenvalues of the positive self-adjoint operator A∗A,

i.e., we have A∗Avi = ρi(A)2vi and therefore µi(A
∗A) = ρi(A)2.

Schatten classes. For integers 1 ≤ p <∞, the p-Schatten class Sp(H,H
′) consists of

all compact operators A from H to H ′ such that the norm ‖A‖Sp(H,H′) := ‖(ρi(A))i∈I‖`p
is finite. Here ‖(ρi(A))i∈I‖`p denotes the `p sequence space norm of the sequence of

the singular values of A. We set S∞(H,H ′) to be the class of compact operators

from H to H ′ equipped with the operator norm and write Sp(H) := Sp(H,H) for all

1 ≤ p ≤ ∞. It is clear that ‖A‖Sq(H,H′) ≤ ‖A‖Sp(H,H′) holds for 1 ≤ p ≤ q ≤ ∞, i.e.,

Sp(H,H
′) ⊆ Sq(H,H

′). For integer numbers 1 ≤ p, q, r ≤ ∞ satisfying 1/p + 1/p =

1/r and operators A ∈ Sp(H,H
′) and B ∈ Sq(H

′, H ′′), we have BA ∈ Sr(H,H
′′).

Furthermore, a composition of a p-Schatten operator with any bounded operator yields a

p-Schatten operator again.

For p = 1, we obtain the Banach space of trace class operators S1(H,H ′). For a CONS

(ei)i∈I in H, we define the trace of an operator A ∈ S1(H) as

Tr(A) :=
∑
i∈I
〈Aei, ei〉H <∞,

which induces the inner product

〈A1, A2〉S2(H,H′) := Tr (A∗1A2) = Tr (A∗2A1)

5



2. Mathematical preliminaries

on S2(H,H ′). We call the resulting Hilbert space equipped with this inner product the

space of Hilbert–Schmidt operators. The trace and the Hilbert–Schmidt inner product

are independent of the chosen CONS (ei)i∈I . For A,B ∈ S2(H), we additionally have

Tr (AB) = Tr (BA).

The p-Schatten classes are the completion of finite-rank operators (i.e., operators in

span{x′ ⊗ x | x ∈ H,x′ ∈ H ′}) with respect to the corresponding norm.

We will make frequent use of the fact that the tensor product space H ′ ⊗ H can be

isometrically identified with the space of Hilbert–Schmidt operators from H to H ′,

i.e., we have S2(H,H ′) ' H ′ ⊗ H. For elements x1, x2 ∈ H, x′1, x
′
2 ∈ H ′, we have

the relation 〈x′1 ⊗ x1, x
′
2 ⊗ x2〉H′⊗H = 〈x′1 ⊗ x1, x

′
2 ⊗ x2〉S2(H,H′), where the tensors are

interpreted as rank-one operators as described above. This identification of tensors as

rank-one operators extends to span{x′ ⊗ x | x ∈ H,x′ ∈ H ′} by linearity and defines a

linear isometric isomorphism between H ′ ⊗H and S2(H,H ′), which can also be seen by

considering Hilbert–Schmidt operators in terms of their singular value decompositions.

We will frequently switch between these two viewpoints when considering Hilbert–Schmidt

operators.

2.3. Conditional expectations and Markov kernels

We consider random variables X,Y : Ω → E defined on a common probability space

(Ω,F ,P) taking values in a measurable space (E,FE). Throughout this thesis, unless

explicitly stated otherwise, the space (E,FE) is a standard Borel space, i.e., a Polish

space equipped with its Borel field.

We assume without loss of generality that (Ω,F ,P) is rich enough to support all performed

operations. For a finite number of random variablesX1, . . . , Xn defined on (Ω,F ,P) taking

values in E, we write L(X1, . . . , Xn) for the joint law of (X1, . . . , Xn) on (En,B(En)),

which is the pushforward measure L(X1, . . . , Xn) := P ◦ γ−1 of the coordinate map

γ : Ω→ En given by

γ(ω) = (X1(ω), . . . , Xn(ω)).

We write X
d
= Y , if the random variables X and Y are equal in distribution, i.e., their

laws are equal. If L(X) = π for some probability measure π on (E,FE), we use the

shorthand X ∼ π.

Whenever X ∼ π, we have f ∈ L1(E,FE , π;B) if and only if f ◦X ∈ L1(Ω,F ,P;B). In

this case, the change of variables formula∫
A
f(x) dπ(x) =

∫
X−1(A)

f(X) dP

6



2.3. Conditional expectations and Markov kernels

holds for all A ∈ FE . The expectation of f ∈ L1(E,FE , π;B) is defined as

E[f(X)] :=

∫
E
f(x) dπ(x) =

∫
Ω
f(X) dP.

Conditional expectation. Let X ∼ π and Y ∼ ν be random variables on (Ω,F ,P)

taking values in (E,FE). For every σ-field H ⊆ F and f ∈ L1(E,FE , ν;B), we obtain

the conditional expectation of f(Y ) with respect to H as the P-a.e. uniquely defined

function E[f(Y ) |H] ∈ L1(Ω,H,P;B) which satisfies∫
A
E[f(Y ) |H] dP =

∫
A
f(Y ) dP =: E[f(Y ) | A]

for all events A ∈ H. As a special case, we obtain the conditional probability of events

A ∈ FE as

P[Y ∈ A |H] := E[1A(Y ) |H].

We set

E[f(Y ) |X] := E[f(Y ) |σ(X)],

where σ(X) ⊆ F is the σ-field generated by X. For every f ∈ L1(E,FE , ν;B), there

exists a σ(X)−FB measurable function ξf : E → B such that the so-called Doob–Dynkin

representation

E[f(Y ) |X] = ξf (X)

holds P-a.e. (see for example Kallenberg, 2002, Lemma 1.13). In this representation, the

map ξf is uniquely determined π-a.e. on E.

Given x ∈ E, the above construction allows us to evaluate pointwise expressions of the

form E[f(Y ) |X = x] := ξf (x) as well as P[Y ∈ A |X = x] := E[1A(Y ) |X = x] = ξ1A(x)

for events A ∈ FE . The next section shows that it is possible to disintegrate joint

probability distributions with respect to this fiberwise representation.

Regular conditional distribution and Markov kernel. Let p : E ×FE → R be a

Markov kernel1 of the conditional distribution of Y given X, i.e.,

(i) p(x, ·) is a probability measure on (E,FE) for every x ∈ E and

(ii) for every A ∈ FE , the map x 7→ p(x,A) is an FE − B(R) measurable function

1We distinguish different notions of kernels in this thesis. In what follows, we will often refer to

reproducing kernels/symmetric positive semidefinite kernels simply as kernel, while the kernel p

defining a conditional distribution will always be called a Markov kernel.
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2. Mathematical preliminaries

such that

P[Y ∈ A | X = x] = E[1A(Y )|X = x] =

∫
A
p(x,dy) = p(x,A)

for all x ∈ E and events A ∈ FE . The Markov kernel p defines a so-called regular

version of the above conditional distribution which allows to consider the fiberwise

disintegration

P[X ∈ A1, Y ∈ A2] = E[1A1×A2(X,Y )] =

∫
A1

p(x,A2) dπ(x)

for all A1,A2 ∈ FE , see Dudley (2002, Theorem 10.2.1). Such a Markov kernel p exists

always in our scenario, since the space E is Polish (Dudley, 2002, Theorem 10.2.2).

Additionally, two regular versions of the same conditional distribution with corresponding

Markov kernels p, p′ naturally coincide almost everywhere, i.e., we have p(x, ·) = p′(x, ·)
for π-a.e. x ∈ E.
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3. The structure of bivariate

distributions

Section 3.5 contains passages taken from Mollenhauer and Koltai (2020).

Section 3.6 contains passages taken from Mollenhauer et al. (2020a).

This chapter is named after the paper of Lancaster (1958) about the phenomenon

that joint distributions of two random variables may be uniquely described in terms of

two sets of maximally correlated transformations—the so-called canonical variables or

canonical components. Two decades earlier, a simplified version of this idea was used

by Hotelling (1936), who described the optimal linear transformations of two Euclidean

random variables leading to a maximal correlation. This approach is now widely known

under the name canonical correlation analysis (CCA). Various extensions of the classical

linear CCA have been introduced in statistics and machine learning in the context of

regression (Breiman and Friedman, 1985), functional data analysis (Leurgans et al., 1993),

reproducing kernels (Akaho, 2001; Melzer et al., 2001; Bach and Jordan, 2002) and neural

networks (Andrew et al., 2013), to name only a few important milestones in this now

rapidly evolving field.

The connection between the theory of the canonical components and the underlying

measure-theoretic concept of joint probability distributions can be established in terms of

the conditional expectation operator and its spectral properties, which we will introduce

in this chapter.

Independently of its importance in the context of the canonical components, the condi-

tional expectation operator also plays a crucial role in the context of Markov processes

and random dynamical systems. Conditional expectation operators which describe the

transition probabilites of Markov processes (so-called Markov transition operators) are

linked to a multitude of important dynamical features of the underlying process (Lasota

and Mackey, 1994; Meyn and Tweedie, 2009; Bovier and Den Hollander, 2016; Douc et al.,

2018). This fact has lead to a vast variety of methods for the data-driven approximation

of Markov transition operators and their adjoints (see Li 1976; Ding and Li 1991; Dellnitz

and Junge 1999; Huisinga 2001; Junge and Koltai 2009; Schmid 2010; Pérez-Hernández

et al. 2013; Noé and Nüske 2013; Schütte and Sarich 2013; Williams et al. 2015a,b; Klus

et al. 2016, 2018, 2020; Wu and Noé 2020; Tian and Wu 2020 and the references therein).
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3. The structure of bivariate distributions

Although these methods have been gravitating at least partly towards concepts from

machine learning over the last years, the mathematical formalism under which they

are derived is often influenced by classical numerical theory rather than a statistical

viewpoint. However, connections between the canonical components and the dynamical

theory have recently been used in applied scenarios (Koltai et al., 2018; Klus et al., 2019;

Wu and Noé, 2020).

In this chapter, we give a general overview of the functional-analytic theory of the

conditional expectation operator P , its empirical estimation as well as the special case

that P is a Markov transition operator. We investigate a basic parametric projection

scheme for the approximation of P which is widely used in practice to analyze stochastic

dynamical systems and is strongly related to the theory of the canonical components. To

the best of our knowledge, a statistical analysis of this approach has not been conducted

yet. Our endeavour to derive bounds for the estimation error illustrates that projection

methods may exhibit typical theoretical limitations of parametric statistical models in high

dimensions. This fact eventually motivates the investigation of tools from nonparametric

inference for the remainder of this work.

3.1. Overview

We define the conditional expectation operator in Section 3.2 and connect it to the theory

of the canonical components in Section 3.3. In Section 3.4, we discuss a well-known

parametric projection method for the estimation of P and its spectral properties and derive

basic convergence results based on independent observations. Section 3.5 establishes the

connection between the conditional expectation operator and the transition probabilies of

Markov processes. Additionally, we give a brief overview of practical applications of the

aforementioned projection method in the context of stochastic processes. In Section 3.6,

we investigate the statistical details of the estimation of P when the underlying data is

dependent by introducing the concepts of ergodicity and mixing.

3.2. Conditional expectation operators

As previously mentioned, we consider two random variables X ∼ π and Y ∼ ν defined

on the common probability space (Ω,F ,P) taking values in the standard Borel space

(E,FE). The conditional expectation operator P : L2(ν)→ L2(π) is defined by

[Pf ](x) := E[f(Y ) | X = x] =

∫
E
f(y) p(x,dy).
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3.3. Nonlinear canonical components

The operator P is a contractive linear map, which can easily be seen by making use of

Jensen’s inequality for conditional expectations and considering

‖Pf‖2L2(π) = E
[
E[f(Y ) | X]2

]
≤ E

[
E[(f(Y ))2 | X]

]
= E[f(Y )2] = ‖f‖2L2(ν) . (3.1)

Note that by the law of total expectation, we have the relation

〈f, Pg〉L2(π) = E[f(X)g(Y )]

for all f ∈ L2(π), g ∈ L2(ν). Considering the adjoint of the operator P and making use

of the law of total expectation with respect to conditioning on Y , we have

〈P ∗f, g〉L2(ν) = E[f(X)g(Y )] = E[E[f(X)|Y ] g(Y )]

for all f ∈ L2(π), g ∈ L2(ν). This lets us identify the adjoint of P as the operator

P ∗ : L2(π)→ L2(ν) satisfying

[P ∗f ](y) = E[f(X) | Y = y] =

∫
E
f(x) p′(y,dx)

where p′ : E×FE → R is some Markov kernel associated with the conditional distribution

of X given Y .

3.3. Nonlinear canonical components

The understanding of the relationship between two random variables X and Y is a

fundamental problem in probability theory and statistics. Since the joint distribution of

X and Y can potentially be very complicated, an interpretable simplification of their

connection is of great interest. Such a simplification is reflected in the dominant spectral

properties of P , which leads to the theory of canonical components.

3.3.1. Maximizing the sum of correlations

In order to understand the relationship between X and Y , we may aim to express it in

terms of a finite number of characteristics of maximal statistical importance. However,

the term importance is vague in this context and needs to be interpreted properly.

A way to solve this problem is to search for a finite number of pairwise decorrelated

transformations which maximize the sum of cross-correlations when applied to X and Y .

In other words, for some finite number r, we try to find two sets of functions

F := {f1, . . . , fr} ⊂ L2(π) and G := {g1, . . . , gr} ⊂ L2(ν)

11



3. The structure of bivariate distributions

satisfying E[fi(X)fj(X)] = δij and E[gi(Y )gj(Y )] = δij such that the sum of correla-

tions
r∑
i=1

E[fi(X)gi(Y )]

between the transformations fi(X) and gi(Y ) is maximal. We reformulate this idea as

the optimization problem

max
F,G

r∑
i=1

〈fi, Pgi〉L2(π)

subject to (3.2)

〈fi, fj〉L2(π) = δij and 〈gi, gj〉L2(ν) = δij .

For convenience, we always consider the number r ≤ rank(P ) fixed here. If the operator

P is compact, it is known that the analytical maximum of (3.2) is attained for the left

and right singular functions associated with the r largest singular values of P .

Theorem 3.3.1 (Canonical components). Let P be compact with the singular value

decomposition

P =
∑
i∈I

ρi(P )ui ⊗ vi.

Furthermore, let r ≤ rank(P ) be fixed and let

U := {u1, . . . , ur} ⊂ L2(π) and V := {v1, . . . , vr} ⊂ L2(ν) (3.3)

denote the first r left and right singular functions of P . Then U and V solve the

optimization problem (3.2), i.e., we have

max
F,G

r∑
i=1

〈fi, Pgi〉L2(π) =

r∑
i=1

〈ui, Pvi〉L2(ν) =

r∑
i=1

ρi(P ) (3.4)

where F and G range over all orthonormal sets in L2(π) and L2(ν) of cardinality r in

the maximum on the left-hand side.

A proof of Theorem 3.3.1 is given by Gohberg and Krĕın (1969, Chapter II, Lemma 4.1)

in a more general context. It can also be seen as a consequence of the well-known Courant–

Fischer minmax theorem for the singular values of compact operators (Weidmann, 1980,

Theorem 7.7).

Remark 3.3.2 (Unique solution and order of singular functions). Note that the sets of

first r singular functions U and V may not be unique whenever we have r < rank(P ) and

ρr(P ) = ρr+1(P ). In this case, one may change the order of singular functions associated

with ρr(P ), leading to alternative choices for U and V . If however ρr(P ) 6= ρr+1(P ), the

sets U and V and hence also the solution of (3.2) are unique. For simplicity, we may

therefore occasionally assume r < rank(P ) and ρr(P ) 6= ρr+1(P ) in what follows.
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3.3. Nonlinear canonical components

The functions in U and V are called the first r canonical components of X and Y .

Remark 3.3.3 (Compactness of P ). Note that sufficient conditions for the compactness

of P can easily be derived by applying the theory of integral operators (Halmos and

Sunder, 1978) to the structure of the underlying Markov kernel. Several authors address

this topic in our context (Dellnitz and Junge, 1999; Michaeli et al., 2016; Wu and Noé,

2020) and show that P is Hilbert–Schmidt under the assumption that the Markov kernel

p admits a square integrable transition density with respect to some reference measure

on the measurable space (E2,F⊗2
E ).

Remark 3.3.4 (Trivial first singular component). By (3.1), we have ρ1(P ) = ‖P‖ ≤ 1.

Note that for the ν-a.e. constant function g ≡ 1, we have ‖g‖L2(ν) = 1 and Pg ≡ 1 π-a.e.,

which shows

‖Pg‖L2(π) = 1 = ‖P‖ .

Hence we have ρ1(P ) = 1, where the two corresponding singular functions u1 and v1 are

almost everywhere constant unit functions. The first singular component of P is therefore

always trivial and does not carry relevant information. It is sufficient to consider only

r − 1 remaining top singular components in practical applications.

3.3.2. Empirical estimation and spectral perturbation

We now assume that we have access to a generic compact empirical estimate of the

compact operator P in terms of P̂ : L2(ν) → L2(π), i.e., P̂ is a compactly perturbed

version of P . We assume further that we can compute the empirical singular value

decomposition

P̂ =
∑
i∈Î

ρi(P̂ ) ûi ⊗ v̂i.

For r ≤ min{rank(P̂ ), rank(P )} we define the sets of top r left and right empirical singular

vectors associated with the empirical singular values ρ1(P̂ ), . . . , ρr(P̂ ) as Û := {û1, . . . , ûr}
and V̂ := {v̂1, . . . , v̂r}, which we will use as estimates of the first r canonical components

U and V as defined in (3.3).

One would expect that if P̂ is a good approximation of P , then Û and V̂ are good

approximations of U and V . A theoretical justification of this approach can be given in

terms of the perturbation of singular subspaces, which we will introduce now.

We measure the distances between the top r empirical singular functions Û and V̂ and

the true canonical components U and V in terms of the orthogonal projectors associated

with the corresponding finite-dimensional subspaces. This approach is standard practice

in matrix analysis and operator perturbation theory (Stewart and Sun 1990, Chapter

13



3. The structure of bivariate distributions

I.5 and Chapter V as well as Bhatia 1997, Chapter VII) and is often used in high-

dimensional statistics. We write ΠU : L2(π)→ L2(π) for the orthogonal projector onto

spanU ⊂ L2(π) given by

ΠU =
r∑
i=1

ui ⊗ ui (3.5)

and define ΠV : L2(ν) → L2(ν) analogously as well as Π
Û

and Π
V̂

as the empirical

counterparts of ΠU and ΠV .

The operator norm
∥∥Π

Û
−ΠU

∥∥ of the distance between the projectors is sometimes

called the aperture (Akhiezer and Glazman, 1993) or gap (Stewart and Sun, 1990)

between the corresponding subspaces spanU and span Û . The Hilbert–Schmidt distance∥∥Π
Û
−ΠU

∥∥
S2(L2(π))

allows for a similar natural interpretation, as both of these measures

can be written in terms of the so-called canonical angles between the associated subspaces.

We review the theory of distances between subspaces and spectral perturbation in

more detail in Appendix A.4 and argue that the Hilbert–Schmidt distance between

the orthogonal projectors is actually a fairly natural choice for this problem. For one-

dimensional projections, one can easily see that the Hilbert–Schmidt distance bounds the

distance between the corresponding singular vectors, i.e., for all 1 ≤ i ≤ r we have

‖Πui −Πûi‖
2
S2(L2(π)) =

∥∥(ui ⊗ ui)− (ûi ⊗ ûi)
∥∥2

S2(L2(π))

= ‖ui ⊗ ui‖2S2(L2(π)) − 2 〈ui ⊗ ui, ûi ⊗ ûi〉S2(L2(π)) + ‖ûi ⊗ ûi‖2S2(L2(π))

= ‖ui‖4L2(π) − 2 〈ui, ûi〉2L2(π) + ‖ûi‖4L2(π)

= 2− 2 〈ui, ûi〉2L2(π)

≥ 2− 2 〈ui, ûi〉L2(π) = ‖ui − ûi‖2L2(π) ,

whenever we assume that the orientation of ui and ûi is given in a way such that

0 ≤ 〈ui, ûi〉L2(π) holds (see also Zwald and Blanchard 2006). Note that in the above

derivation, we also make use of 〈ui, ûi〉L2(π) ≤ 1 by Cauchy–Schwarz.

Let ∆ := P − P̂ denote the perturbation introduced by the estimation procedure. We

modify a well-known version of the Davis–Kahan theorem (Davis and Kahan, 1970;

Wedin, 1972) due to Yu et al. (2015) in Appendix A.4 and obtain the following spectral

stability bound which quantifies the maximal distance between the singular subspaces

with respect to the global estimation error ‖∆‖.

Theorem 3.3.5 (Singular subspace perturbation). Let P and P̂ be compact and choose

r < min{rank(P ), rank(P̂ )}. Furthermore, assume ρr(P ) 6= ρr+1(P ). Then we have

max
{∥∥Π

Û
−ΠU

∥∥
S2(L2(π))

,
∥∥Π

V̂
−ΠV

∥∥
S2(L2(ν))

}
≤ 2
√

2r(2 ‖∆‖+ ‖∆‖2)

ρr(P )2 − ρr+1(P )2
.
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Proof. Theorem 3.3.5 is obtained as a combination of Theorem A.4.5 with Lemma A.4.3

in the appendix and the fact that we have ρ1(P ) = 1. �

3.4. A parametric model: projection method

We will now review a standard type of parametric numerical projection method (see for

example Klus et al., 2016, 2018; Wu and Noé, 2020) for the estimation of P . Different

versions of this method are widely used for the approximation of spectral properties of P

in the case of random dynamical systems and Markov processes as we will later describe

in Section 3.5. To the best of our knowledge, no abstract error analysis from a statistical

perspective has been conducted for these approaches.

In order to discretize P , we choose two orthonormal systems Φ := {φ1, . . . , φs} ⊆ L2(π)

and Ψ := {ψ1, . . . , ψs} ⊆ L2(ν) and consider the finite-dimensional projection of P given

by

PΦ,Ψ := ΠΦPΠΨ.

Here, ΠΦ and ΠΨ are the orthogonal projections onto the ansatz spaces span Φ ⊆ L2(π)

and span Ψ ⊆ L2(ν). We note that it is generally possible to choose sets Φ and Ψ of

different cardinality. However, we restrict ourselves to the case that both sets contain

the same number of basis functions for simplicity. We assume that we have access

to independent and identically distributed (iid) sample pairs (X1, Y1), . . . , (Xn, Yn) ∼
L(X,Y ) from the joint distribution of X and Y . The finite-dimensional operator PΦ,Ψ

can now simply be estimated in terms of a matrix, which we will describe in this section.

In the case of Markov transition operators, one typically works with data obtained from

a realization of the underlying process and therefore faces non-iid samples, which we will

address in more detail in Section 3.6.

3.4.1. Empirical basis orthonormalization

Since the true marginals π and ν of X and Y are not known in practical applications,

it is generally not possible to choose the orthonormal ansatz functions Φ ⊆ L2(π) and

Ψ ⊆ L2(ν) a priori. Instead, Φ and Ψ can be chosen as linearly independent sets of

functions and orthonormalized empirically. This procedure is performed in various

applications in the context of Markov processes (Williams et al., 2015a; Koltai et al.,

2018; Wu and Noé, 2020). The empirical orthonormalization can be interpreted as a form

of whitening from a statistical perspective (Kessy et al., 2018), which we illustrate for

the ansatz functions Φ in what follows.
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3. The structure of bivariate distributions

We define the Gramian matrix G = (Gij)1≤i,j≤s ∈ Rs×s associated with Φ as

Gij := 〈φi, φj〉L2(π) , 1 ≤ i, j ≤ s.

Since we assume that we have access to iid samples X1, . . . , Xn ∼ π, we can compute

the empirical Gramian matrix Ĝ = (Ĝij)1≤i,j≤s ∈ Rs×s as an approximation of the true

Gramian as

Ĝij :=
1

n

n∑
k=1

φi(Xk)φj(Xk), 1 ≤ i, j ≤ s.

Both G and Ĝ are symmetric. Because Φ contains linearly independent functions in

L2(π), the matrix G is strictly positive. We note that Ĝ is only positive semidefinite in

general. However, we first introduce the whitening procedure assuming that Ĝ is P-a.e.

invertible. We relax this assumption later on.

Invertible empirical Gramian Ĝ. Let the empirical matrix Ĝ be P-a.e. invertible.

We note that a necessary condition for the invertibility of Ĝ is n ≥ s. Interpreting Φ as an

s-dimensional column vector of functions, we define a set of empirically orthonormalized

ansatz functions φ̄i as linear combinations of the ansatz functions φi in terms of the

vector Φ̄ given by

Φ̄ := Ĝ−1/2Φ, (3.6)

i.e., the i-th row of Ĝ−1/2 contains the coordinate vector expression of the function φ̄i in

terms of the basis Φ.

Our newly constructed ansatz functions Φ̄ satisfy〈
φ̄i, φ̄j

〉
L2(π)

= (Ĝ−1/2GĜ−1/2)ij ≈ δij , 1 ≤ i, j ≤ s

whenever Ĝ−1/2 is close to G−1/2 in operator norm. We now investigate how well Ĝ−1/2

approximates G−1/2. First, we begin with a bound of the estimation error Ĝ − G

under the assumption that the basis functions Φ are P-a.e. uniformly bounded by some

constant.

Lemma 3.4.1 (Estimation of Gramian). Let |φi(X)| ≤M P-a.e. for all 1 ≤ i ≤ s. Then

for every ε > 0, we have

P
[∥∥∥Ĝ−G

∥∥∥
F
≥ ε
]
≤ 2 exp

(
− nε2

8s2M4

)
, (3.7)

where ‖·‖F denotes the Frobenius norm.
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Proof. We define the Rs×s-valued random variable ξ(X) := (φi(X)φj(X))1≤i,j≤s. Note

that G = E[ξ(X)] as well as Ĝ = 1
n

∑n
k=1 ξ(Xk) hold. Furthermore, we have

‖ξ(X)‖2F =
∑

1≤i,j≤s
φi(X)2φj(X)2 ≤ s2M4 P-a.e. (3.8)

We apply the vector-valued Hoeffding inequality due to Pinelis (1994) given in Corol-

lary A.5.2 to the zero-mean iid random variables ξ(X1)− E[ξ(X)], . . . , ξ(Xn)− E[ξ(X)]

which are P-a.e. uniformly bounded in Frobenius norm by 2sM2 and obtain the asser-

tion. �

The next result gives the desired statement.

Theorem 3.4.2 (Whitening). Assume that rank(G) = s and |φi(X)| ≤M P-a.e. for all

1 ≤ i ≤ s. Furthermore assume that rank(Ĝ) = s holds P-a.e. Then for every ε > 0, we

have

P

[∥∥∥Ĝ−1/2 −G−1/2
∥∥∥ ≥√ ε

µs(G)µs(Ĝ)

]
≤ 2 exp

(
− nε2

8s2M4

)
,

where µs(G) > 0 and µs(Ĝ) > 0 are the smallest eigenvalues of G and Ĝ, respectively.

The proof can be found in Appendix A.1. Before we discuss the interpretation of

Theorem 3.4.2, we abandon the assumption that Ĝ is P-a.e. invertible.

Noninvertible empirical Gramian Ĝ. In practice, it may certainly occur with some

probability that the empirical estimate Ĝ is not of full rank or the numerical computation

of Ĝ−1/2 is numerically not feasible. In this case, the empirical transformation (3.6)

results in an ill-posed inverse problem which requires a regularization strategy (see

Appendix A.6 for a brief overview of the theory of inverse problems). In practical

applications, the underlying empirical regularization problem is sometimes solved via

pseudoinverse matrices (Williams et al., 2015a). Here we derive a basic error bound to

sketch the difficulties which may arise for regularized analogues of (3.6) using the example

of the well-known Tikhonov–Phillips regularization scheme (Tikhonov and Arsenin,

1977). The Tikhonov–Phillips regularization scheme replaces the potentially nonexistent

empirical inverse Ĝ−1/2 with the always existing regularized estimate (Ĝ + λI)−1/2 with

some appropriately small regularization parameter λ > 0. It is possible to obtain operator

norm bounds for the estimation error

(Ĝ + λI)−1/2 −G−1/2

and deduce the optimal choice of λ depending on the number of samples n such that

convergence is guaranteed in the infinite sample limit. We provide such a bound in the

next result.
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3. The structure of bivariate distributions

Theorem 3.4.3 (Regularized whitening). Assume that rank(G) = s and |φi(X)| ≤M
P-a.e. for all 1 ≤ i ≤ s. Then for every regularization parameter λ > 0 and every ε > 0,

we have

P

[∥∥∥(Ĝ + λI)−1/2 −G−1/2
∥∥∥ ≥ √ε

λ
+

√
λ

µs(G)

]
≤ 2 exp

(
− nε2

8s2M4

)
,

where µs(G) > 0 is the smallest eigenvalue of G.

The proof can be found in Appendix A.1. In essence, Theorem 3.4.3 highlights the

fact that an optimally regularized estimate (Ĝ + λI)−1/2 requires a reasonable choice of

the regularization parameter λ. In particular, λ balances the error introduced by the

regularization itself (depending on the degree of ill-posedness of the analytical inversion

problem expressed in terms of
√
λ

µs(G)) and the smoothing effect on the noise of the

corresponding estimator (given in terms of
√
ε
λ ). This problem is typical in regularization

theory (see Engl et al. 1996 and Appendix A.6), as we will observe multiple times

throughout this thesis.

Estimation in high dimensions. Without further considering the intricacies of

individual regularization techniques at this point, we can already see that the estimation

and inversion of high-dimensional matrices can make the empirical orthonormalization of

the basis functions a challenging problem in practice. In general, the number of samples n

must be scaled quadratically relative to the number of ansatz functions s to maintain the

same level of error confidence when deriving typical error bounds as given in Lemma 3.4.1,

Theorem 3.4.2 and Theorem 3.4.3. This is due to the fact that the norms of G and Ĝ

can grow rapidly as the dimension s× s increases. Similar phenomena are investigated

throughout the field of high-dimensional statistics (Vershynin, 2018; Wainwright, 2019).

We also note that in addition to the infeasible invertibility assumption in Theorem 3.4.2,

the error bound depends on the minimal eigenvalue of the empirical Gramian, which is a

random quantity itself. Hence, Theorem 3.4.2 is not really useful in practice and only

serves the purpose of illustrating the whitening procedure in theory. In practical scenarios,

bounds for appropriate regularization schemes like Theorem 3.4.3 allow to circumvent

this issue. It is likely that our bounds can be improved by employing deeper results from

matrix analysis and estimators which are used in high-dimensional statistics. However,

applying these techniques to our scenario may introduce some technical difficulties and

requires some work, which we elaborate on below.

Remark 3.4.4 (Stronger error bounds). Our error bounds rely on the application of a

Hoeffding-type bound, which requires fairly mild assumptions in terms of boundedness of

the random matrices. It is possible to straightforwardly apply a vector-valued version of

Bernstein’s inequality instead (Pinelis and Sakhanenko 1986, see Appendix A.5.2). This
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3.4. A parametric model: projection method

requires incorporating higher moment bounds for the random matrices, which may again

depend on the dimension s× s without further structural assumptions about the basis

functions and hence lead to the same challenges as shown here.

In a broader sense, the estimation of G is closely related to various problems in high-

dimensional statistics and compressed sensing such as the estimation of covariance

matrices and matrix completion (see for example Wainwright 2019, Chapters 6 and 10

and the literature reviews therein). Although there exists a large amount of work on

the efficient estimation of high-dimensional matrices and related concentration results

(Vershynin, 2012; Tropp, 2015), we face a situation which does not align with some of

the typical assumptions imposed in these scenarios. In particular

(i) the estimate Ĝ consists of dependent entries and

(ii) the matrix G is of full rank s by assumption and we therefore expect the estimate

Ĝ to have a large rank with high probability.

A reasonable way to improve the estimation of G might be the application of thresholding

estimators which are commonly used for high-dimensional covariance matrices (Bickel

and Levina, 2008; Cai and Liu, 2011; Cai and Yuan, 2012). However, these approaches

require additional assumptions in terms of sparsity of G.

3.4.2. Estimation of PΦ,Ψ

We now investigate the estimation of the finite-dimensional operator PΦ,Ψ and the overall

error of the corresponding projection method. Justified by the considerations in the

previous section, we now work under the idealized assumption that Φ and Ψ are both

orthonormal systems in our further analysis.

Given some generic estimate P̂Φ,Ψ of PΦ,Ψ, we can decompose the overall estimation error

∆ = P̂Φ,Ψ − P in terms of∥∥∥∆
∥∥∥ ≤ ∥∥∥P̂Φ,Ψ − PΦ,Ψ

∥∥∥+
∥∥∥PΦ,Ψ − P

∥∥∥ P-a.e. (3.9)

The first term on the right-hand side is the stochastic sample error which can alternatively

be measured in any arbitrary matrix norm since both involved operators are finite-

dimensional. The sample error will be our main object of interest. The second term

is the deterministic model error, which is introduced by the projection of P onto the

ansatz spaces span Φ and span Ψ. The model error is investigated in the classical

numerical theory of projection methods for integral equations and deterministic operator

approximation (Hackbusch, 1995) and will therefore not be in our focus in this work. At

this point, it is sufficient for us to note that
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3. The structure of bivariate distributions

(i) if P is noncompact, it is clear that for an increasing dimension s of the ansatz spaces,

the model error can never converge to 0. Instead, the distance between the projection

PΦ,Ψ and the analytical operator P can only converge in some weaker topology.

If however P is compact, then the model error converges to 0 as s → ∞ (see

Appendix A.2), assuming for simplicity that we have dimL2(π) = dimL2(ν) =∞.

(ii) The model error is generally not known in practical applications, as it is based

on the unknown distribution L(X,Y ) and is determined by how well the ansatz

spaces span Φ and span Ψ capture the dominant structure of P . Pragmatically, a

larger choice of s leads to a smaller model error and we therefore expect to deal

with large values of s in practice.

We now focus on the projection estimate P̂Φ,Ψ and the corresponding sample error based

on iid sample pairs (X1, Y1), . . . , (Xn, Yn) ∼ L(X,Y ). The finite-rank operator PΦ,Ψ can

be expressed in terms of a matrix with respect to the orthonormal bases Φ and Ψ in

terms of A = (Aij)1≤i,j≤s ∈ Rs×s given by

Aij := E[φi(X)ψj(Y )] = 〈φi, Pψj〉L2(π) , 1 ≤ i, j ≤ s.

The matrix A allows the straighforward construction of an estimate Â ∈ Rs×s which

represents the action of an estimated finite-rank operator P̂Φ,Ψ defined on span Φ and

span Ψ in terms of the entrywise Monte Carlo sums

Âij :=
1

n

n∑
t=1

φi(Xt)ψj(Yt) =:
〈
φi, P̂Φ,Ψψj

〉
L2(π)

, 1 ≤ i, j ≤ s.

By the strong law of large numbers, we clearly have

Âij → Aij P-a.e., 1 ≤ i, j ≤ s,

and therefore Â → A P-a.e. and P̂Φ,Ψ → PΦ,Φ P-a.e. in any matrix norm and corre-

sponding norm for finite-rank operators, respectively. Analogously to the sample error

bound of the empirical Gramian in Lemma 3.4.1, we can derive a sample error bound for

P̂Φ,Ψ.

Theorem 3.4.5 (Sample error). Let |φi(X)| ≤ M and |ψi(Y )| ≤ M P-a.e. for all

1 ≤ i ≤ s. Then for every ε > 0, we have

P
[∥∥∥P̂Φ,Ψ − PΦ,Ψ

∥∥∥
S2(L2(ν),L2(π))

≥ ε
]
≤ 2 exp

(
− nε2

8s2M4

)
.

Proof. We can apply technique of the proof of Lemma 3.4.1 to the matrices Â and A

equipped with the Frobenius norm and use the fact that∥∥∥Â−A
∥∥∥
F

=
∥∥∥P̂Φ,Ψ − PΦ,Ψ

∥∥∥
S2(L2(ν),L2(π))

since we assume that Φ and Ψ are orthonormal systems. �
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3.5. Markov transition operators

Theorem 3.4.5 introduces the same theoretical difficulties which we already discussed

for the estimation of the Gramian G in the previous section to the estimation of PΦ,Ψ.

In particular, for the error bound above and comparable generic matrix concentration

bounds, the sample size n needs to scale at least quadratically with respect to the

dimension s of the ansatz spaces to maintain the level of confidence.

Remark 3.4.6 (Stronger error bounds). The question of stronger error bounds for the

estimate P̂Φ,Ψ may be answered in terms of the so-called intrinsic dimension (also called

the effective rank or effective dimension). Whenever one assumes that the variance

structure of P̂Φ,Ψ is close to an operator of low rank, bounds which are independent of

the ambient dimension s× s may be derived (see Tropp, 2015, Section 7 for an overview).

3.5. Markov transition operators

The conditional expectation operator P and its spectral properties are of particular

interest in the context of Markov processes and dynamical systems. We now connect

our setup for the estimation of P from the preceding sections to the theory of Markov

transition operators.

3.5.1. General overview

We consider a Markov process (Xt)t∈Z on the state space (E,FE). If for some fixed time

t ∈ Z and lag time τ ∈ N, we choose Y := Xt+τ and X := Xt in the context of our

previously derived formalism, then the conditional expectation operator

[Pf ](x) = E[f(Xt+τ ) | Xt = x]

is called the Markov transition operator describing the transition from Xt to Xt+τ . If the

process (Xt)t∈Z is time-homogeneous, then P does not depend on t, but only on the time

lag τ . If in addition (Xt)t∈Z is stationary, we have π = ν and hence P : L2(π)→ L2(π).

We introduce the mathematical background of Markov processes and related definitions

in more detail in Section 3.5.3.

We will not necessarily require the process (Xt)t∈Z to be homogeneous and stationary in

general, but restrict ourselves to a simplified scenario in which we investigate only the one-

step time transition from Xt to Xt+1 for some fixed t ∈ Z. However, when we investigate

estimators for P based on a single empirical realization of (Xt)t∈Z, homogeneity and

stationarity of the process will be a requirement. We also note that in this case, all

transitions with a larger lag time can be treated in terms of powers of P and iterates of the

corresponding Markov transition kernel, which can be seen in the very basic construction

of discrete-time homogeneous Markov processes (Meyn and Tweedie, 2009). It is worth
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3. The structure of bivariate distributions

mentioning that the adjoint of the Markov transition operator P ∗ can be interpreted as a

propagator of signed measures under the dynamics (see for example Rudolf 2012, Section

3). In the theory of Markov processes, the Markov transition operator P , its adjoint and

the underlying Markov transition kernel p are often used synonymously. In the context

of dynamical systems however, P is often called the Koopman operator, while P ∗ is often

called the Perron–Frobenius operator. Both operators can also be defined on different Lp

spaces (Baxter and Rosenthal, 1995).

The Markov transition operator is a fundamentally important tool for the analysis of

various properties of Markov processes and dynamical systems. For instance, it is known

that the spectrum of P and the associated eigenfunctions determine a crucial set of

related properties of the underlying dynamics such as ergodicity, speed of convergence, the

decomposition of the state space into almost invariant components (so-called metastable

states, Bovier and Den Hollander 2016), several contraction and concentration results and

many more (see for example Davies, 1982a,b, 1983; Roberts et al., 1997; Roberts and

Tweedie, 2001; Kontoyiannis and Meyn, 2003, 2005, 2017; Huisinga et al., 2004; Huisinga

and Schmidt, 2006; Paulin, 2015).

In addition to the interpretation as canonical components, the left and right singular

functions of P are known to be connected to so-called coherent sets of the dynamical

system (Xt)t∈Z (Froyland, 2013). Coherent sets can be interpreted as a generalization

of almost invariant sets of a time-homogeneous dynamical system to the case when the

underlying dynamics are time-inhomogeneous. In this case, one considers sets which are

minimally dispersive under the evolution of the dynamics instead of almost invariant

domains of the state space which are spatially fixed (Froyland et al., 2010).

We will not investigate this vast field and the theoretical connections between dynamical

behaviour of (Xt)t∈Z and the functional-analytic properties of P in more detail here.

Instead, we acknowledge the fact that the data-driven discovery of spectral properties

of P may allow the construction of various estimators for several important features of

(Xt)t∈Z of practical interest.

3.5.2. Practical applications

We briefly give a non-exhaustive overview of practical applications of the parametric

projection method from Section 3.4 in the context of Markov transition operators. The

eigenfunctions of empirical projections of Markov transition operators, their adjoints or

closely related objects are computed in a wide variety of scenarios. Notable examples

are the discretization schemes of Dellnitz and Junge (1999) and Schütte (1999), the

so-called dynamic mode decomposition (DMD) and its extensions (Schmid, 2010; Rowley

et al., 2009; Williams et al., 2015a; Tu et al., 2014; Kutz et al., 2016) as well as the
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3.5. Markov transition operators

corresponding adjoint analogues of versions of DMD which are also known as time-based

independent component analysis (TICA, Molgedey and Schuster 1994; Pérez-Hernández

et al. 2013) and the variational approach of conformation dynamics (VAC, Noé and

Nüske 2013). The latter are known to be connected to a solution of the so-called blind

source separation problem (Hyvärinen and Oja, 2000), i.e., the separation of a mixture

of superimposed signals. The detailed relations between these approaches and several

generic projection schemes from numerical analysis are highlighted by Klus et al. (2016)

and Klus et al. (2018).

The singular functions of P are computed via a projection method in order to obtain

simplified transition models of time-inhomogeneous processes (Koltai et al., 2018; Wu

and Noé, 2020) and to discover coherent sets (Froyland et al., 2010; Froyland, 2013).

These approaches coincide exactly with our setup for the empirical estimation of P and

its singular value decomposition presented in Section 3.3 and Section 3.4.

3.5.3. Markov processes: technical background

We review some important properties of discrete-time Markov processes and refer the

reader to Meyn and Tweedie (2009) and Douc et al. (2018) for more details. A stochastic

process (Xt)t∈Z taking values in (E,FE) is called stationary, if we have

(Xt1 , . . . , Xtn)
d
= (Xt1+η, . . . , Xtn+η)

for all t1, . . . , tn ∈ Z and n, η ∈ N. It is called a Markov process, if for all bounded

FE − B(R) measurable functions f : E → R, we have

E[f(Xt+1) | F t−∞] = E[f(Xt+1) |Xt]

for all t ∈ Z, where F t−∞ := σ(Xs, s ≤ t) denotes the σ-field generated by the process

(Xt)t∈Z for the time horizon t.

Definition 3.5.1 (Homogeneity). A Markov process (Xt)t∈Z is called (time-)homogeneous,

if there exists a Markov transition kernel p : E ×FE → R such that we have

P[Xt+1 ∈ A |F t−∞] = p(Xt,A) P-a.e.

for all A ∈ FE and t ∈ Z.

Definition 3.5.2 (Invariant measure & reversibility). Let (Xt)t∈Z be homogeneous with

Markov transition kernel p.

(i) A probability measure µ on (E,FE) is called an invariant measure of (Xt)t∈Z, if∫
E
p(x,A) dµ(x) = µ(A)

for all A ∈ FE.
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3. The structure of bivariate distributions

(ii) The process (Xt)t∈Z is said to be reversible with respect to a probability measure µ

on (E,FE), if we have∫
A1

p(x,A2) dµ(x) =

∫
A2

p(x,A1) dµ(x)

for all A1,A2 ∈ FE.

If (Xt)t∈Z is reversible with respect to µ, then µ is an invariant measure of (Xt)t∈Z.

Whenever we fix a particular starting distribution of a homogeneous Markov process (say

for simplicity that we restrict the time index to the nonnegative integers N0), stationarity

is trivially equivalent to its starting distribution being an invariant measure of the

process.

Theorem 3.5.3 (Douc et al., 2018, Theorem 1.4.2). A homogeneous Markov process

(Xt)t∈N0 with starting distribution X0 ∼ π is stationary if and only if π is an invariant

measure of (Xt)t∈N0.

For a homogeneous process (Xt)t∈Z with Markov transition kernel p, it is clear that the

definition of the Markov transition operator at time t ∈ Z given by

[Pf ](x) = E[f(Xt+1) | Xt = x] =

∫
E
f(y) p(x, dy)

is independent of t ∈ Z. However, we note that its domain L2(L(Xt+1)) and target space

L2(L(Xt)) may vary for different choices of t ∈ Z in the nonstationary case. Clearly, if

(Xt)t∈Z is homogeneous and stationary with X0 ∼ π, then we have P : L2(π)→ L2(π)

for all choices of t ∈ Z in the above definition of the Markov transition operator. If

additionally the process (Xt)t∈Z is reversible with respect to π, then P is self-adjoint (see

for example Douc et al. 2018, Lemma 22.1.10).

In what follows, whenever we refer to a Markov transition operator in either the inhomo-

geneous or homogeneous but nonstationary case, we implicitly consider the transition

from a fixed time t ∈ Z to time t+ 1 with Xt ∼ π and Xt+1 ∼ ν. This ensures that P as

well as its domain and target space are well-defined. We may require P to be compact or

a Hilbert–Schmidt operator, which we already discussed in Remark 3.3.3. Wo do not

require additional properties such as self-adjointness.

3.5.4. Transition reconstruction error and canonical components

We now investigate an alternative interpretation of the canonical components which

illustrates the well-known connection between the canonical components and the low-rank

approximation of linear operators. This perspective is particularly relevant in the context

of Markov processes (Wu and Noé, 2020) and given in terms of a minimization of a
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Hilbert–Schmidt distance instead of the classical maximization problem (3.2). Let P

be the Markov transition operator of a not necessarily homogeneous Markov process

(Xt)t∈Z.

Given some complete orthonormal system {ei}i∈I ⊂ L2(ν) we define the transition

reconstruction error associated with two empirical rank r orthogonal projectors Π
Û

:

L2(π)→ L2(π) and Π
V̂

: L2(ν)→ L2(ν) by

Er(ΠÛ
,Π

V̂
) :=

∑
i∈I

E
[∣∣∣E[ ei(Xt+1) | Xt]−Π

Û

{
E[ Π

V̂
ei(Xt+1) | Xt]

} ∣∣∣2] .
The reconstruction error is essentially the sum of squared errors between the expected

transition of the observables {ei}i∈I ⊂ L2(ν) and their projected analogues on the

subspaces span V̂ and span Û , respectively.

We now show that Er(ΠÛ
,Π

V̂
) is well-defined and independent of the choice of the

complete orthonormal system {ei}i∈I if P is a Hilbert–Schmidt operator. Moreover,

the minimum of Er(ΠÛ
,Π

V̂
) is attained when Π

Û
and Π

V̂
are exactly the orthogonal

projectors onto the first r canonical components of P . For convenience, we use the

shorthand notation S2 := S2(L2(ν), L2(π)) in what follows.

Lemma 3.5.4 (Minimizing the reconstruction error). Let P ∈ S2. Additionally, let Π
Û

and Π
V̂

let the orthogonal projection operators associated with some orthonormal sets

Û ⊂ L2(π) and V̂ ⊂ L2(ν) of cardinality r ≤ rank(P ). Then we have

Er(ΠÛ
,Π

V̂
) =

∥∥P −Π
Û
PΠ

V̂

∥∥2

S2
. (3.10)

Moreover, we have

min
Π
Û
,Π
V̂

Er(ΠÛ
,Π

V̂
) = E(ΠU ,ΠV ) =

∑
i>r

ρi(P )2, (3.11)

where U ⊂ L2(π) and V ⊂ L2(ν) are the sets containing the first r left and right singular

functions of P .

Proof. We have

Er(ΠÛ
,Π

V̂
) =

∑
i∈I

E
[∣∣∣E[ei(Xt+1) | Xt]−Π

Û

{
E[Π

V̂
ei(Xt+1) | Xt]

}∣∣∣2]
=
∑
i∈I

∫
E

∣∣Pei −Π
Û
PΠ

V̂
ei
∣∣2dπ =

∑
i∈I

∥∥(P −Π
Û
PΠ

V̂
)ei
∥∥2

L2(π)

=
∥∥P −Π

Û
PΠ

V̂

∥∥2

S2
,

which proves (3.10). The second assertion follows from the fact that Π
Û
PΠ

V̂
is an

operator of rank of at most r together with the Eckart–Young–Mirsky theorem (see

Appendix A.2.2). �
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In what follows, let U and V be the sets containing the first r canonical components of

P . As an indicator for the performance of two empirical projection operators Π
Û

and

Π
V̂

with respect to the transition reconstruction error, we may naturally consider the

excess reconstruction error

E(Π
Û
,Π

V̂
)− E(ΠU ,ΠV ) ≥ 0.

We show that he excess reconstruction error can be bounded by the Hilbert–Schmidt

distance between the corresponding projection operators.

Lemma 3.5.5. (Excess reconstruction error) Let P ∈ S2 and Π
Û

and Π
V̂

be the

orthogonal projection operators associated with some orthonormal sets Û ⊂ L2(π) and

V̂ ⊂ L2(ν) of cardinality r.

E(Π
Û
,Π

V̂
)− E(ΠU ,ΠV ) ≤ ‖P‖S2

(∥∥Π
V̂
−ΠV

∥∥
S2

+
∥∥Π

Û
−ΠU

∥∥
S2

)
Proof. By expressing the Hilbert–Schmidt norm in (3.10) in terms of the inner product

and applying the binomial formula, we first note that for all orthogonal projection

operators Π
Û

and Π
V̂

, we have

E(Π
Û
,Π

V̂
) = ‖P‖2S2

− 2
〈
P, Π

Û
PΠ

V̂

〉
S2

+
∥∥Π

Û
PΠ

V̂

∥∥2

S2

= ‖P‖2S2
−
∥∥Π

Û
PΠ

V̂

∥∥2

S2
,

(3.12)

where the second equality follows from the fact that〈
P, Π

Û
PΠ

V̂

〉
S2

= Tr(P ∗(Π
Û
PΠ

V̂
)) = Tr(P ∗Π∗

Û
Π
Û
PΠ

V̂
)

= Tr(Π∗
V̂
P ∗Π∗

Û
Π
Û
PΠ

V̂
) =

∥∥Π
Û
PΠ

V̂

∥∥2

S2
.

(3.13)

This can be seen by using idempotence and self-adjointness of orthogonal projectors

together with Tr(AB) = Tr(BA) for arbitrary Hilbert–Schmidt operators A and B acting

on a common Hilbert space (Weidmann, 1980, Theorem 7.11). By making use of (3.10),

(3.12) and (3.13), we have

E(Π
Û
,Π

V̂
)− E(ΠU ,ΠV ) = −

∥∥Π
Û
PΠ

V̂

∥∥2

S2
+ ‖ΠUPΠV ‖2S2

= −
〈
P, Π

Û
PΠ

V̂

〉
S2

+ 〈P, ΠUPΠV 〉S2

≤ ‖P‖S2

∥∥Π
Û
PΠ

V̂
−ΠUPΠV

∥∥
S2

≤ ‖P‖S2

∥∥Π
Û
PΠ

V̂
−Π

Û
PΠV + Π

Û
PΠV −ΠUPΠV

∥∥
S2

= ‖P‖S2

∥∥Π
Û
P (Π

V̂
−ΠV ) + (Π

Û
−ΠU )PΠV

∥∥
S2

≤ ‖P‖S2

(∥∥P (Π
V̂
−ΠV )

∥∥
S2

+
∥∥(Π

Û
−ΠU )P

∥∥
S2

)
,

where we use
∥∥Π

Û

∥∥ ≤ 1 and ‖ΠV ‖ ≤ 1 in the last step. The fact ‖P‖ ≤ 1 yields the

assertion. �
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When Π
Û

and Π
V̂

are the sets of first r canonical components of a compact empirical

operator P̂ with the overall approximation error ∆ = P̂ − P , then our previous consider-

ations from Section 3.3.2 lead to the following bound for the transition reconstruction

error.

Theorem 3.5.6 (Transition reconstruction error bound). Assume that P ∈ S2 and P̂ is a

compact estimate of P with estimation error ∆ = P̂−P . For r < min{rank(P ), rank(P̂ )},
let Π

Û
and Π

V̂
be the sets of first r canonical components of P̂ . Furthermore, assume

ρr(P ) 6= ρr+1(P ). Then we have

E(Π
Û
,Π

V̂
)− E(ΠU ,ΠV ) ≤ 4

√
2r ‖P‖S2

(2 ‖∆‖+ ‖∆‖2)

σr(P )2 − σ2
r+1(P )

.

Proof. Theorem 3.5.6 is the direct consequence of Theorem 3.3.5 applied to the assertion

of Lemma 3.5.5. �

3.6. Estimation from dependent data

In order to establish consistency for the estimators of P with dependent observations (such

as a sequence of subsequent data obtained from a Markov process), we need appropriate

mathematical tools to describe this setting. Two standard assumptions for estimators

based on dependent data are ergodicity and mixing. Since we will later work with

these concepts in a more general setting, we introduce them here for general stationary

stochastic processes which do not necessarily need to exhibit the Markov property.

3.6.1. Ergodicity

We consider a stationary stochastic process (Xt)t∈Z defined on (Ω,F ,P) and taking

values in (E,FE). Stationary stochastic processes can be conveniently expressed in

terms of dynamical systems on measure spaces. We briefly introduce the concept of

measure-preserving dynamical systems and ergodicity. For details, the reader may refer

for example to (Petersen, 1983, Section 1.2) and (Kallenberg, 2002, Section 9).

We may assume without loss of generality that the underlying probability space (Ω,F ,P)

describing the stationary process (Xt)t∈Z is the canonical probability space, i.e., Ω = EZ

and F = F⊗ZE . In this case, we can simply express the process as the family of coordinate

projections on Ω: for ω = (ωt)t∈Z ∈ Ω, we can write Xt(ω) = ωt = X0(T tω) for all t ∈ Z,

where T is the left-shift operator on Ω defined by

(Tω)i := ωi+1
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3. The structure of bivariate distributions

for all i ∈ Z. Note that by stationarity of (Xt)t∈Z, the shift T is measure preserving in

the sense that P[T−1M ] = P[M ] for all M ∈ F⊗ZE . We call (Xt)∈Z ergodic whenever T is

ergodic in the measure-theoretical sense (Petersen, 1983), i.e., for all events M ∈ F⊗ZE ,

we have that T−1M = M implies either P[M ] = 0 or P[M ] = 1.

Ergodic processes are of interest to us since they obey a strong law of large numbers,

which we obtain as the following generalization of Birkhoff’s ergodic theorem.

Theorem 3.6.1 (Beck and Schwartz, 1957, Theorem 6.). Let B be a reflexive Banach

space and T an ergodic measure-preserving transformation on (Ω,F ,P). Then for each

f ∈ L1(Ω,F ,P;B),

lim
n→∞

1

n

n∑
i=1

f(T iω) =

∫
Ω
f(ω) dP(ω),

where the convergence holds P-a.e. with respect to ‖·‖B.

3.6.2. Strong mixing coefficients

In order to derive more detailed results for dependent random variables, we need a measure

of the degree of their dependence. Several different concepts have been developed in

order to deal with this problem. Here we will focus on the strong mixing coefficients

which are often considered in statistics (Doukhan, 1994; Bradley, 2005).

Definition 3.6.2 (Mixing coefficients). For σ-fields F1, F2 ⊆ F , we define

α(F1,F2) := sup
A∈F1,B∈F2

|P[A ∩B]− P[A]P[B]| ,

β(F1,F2) := sup
1

2

I∑
i=1

J∑
j=1

|P[Ai ∩Bj ]− P[Ai]P[Bj ]| ,

where the supremum in the last equation ranges over all finite subsets {A1, . . . , AI} ⊆ F2

and {B1, . . . , BJ} ⊆ F2 which form a partition of Ω. For a stochastic process (Xt)t∈Z,

we furthermore define

α(n) := α((Xt)t∈Z, n) := sup
j∈Z

α(F j−∞,F∞j+n) n ∈ Z,

β(n) := β((Xt)t∈Z, n) := sup
j∈Z

β(F j−∞,F∞j+n) n ∈ Z,

where Fml := σ(Xt, l ≤ t ≤ m) denotes the σ-field generated by the process (Xt)t∈Z for

time horizons −∞ ≤ l ≤ m ≤ ∞.

Whenever (Xt)t∈Z is stationary, we have a simplified expression for the mixing coefficients

in terms of α(n) = α(F0
−∞,F∞n ) and analogously β(n) = β(F0

−∞,F∞n ). The process is
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called α-mixing or just strongly mixing, when α(n) → 0 as n → ∞ and β-mixing or

absolutely regular, when β(n)→ 0 as n→∞. In this case, the convergence rates of α(n)

and β(n) are called the mixing rate of the associated process. We have 2α(n) ≤ β(n) for

all n ∈ N and hence β-mixing is a stronger condition than α-mixing. In this paper, we

will not focus on the various alternative strong mixing coefficients which are frequently

used in statistics (Bradley, 2005), since α-mixing and β-mixing are amongst the most

commonly used mixing concepts and cover a wide range of processes in practice.

Remark 3.6.3 (Terminology). The concept of strong mixing coefficients is typically much

stronger than the strong mixing considered in ergodic theory (Petersen, 1983). The strong

mixing coefficients are defined for nonstationary processes, while mixing in the ergodic

theoretical sense typically arises from dynamical systems induced by measure-preserving

transformations and is therefore primarily used in the context of stationary stochastic

processes.

Example 3.6.4 (Mixing processes). A wide range of mixing processes can be found in

Doukhan (1994) and Bradley (2005). We list some important examples here.

(1) Irreducible and aperiodic stationary Markov processes on E ⊆ R are β-mixing (see

for example Bradley 2005, Corollary 3.6).

(2) Stationary Markov processes satisfying geometric ergodicity (for details see Meyn

and Tweedie, 2009, Chapter 15) are β-mixing with β(n) = O(exp(−cn)) for some

c > 0, see Bradley (2005, Theorem 3.7).

(3) We consider a stochastic dynamical system (Xt)t∈N0 also known as the nonlinear

state space model (Meyn and Tweedie, 2009, Chapter 7) given by the recursion

Xt = ht(Xt−1, ξt), t ≥ 1

where ht : E → E are measurable functions and ξt are iid random variables on E

which are independent of X0. The process (Xt)t∈N0 is a Markov process (see for

example Kallenberg, 2002, Proposition 7.6). Therefore (1) and (2) apply in this case.

Conditions under which this system is geometrically ergodic (i.e., geometrically

β-mixing in the sense of (2)) are given by Doukhan (1994, Section 2.4).

(4) One can show that a time-discretized version of a diffusion process expressed as a

stochastic differential equation results in a geometrically ergodic Markov process

under certain assumptions (Lacour, 2008).

(5) Under some requirements, commonly used linear and nonlinear time series models

on finite-dimensional vector spaces including AR, ARMA, ARCH, and GARCH are

α-mixing with α(n) = O(exp(−cn)) for some c > 0, see Doukhan (1994, Section

2.4) and Fan and Yao (2003, Section 2.6.1).
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3. The structure of bivariate distributions

We make use of the following lemma which ensures that measurable transformations of a

finite number of components of a mixing process preserve mixing rates.

Lemma 3.6.5 (Transformed processes are mixing). Let (Xt)t∈Z defined on (Ω,F ,P)

be a stationary process with values in the standard Borel space (E,FE). Let (F,FF ) be

another standard Borel space. Let η ∈ N and h : Eη+1 → F be a F⊗η+1
E −FF measurable

transformation. Then for the F -valued process (Ht)t∈Z given by

Ht := h(Xt, . . . , Xt+η), t ∈ Z,

we have

α((Ht)t∈Z, n) ≤ α((Xt)t∈Z, n− η) (3.14)

for all n ∈ Z. The same result applies when the α-mixing coefficient is replaced with the

β-mixing coefficient in the expression above.

In particular, if (Xt)t∈Z is α/β-mixing, then (Ht)t∈Z is α/β-mixing with at least the same

mixing rate as (Xt)t∈Z.

Proof. Let Hml := σ(Ht, l ≤ t ≤ m) ⊆ F be the σ-field generated by (Ht)t∈Z for time

horizons l and m. By construction, for all j ∈ Z we have Hj−∞ ⊆ F
j+η
−∞ as well as

H∞j ⊆ F∞j for all j ∈ Z. Therefore, we have

α((Ht)t∈Z, n) = sup
j∈Z

α(Hj−∞,H∞j+n) ≤ sup
j∈Z

α(F j+η−∞ ,F∞j+n) = α((Xt)t∈Z, n− η)

and analogously when the α-mixing coefficient is replaced with the β-mixing coefficient.

�

3.6.3. Convergence results for dependent observations

We now illustrate how ergodicity and the theory of strongly mixing random variables

can be used to assess the convergence when the parametric projection method described

in Section 3.4 is applied to a Markov transition operator.

Let (Xt)t∈Z be a homogeneous stationary Markov process with marginal Xt ∼ π and

Markov transition operator P : L2(π) → L2(π). Note again that we can now restrict

ourselves to the single orthonormal system Φ ⊆ L2(π), since P operates only on L2(π)

due to the stationarity of (Xt)t∈Z.

We assume we have access to a finite sequence of observations X1, . . . , Xn+1 from a real-

ization of (Xt)t∈Z. The projection estimator P̂Φ,Φ for the operator PΦ,Φ from Section 3.4.2

given in terms of the matrix A ∈ Rs×s defined by

Aij := E[φi(Xt)φj(Xt+1)] = 〈φi, Pφj〉L2(π) .
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now takes the form

Âij :=
1

n

n∑
t=1

φi(Xt)φj(Xt+1) =
〈
φi, P̂Φ,Φφj

〉
L2(π)

and consists of evaluations of the basis functions at the one-step transition pairs (Xt, Xt+1).

We now outline basic convergence results for this estimator.

Theorem 3.6.6 (Strong law of large numbers). Let (Xt)t∈Z be ergodic. Then

P̂Φ,Φ → PΦ,Φ P-a.e.

as n→∞ w.r.t. the norm of S2(L2(π)) and therefore similarly for every other norm on

the space of linear operators on the finite-dimensional space span Φ.

Proof. The stationary time-lagged product process (Xt, Xt+1)t∈Z on E × E can be

expressed via the projection tuple (Xt, Xt+1)(ω) = (X0, X1)(T tω), where T is the shift

operator described in Section 3.6.1. Similarly to the proof of Lemma 3.4.1, we define the

measurable transformation ξ : E × E → Rs×s given by

ξ(Xt, Xt+1) := (φi(Xt)φj(Xt+1))1≤i,j≤s, (3.15)

where Rs×s is equipped with some arbitrary matrix norm—we choose the Frobenius

norm here. We have A = E[ξ(X0, X1)] as well as Â = 1
n

∑n
t=1 ξ(Xt, Xt+1). It is clear

that ξ(X0, X1) ∈ L1(Ω,F ,P;Rs×s) and we can therefore apply Theorem 3.6.1 with the

observable ξ(X0, X1) to obtain

Â = lim
n→∞

1

n

n∑
t=1

ξ(X0, X1) ◦ T t = E[ξ(X0, X1)] = A P-a.e.

with respect to the Frobenius norm and therefore any arbitrary matrix norm. �

An upper bound for the speed of convergence in Hilbert–Schmidt norm can be deduced

by straight forwardly applying an asymptotic result for α-mixing Hilbertian random

variables due to Bosq (2000, Corollary 2.4).

Theorem 3.6.7 (Convergence speed). Let |φi(Xt)| ≤ M P-a.e. for all 1 ≤ i ≤ s. Let

additionally (Xt)t∈Z be α-mixing with coefficients satisfying α(n) ≤ arn for some r ∈ (0, 1)

and a > 0 for all n ∈ N, then

∥∥∥P̂Φ,Φ − PΦ,Φ

∥∥∥
S2(L2(π))

= O

(
(log n)3/2

n1/2

)
P-a.e.
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3. The structure of bivariate distributions

Proof. We again consider the transformation ξ defined in (3.15). Note that we have the

bound ‖ξ(X0, X1)− E[ξ(X0, X1)]‖F ≤ 2sM2 P-a.e. as derived in (3.8). The α-mixing

rate of the stationary process (ξ(Xt, Xt+1)− E[ξ(X0, X1)])t∈Z is at least as fast as the

mixing rate of (Xt)t∈Z due to Lemma 3.6.5. Since the space Rs×s is finite-dimensional,

the covariance operator eigenvalue decay condition of from Bosq (2000, Corollary 2.4) is

satisfied (the covariance operator of a finite-dimensional random variable can again be

expressed in terms of a matrix and hence exhibits only a finite number of eigenvalues).

The assertion follows directly by applying Bosq (2000, Corollary 2.4) to the stationary

centered process (ξ(Xt, Xt+1)− E[ξ(X0, X1)])t∈Z. �

As our last result, we present the application of a Bernstein-type error bound for β-mixing

sequences due to Rhomari (2002, 2011) similarly as in the preceding proof of Theorem 3.6.7.

We present the original bound in Appendix A.5.3 in a simplified form.

Theorem 3.6.8 (Error bound). Let |φi(Xt)| ≤ M P-a.e. for all 1 ≤ i ≤ s. Let

additionally (Xt)t∈Z be β-mixing with coefficients β(n). For every ε > 0 and 1 ≤ l ≤ bn/2c,
we have

P
[∥∥∥P̂Φ,Φ − PΦ,Φ

∥∥∥
S2(L2(π))

≥ ε
]

≤ 4 exp

(
− nε2

4(1 + 2l/n)σ2 + 8lsM2ε/3

)
+
(n
l

+ 2
)
β(l − 1),

where

σ2 ≤ 4s2M4

(
1 + 5

l−1∑
i=1

β(i− 1)

)
.

Proof. We apply the bound given in Appendix A.5.3 to the stationary and P-a.e. bounded

process (ξ(Xt, Xt+1)− E[ξ(X0, X1)])t∈Z defined in (3.15). �

The general assertion of the bound in Theorem 3.6.8 is very similar to the well-known

Bernstein bound for independent Hilbertian random variables (see Appendix A.5.2 for

details). In essence, the decay of the β-mixing coefficients quantifies an upper bound for

the variance proxy σ2 ≥ 0. Moreover, a balance between the total number of samples n

and the number of consecutive steps l considered in the variance term is required to obtain

an overall optimal bound. This phenomenon can also be seen in other concentration

inequalities of this type.

Remark 3.6.9. (Alternative concentration inequality) Instead of applying the generalized

Bernstein bound by Rhomari (2002) as shown here, we can alternatively apply a slightly

more complex bound of similar form for α-mixing sequences as derived by Bosq (2000,

Theorem 2.12). We introduce this alternative bound later in this thesis in Theorem 5.5.1.
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3.7. Summary and outlook

In this chapter, we establish a basic statistical viewpoint for the approximation of

conditional expectation operators. Addressing the generic estimation of their spectral

properties, we apply a perturbation result which proves stability of the dominant singular

subspaces with respect to the estimation error. By introducing a classical projection

method, we highlight the limits of typical error bounds for the empirical basis normal-

ization and estimation procedure in high dimensions. We investigate the projection

approach and its applications in the context of Markov transition operators and connect

the empirical minimization of a reconstruction error to the perturbation of the singular

functions. Finally, we derive convergence results for the projected estimate based on

dependent data under ergodicity and mixing assumptions.

This chapter leaves us with several open questions and possible directions for future

research, which we will address separately in what follows.

1. The error bounds for the projected estimate of P which we derive are far from

optimal and rely only on the boundedness of the underlying ansatz functions.

A potential way to improve these theoretical results is to incorporate low-rank

assumptions for P and apply matrix concentration results based on the effective

rank of the projection of P (see Remark 3.4.6). In a related setting, a low-rank

model for finite-state Markov chains has been formulated by Gerber and Horenko

(2017) by assuming an underlying latent process.

2. In order to derive more efficient approximation schemes for the projection of

P , we need to circumvent the problem of the estimation of large matrices. It

occurs reasonable to apply specifically designed techniques for models with large

parameter sizes and work with ideas from compressive sensing, high-dimensional

matrix estimation and `1-regularization. An overview of recent approaches in these

fields can be found in Foucart and Rauhut (2013) and Wainwright (2019) and the

literature reviews therein.

3. Our framework to derive theoretical convergence results for the projected estimate

of P with dependent data is based on the situation that we observe subsequent

time steps in a single realization of a stationary homogeneous Markov process.

However, the assumption of stationarity may not be satisfied in general. A potential

direction of further research could more sophisticated sampling techniques under the

assumptions that a homogeneous Markov process can be simulated with arbitrary

initial distributions. Also, by modifying concentration bounds based on the spectral

gap of a Markov transition operator (Paulin, 2015; Fan et al., 2021; Jiang et al.,

2018) it may be possible to prove convergence results for situations which are closer

to practical applications (i.e., the detection of metastable states and coherent sets).
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conditional expectation operators

This chapter contains passages taken from Mollenhauer and Koltai (2020).

As we have seen in the example of a projection method in the preceding chapter,

classically used parametric models for the estimation of P are theoretically limited in

their performance by both the difficulties related to the corresponding model error and

the estimation of high-dimensional matrices. A natural reason for these limitations is the

choice of ansatz spaces, which has to be conducted a priori without knowledge of the

joint distribution of X and Y and the resulting structure of P .

To circumvent these issues, various nonparametric methods have been derived. In essence,

they rely on ansatz functions which are adaptively chosen based on the data during the

sampling procedure. However, from a theoretical perspective, it is actually not clear that

any of the aforementioned problems of parametric methods are alleviated by adapting

the basis functions to the data. In this chapter, we will thus focus on the two main types

of theoretical questions arising from such an idea:

1. Is it possible to precisely specify the corresponding hypothesis space when the basis

functions are adapted to the data? If so, what happens if the model is misspecified,

i.e., the true operator P is not contained in the hypothesis space? Put differently,

which object is approximated in the infinite data limit in this case?

2. Can we expect stronger overall approximation properties compared to parametric

methods? Which quantities affect the convergence speed of such a nonparametric

approach and is it possible to derive reasonable error bounds?

Prominent examples of such nonparametric approaches based on reproducing kernels

are kernel-based extended dynamic mode decomposition (EDMD) and various related

techniques (Williams et al., 2015b; Schwantes and Pande, 2015; Kawahara, 2016; Klus

et al., 2020, 2019; Mollenhauer et al., 2020b; Tian and Wu, 2020). Although these

methods work well in practice, their approximation-theoretic background, convergence

properties and statistical behaviour are not understood yet. By making use of the
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4. Nonparametric approximation of conditional expectation operators

functional-analytic theory of vector-valued reproducing kernel Hilbert spaces, we will be

able to give some answers to the above questions for these methods.

The main idea behind the kernel-based approximation of P is to only evaluate P over

functions contained in a reproducing kernel Hilbert space H which is embedded into its

domain L2(ν). That is, instead of P : L2(ν)→ L2(π), one essentially approximates the

modified conditional expectation operator

H 3 f 7→ E[f(Y ) |X = ·] ∈ L2(π),

where the geometric properties on the domain are given by the inner product of H

instead of L2(ν). We begin our theoretical investigation at this point and work our way

to a nonparametric model step by step. Our investigation shows that the theory of the

nonparametric approximation of P is naturally related to several well-known concepts

in kernel-based inference such as the kernel conditional mean embedding, the maximum

mean discrepancy and in particular regularized least squares regression with vector-valued

kernels.

4.1. Overview

We introduce the functional-analytic theory of vector-valued reproducing kernel Hilbert

spaces in Section 4.2 and discuss the assumptions which we impose in this chapter. In

Section 4.3, we briefly review the theory of integral and inclusion operators associated

with reproducing kernels. Section 4.4 highlights the embedding of probability measures

into reproducing kernel Hilbert spaces, which is strongly connected to the theory which

we derive in the following sections.

We begin the exposition of the theoretical core results of this chapter with the derivation

of a nonparametric model and its approximation properties from a population perspective

in Section 4.5. In Section 4.6, we establish a typical connection to regularization of inverse

problems and use this theory to construct an empirical estimate based on our previous

derivation. We investigate the special case of Tikhonov–Phillips regularization and obtain

closed form solutions for the population version as well as the empirical case. Section 4.7

highlights practical applications and connects our model to existing approaches while

Section 4.8 discusses related work.

4.2. Vector-valued reproducing kernel Hilbert spaces

We will give an overview of the concept of a vector-valued reproducing kernel Hilbert

space (vRKHS), i.e., a Hilbert space consisting of functions from a nonempty set E to a
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Hilbert space H. Since the construction of such a space is quite technical, we will not

cover all mathematical details here but rather introduce the most important properties.

For a rigorous treatment of this topic, we refer the reader to Carmeli et al. (2006) as well

as Carmeli et al. (2010). In this chapter, (E,FE) is assumed to be a second countable

locally compact Hausdorff space E equipped with its Borel field.

Definition 4.2.1 (Operator-valued psd kernel). Let E be a nonempty set and H be a

real Hilbert space. A function K : E × E → B(H) is called an operator-valued positive-

semidefinite (psd) kernel, if K(x, x′) = K(x′, x)∗ for all x, x′ ∈ E and additionally for

all n ∈ N, x1, . . . , xn ∈ E as well as β1, . . . , βn ∈ R and h ∈ H, we have

n∑
i,j=1

βiβj 〈h, K(xi, xj)h〉H ≥ 0. (4.1)

Let K : E ×E → B(H) be an operator-valued psd kernel. For a fixed x ∈ E and h ∈ H,

we obtain a function from E to H via

[Kxh](·) := K(·, x)h.

We can now consider the set

Gpre := span{Kxh | x ∈ E, h ∈ H} (4.2)

and define an inner product on Gpre by linearly extending the expression〈
Kxh, Kx′h

′〉
G

:=
〈
h, K(x, x′)h′

〉
H
. (4.3)

Let G be the completion of Gpre with respect to this inner product. We call G the

H-valued reproducing kernel Hilbert space or more generally the vRKHS induced by the

kernel K.

The space G is a Hilbert space consisting of functions from E to H with the reproducing

property

〈F (x), h〉H = 〈F, Kxh〉G (4.4)

for all F ∈ G , h ∈ H and x ∈ E. Additionally, we have

‖F (x)‖H ≤ ‖K(x, x)‖1/2 ‖F‖G , x ∈ E (4.5)

for all F ∈ G . When Kx is understood as a linear operator from H to G fixed x ∈ E,

the inner product given by (4.3) implies that Kx is a bounded operator for all x ∈ E. As

a result, we can rewrite the reproducing property (4.4) as

F (x) = K∗xF (4.6)
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for all F ∈ G and x ∈ E. Therefore we have

K∗xKx′ = K(x, x′), x, x′ ∈ E (4.7)

and the linear operators Kx : H → G and K∗x : G →H are bounded with

‖Kx‖ = ‖K∗x‖ = ‖K(x, x)‖1/2 . (4.8)

In this work, we will deal with two very specific examples of psd kernels, which we will

introduce in what follows.

4.2.1. Real-valued RKHS

When we identify the space of linear operators on R with R itself and consider a real-valued

psd kernel

k : E × E → R (4.9)

in the sense of Definition 4.2.1, we obtain the well-known setting of the real-valued

reproducing kernel Hilbert space (RKHS; Aronszajn 1950). The kernel k satisfies

k(x, x′) = k(x′, x) for all x, x′ ∈ E. The space H consists of functions from E to

R with the properties

(i) 〈f, k(x, ·)〉H = f(x) for all f ∈H (reproducing property), and

(ii) H = span{k(x, ·) | x ∈ E}, where the completion is with respect to the RKHS

norm.

It follows in particular that k(x, x′) = 〈k(x, ·), k(x′, ·)〉H . The so-called canonical feature

map ϕ : E →H is given by ϕ(x) := k(x, ·).

The space H has been thoroughly examined over the last decades and has numerous

applications in statistics, approximation theory and machine learning. For details, the

reader may consult Berlinet and Thomas-Agnan (2004), Steinwart and Christmann (2008)

and Saitoh and Sawano (2016).

Remark 4.2.2 (Notation). In what follows, H will always denote the R-valued RKHS

induced by the kernel k : E×E → R with corresponding canonical feature map ϕ : E →H

as described in this section. We will write small letters f, g, h ∈H for R-valued RKHS

functions.
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4.2.2. H -valued vRKHS

Let H be the real-valued RKHS induced by the kernel k : E × E → R as decribed in

Section 4.2.1. Let IdH be the identity operator on H . We define the map

K : E × E → B(H ),

K(x, x′) := k(x, x′)IdH

for all x, x′ ∈ E. It is straightforward to show that K is a psd kernel and therefore

induces an H -valued vRKHS G (see also Carmeli et al., 2010, Example 3.3.(i)).

Remark 4.2.3 (Notation). In what follows, G will always denote the H -valued vRKHS

induced by the kernel K : E ×E → B(H ) given by K(x, x′) = k(x, x′)IdH as described

in this section. We will write capital letters F,G,H ∈ G for H -valued functions in order

to distinguish them from real-valued functions f, g, h ∈H .

4.2.3. Isomorphism between G and S2(H )

The foundation of our approach is given by the fact that elements of the vRKHS G

defined by the kernel K(x, x′) = k(x, x′)IdH can be interpreted as Hilbert–Schmidt

operators on H . We again recall that the space of Hilbert–Schmidt operators S2(H ) is

isometrically isomorphic to the tensor product space H ⊗H via an identification of

rank-one operators as elementary tensors. We will use the latter to state the result, since

a formulation in this way is more natural.

Theorem 4.2.4 (G is isomorphic to H ⊗H ). Let H be the real-valued RKHS with

corresponding kernel k. Let G be the vector-valued RKHS induced by the kernel K(x, x′) :=

k(x, x′)IdH . The map Θ defined on rank-one tensors in H ⊗H defining an H -valued

function on E by the relation

[Θ(f ⊗ h)] (x) := h(x)f = (f ⊗ h)ϕ(x) = 〈h, ϕ(x)〉H f (4.10)

for all x ∈ E and f, h ∈ H maps to G . Furthermore, extending Θ to H ⊗H via

linearity and completion yields an isometric isomorphism between H ⊗H and G .

A proof of Theorem 4.2.4 can be found in Carmeli et al. (2010, Proposition 3.5 & Example

3.3(i)). The isometric isomorphism

Θ : H ⊗H → G

defined by (4.10) seems technical but actually becomes quite intuitive when one examines

how the inner products of both spaces are connected via the kernels k and K. We outline

this connection briefly below.
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Let x, x′ ∈ E and h, h′ ∈ H . We define F := Kxh ∈ G and F ′ := Kx′h
′ ∈ G and note

that we can express the inner product in G as〈
F, F ′

〉
G

=
〈
K∗x′Kxh, h

′〉
H

=
〈
k(x′, x)IdH h, h

〉
H

=
〈
ϕ(x′), ϕ(x)

〉
H

〈
h, h′

〉
H

=
〈
h⊗ ϕ(x), h′ ⊗ ϕ(x′)

〉
H ⊗H

.

This derivation can be extended straightforwardly to a correspondence of vector-valued

functions F, F ′ ∈ span{Kxh |x ∈ E, h ∈ H } ⊆ G and linear combinations of tensors

in {h ⊗ ϕ(x) |x ∈ E, h ∈ H } ⊆ H ⊗H by using bilinearity of the respective inner

products. Since both spans are dense in the associated spaces, this property can be

extended to the full spaces via completion. We now restate Theorem 4.2.4 in a more

accessible way for our scenario. The formulation below shows that pointwise evaluation of

functions in G may be conducted by the action of the corresponding operator in S2(H )

on the canonical feature map ϕ. We will refer to this property as the operator reproducing

property. We visualize the relations between H ⊗H , S2(H ) and G in Figure 4.1.

Corollary 4.2.5 (Operator reproducing property). For every function F ∈ G there

exists an operator A := Θ−1(F ) ∈ S2(H ) such that

F (x) = Aϕ(x) ∈H (4.11)

for all x ∈ E with ‖A‖S2(H ) = ‖F‖G and vice versa.

Conversely, for any pair F ∈ G and A ∈ S2(H ) satisfying property (4.11) we have

A = Θ−1(F ).

Proof. The first assertion directly follows from Theorem 4.2.4 and the construction of Θ.

It remains to prove the second assertion. Let F ∈ G and define A := Θ−1(F ). By the first

assertion, A satifies (4.11). Assume there exists B ∈ S2(H ) satisfying (4.11). Then by

linearity, A and B coincide on span{ϕ(x) | x ∈ E}, which is dense in H . By continuity,

we therefore have A = B. The operator in S2(H ) satisfying (4.11) is therefore uniquely

given by Θ−1(F ). �

Remark 4.2.6 (Operator reproducing property). Not only does Corollary 4.2.5 describe

how functions in G can be evaluated in terms of their operator analogues in S2(H ),

it also shows the implicit construction of G via Hilbert–Schmidt operators acting on

the RKHS H . In particular, the above result shows that the space of Hilbert–Schmidt

operators S2(H ) generates the vRKHS G via

G = {F : E →H | F = Aϕ(·), A ∈ S2(H )}.

Our previous considerations show that G is precisely the vRKHS associated with the

vector-valued kernel K := kIdH .
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4.2. Vector-valued reproducing kernel Hilbert spaces

S2(H ) H ⊗H G
A =

∑
i σi(A)ui ⊗ vi
SVD

Corollary 4.2.5

A↔ Aϕ(·)

Theorem 4.2.4

Θ(ui ⊗ vi) = vi(·)ui

Figure 4.1.: Visualization of the isometric isomorphisms between S2(H ), H ⊗H and G .

Here, SVD refers to the singular value decomposition of compact operators.

Corollary 4.2.5 will be of central importance for our approach. The identification of an

H -valued vRKHS function in G with a corresponding Hilbert–Schmidt operator acting

on H will be used to bridge the gap between vector-valued statistical learning theory

and the nonparametric estimation of linear operators (Grünewälder et al., 2013).

4.2.4. Assumptions on H

We impose some technical requirements on the RKHS H and the corresponding kernel

k. Our first three assumptions allow that we can perform Bochner integration without

being caught up in measurability and integrability issues later on (Diestel and Uhl, 1977).

The fourth and the fifth assumption are needed to ensure that H supplies the typically

used approximation qualities in a function space context.

Assumption 1 (Separability). The RKHS H is separable. Note that for a Polish space

E, the RKHS induced by a continuous kernel k : E × E → R is always separable (see

Steinwart and Christmann, 2008, Lemma 4.33). For a more general treatment of conditions

implying separability, see Owhadi and Scovel (2017).

Assumption 2 (Measurability). The canonical feature map ϕ : E → H is FE − FH

measurable. This is the case when k(x, ·) : E → R is FE−FR measurable for all x ∈ E. If

this condition holds, then additionally all functions f ∈H are FE −FR measurable and

k : E × E → R is F⊗2
E −FR measurable (see Steinwart and Christmann, 2008, Lemmas

4.24 and 4.25).

Assumption 3 (Existence of second moments). We have ϕ ∈ L2(E,FE , π; H ) as

well as ϕ ∈ L2(E,FE , ν; H ). Note that this is equivalent to E[‖ϕ(X)‖2H ] < ∞ and

E[‖ϕ(Y )‖2H ] <∞ which trivially holds for all probability measures π, ν on (E,FE) case

whenever supx∈E k(x, x) <∞.

Assumption 4 (C0-kernel). We assume that H ⊆ C0(E), where C0(E) is the space of

continuous functions f : E → R such that for every ε > 0, the set {x | |f(x)| ≥ ε} ⊆ E is

compact. In particular, this is the case if x 7→ k(x, x) is bounded on E and k(x, ·) ∈ C0(E)
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4. Nonparametric approximation of conditional expectation operators

for all x ∈ E (Carmeli et al., 2010, Proposition 2.2).

Assumption 5 (L2-universal kernel, see Section 4.3). We assume that H is dense in

L2(π). In this case, the kernel k and the RKHS H are called L2-universal (Carmeli

et al., 2010; Sriperumbudur et al., 2011).

Remark 4.2.7. Since not all of our results will need all of the above assumptions, we

collect some general implications of the different assumptions here.

1. Assumptions 1–3 ensure that H can be continuously embedded into both L2(π)

and L2(ν) (see Section 4.3).

2. The combination of Assumption 4 and Assumption 5 implies that H is even dense

in L2(ν) for all probability measures ν on (E,FE) (Carmeli et al., 2010, Theorem

4.1 and Corollary 4.2).

3. Instead of Assumption 5, it is sometimes required in the literature that H is dense

in C0(E) with respect to the supremum norm. This property is usually called

C0-universality. One can show that when Assumption 4 holds, C0-universality is

equivalent to L2-universality (Sriperumbudur et al., 2011).

4. When Assumptions 1–5 are satisfied, then the vRKHS G induced by the kernel

K = kIdH is dense in both L2(E,FE , π; H ) and L2(E,FE , ν; H ) (see Carmeli

et al. 2010, Example 6.3 and Carmeli et al. 2010, Theorem 4.1). This is important

for us, as we will make use of this fact later on.

Example 4.2.8. For E ⊆ Rd, well-known translation invariant kernels such as the Gaussian

kernel or Laplacian kernel satisfy all of the above assumptions for arbitrary probability

measures π, ν on (E,FE) (Sriperumbudur et al., 2011).

4.3. Integral and inclusion operators

The Assumptions 1–3 imply that H can be embedded into spaces of square integrable

functions. This fact and its connections to integral operators defined by the corresponding

kernels play a fundamental role in statistical learning theory.

4.3.1. Real-valued RKHS

We begin with general statements for the scalar kernel k (see for example Steinwart and

Christmann, 2008, Chapter 4.3). Let the Assumptions 1–3 be satisfied. The inclusion

operator iπ : H → L2(π) given by f 7→ [f ]∼ ∈ L2(π) identifies f ∈H with its equivalence

class of π-a.e. defined functions in L2(π). It is bounded with ‖iπ‖ ≤ ‖ϕ‖L2(E,FE ,π;H )
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4.3. Integral and inclusion operators

and Hilbert–Schmidt. The adjoint of iπ is the integral operator i∗π : L2(π)→H given

by

[i∗πf ](x) =

∫
E
k(x, x′)f(x′) dπ(x′), f ∈ L2(π).

The kernel k is L2-universal if and only if i∗π is injective.

The operator CXX := i∗πiπ : H →H is the kernel covariance operator associated with

the measure π given by

CXX =

∫
E
ϕ(x)⊗ ϕ(x) dπ(x) = E[ϕ(X)⊗ ϕ(X)],

where the integral converges in trace norm. We define all of the above concepts analogously

for the measure ν and the corresponding random variable Y . The kernel cross-covariance

operator (Baker, 1973) of X and Y is the trace class operator given by

CY X :=

∫∫
E×E

ϕ(y)⊗ ϕ(x) p(x,dy)dπ(x) = E[ϕ(Y )⊗ ϕ(X)].

Both operators satisfy 〈h, CXXf〉H = 〈h, f〉L2(π) = E[f(X)h(X)] as well as 〈h, CY Xf〉H =

E[f(X)h(Y )] for all f, h ∈H .

Remark 4.3.1 (Scalar RKHSs and integral operators). Although the presented operators

i∗π : L2(π) → H , iπi
∗
π : L2(π) → L2(π) and CXX : H → H have the same analytical

expression as integral operators, they are fundamentally different objects since they

operate on different spaces. However, iπi
∗
π and CXX share the same nonzero eigenvalues

and their eigenfunctions can be related (see for example Rosasco et al., 2010).

Remark 4.3.2 (Inclusion operators and notation). We will sometimes suppress the inclusion

operators iπ and iν in our notation when the context is clear. In particular, for f ∈H

we will simply write ‖f‖L2(ν) instead of ‖iνf‖L2(ν). Furthermore, under the above

assumptions, we may understand the operator Piν : H → L2(π) as a conditional

expectation operator acting on functions of H via

[Piνf ](x) = E[f(Y ) | X = x] ∈ L2(π) for f ∈H (4.12)

and use the norm of H on its domain. By abuse of notation, we may write P : H → L2(π)

instead of Piν for the operator in (4.12). We will emphasize which version of P we refer to

by simply distinguishing between P : H → L2(π) and P : L2(ν)→ L2(π). We write out

the corresponding operator norms ‖P‖H→L2(π) and ‖P‖L2(ν)→L2(π) to prevent confusion.

Note that by boundedness of iν , we have ‖P‖H→L2(π) ≤ ‖iν‖ ‖P‖L2(ν)→L2(π). Similarly,

for every bounded operator A : H → H we can consider the bounded operator iπA

from H to L2(π), which we will also abbreviate as A : H → L2(π). At this point, it is

worth mentioning that functions in H are generally defined pointwise, while elements of

L2(π) are equivalence classes of π-a.e. equivalent functions.

43



4. Nonparametric approximation of conditional expectation operators

4.3.2. H -valued RKHS

Similarly to the above operators defined for the scalar kernel k, we can define the above

concepts for the vector-valued kernel K = kIdH in the context of Bochner spaces (Carmeli

et al., 2006, 2010).

When Assumptions 1–3 are satisfied, the space G is separable. The elements of G are

FE −FH measurable functions. Additionally, they are Bochner square integrable w.r.t.

π. The inclusion operator Iπ : G → L2(E,FE , π; H ) given by F 7→ [F ]∼ is bounded with

‖Iπ‖ ≤ ‖ϕ‖L2(E,FE ,π;H ).

The adjoint of Iπ is the integral operator I∗π : L2(E,FE , π,H )→ G given by

[I∗πF ](x) =

∫
E
K(x, x′)F (x′) dπ(x′), F ∈ L2(E,FE , π,H ).

The operator T := I∗πIπ : G → G is the generalized covariance operator (also called frame

operator, Carmeli et al. 2006) associated with the measure π given by

TF =

∫
E
KxK

∗
xF dπ(x) (4.13)

for all F ∈ G . T is bounded.

The following example shows that the generalized covariance operator T associated with

K(x, x′) = k(x, x′)IdH is noncompact in general. This fact will be very important for us

later on in the context of inverse problems.

Example 4.3.3 (Noncompact generalized covariance operator T ). It is easy to see that for

commonly used radial kernels k such as the Gaussian kernel on E ⊆ Rd, the generalized

covariance operator T is never compact.

Consider a measurable kernel k : E×E → R which induces an infinite-dimensional RKHS

H satisfying Assumptions 1 and 2. Assume k(x, y) > 0 for all x, y ∈ E and k(x, x) = 1

for all x ∈ E. Let K = kIdH and (ei)i∈N ⊂ H be an ONS. We fix some x′ ∈ E and

define Fi := Kx′ei ∈ G for all i ∈ N. Note that we have

〈Kx′ei, Kx′ej〉G =
〈
k(x′, ·)ei, k(x′, ·)ej

〉
G

= k(x′, x′) 〈ei, ej〉H = δij ,

i.e., (Fi)i∈N is an ONS in G . Then it is possible to show that (TFi)i∈N consists of

orthogonal elements of the same length:

〈TFi, TFj〉G =

〈∫
E
KxFi(x)dπ(x),

∫
E
KxFj(x)dπ(x)

〉
G

=

〈∫
E
k(x′, x)Kxeidπ(x),

∫
E
k(x′, x)Kxejdπ(x)

〉
G

=

∫∫
E2

k(x′, x)k(x′, y)
〈
K∗yKxei, ej

〉
H

d[π ⊗ π](x, y)
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=

∫∫
E2

k(x′, x)k(x′, y)k(x, y) 〈ei, ej〉H d[π ⊗ π](x, y) = Mδij

with the constantM :=
∫∫
E2 k(x′, x)k(x′, y)k(x, y) d[π⊗π](x, y) > 0, which is independent

of i, j ∈ N. Consequently, we have ‖TFi − TFj‖2G = ‖TFi‖2G +‖TFj‖2G = 2M for all i 6= j,

i.e., no subsequence of (TFi)i∈N can be Cauchy. We therefore have constructed a bounded

sequence (Fi)i∈N in G such that (TFi)i∈N does not contain a convergent subsequence in

G , implying that T is not compact.

4.4. Kernel mean embedding and maximum mean

discrepancy

Under Assumptions 1–3, the Bochner integrability of the feature map ϕ : E →H can be

elegantly used in combination with the reproducing property of H to express expectation

operations via simple linear algebra.

In particular, the kernel mean embedding (Berlinet and Thomas-Agnan, 2004; Smola

et al., 2007; Muandet et al., 2017) of the probability measure π defined by the Bochner

expectation

µπ :=

∫
E
ϕ(x) dπ(x) = E[ϕ(X)] ∈H (4.14)

naturally satisfies the expectation reproducing property

E[f(X)] = E [〈f, ϕ(X)〉H ] = 〈f, µπ〉H for all f ∈H . (4.15)

We call the RKHS H (or equivalently the corresponding kernel k) characteristic, if the

mean embedding map

π 7→
∫
E
ϕ(x) dπ(x) = µπ ∈H

defined on all probability measures on (E,FE) for which the integral converges is

injective.

Remark 4.4.1 (The RKHS H is characteristic). Our Assumptions 4 and 5 imply that

H is characteristic (Carmeli et al., 2010; Sriperumbudur et al., 2010, 2011).

For two probability measures π, ν on (E,FE), the maximum mean discrepancy (MMD)

is defined by

dk(π, ν) := sup
f∈H
‖f‖H ≤1

∣∣∣∣∫
E
f(x)dπ(x)−

∫
E
f(x)dν(x)

∣∣∣∣ = ‖µπ − µν‖H . (4.16)

For characteristic kernels, the MMD constitutes a metric on the set of probability measures

on (E,FE). This fact has been used as a powerful tool in RKHS-based inference (Gretton
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4. Nonparametric approximation of conditional expectation operators

et al., 2012; Sejdinovic et al., 2013). The MMD can be interpreted as a so-called integral

probability metric (Müller, 1997) and has been shown to metrize weak convergence of

measures under some mild conditions (Simon-Gabriel et al., 2020).

Transferring (4.14) to a regular conditional distribution of Y given X, we define the

H -valued conditional mean embedding (CME) function (Park and Muandet, 2020a)

Fp(x) :=

∫
E
ϕ(y) p(x, dy) = E[ϕ(Y ) | X = x] ∈ L2(E,FE , π; H ) (4.17)

and obtain a pointwise conditional version of the expectation reproducing property (4.15)

as

E[f(Y ) | X = x] = 〈f, Fp(x)〉H for all f ∈H and x ∈ E. (CME)

The fact that Fp (or analogously any other regular version of E[ϕ(Y ) | X = ·]) is a

well-defined element in L2(E,FE , π; H ) can be seen by using Jensen’s inequality for

conditional Bochner expectations as

‖Fp‖2L2(E,FE ,π;H ) =

∫
E
‖Fp(x)‖2H dπ(x)

≤
∫∫

E×E
‖ϕ(y)‖2H p(x, dy)dπ(x) = E[‖ϕ(Y )‖2H ] <∞

together with Assumption 3.

The approximation of Fp is a key concept in a wide variety of models for kernel-based

inference. If CXX is injective, Song et al. (2009) and Fukumizu et al. (2013) show that

under the assumption

E[f(Y ) | X = ·] = 〈f, Fp(·)〉H ∈H for all f ∈H , (4.18)

we have a closed form expression of Fp via

Fp(x) = CY XC
†
XXϕ(x) (4.19)

for all x ∈ E such that ϕ(x) ∈ range(CXX). Here, the (generally unbounded and

not globally defined) operator C†XX : range(CXX) + range(CXX)⊥ →H is the Moore–

Penrose pseudoinverse of CXX (see Appendix A.6). The assumption (4.18) is generally

not satisfied (see Klebanov et al. 2020 for a detailed investigation of arising problems).

Grünewälder et al. (2012a) and Park and Muandet (2020a) show that a Tikhonov–

Phillips regularized version of the estimate of (4.19) can be understood as an empirical

approximation of Fp with functions in G in a least squares regression context. However,

no approximation qualities of the CME in the L2-operator context are considered. We

extend this theory in the next section and connect it to the CME regression model later

on.
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4.5. Nonparametric operator approximation

4.5. Nonparametric operator approximation

We now investigate the nonparametric estimation of P by means of reproducing kernels.

We establish an approximation-theoretic viewpoint which connects our derivation to the

theory of inverse problems and supervised learning.

The general idea is to estimate the operator Piν : H → L2(π), instead of P . By our

previous considerations, Piν is Hilbert–Schmidt under Assumptions 1–3 (see Steinwart

and Christmann, 2008, Chapter 4.3), which already justifies the endeavor to approximate

Piν with operators of finite rank in the associated operator norm ‖·‖H→L2(π). Our main

problem is now given by the fact that we must restrict ourselves to a suitable hypothesis

space which we can impose by using reproducing kernels. Furthermore, using the operator

norm ‖·‖H→L2(π) as an objective function introduces a supremum over the unit ball in

H , which we can not estimate consistently. The next result solves these issues. It shows

that if we restrict ourselves to the class of Hilbert–Schmidt operators on H (which we

examined in Section 4.2.3) and interpret the image space as L2(π), we obtain a surrogate

problem in terms of an infinite-dimensional linear regression.

Note again that we may drop the inclusion operators iν and iπ from our notation for

simplicity as described in Remark 4.3.2.

Theorem 4.5.1 (Regression and conditional mean approximation). Under the Assump-

tions 1–3, we have for every operator A ∈ S2(H ) that

‖A− P‖2H→L2(π) ≤ E
[
‖Fp(X)−A∗ϕ(X)‖2H

]
= ‖Fp −A∗ϕ(·)‖2L2(E,FE ,π;H ) .

The given bound is sharp.

Proof. Let A ∈ S2(H ). We have

‖A− P‖2H→L2(π) = sup
‖f‖H =1

‖Af − Pf‖2L2(π)

= sup
‖f‖H =1

‖[Af ](·)− E[f(Y ) | X = ·]‖2L2(π)

= sup
‖f‖H =1

∥∥〈Af, ϕ(·)〉H − 〈f, Fp(·)〉H
∥∥2

L2(π)

= sup
‖f‖H =1

∥∥〈f, A∗ϕ(·)− Fp(·)〉H
∥∥2

L2(π)

= sup
‖f‖H =1

E
[
〈f, A∗ϕ(X)− Fp(X)〉2H

]
≤ sup
‖f‖H =1

E
[
‖f‖2H ‖A

∗ϕ(X)− Fp(X)‖2H
]

= E
[
‖A∗ϕ(X)− Fp(X)‖2H

]
= ‖A∗ϕ(·)− Fp‖2L2(E,FE ,π;H ) ,
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4. Nonparametric approximation of conditional expectation operators

where we use the reproducing property in H in the third equality and the Cauchy–

Schwarz inequality. It is clear that the above bound is sharp by considering the case that

we have P-a.e. A∗ϕ(X)− Fp(X) = h for some constant h ∈H . In this case the above

bound is attained when we choose f = h/ ‖h‖H in the supremum. �

We note that this result can also be interpreted as an improvement of a surrogate risk

bound derived by Grünewälder et al. (2012a, Section 3.1) and later on used by Park

and Muandet (2020a) to approximate the CME. We will elaborate on this fact in more

detail later on (see Section 4.5.2 and Remark 4.5.13 in particular). Our bound has

a significant impact from an approximation viewpoint, which we will highlight in our

following examination.

Theorem 4.5.2 (Approximation by Hilbert–Schmidt operators). Let Assumptions 1–5

be satisfied. Then for every δ > 0, there exists a Hilbert–Schmidt operator A : H →H ,

such that

‖A− P‖H→L2(π) < δ. (4.20)

Proof. By Corollary 4.2.5, every operator A∗ ∈ S2(H ) corresponds to a function F ∈ G

via F (x) = A∗ϕ(x) for all x ∈ E and vice versa. The space G is densely embedded into

L2(E,FE , π; H ) by Remark 4.2.7(4). For every δ > 0 we therefore have an operator

A∗ ∈ S2(H ) such that the bound ‖A∗ϕ(·)− Fp‖2L2(E,FE ,π;H ) = ‖F − Fp‖2L2(E,FE ,π;H ) <

δ holds. Together with the bound obtained in Theorem 4.5.1, this proves the assertion. �

L2(ν) L2(π)

H H

P

iν

A ∈ S2(H )

iπA

Piν
iπ

Figure 4.2.: Nonparametric approximation of P over functions in H by a Hilbert–Schmidt

operator A ∈ S2(H ). Theorem 4.5.2 shows that Piν ≈ iπA to arbitrary

accuracy in the associated operator norm. The operator A is approximated

by finite-rank operators on H in Corollary 4.5.4.

Remark 4.5.3. Some remarks related to Theorem 4.5.2 are in order.

1. We do not require P : L2(ν)→ L2(π) to be a Hilbert–Schmidt operator or compact

in order for the above statement to hold. Our result is not a contradiction to the

known fact that operator norm limits of Hilbert–Schmidt operators are compact.

The reason for that is that the compactness property is given with respect to the
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4.5. Nonparametric operator approximation

norm ‖·‖H on the domain, which is stronger than the norm ‖·‖L2(ν). Hence, the

continuous extension to A : L2(ν)→H via the known construction for bounded

operators (Weidmann, 1980, Theorem 4.5) is generally not compact. This can

equivalently be seen by the fact that iν does generally not admit a globally defined

bounded inverse. We visualize Theorem 4.5.2 in Figure 4.2.

2. The assumptions on H are not restrictive, as they are well examined in statistical

learning theory and often satisfied for particular RKHSs used in practice. It is

actually sufficient to only require that H is dense in L2(ρ) for any probability

measure ρ on (E,FE), as this implies denseness in both L2(π) and L2(ν).

3. We will later also investigate under which requirements there exists a Hilbert–

Schmidt operator A : H →H such that ‖A− P‖H→L2(π) = 0 (see Section 4.5.2).

We conclude that we can now approximate P with operators on H of finite rank.

Corollary 4.5.4. Let Assumptions 1-5 be satisfied. Then there exists a sequence of

finite-rank operators (An)n∈N from H to H such that ‖An − P‖H→L2(π) → 0 as n→∞.

Proof. Let δ > 0. By the fact that the finite-rank operators on H are dense in S2(H )

and Theorem 4.5.1, we can choose A ∈ S2(H ) as well as a finite-rank operator An on

H such that

‖An − P‖H→L2(π) ≤ ‖A− P‖H→L2(π) + ‖iπ‖ ‖An −A‖H→H

≤ ‖A− P‖H→L2(π) + ‖iπ‖ ‖An −A‖S2(H ) <
δ

2
+
δ

2
.

�

As we will prove, such a sequence (An)n∈N can be computed from data almost surely.

4.5.1. Measure-theoretic implications of the approximation of P

When H is characteristic, P : H → L2(π) uniquely determines the conditional distribu-

tion p(x, ·) for π-a.e. x ∈ E (that is, up to a choice of a regular version of the underlying

conditional expectation). This underlines that the conditional expectation operator P

interpreted as an operator with the domain H instead of L2(ν) still captures sufficient

information about the underlying joint distribution of X and Y . More generally, an

approximation of P naturally yields a weighted approximation of the associated Markov

kernel p in the MMD. This may provide a foundation for the adaptation of MMD-based

hypothesis tests for Markov kernels.
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4. Nonparametric approximation of conditional expectation operators

Theorem 4.5.5 (Equivalence to approximation in MMD). Let Assumptions 1–3 be

satisfied. Let P, P ′ : H → L2(π) be two well-defined bounded conditional expectation

operators associated with the Markov kernels p, p′ : E ×FE → R. Then we have∥∥P − P ′∥∥2

H→L2(π)
=

∫
E
dk(p(x, ·), p′(x, ·))2 dπ(x). (4.21)

Proof. We have∥∥P − P ′∥∥2

H→L2(π)
= sup

f∈H
‖f‖H =1

∥∥Pf − P ′f∥∥2

L2(π)

= sup
f∈H
‖f‖H =1

∥∥∥∥∫ f(y) p(·, dy)−
∫
f(y) p′(·,dy)

∥∥∥∥2

L2(π)

= sup
f∈H
‖f‖H =1

∥∥∥∥〈f, ∫
E
ϕ(y) p(·,dy)−

∫
E
ϕ(y) p′(·,dy)

〉
H

∥∥∥∥2

L2(π)

=

∫
E

∥∥µp(x,·) − µp′(x,·)∥∥2

H
dπ(x)

=

∫
E
dk(p(x, ·), p′(x, ·))2 dπ(x),

where we use the reproducing property in H in the third equality. �

Under more restrictive assumptions, the low-dimensional approximation of the adjoint of

P by means of the MMD has been proposed in the context of random dynamical systems

with a different estimation scheme (Tian and Wu, 2020).

Remark 4.5.6 (Assumptions of Theorem 4.5.5). For simplicity, we do not explicitly

assume in Theorem 4.5.5 that the underlying random variables associated with P and P ′

are distributed with respect to the marginals π and ν. To show the above statement,

it is sufficient that both operators are well-defined and bounded when the domain

and image space are chosen to be H and L2(π). The proof of Theorem 4.5.5 shows

that ‖P − P ′‖2H→L2(π) can equivalently be interpreted as the squared L2(E,FE , π; H )

distance between the two conditional mean embeddings Fp(x) =
∫
E ϕ(y) p(x,dy) and

F ′p(x) =
∫
E ϕ(y) p′(x,dy).

Remark 4.5.7 (Approximation of MMD in Lq-norm). Whenever the conditional expec-

tation operators P, P ′ are well-defined and bounded operators from H to Lq(π) for

1 ≤ q ≤ ∞, we can analogously obtain versions of (4.21) for the respective Lq norm. In

particular, in this case we have∥∥P − P ′∥∥q
H→Lq(π)

=

∫
E
dk(p(x, ·), p′(x, ·))q dπ(x). (4.22)
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4.5. Nonparametric operator approximation

When H is characteristic, we immediately obtain the following result. It shows that

conditional expectation operators on H determine the conditional distribution of the

associated random variables uniquely up to a choice of a regular version.

Corollary 4.5.8. Let Assumptions 1–3 be satisfied and H be characteristic. With the

notation of Theorem 4.5.5, we have ‖P − P ′‖H→L2(π) = 0 if and only if p(x, ·) = p′(x, ·)
for π-a.e. x ∈ E.

Moreover, Corollary 4.5.8 implies that the joint distributions for the class of pairs

of random variables X,Y with a fixed marginal X ∼ π are uniquely determined by

P : H → L2(π).

Corollary 4.5.9. Let X,X ′, Y, Y ′ be random variables defined on (Ω,F ,P) taking values

in (E,FE) such that X ∼ π and X ′ ∼ π and Assumptions 1–3 are satisfied for both pairs

X,Y and X ′, Y ′. Let H be characteristic and P, P ′ : H → L2(π) be bounded conditional

expectation operators given by Pf = E[f(Y ) | X = ·] and P ′f = E[f(Y ′) | X ′ = ·] defined

by some Markov kernels p and p′ respectively. Then we have ‖P − P ′‖H→L2(π) = 0 if

and only if L(X,Y ) = L(X ′, Y ′).

Proof. Let ‖P − P ′‖H→L2(π) = 0. For any two events A,B ∈ FE , we perform the

disintegration

P[X ∈ A, Y ∈ B] =

∫
A
p(x,B) dπ(x) (4.23)

and analogously for the pair X ′, Y ′. We apply Corollary 4.5.8, leading to the π-a.e.

equivalence p(·,B) = p′(·,B). This gives P[X ∈ A, Y ∈ B] = P[X ′ ∈ A, Y ′ ∈ B]. The

converse implication follows analogously. �

4.5.2. Least squares regression and connection to the CME

We now describe the theoretical foundation for the construction of an empirical estimate

of P based on Theorem 4.5.1. In the process, we will see that our concept is closely

related to the CME.

By the operator reproducing property from Corollary 4.2.5 we may rewrite the vRKHS

least squares regression problem

arg min
F∈G

R(F ) with R(F ) := E[‖ϕ(Y )− F (X)‖2H ] (4.24)

equivalently as

arg min
A∗∈S2(H )

E[‖ϕ(Y )−A∗ϕ(X)‖2H ]. (4.25)
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4. Nonparametric approximation of conditional expectation operators

As is well-known in statistical learning theory (see for example Cucker and Smale, 2002,

Proposition 1), for all F ∈ L2(E,F , π; H ), the risk R allows for the decomposition

R(F ) = ‖Fp − F‖2L2(E,F ,π;H ) +R(Fp), (4.26)

where R(Fp) represents the irreducible error term (see Theorem A.3.1 for a proof in the

infinite-dimensional case). This reduces the regression problem (4.24) and equivalently

problem (4.25) to an L2-approximation of the conditional mean embedding Fp. In

this context, Fp is often called regression function. Therefore, the so-called excess risk

R(F )−R(Fp) = ‖Fp − F‖2L2(E,F ,π;H ) of some estimate F ∈ G is typically investigated

in nonparametric statistics.

The above formalism allows us to estimate the conditional mean operator P based on

our previous results. By Theorem 4.5.1, we have

‖A− P‖2H→L2(π) ≤ ‖Fp −A
∗ϕ(·)‖2L2(E,FE ,π;H ) (4.27)

for all A∗ ∈ S2(H ). We can now perform the vRKHS regression (4.25) and obtain an

approximation of P in the norm ‖·‖2H→L2(π) in terms of A ∈ S2(H ), which we implicitly

interpret as an operator from H to L2(π). Theorem 4.5.2 and Corollary 4.5.4 show that

this is possible up to an arbitrary degree of accuracy.

Along the lines of the known work on least squares regression of the form (4.24) or

equivalently (4.25), we can distinguish the following two general cases (Szabó et al.,

2016):

1. The well-specified case, i.e., there exists a regular version of the conditional distri-

bution of Y given X such that Fp(·) = E[ϕ(Y ) | X = ·] ∈ G . For the well-specified

case, we below obtain the known properties of the conditional mean embedding

which were derived from the linear-algebraic perspective (Song et al., 2009; Klebanov

et al., 2020, 2021).

2. The misspecified case, i.e., Fp ∈ L2(π) \ G . This is clearly the more interesting

setting, as the well-specified case does typically not occur in practice. From the

operator-theoretic perspective, this case has not been investigated yet.

Our previous results allow to reformulate the well-specified case and establish a connection

to the CME.

Corollary 4.5.10 (Well-specified case). Let Assumption 1–3 be satisfied. Consider a

fixed regular version of the distribution of Y conditioned on X given by some Markov

kernel p : E ×FE → R. The following statements are equivalent:

(i) We have Fp(·) = E[ϕ(Y ) | X = ·] ∈ G .
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4.5. Nonparametric operator approximation

(ii) There exists an operator A ∈ S2(H ) such that

[Af ](x) = 〈Af, ϕ(x)〉H = 〈f, A∗ϕ(x)〉H = E[f(Y ) | X = x] (4.28)

for all x ∈ E and f ∈H .

Both (i) and (ii) imply (iii):

(iii) There exists an operator A ∈ S2(H ) which satisfies ‖A− P‖H→L2(π) = 0.

Proof. We show that (i) is equal to (ii). Let Fp(·) = E[ϕ(Y ) | X = ·] ∈ G . Let

A∗ ∈ S2(H ) be the unique operator such that A∗ϕ(·) = Fp(·) by Corollary 4.2.5. By

the reproducing property in H , we can verify (4.28) immediately. For the converse

implication, let (4.28) be satisfied for some operator A∗ ∈ S2(H ). Then by Corollary 4.2.5,

we have the function F ∈ G with F (·) = A∗ϕ(·) such that

〈f, F (x)〉H = E[f(Y ) | X = x] = E[〈f, ϕ(Y )〉H | X = x] (4.29)

for all f ∈H . The right-hand side of 4.29 is equal to 〈f, E[ϕ(Y )H | X = x]〉H for all

x ∈ E and f ∈ H , we therefore have F (·) = E[ϕ(Y ) | X = ·] = Fp(·) ∈ G as claimed.

The last statement follows from Theorem 4.5.1 by inserting A∗ into the right-hand side

of the bound, giving ‖A− P‖H→L2(π) = 0. �

Remark 4.5.11 (Connection to CME and well-specified case). By comparing (4.28) to

the expectation reproducing property (CME), we see that in the well-specified case, the

operator A∗ satisfying (4.28) is exactly the operator which was introduced by Song et al.

(2009) as the original conditional mean embedding. That is, we obtain the approximation

of P from H to L2(π) as the adjoint of the CME. A similar connection was established

by Klus et al. (2020) under the restrictive assumptions of Song et al. (2009) in the context

of Markov transition operators.

Remark 4.5.12 (Well-specified case closed form solution). Klebanov et al. (2021, Theorem

5.8) prove in a slightly different context of tensor product spaces, without explicitly

using vRKHSs, that in the well-specified case the operator A∗ satisfying (4.28) can be

expressed in terms of the covariance operators as A∗ = (C†XXCXY )∗. In fact, this proves

that (C†XXCXY )∗ is Hilbert–Schmidt in this case.

Remark 4.5.13 (Surrogate risk bound for the CME). In the well-specified case, Park and

Muandet (2020a) investigate the estimation of the CME in terms of (4.24). Their results

build upon the surrogate risk bound

‖A− P‖2H→L2(π) ≤ R(A∗ϕ(·)),

originally formulated by Grünewälder et al. (2012a). Our Theorem 4.5.1 improves this

bound and eliminates the need for additional approximation results (see for example
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4. Nonparametric approximation of conditional expectation operators

Grünewälder et al., 2012a, Theorem 3.2) for the analysis of the misspecified case. By

(4.26), our bound from Theorem 4.5.1 equals to

‖A− P‖2H→L2(π) ≤ R(A∗ϕ(·))−R(Fp),

which allows the approximation up to an arbitrary accuracy and removes the excess term

R(Fp).

We have seen that in the well-specified case, our results align with prior work on the

CME. In the practically more relevant misspecified case however, the bound given by

Theorem 4.5.1 significantly simplifies the theory of approximating the CME.

4.6. Regularization and empirical estimation

We now connect our previous results to the theory of supervised learning and derive

empirical estimators of P . To this end, we will briefly review how the regression problem

(4.24) can be formulated in terms of an inverse problem. The decomposition of R in (4.26)

allows to obtain a solution by approximating Fp with functions in G . This framework

allows to derive the well-known formalism for supervised learning and regularization

theory which will yield estimates of P . We refer to the seminal work for least squares

regression with vRKHSs (De Vito and Caponnetto, 2005; Caponnetto and De Vito, 2007)

for more details. This section contains the reformulation of our setting in terms of known

results, making the theory of vRKHS regression applicable for the estimation of P . We

use this framework to derive new results in Section 4.6.3.

4.6.1. Inverse problem

In the misspecified case, it is not necessarily clear that the minimizer of R over G

exists. The analytical nature of this question can be naturally expressed in terms of an

inverse problem. For the necessary background on inverse problems in Hilbert spaces

and regularization theory, we refer to Engl et al. (1996) and Appendix A.6. We will

formulate (4.24) a bit more verbosely in terms of the inclusion Iπ : H → L2(E,FE , π; H ),

so that the connection to the inverse problem becomes clear.

If F ∈ G , we have by (4.26) that

R(F ) = ‖IπF − Fp‖2L2(E,FE ,π;H ) +R(Fp).

Finding FG := arg minF∈G R(F ) is therefore equivalent to finding FG ∈ G such that

‖IπF − Fp‖2L2(E,FE ,π;H )
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4.6. Regularization and empirical estimation

is minimal. As is well-known from the theory of inverse problems, this is equivalent to

finding the optimal solution FG of the potentially ill-posed inverse problem

IπF = Fp, F ∈ G . (4.30)

The inverse problem (4.30) is again equivalent to finding the solution of the so-called

normal equation (Engl et al., 1996, Theorem 2.6) given by

(I∗πIπ)F = TF = I∗πFp, F ∈ G .

In particular, we obtain the following solution.

Theorem 4.6.1 (Regression solution). Let Assumptions 1–3 be satisfied. The optimal

solution

FG = arg min
F∈G

R(F ) = arg min
F∈G

‖IπF − Fp‖2L2(E,FE ,π;H )

exists if and only if I∗πFp ∈ range(T ) + range(T )⊥ =: dom(T †),1 where the operator

T † : range(T ) + range(T )⊥ → G is the pseudoinverse of T . In this case, FG is given by

the solution to the normal equation

TF = I∗πFp, F ∈ G (4.31)

by FG = T †I∗πFp.

Remark 4.6.2 (Limitations of existing literature). Theorem 4.6.1 and the resulting normal

equation (4.31) show that our surrogate problem is essentially a (potentially ill-posed)

inverse problem with the following technical features:

(i) both the forward operator T and the right-hand side I∗πFp are unknown and must

be discretized by sampling from L(Y,X) and

(ii) the forward operator T is in general not compact but only bounded, as Example 4.3.3

shows.

However, results on uniform upper and lower bounds for convergence rates in a vector-

valued learning scenario are typically investigated in the case where the forward operator T

of the problem (4.31) is trace class (Caponnetto and De Vito, 2007; Rastogi and Sampath,

2017; Rastogi et al., 2020, and references therein). In particular, the aforementioned

authors assume KxK
∗
x ∈ S1(H ) for all x ∈ E and use the effective dimension

N (λ) := Tr
(
(T + λIdG )−1T

)
for λ > 0

as the central tool in order to analyze the convergence of kernel-based regression problems

(the reader may also refer to Blanchard and Mücke 2018; Lu et al. 2020; Lin et al. 2020

1An equivalent condition is ΠFp ∈ range(Iπ), where Π: L2(E,FE , π; H ) → L2(E,FE , π; H ) is the

orthogonal projection onto the closure of range(Iπ).
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for the scalar case). Example 4.3.3 shows that N (λ) is generally not finite in our setting.

Moreover, most results on statistical inverse problems with noncompact forward operators

seem to be derived under the assumption that the forward operator is known (see for

example Cavalier, 2006; Bissantz et al., 2007) and do therefore not directly transfer to

our scenario. Adapting these results in our setting would need a thorough perturbation

analysis of the continuous spectrum of T . In addition, discretizing G in the noncompact

case may introduce additional difficulties, see Remark 4.6.3.

To the best of our knowledge, Park and Muandet (2020a,b) are the only authors who

address the estimation under assumptions which are satisfied in our case for Tikhonov

regularization in the well-specified case (see Section 4.6.3). As these problems require a

foundational new approach in the context of supervised learning problems, they are out

of the scope of this work.

Remark 4.6.3 (Discretization of T ). Note that due to the noncompactness of G , a bit of

caution is required when discussing its discretization. In particular, a naive estimate of

T would be the Monte Carlo sum

Tn :=
1

n

n∑
i=1

KXiK
∗
Xi

for iid Xi ∼ π and one would think that some strong law of large numbers and concen-

tration results in Banach spaces would lead to the desired convergence results Tn → T in

operator norm. Note that the Banach space of bounded operators on G is not separable,

even if G itself is separable.2 This fact may lead to measurability issues of the B(G )-valued

object

ξ := KXK
∗
X .

Because of this fact, we defined the operator T in (4.13) pointwise as

TF =

∫
E
KxK

∗
xF dπ(x), F ∈ G

instead of an integral over the object ξ as defined above – which would need to converge in

operator norm. As previously mentioned, available literature on vector-valued regression

imposes the assumption KxK
∗
x ∈ S1(H ), which is not satisfied in our scenario. In

addition, versions of the strong law of large numbers in Banach spaces typically require

additional properties (Ledoux and Talagrand, 1991, Section 7). For simplicity, we will

therefore consider the strong operator topology formulation

TF =

∫
E
KxK

∗
xF dπ(x) = E[ξF ] ∈ G (4.32)

for every F ∈ G instead of the norm topology on B(G ).

2This can be proven with the fact that the sequence space `∞ – which is not separable – can be

isometrically embedded into B(G ).
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4.6.2. Sampling operators and empirical estimation

For simplicity, we assume that the optimal solution FG = arg minG R(F ) exists, i.e., we

have I∗πFp ∈ dom(T †). We wish to compute a solution of the normal equation

TF = I∗πFp, F ∈ G (4.33)

in terms of FG = T †I∗πFp based on an empirical realization of (Xt)t∈Z.

In order to do this, we must discretize T as well as the right-hand side I∗πFp. We now

face the problem that (4.33) may be ill-posed in the sense that the solution does not

continously depend on I∗πFp (and of course on T as well). To still be able to perform an

estimation, a regularization strategy (Engl et al., 1996) is needed to ensure well-posedness

in practice.

Let {gλ(T ) : G → G |λ ∈ (0,∞]} be a regularization strategy.3 For a fixed regularization

parameter λ > 0, we define the regularized solution

Fλ := gλ(T )I∗πFp ∈ G . (4.34)

We now discretize the regularized problem (4.34) based on the iid data

z := ((X1, Y1), . . . , (Xn, Yn))

with (Xi, Yi) ∼ L(X,Y ). We generalize the sampling operator approach (Smale and

Zhou, 2005) from the scalar setting to the vector-valued scenario and derive an empirical

estimate of Fλ. Given the data above, we define the sampling operator Sx : G → H n

given by SxF := (F (Xt))
n
t=1 = (K∗XtF )nt=1. Here, we consider H n as a Hilbert space

equipped with the inner product

〈f , h〉H n :=
1

n

n∑
i=1

〈fi, hi〉H

for f = (f1, . . . , fn) ∈H n and h = (h1, . . . , hn) ∈H n. It is easy to see that the adjoint

of Sx is the operator S∗x : H n → G given by

S∗xh =
1

n

n∑
i=1

KXihi

for all h ∈H n and the operator Tx := S∗xSx : G → G satisfies

TxF = S∗xSxF =
1

n

n∑
i=1

KXiK
∗
XiF

3We require {gλ(T ) : G → G |λ ∈ (0,∞]} to be a parametrized family of globally defined bounded

operators satisfying gλ(T )F → T †F for all F ∈ dom(T †) as λ→ 0, see Appendix A.6.

57



4. Nonparametric approximation of conditional expectation operators

for all F ∈ G . Based on these considerations, we will use S∗x and Tx as empirical

estimates for I∗π and T respectively based on the data x. We define the target data vector

Υ := (ϕ(Y1), . . . , ϕ(Yn)) ∈H n and obtain the empirical regularized solution

Fλ,z := gλ(Tx)S∗xΥ ∈ G (4.35)

as the discretized analogue of the analytical regularized solution (4.34).

Via the identification of Fλ and Fλ,z with operators through the isomorphism Θ in

Corollary 4.2.5, we obtain the analytical regularized operator solution

Aλ := [Θ−1(Fλ)]∗ ∈ S2(H )

as well as the empirical regularized operator solution

Aλ,z := [Θ−1(Fλ,z)]∗ ∈ S2(H ),

i.e., Fλ(x) = Aλϕ(x) and Fλ,z(x) = Aλ,zϕ(x) for all x ∈ E.

4.6.3. Tikhonov-Phillips regularization

For the remainder of this chapter, we will restrict ourselves to the Tikhonov–Phillips

regularization approach (Phillips, 1962; Tikhonov and Arsenin, 1977) to solve the (poten-

tially ill-posed) inverse problem given by Theorem 4.6.1 in order to obtain the optimal

solution FG in G of the surrogate problem (assuming it exists).

General framework

Tikhonov–Phillips regularization is formally obtained by choosing the regularization

strategy gλ(T ) := (T + λIdG )−1 ∈ B(G ). We replace the risk R with the regularized

risk

Rλ(F ) := R(F ) + λ ‖F‖2G (4.36)

with a regularization parameter λ > 0. The unique minimizer of (4.36) exists for all

λ and is exactly given by the regularized solution Fλ = (T + λIdG )−1I∗πFp, which is a

standard result in inverse problems (Engl et al., 1996, Theorem 5.1). Based on the data

z, we define the regularized empirical risk

Rλ,z(F ) :=
1

n

n∑
i=1

‖ϕ(Yi)− F (Xi)‖2H + λ ‖F‖2G (4.37)

for all F ∈ G . We can reformulate (4.37) in terms of the sampling operator equivalently

as Rλ,z(F ) = ‖SxF −Υ‖2H n + λ ‖F‖2G for all F ∈ G . Therefore, Rλ,z admits a unique

minimizer in G given by the regularized empirical solution Fλ,z = (Tx + λIdG )−1S∗xΥ,

which we will consider from now on as the estimate of Fλ.
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Uniform convergence rates

As mentioned previously in Remark 4.6.2, uniform convergence rates of Fλ,z can only be

achieved under additional smoothness assumptions on Fp. Park and Muandet (2020a,b)

investigate Tikhonov–Phillips regularization in the well specified case Fp ∈ G and show

R(Fλ,z)−R(Fp) ∈ Op(n−1/4) for the regularization scheme λ(n) ∈ O(n−1/4) as n→∞
whenever the kernel k is bounded and the underlying data is independent.

Closed form Tikhonov–Phillips operator estimates

We show that for the Tikhonov–Phillips estimate, the adjoint of the regularized analytical

operator solution, A∗λ = Θ−1(Fλ), which satisfies

A∗λ = arg min
A∈S2(H )

E[‖ϕ(Y )−A∗ϕ(X)‖2H ] + λ ‖A‖2S2(H ) ,

admits a closed form representation in terms of covariance operators associated with

the kernel k. In fact, we prove that A∗λ has the known form which Song et al. (2009)

originally identified as the conditional mean embedding under the previously mentioned

restrictive assumptions.

While this result does not come as a surprise at this point, we emphasize that this has

not been proven before. Although Grünewälder et al. (2012a) establish a connection

between the empirical regularized solution Fλ,z and a version of the empirical conditional

mean embedding with a rescaled regularization parameter, a population analogue was

never derived. A simple asymptotic argument via convergence in the infinite-data limit is

hampered by the rescaling of the regularization parameter in this derivation. Interestingly,

the population expression of Aλ which we derive here is sometimes taken for granted in

the literature (see for example Fukumizu et al. 2013), even if it was never proven in the

original work.

Our analysis offers a view on the beautiful duality between the generalized covariance

operator T acting on G , composition operators acting on S2(H ) and the kernel covariance

operator CXX .

Remark 4.6.4. While our analysis is purely aimed at a theoretical understanding at this

point, we expect that the following results will have a practical benefit, as they allow an

asymptotic discussion of the spectral properties of the given estimates.

For an operator B ∈ B(H ), define the right-composition operator

ΞB : S2(H )→ S2(H ), (4.38)

A 7→ AB. (4.39)
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It is easy to see that ΞB is a well-defined bounded operator since S2(H ) is an ideal in

B(H ) and we have ‖ΞBA‖S2(H ) ≤ ‖A‖S2(H ) ‖B‖. Furthermore, if B is invertible then

ΞB is invertible and we have ΞB−1 = Ξ−1
B .

The following result describes the connection between G and CXX in terms of the

composition operator ΞCXX . In fact, it shows that T : G → G describes exactly the

action of ΞCXX : S2(H )→ S2(H ) under the isomorphism Θ: S2(H )→ G .

G S2(H )

G S2(H )

T

Θ−1

ΞCXX

Θ−1

G S2(H )

G S2(H )

T + λIdG

Θ−1

ΞCXX+λIdH

Θ−1

Figure 4.3.: Correspondence of T and ΞCXX .

Theorem 4.6.5. Let F ∈ G and A := Θ−1(F ) ∈ S2(H ). Then the diagrams in Figure

4.3 are both commutative diagrams, i.e., we have

Θ−1(TF ) = ACXX

as well as

Θ−1[(T + λIdG )F ] = A(CXX + λIdH ).

Proof. Let F ∈ G and A = Θ−1(F ) ∈ S2(H ). We have F (·) = Aϕ(·) by Corollary 4.2.5.

From the definition of G , we get

TF =

∫
E
KxF (x)dπ(x) =

∫
E
Kx[Aϕ(x)]dπ(x)

=

∫
E
A[k(·, x)ϕ(x)]dπ(x) = A

∫
E
k(·, x)ϕ(x)dπ(x)

= A

∫
E

[ϕ(x)⊗ ϕ(x)]ϕ(·)dπ(x) = ACXXϕ(·),

where we use the fact that for every fixed x′ ∈ E, the map x 7→ k(x′, x)ϕ(x) is an element

of L1(E,FE , π; H ) due to Assumption 3 and Hölder’s inequality. Because of this, the

integration and the operator A commute (Diestel and Uhl, 1977, Chapter II.2, Theorem

6). The operator ACXX is Hilbert–Schmidt and TF = ACXXϕ(·) confirms the operator

reproducing property under Θ−1 from Corollary 4.2.5, hence we have Θ−1(TF ) = ACXX .

Using this fact, we obtain

(T + λIdG )F = ACXXϕ(·) + λAϕ(·) = A(CXX + λIdH )ϕ(·),

confirming the same relation for the second assertion of the theorem. �
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Theorem 4.6.5 allows us to easily derive the expression for the Tikhonov–Phillips estimate

Fλ under Θ−1 in terms of its corresponding operator in S2(H ) in terms of CXX and

CY X .

Corollary 4.6.6 (Closed form analytical operator solution). We have

Θ−1(Fλ) = A∗λ = CY X(CXX + λIdH )−1,

i.e., the analytical regularized operator solution can be represented as

Θ−1(Fλ)∗ = Aλ = (CXX + λIdH )−1CXY . (4.40)

Proof. By definition, we have Fλ = gλ(T )I∗πFp = (T + λIdG )−1I∗πFp. We can rearrange

I∗πFp =

∫
E
K(·, x)Fp(x)dπ(x) =

∫
E
k(·, x)

∫
E
ϕ(y)p(x,dy)dπ(x)

=

∫∫
E2

ϕ(y) 〈ϕ(x), ϕ(·)〉H p(x,dy)dπ(x)

=

[∫
E
ϕ(Y )⊗ ϕ(X)dP

]
ϕ(·) = CY Xϕ(·).

We have thus shown that CY X = Θ−1(I∗πFp) by the operator reproducing property from

Corollary 4.2.5. Theorem 4.6.5 implies that the operator (T + λIdG )−1 acting on G may

be represented under Θ−1 as by the right composition operator Ξ(CXX+λIdH )−1 acting

on S2(H ), leading to

Θ−1(Fλ) = Ξ(CXX+λIdH )−1CY X = CY X(CXX + λIdH )−1

as claimed. �

Analogously we obtain a closed form representation for the empirical regularized operator

solution Aλ,z, in terms of the empirical covariance operators

ĈXX :=
1

n

n∑
i=1

ϕ(Xi)⊗ ϕ(Xi) and ĈXY :=
1

n

n∑
i=1

ϕ(Yi)⊗ ϕ(Xi).

Theorem 4.6.7 (Closed form empirical operator solution). We have

Θ−1(Fλ,z) = A∗λ,z = ĈY X(ĈXX + λIdH )−1,

i.e., the empirical regularized operator solution can be represented as

Θ−1(Fλ,z)∗ = Aλ,z = (ĈXX + λIdH )−1ĈXY . (4.41)
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4. Nonparametric approximation of conditional expectation operators

Theorem 4.6.7 can be proven by simply replacing T with the sample-based operator Tx
in the proof of Theorem 4.6.5, leading to Θ−1[(Tx + λIdG )F ] = Θ−1(F )(ĈXX + λIdH )

for all F ∈ G . Furthermore replacing I∗π with S∗x in the proof of Corollary 4.6.6

yields Θ−1(S∗xΥ) = ĈY X , thereby confirming the claim when applying both results to

Aλ,z = Θ−1(Fλ,z) = Θ−1[(Tx + λIdG )−1S∗xΥ].

4.7. Practical applications

The derivation of the closed form for the regularized operator solution from the previous

section allows to connect our theory to known spectral analysis techniques used in practice.

We briefly sketch the connection to these approaches here and refer the reader to the

mentioned literature for more details.

Klus et al. (2020) and Mollenhauer et al. (2020b) show that the eigenfunctions and

singular functions of the regularized empirical estimate

Aλ,z = (ĈXX + λIdH )−1ĈXY (4.42)

can be computed by solving a matrix eigenproblem. In the case that P is the Markov

transition operator as described in Section 3.5, it is furthermore shown by Klus et al. (2020)

that this empirical eigenproblem coincides exactly with the regularized eigenproblem

given by the well-known kernel-based version of EDMD (Williams et al., 2015b). Hence,

the asymptotic viewpoint derived in our analysis ultimately proves that kernel EDMD

essentially approximates the operator

P : H → L2(π)

in the infinite-sample limit with a suitable regularization scheme, thereby providing a

statistical model for kernel EDMD. A theory of the spectral convergence of kernel EDMD

can now be developed by investigating the spectral perturbation under the convergence

‖Aλ,z − P‖H→L2(π) → 0 for an admissible regularization scheme λ(n) and n→∞ with

suitable assumptions of the underlying process. In particular, our approximation results

from Section 4.5 may be used to show that kernel EDMD may overcome the weak spectral

convergence of standard EDMD which was proven by Korda and Mezić (2018). However,

we note that this requires the eigenfunction of interest is contained in the RKHS H .

The details of this theory are not in the scope of this work and are subject to further

research.

Additionally, the singular value decomposition of the estimate of P given by (4.42)

coincides with the empirical spectral problem of kernel CCA, which is shown by Klus

et al. (2020). As an application, the authors identify coherent sets of random dynamical

systems by approximating the singular functions of the corresponding Markov transition

operator.
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4.8. Related work

This chapter is inspired by the recent development in RKHS-based statistical inference.

Although our investigation is targeted at creating a more general mathematical perspective

from an approximation viewpoint, we make use of the theoretical tools which were

originally developed in statistical learning theory. We therefore highlight the most

important work which impacted our analysis.

Over the last years, the theory of RKHS-based inference and the kernel mean embedding

spawned a vast variety of methods in various statistical disciplines. In this context, a

nonparametric approximation of the conditional mean operation

(x, f) 7→ E[f(Y ) | X = x]

for functions f in some RKHS H over E was developed by Song et al. (2009) as a

purely linear-algebraic concept under the name conditional mean embedding. This

idea has since been used as the theoretical backbone for methods in Bayesian analysis,

graphical models, time series analysis, spectral analysis and dimensionality reduction,

filtering, reinforcement learning and many more (see for example Muandet et al. 2017 for

a non-exhaustive selection of applications). Klebanov et al. (2021) recently noted that

that the CME can be interpreted in the framework of best linear unbiased estimation

(BLUE) in Hilbert spaces.

Although the CME as described by Song et al. (2009) performs successfully in applications,

the mathematical assumptions imposed in the original work are typically violated; this

has been thoroughly examined by Klebanov et al. (2020). The foundational problems

in the theory of the CME led to an investigation of the approximation of RKHS-

valued conditional Bochner expectations from a regression perspective. In particular,

Grünewälder et al. (2012a) show that the empirical Tikhonov–Phillips solution of a

regularized least squares regression problem in a vector-valued reproducing kernel Hilbert

space coincides with the empirical estimate derived by Song et al. (2009). Additionally,

Grünewälder et al. (2013) propose to use the same estimate for the approximation of

linear operators in a very broad sense but do not offer an asymptotic perspective of this

idea.

Park and Muandet (2020a) extend the asymptotic regression theory of the CME in

the framework of least-squares regression in a vector-valued reproducing kernel Hilbert

space (vRKHS) and regularization theory (see for example Caponnetto and De Vito

2007). In this context, uniform convergence rates are proven under the assumption that

the true CME is contained in the hypothesis space. Klebanov et al. (2021) extend the

operator-theoretic interpretation of the CME. In particular, they prove existence of an

operator on an RKHS which expresses the conditional mean under the assumption that
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4. Nonparametric approximation of conditional expectation operators

the true conditional mean function is a member of a corresponding tensor product space.

In fact, our analysis shows that this assumption is equivalent to the assumption under

which Park and Muandet (2020a) derive convergence rates.

Comparison to this work

Concluding the overall picture of the aforementioned work: while the regression per-

spective of the CME (Grünewälder et al., 2012a; Park and Muandet, 2020a) allows to

consider asymptotic interpretations and prove convergence results, it has the fundamental

drawback that the algebraically interesting operator-theoretic perspective of P is not

present. Even more so, the estimation of spectral properties of P (for example in the

case of Markov transition operators) is impossible. Conversely, the operator-theoretic for-

mulation of the CME (Song et al., 2009; Klebanov et al., 2020, 2021) lacks an asymptotic

perspective and suffers from complex interdependencies of various assumptions (Klebanov

et al., 2020), severely impeding a theoretical mathematical analysis. Additionally, the

approximation viewpoint in the L2-operator context has not been investigated yet. We

show that this approximation admits a natural perspective in terms of the maximum

mean discrepancy between the underlying Markov kernels.

Regarded in the context of the CME, our results can be interpreted as the missing link

between the recent work of Klebanov et al. (2021) and Park and Muandet (2020a). In

particular, we provide an asymptotic approximation perspective in the operator-theoretic

context of conditional expectations. On our way, we moreover improve a surrogate risk

bound used by Grünewälder et al. (2012a) and Park and Muandet (2020a) which serves as

the theoretical foundation for the regression perspective of the CME. However, our results

are formulated in a more general perspective in terms of the numerical approximation of

linear operators and can certainly be regarded outside of the context of the previously

mentioned work on the CME.

4.9. Summary and outlook

In this chapter, we investigate the approximation-theoretic details of the kernel-based

discretization of P . When the domain of P is restricted to an RKHS, we show under

which assumptions P can be approximated arbitrarily well by Hilbert–Schmidt operators

acting on this RKHS. We connect our theory to the conditional mean embedding and

its estimation. In particular, we exploit an isomorphism between these Hilbert–Schmidt

operators and a vRKHS and prove that the kernel-based approximation of P is equivalent

to the prototypical problem of least squares regression with a vector-valued kernel. Solving

this problem with a Tikhonov–Phillips regularization scheme, we derive a closed form

solution for both the analytical and the empirical setting. We confirm the empirical
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solution to be connected to practical spectral decomposition problems which have been

derived independently under much stronger assumptions in the context of the conditional

mean embedding.

The results in this sections may be regarded as a first step in the direction of an asymptotic

theory of the nonparametric approximation of P and its connection to the conditional

mean embedding. However, they also leave us with a wide variety of open questions. We

highlight some of these questions below.

1. We show that classical methods to derive uniform convergence rates for vector-

valued kernel regression due to Caponnetto and De Vito (2007) do not apply in our

scenario, as the involved generalized covariance operator is not compact in typical

situations. This fact motivates a unified analysis of kernel-based least squares

regression with infinite-dimensional output spaces.

2. We only investigate the special case that the least squares regression is solved via

a Tikhonov–Phillips regularization scheme. However, several common alternative

regularization techniques such as a spectral cutoff or iterative schemes (i.e., different

versions of gradient descent) may be examined in this context.

3. The connection of the nonparametric approximation of P to the conditional mean

embedding and the maximum mean discrepancy may allow to derive hypothesis

tests based on P such as two-sample tests for Markov processes along the lines of

Gretton et al. (2012) and Sejdinovic et al. (2013).

4. For the specific applications which we investigate in the context of Markov transition

operators, it is of fundamental importance to understand the connections between

the spectral properties of the conditional expectation operator P : L2(ν)→ L2(π)

and the nonparametric model solution Piν : H → L2(π). It is clear that the

inclusion operator iν must be injective in order to uniquely reconstruct singular

functions of P (or eigenfunctions in the case ν = π) from the empirical approxima-

tion of Piν . Additional questions which address the existence of singular functions

of P in range(iν) ⊆ L2(ν) need to be discussed in a separate examination.
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stationary processes

This chapter contains passages taken from Mollenhauer et al. (2020a).

In the previous chapter, we have seen that a regularized least squares approximation

of the conditional expectation operator P over functions in an RKHS can be expressed

in terms of kernel (cross-)covariance operators. An empirical estimate of this approxi-

mation is naturally obtained by replacing the involved operators with their empirical

counterparts.

In a more general context, kernel covariance operators and kernel cross-covariance

operators serve as the theoretical foundation of several spectral analysis and component

decomposition techniques including kernel principal component analysis, kernel canonical

correlation analysis and kernel independent component analysis (Schölkopf et al., 1998;

Akaho, 2001; Bach and Jordan, 2002). Consistency results and the statistical analysis

of these methods can therefore be directly based on the convergence of empirical kernel

covariance operators (Blanchard et al., 2007; Fukumizu et al., 2007; Rosasco et al., 2010).

Moreover, the estimation of kernel covariance operators and their connection to Lp integral

operators are fundamental concepts in the formalization of statistical learning (Smale

and Zhou, 2007; Caponnetto and De Vito, 2007; Rosasco et al., 2010).

A kernel cross-covariance operator which describes the relation between two random

variables in a stochastic process is called kernel autocovariance operator. In this chap-

ter, we extend convergence results for empirical kernel covariance operators based on

independent data (see for example Rosasco et al., 2010) to the estimation of kernel

autocovariance operators from subsequent observations of a stationary stochastic process.

Our investigation is primarily motivated by the nonparametric approximation of the

Markov transition operator P of a stationary Markov process as discussed in the previous

chapter.

Our results transfer to a wide variety of statistical models for sequential data which rely

on the estimation of kernel autocovariance operators. Popular approaches include state

space models and filtering (Song et al., 2009; Fukumizu et al., 2013; Gebhardt et al.,

2019), transition models (Sun et al., 2019; Grünewälder et al., 2012b), hypothesis testing
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(Besserve et al., 2013; Chwialkowski and Gretton, 2014; Chwialkowski et al., 2014) and

reinforcement learning (van Hoof et al., 2015; Lever et al., 2016; van Hoof et al., 2017;

Stafford and Shawe-Taylor, 2018; Gebhardt et al., 2018). Although these techniques

perform well in practice, the theoretical details of the estimation of kernel autocovariance

operators from dependent data seem to be covered only sparsely in the literature.

We investigate the estimation of kernel autocovariance operators under the assumptions

of ergodicity and mixing which we already imposed in Section 3.6 in the context of

projection methods.

5.1. Overview

We revisit the real-valued RKHS which we introduced in the previous chapter and

formally introduce kernel autocovariance operators of a stationary stochastic process

in Section 5.2. In Section 5.3, we derive a strong law of large numbers for empirical

kernel autocovariance operators based on the ergodicity of the underlying process. We

investigate details of the asymptotic behaviour of the estimation error under mixing

assumptions in Section 5.4 and derive analogues of classical statistical results such as the

central limit theorem and the law of the iterated logarithm. Section 5.5 illustrates finite

sample error bounds for mixing processes which are refined for the special case of the

Gaussian kernel in Section 5.6. As an application, we show in Section 5.7 how our results

can be used to prove concistency of kernel PCA when the underlying data is non-iid.

Finally, we discuss related work in Section 5.8.

5.2. Kernel autocovariance operators

In this chapter, we consider a stationary stochastic process (Xt)t∈Z defined on the

probability space (Ω,F ,P) taking values in the standard Borel space (E,FE). As

introduced in Section 4.2.1, let H denote the real-valued RKHS induced by the psd

kernel k : E × E → R with corresponding canonical feature map ϕ : E →H .

We briefly recall the assumptions about the RKHS H which he have already discussed in

Section 4.2.4. We assume H to be separable (Assumption 1). Furthermore, the feature

map ϕ is required to satisfy measurability (Assumption 2) and the square integrability

condition ϕ(X0) ∈ L2(Ω,F ,P; H ) or equivalently E[k(X0, X0)] < ∞ (Assumption 3).

The remaining assumptions introduced in Section 4.2.4 will not be needed in this

chapter.

For some fixed time lag η ∈ N, we define the kernel autocovariance operator describing
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the connection between the snapshots Xt and Xt+η as

C(η) := CXηX0 = E[ϕ(Xη)⊗ ϕ(X0)] ∈ S1(H ).

Our goal is to empirically approximate C(η) in terms of the natural estimator

Cn(η) :=
1

n

n∑
t=1

ϕ(Xt+η)⊗ ϕ(Xt),

which requires the observation of n+η consecutive time steps of the process (Xt)t∈Z.

5.3. Strong law of large numbers

We now address the strong law of large numbers for the estimator Cn(η). We show that

for any fixed time lag η ∈ N, the kernel autocovariance operator C(η) can be estimated

almost surely from realizations of (Xt)t∈Z whenever the process is ergodic. This comes

as a consequence of the generalized version of Birkhoff’s ergodic theorem by Beck and

Schwartz (1957) which we introduced in Theorem 3.6.1.

Corollary 5.3.1 (Strong consistency). Let (Xt)t∈Z be a stationary and ergodic process

defined on (Ω,F ,P) with values in the standard Borel space (E,FE) . Then

lim
n→∞

Cn(η) = C(η),

where the convergence takes place P-a.e. with respect to ‖·‖S2(H ).

Proof. We recall the definition of ergodicity from Section 3.6.1 and the representation of

the process (Xt)t∈Z in terms of the left-shift operator T on the canonical probability space

Ω = EZ. The following argumentation is similar to the proof of Theorem 3.6.6. The time-

lagged product process (Xt, Xt+η)t∈Z on E×E can be expressed via the projection tuple

(Xt, Xt+η)(ω) = (X0, Xη)(T
tω). By construction, (X0, Xη) is P−FE ⊗FE measurable.

Note that because of Assumption 2 and Assumption 3 , the product feature map

ϕ⊗ ϕ : E × E → S2(H )

given by (x, y) 7→ ϕ(y)⊗ ϕ(x) is an element of L1(E × E,FE ⊗FE ,L(X0, Xη);S2(H )),

where S2(H ) is clearly reflexive. Therefore, the composition

ϕ⊗ ϕ ◦ (X0, Xη) : Ω→ S2(H )

given by ω 7→ (X0, Xη)(ω) 7→ ϕ(Xη)⊗ ϕ(X0)(ω) is an element of L1(Ω,F ,P;S2(H )).

69



5. Kernel autocovariance operators of stationary processes

The assertion follows immediately from the fact that we choose ϕ⊗ ϕ ◦ (X0, Xη) as the

L1-observable in Theorem 3.6.1 and obtain

lim
n→∞

1

n

n∑
t=1

ϕ⊗ ϕ ◦ (X0, Xη) ◦ T t = lim
n→∞

1

n

n∑
t=1

ϕ(Xt+η)⊗ ϕ(Xt) = C(η),

where the convergence holds P-a.e. in S2(H ). �

Remark 5.3.2 (Convergence in Schatten norms). Corollary 5.3.1 also yields P-a.e. conver-

gence Cn(η)→ C(η) in Sp(H ) for all p ≥ 2. Note that S1(H ) is reflexive if and only if

H is finite-dimensional (see for example Simon, 2005, Theorem 3.2). However, in the

finite-dimensional case, all Schatten classes coincide and the question for convergence in

Schatten norms becomes trivial. In the general case, it is not clear whether the reflexivity

assumption in Theorem 3.6.1 is not only sufficient but also necessary for a convergence

to hold. To the best of our knowledge, no stronger generalization results of Birkhoff’s

ergodic theorem for Banach-valued random variables exist.

5.4. Asymptotic error behavior

We now investigate the asymptotic statistical behavior of the estimator Cn(η) under the

assumption that (Xt)t∈Z is strongly mixing. For brevity, we introduce the shorthand

notation

ξt :=
(
ϕ(Xt+η)⊗ ϕ(Xt)

)
− C(η) (5.1)

for t ∈ Z and fixed η ∈ N. The process (ξt)t∈Z is stationary and centered with values in

S2(H ). The estimation error can now be expressed as Cn(η)− C(η) = 1
n

∑n
t=1 ξt.

We will make use of the fact that whenever the kernel k is bounded, the process (ξt)t∈Z
is almost surely bounded. In particular, if supx∈E k(x, x) = c <∞, then for all t ∈ Z, we

have

‖ξt‖L∞(Ω,F ,P;S2(H )) ≤ ess sup
ω∈Ω

‖ϕ(Xt+η)⊗ ϕ(Xt)‖S2(H ) + ‖C(η)‖S2(H )

≤ sup
x∈E
‖ϕ(x)‖2H + E

[
‖ϕ(Xt+η)⊗ ϕ(Xt)‖S2(H )

]
≤ 2 sup

x∈E
‖ϕ(x)‖2H

= 2 sup
x∈E

k(x, x) = 2c.

(5.2)

We now recall the properties of the strong mixing coefficients introduced in Section 3.6.2.

Lemma 3.6.5 clearly shows that for all n ∈ Z, we have

α((ξt)t∈Z, n) ≤ α((Xt)t∈Z, n− η). (5.3)
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In particular, if the process (Xt)t∈Z is strongly mixing, then (ξt)t∈Z is strongly mixing with

at least the same rate as (Xt)t∈Z. Several properties of the estimation error Cn(η)−C(η)

can be proven by applying results from the asymptotic theory of weakly dependent

random variables in Hilbert spaces to the process (ξt)t∈Z. We begin with one of the

strongest results of this type which is an approximation of the rescaled estimation error

n(Cn(η) − C(η)) by a Gaussian process. To this end, let L(n) := max(log n, 1) for all

n ∈ N.

Theorem 5.4.1 (Almost sure invariance principle). Let (Xt)t∈Z be stationary and

α-mixing with coefficients (α(t))t∈Z such that
∑∞

t=1 α(t − η) < ∞. Furthermore, let

supx∈E k(x, x) <∞. Then the linear operator T : S2(H )→ S2(H ) defined by

T := E[ξ0 ⊗ ξ0] +
∞∑
t=1

E[ξ0 ⊗ ξt] +
∞∑
t=1

E[ξt ⊗ ξ0] (5.4)

is trace class. Furthermore, there exists a Gaussian measure N (0, T ) on S2(H ) and a

sequence of iid S2(H )-valued Gaussian random variables (Zt)t∈Z ∼ N (0, T ) defined on

(Ω,F ,P) such that we have P-a.e.∥∥∥∥∥n(Cn(η)− C(η))−
n∑
t=1

Zt

∥∥∥∥∥
S2(H )

= o
(√

nL(L(n))
)
.

Proof. The process (ξt)t∈Z is P-a.e. bounded by (5.2) and has summable mixing coefficients

by (5.3). We can directly apply the almost sure invariance principle from Dedecker and

Merlèvede (2010, Corollary 1) to (ξt)t∈Z, which yields the assertion. Note in particular

that the authors emphasize that the almost sure boundedness of (ξt)t∈Z and summability

of the mixing coefficients imply that the assumptions of Dedecker and Merlèvede (2010,

Corollary 1) are satisfied (see also Merlèvede 2008, Remark 3). �

A strongly related statement is a standard central limit theorem for weakly dependent

sequences which ensures asymptotic normality in the space S2(H ).

Theorem 5.4.2 (Central limit theorem). Under the assumptions of Theorem 5.4.1, the

laws of
√
n(Cn(η) − C(η)) converge weakly to a Gaussian measure N (0, T ) on S2(H )

with covariance operator T defined by (5.4).

Proof. By our previous analysis and the argumentation of the proof of Theorem 5.4.1,

the process (ξt)t∈Z satisfies all assumptions of the central limit theorem by Merlevède

et al. (1997, Corollary 1). The above assertions follow directly. �

The next result is a compact law of the iterated logarithm. It ensures that a rescaled

version of the estimation error approximates a compact limiting set almost surely. Addi-

tionally, it characterizes this set as the accumulation points of the sequence of estimation
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errors and gives a norm bound in S2(H ) depending on the mixing rate. We define the

shorthand notation an :=
√

2L(L(n)) for all n ∈ N. Let furthermore acc(xn) denote the

set of all accumulation points of a sequence (xn)n∈N in a topological space.

Theorem 5.4.3 (Compact law of the iterated logarithm). Let (Xt)t∈Z be stationary

and α-mixing with coefficients (α(t))t∈Z such that
∑∞

t=1 α(t − η) < ∞. Furthermore,

let supx∈E k(x, x) = c < ∞. Then there exists a compact, convex and symmetric set

K ⊆ S2(H ), such that P-a.e.

lim
n→∞

dist

(√
n(Cn(η)− C(η))

an
,K

)
= 0 (5.5)

as well as P-a.e.

acc

(√
n(Cn(η)− C(η))

an

)
= K. (5.6)

Moreover, whenever
∑∞

t=1 α(t− η) = M <∞, we have

sup
A∈K
‖A‖S2(H ) = (4c2 + 32 c2M)1/2. (5.7)

Theorem 5.4.3 is proven in Appendix A.1.

Remark 5.4.4 (Assumptions on the mixing rate). The results in this section require

that the α-mixing coefficients of (Xt)t∈Z are summable. We briefly address the question

whether similar asymptotic statements can be derived under less strict assumptions.

Merlevède et al. (1997), Merlèvede (2008) and Dedecker and Merlèvede (2010) use

more general and much more technical quantile conditions than the summability of

the mixing coefficients in order to prove the asymptotic results which we apply here.

These quantile conditions are known to be necessary for a central limit theorem to hold

for real-valued processes. We refer the reader to Doukhan et al. (1994, Section 4) for

additional information. For bounded random variables however, the summability of the

mixing coefficients is equivalent to the mentioned quantile conditions. This is investigated

by Rio (1995, Application 1). A similar argumentation can be derived for the law of the

iterated logarithm (see also Rio, 1995).

5.5. Concentration bounds

In addition to the previous asymptotic results, nonasymptotic statements about the

estimation error can be derived by applying concentration bounds for mixing Hilbertian

random variables to the process (ξt)t∈Z.

Theorem 5.5.1 (Error bound). Let (Xt)t∈Z be stationary and α-mixing with coefficients

(α(t))t∈Z. Let supx∈E k(x, x) = c < ∞. Then for every ε > 0, ν ∈ N, n ≥ 2 as well as
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q ∈ {1, . . . , bn/2c} and δ ∈ (0, 1), we have

P
[
‖Cn(η)− C(η)‖S2(H ) > ε

]
≤ 4ν exp

(
−(1− δ)ε2q

32νc2

)
+ 22νq

(
1 +

8c
√
ν

ε(1− δ)1/2

)1/2

α(bn/2qc − η) +
1

δε2

∑
j>ν

λj ,

where the nonnegative real numbers (λj)j≥1 are the nonincreasingly ordered eigenvalues

of the covariance operator

Γ: S2(H )→ S2(H )

defined by

Γ := E
[((

ϕ(Xη)⊗ ϕ(X0)
)
− C(η)

)
⊗
((
ϕ(Xη)⊗ ϕ(X0)

)
− C(η)

)]
. (5.8)

Proof. As previously noted, the process (ξt)t∈Z defined by (5.1) is stationary, centered and

almost surely bounded by 2c in the norm of S2(H ). Moreover, its α-mixing coefficients

satisfy the bound (5.3). We can therefore apply the concentration bound given by Bosq

(2000, Theorem 2.12) to the process (ξt)t∈Z, which yields the assertion. �

Remark 5.5.2. Alternatively to the bound by Bosq (2000), we can apply the bound for

β-mixing sequences by Rhomari (2002), which is also given in Appendix A.5.3. We

choose to apply the former result as presented above, since it allows for a convenient

simplification when the kernel k is a Gaussian kernel (see Section 5.6).

The above bound requires an optimal tradeoff between the choices of ν, q, and δ. Note

that we have
∑

j>ν λj <∞ for every ν ∈ N, since Γ is trace class. The knowledge of the

mixing rate (α(t))t≥1 and the decay of the eigenvalues (λj)j≥1 of Γ allows to drastically

simplify the bound and derive P-a.e. convergence rates. Whenever (α(t))t≥1 and (λj)j≥1

decay exponentially, a straightforward application of Bosq (2000, Corollary 2.4) can be

used to obtain a sharper bound and P-a.e. convergence rates. We will state this result

here for completeness and show how the decay of (λj)j≥1 can be precisely bounded for

the special case of the Gaussian kernel in the next section.

Theorem 5.5.3 (Bosq, 2000, Corollary 2.4). Let (Xt)t∈Z be stationary and α-mixing

with coefficients (α(t))t∈Z. Let supx∈E k(x, x) = c < ∞. Additionally, let (λj)j≥1 be

the nonincreasingly ordered eigenvalues of the covariance operator Γ: S2(H )→ S2(H )

defined by (5.8).

If there exist constants r ∈ (0, 1) and a > 0 such that

α(t) ≤ art and λj < arj
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for all t, j ∈ N, then for every ε > 0, there exist positive constants k1 and k2 only

depending on ε and the law L(X0, Xη) such that for all n ∈ N, we have

P
[
‖Cn(η)− C(η)‖S2(H ) > ε

]
≤ k1 exp(−k2n

1/3).

In addition, we have the convergence rate

‖Cn(η)− C(η)‖S2(H ) = O

(
(log n)3/2

n1/2

)
P-a.e.

5.6. Example: Gaussian kernel

Theorem 5.5.1 and Theorem 5.5.3 show that the two main quantities of interest for a

bound of the estimation error ‖Cn(η)− C(η)‖S2(H ) are the mixing rate of (Xt)t∈Z as

well as the covariance of the law L(ϕ(Xη)⊗ ϕ(X0)). The latter is given in terms of the

eigenvalues of the covariance operator Γ acting on S2(H ) defined by (5.8).

While mixing rates can be assessed by imposing structural assumptions on the process

(Xt)t∈Z, the analysis of the eigenvalues of Γ seems to be more intricate. We will now show

that for the case that H is induced by a Gaussian kernel, decay rates of the eigenvalues

of Γ can be obtained.

Theorem 5.6.1. (Eigenvalue decay of Γ) Let E ⊆ Rd and H be the RKHS induced by

the Gaussian kernel

k(x, x′) = exp

(
−
‖x− x′‖2Rd

2σ2

)

for some width σ > 0. Let (λj)j≥1 be the nonincreasingly ordered eigenvalues of the

covariance operator Γ on S2(H ) defined by (5.8). Then the following decay rates hold.

1. When E is compact, then (λj)j≥1 = O(exp(−cj log j)) for some constant c > 0.

2. For arbitrary E, if L(X0, Xη) is absolutely continuous with respect to the Lebesgue

measure on E × E with joint density p(x, y) : E × E → R satisfying

p(x, y) < B exp(−‖(x, y)‖2R2d)

for some constant B > 0, then (λj)j≥1 = O(exp(−cj)) for some constant c > 0.

3. In any case, without additional assumptions about E and L(X0, Xη), we have

(λj)j≥1 = O(exp(−cj1/(2d))) for some constant c > 0.
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Theorem 5.6.1 is proven in Appendix A.1. We can now obtain P-a.e. convergence rates

and error bounds for the estimator Cn(η) when the mixing properties of (Xt)t∈Z are

known. In combination with results for mixing rates of typical classes of processes (see

Example 3.6.4), statements like the following are the immediate consequence.

Example 5.6.2 (Markov process on compact domain in Rd). Let E ⊆ Rd be compact

and H be the RKHS induced by the Gaussian kernel on E for some width σ > 0. If

(Xt)t∈Z is a stationary, geometrically ergodic Markov process on E, then the conclusions

of Theorem 5.5.3 hold.

5.7. Application: statistical consistency of kernel PCA with

dependent data

We now use our preceding results to prove the consistency of kernel PCA when the

underlying data is dependent. To this end, we adopt the modern functional-analytic

formalism to describe the statistical model of kernel PCA in Hilbert spaces (see for

example Mas and Menneteau, 2003; Zwald and Blanchard, 2006; Blanchard et al., 2007;

Mas and Ruymgaart, 2015; Koltchinskii and Lounici, 2016, 2017; Reiß and Wahl, 2020;

Jirak and Wahl, 2020) and apply basic results from spectral perturbation theory. We do

not aim to provide a full overview of the related work here. Instead, we will highlight

how our work leads to some elementary statistical results for kernel PCA with dependent

data. To the best of our knowledge, a detailed analysis of this setting is not yet available

in the literature.

5.7.1. Minimizing the reconstruction error

We introduce the functional-analytic interpretation of kernel PCA and incorporate the

scenario of dependent data. For simplicity, we may assume that the stationary embedded

process (ϕ(Xt))t∈Z is centered, i.e.,

E[ϕ(X0)] = 0,

which is commonly required in the theoretical analysis of kernel PCA and replaced by an

empirical centering in practice (see for example Blanchard et al., 2007).

Given some fixed integer 0 < r ≤ dim H , an orthonormal system F := {f1, . . . , fr} ⊂H

and the corresponding orthogonal projection ΠF : H →H onto spanF ⊂H , we define

the reconstruction error of the embedded random variable ϕ(X0) as

R(ΠF ) := E
[
‖ϕ(X0)−ΠFϕ(X0)‖2H

]
. (5.9)
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Our goal is now to choose the orthonormal set F and the corresponding orthogonal

projection ΠF in such a way that the resulting reconstruction error R(ΠF ) is minimal

over the set of all orthogonal projections on H of rank r. The main idea of kernel PCA is

to then express the r-dimensional projection ΠFϕ(Xt) in terms of the Euclidean process

of coordinate vectors given by

X̃t :=

〈f1, ϕ(Xt)〉H
...

〈fr, ϕ(Xt)〉H

 =

f1(Xt)
...

fr(Xt)

 ∈ Rr.

The projected process X̃t can be seen as a low-dimensional approximation of ϕ(Xt) with

respect to (5.9).

We now consider the zero-lag kernel autocovariance operator of (Xt)t∈Z given by

C := C(0) = E[ϕ(X0)⊗ ϕ(X0)].

The reconstruction error R(ΠF ) can be conveniently expressed in an alternative way in

terms of C.

Lemma 5.7.1 (Reconstruction error). For every r-dimensional orthogonal projection

ΠF : H →H , we have

R(ΠF ) = Tr(C(IdH −ΠF )).

Proof. Let ΠF : H →H be an orthogonal projection with corresponding orthonormal

system F = {f1, . . . , fr} ⊂ H . We extend F to a complete orthonormal system

F ′ := {f1, . . . , fr, . . . } of H . We have

Tr(C(IdH −ΠF )) =
∑
fj∈F ′

〈Cfj , (IdH −ΠF )fj〉H =
∑
j>r

E[fj(X0) fj(X0)]

=
∑
j>r

E
[
〈fj , ϕ(X0)〉2H

]
= E

[
‖(IdH −ΠF )ϕ(X0)‖2H

]
= R(ΠF ),

where we make use of 〈Cf, h〉H = E[f(X)h(X)] for all f, h ∈ H as well as the repro-

ducing property in H and Parseval’s identity. �

Let C =
∑

i∈I µi(C) vi ⊗ vi denote the eigendecomposition of the zero-lag kernel autoco-

variance operator. We now assume r ≤ rank(C). Let V := {v1, . . . , vr} denote the set of

the first r eigenvectors. Since we have

R(ΠF ) = Tr(C(IdH −ΠF )) = Tr(C)− Tr(CΠF )

by Lemma 5.7.1, a projection operator ΠF minimizingR(ΠF ) must maximize Tr(CΠF ).
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Gohberg and Krĕın (1969, Chapter II, Lemma 4.1) show that the maximum of Tr(CΠF )

is attained for the projection operator onto the span of the first r eigenfunctions of C.

Consequently, we have

arg min
ΠF

R(ΠF ) = ΠV , (5.10)

where the minimum on the left-hand side ranges over all orthogonal projection operators on

H of rank r. Furthermore, from (5.10) we can clearly deduce R(ΠV ) =
∑

i>r µi(C).

The above examination motivates to define the empirical reconstruction error

Rn(ΠF ) :=
n∑
t=1

‖ϕ(Xt)−ΠFϕ(Xt)‖2H

based on n subsequent observations X1, . . . , Xn of the process (Xt)t∈Z. Analogously to

Lemma 5.7.1, we can write

Rn(ΠF ) = Tr(Cn(IdH −ΠF )),

where Cn =
∑n

t=1 ϕ(Xt)⊗ ϕ(Xt) is the empirical zero-lag autocovariance operator with

the empirical spectral decomposition

Cn =
∑
i∈Î

µi(Cn) v̂i ⊗ v̂i.

Again assuming r ≤ rank(Cn), the empirical kernel PCA solution minimizing Rn is

naturally given by the projection Π
V̂

onto the span of the first r empirical eigenvectors

V̂ := {v̂1, . . . , v̂r}.

5.7.2. Convergence of the excess reconstruction error

The consistency of kernel PCA can be investigated by focusing on the convergence of the

nonnegative excess reconstruction error R(Π
V̂

)−R(ΠV )→ 0 with high probability as

the number of samples n increases. We highlight a very simple approach relying on the

eigenspace perturbation based on the Davis–Kahan theorem (see Appendix A.4). We

write ∆ = C − Cn for the estimation error of the kernel covariance operator.

Theorem 5.7.2 (Excess reconstruction error). Let r < min{rank(C), rank(Cn)} and

µr(C) 6= µr+1(C). Then we have

R(Π
V̂

)−R(ΠV ) ≤ 23/2 ‖C‖S2(H )

‖∆‖S2(H )

µr(C)− µr+1(C)
. (5.11)

Proof. By Lemma 5.7.1, we have

R(Π
V̂

)−R(ΠV ) = Tr(C(Π
V̂
−ΠV )) =

〈
C, Π

V̂
−ΠV

〉
S2(H )
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≤ ‖C‖S2(H )

∥∥Π
V̂
−ΠV

∥∥
S2(H )

.

We can now simply apply Lemma A.4.3 and Theorem A.4.4 to the term
∥∥Π

V̂
−ΠV

∥∥
S2(H )

,

yielding the assertion. �

In combination with the convergence results for the estimation error ∆ which we derive in

the previous sections of this chapter, the bound from Theorem 5.7.2 can be used to obtain

convergence and overall probability bounds for R(Π
V̂

)−R(ΠV ) when the data is weakly

dependent. In particular, the above result shows that the rate of convergence of the

excess reconstruction error of kernel PCA is at least the rate of convergence of ‖∆‖S2(H ).

A very simple example of this theory is highlighted below. For more sophisticated error

analyses and stronger results in the case of independent sampling, the reader may refer

to the recent work by Reiß and Wahl (2020), Jirak and Wahl (2020) and Milbradt and

Wahl (2020) and the references therein.

Example 5.7.3 (Geometrically ergodic Markov process on E ⊆ Rd). Let (Xt)t∈Z be

the Markov process on the compact domain E ⊆ Rd with the properties as given in

Example 5.6.2. Then the excess reconstruction error of kernel PCA with the Gaussian

kernel with some arbitrary width σ > 0 converges as

R(Π
V̂

)−R(ΠV ) = O

(
(log n)3/2

n1/2

)
P-a.e.

5.8. Related work

The theory of weakly dependent random processes taking values in infinite-dimensional

Hilbert spaces has become increasingly important especially due to applications in the

field of functional data analysis (Hörmann and Kokoszka, 2010; Horváth and Kokoszka,

2012; Hsing and Eubank, 2015). In infinite-dimensional statistics, the estimation of

covariance and cross-covariance operators (Baker, 1970, 1973) is a fundamental concept.

Under parametric model assumptions about the process, the estimation of covariance

and autocovariance operators has been examined in various scenarios. For autoregressive

(AR) processes in Banach spaces and Hilbert spaces, weak convergence and asymptotic

normality has been established (Bosq, 2000, 2002; Mas, 2002; Dehling and Sharipov, 2005;

Mas, 2006). Soltani and Hashemi (2011) add the assumption of periodic correlation for

AR processes in Hilbert spaces. Allam and Mourid (2014, 2019) provide rates for almost

sure convergence of covariance operators in Hilbert–Schmidt norm for an AR process

with random coefficients.

For processes in an L2 function space, the weak convergence of covariance operators has

been examined by Kokoszka and Reimherr (2013) under the assumption of L4-m approx-

imability (a concept generalizing m-dependence which includes certain autoregressive
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and nonlinear models, see Hörmann and Kokoszka, 2010) in the context of functional

principal component analysis. The importance of autocovariance operators of station-

ary processes in the L2 space context is underlined by the concepts of spectral density

operators (Panaretos and Tavakoli, 2013b,a) as well as dynamic functional principal

components analysis (Hörmann et al., 2015).

In contrast to the previously mentioned work on general processes taking values in Banach

spaces and Hilbert spaces, we consider autocovariance operators of the embedded Hilbert

space process

(ϕ(Xt))t∈Z ,

explicitly incorporating properties of the RKHS into our analysis. This scenario directly

falls in line with the classic setting in learning theory, which has led to celebrated

results and numerous applications in case of independent and identically distributed

data. Recently, Blanchard and Zadorozhnyi (2019) derived a Bernstein-type inequality

for Hilbert space processes for a class of mixing properties called C-mixing (Maume-

Deschamps, 2006). As a special case, the authors show that under restrictive Lipschitz

conditions on the feature map ϕ, this mixing property is preserved under the RKHS

embedding of a so-called τ -mixing process. The derived inequality is then used to obtain

concentration bounds for the context of RKHS learning theory, including covariance

operator estimation without a time lag. To the best of our knowledge, this is the first

time that RKHS covariance operator estimation is addressed in the context of weakly

dependent data. As described for example by Hang and Steinwart (2017), the class of

C-mixing coefficients is only partly related to the classical strong mixing coefficients

which are more commonly found in the literature (see Doukhan 1994, Bradley 2005 and

Rio 2017 and the references therein for an overview). Additionally, our results cover the

estimation of autocovariance operators with a time lag.

We note that convergence in measure of linear Hilbertian PCA for L2([0, 1])-valued

stochastic processes was previously investigated by Kokoszka and Reimherr (2013) under

the assumption of L4-m approximability. To the best of our knowledge, results for kernel

PCA with dependent data have not explicitly been stated in the literature yet.

5.9. Summary and outlook

In this chapter, we investigate the estimation of kernel autocovariance operators from a

realization of a stationary stochastic process under the assumptions of ergodicity and

mixing. We prove several convergence statements by applying standard results from

probability theory and statistics with weakly dependent Hilbertian random variables.

Our analysis is primarily motivated by the fact that the nonparametric estimation of
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5. Kernel autocovariance operators of stationary processes

Markov transition operators requires the estimation of kernel covariance operators as

discussed in the preceding chapter.

Although our results are generally not sufficient to prove the overall convergence of the

Tikhonov–Phillips estimate of the Markov transition operator, they cover a substantial

part of this problem. In particular, they can be used to show convergence of the regularized

empirical estimate to the regularized analytic solution for a fixed regularization parameter.

Overall convergence and optimal regularization schemes need to be derived in the general

setting of inverse problems, which we briefly introduce in Appendix A.6.

Apart from the estimation of Markov transition operators, we demonstrate the versatility

of our results by providing new consistency results for kernel PCA with weakly dependent

data. Similarly, our results may be used further to examine theoretical properties of

kernel-based hypothesis tests for time series which rely on covariance operators (Besserve

et al., 2013; Chwialkowski and Gretton, 2014; Chwialkowski et al., 2014).
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M. Mollenhauer, S. Klus, C. Schütte, and P. Koltai. Kernel autocovariance operators of

stationary processes: Estimation and convergence. arXiv preprint arXiv:2004.00891,

2020a.

M. Mollenhauer, I. Schuster, S. Klus, and C. Schütte. Singular value decomposition of
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A. Appendix

Section A.1 contains passages taken from Mollenhauer et al. (2020a).

Section A.3 contains passages taken from Mollenhauer and Koltai (2020).

A.1. Proofs

We provide proofs which are omitted in the main text.

Proof of Theorem 3.4.2. We first recall some basic facts from matrix analysis. For strictly

positive symmetric matrices A and B, we have the identity

A−1/2 −B−1/2 = A−1/2(B1/2 −A1/2)B−1/2 (A.1)

as well as the bound ∥∥∥A1/2 −B1/2
∥∥∥ ≤ ∥∥∥A−B

∥∥∥1/2
, (A.2)

which is a special case of Bhatia (1997, Theorem X.1.1.). This yields

∥∥∥Ĝ−1/2 −G−1/2
∥∥∥ ≤ ∥∥∥Ĝ−G

∥∥∥1/2 ∥∥∥Ĝ−1/2
∥∥∥∥∥∥G−1/2

∥∥∥ =

√√√√ ∥∥∥Ĝ−G
∥∥∥

µs(Ĝ)µs(G)
P-a.e.,

hence the assertion follows from Lemma 3.4.1. �

Proof of Theorem 3.4.3. Note that we have the bound∥∥∥(A + λI)−1/2
∥∥∥ =

1√
µs(A + λI)

=
1√

µs(A) + λ
≤ 1√

λ
(A.3)

for any symmetric positive semidefinite matrix A ∈ Rs×s.

All bounds involving Ĝ are to be understood in the P-a.e. sense. We decompose the

overall error as∥∥∥(Ĝ + λI)−1/2 −G−1/2
∥∥∥ ≤ ∥∥∥(Ĝ + λI)−1/2 − (G + λI)−1/2

∥∥∥︸ ︷︷ ︸
(I)

+
∥∥∥(G + λI)−1/2 −G−1/2

∥∥∥︸ ︷︷ ︸
(II)
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and address (I) and (II) individually by applying (A.1), (A.2) and (A.3) in this order to

both terms. For (I), we have

(I) ≤
∥∥∥(Ĝ + λI)1/2 − (G + λI)1/2

∥∥∥∥∥∥(Ĝ + λI)−1/2
∥∥∥∥∥∥(G + λI)−1/2

∥∥∥
≤ 1

λ

∥∥∥Ĝ−G
∥∥∥1/2

.

Analogously for (II), we obtain

(II) ≤
∥∥∥(G + λI)1/2 −G1/2

∥∥∥∥∥∥(G + λI)−1/2
∥∥∥∥∥∥G−1/2

∥∥∥
≤ ‖λI‖1/2√

µs(G) + λ
√
µs(G)

≤
√
λ

µs(G)
.

In total, whenever
∥∥∥Ĝ−G

∥∥∥ ≤ ε holds for some ε > 0, then we have

∥∥∥(Ĝ + λI)−1/2 −G−1/2
∥∥∥ ≤ √ε

λ
+

√
λ

µs(G)

and hence the assertion follows from Lemma 3.4.1. �

Proof of Theorem 5.4.3. We apply Merlèvede (2008, Theorem 2) to the process (ξ)t∈Z
defined in (5.1) and immediately obtain the existence of a compact set K with the desired

properties such that both (5.5) and (5.6) hold. We note that Merlèvede (2008, Remark

3) ensures that our assumptions allow the application of this result. It now remains to

show the norm bound (5.7) for K. The set K is the unit ball of the Hilbert space H,

which is given by the completion of the range of T 1/2 (where T is given by (5.4) and

T 1/2 denotes its operator square root) with respect to the inner product defined by〈
T 1/2A, T 1/2B

〉
H

:= 〈A, B〉S2(H ) , A,B ∈ S2(H ). (A.4)

The space H is also called Cameron–Martin space or abstract Wiener space (for details,

we refer the reader to Bogachev, 1998, Chapter 2). For a technical construction of H and

the limit set K in the law of the iterated logarithm in Banach spaces, we refer the reader

to Kuelbs (1976, Section 2) as well as Goodman et al. (1981, Section 2). Note that these

references elaborate on the iid case. However, for the construction of H and K only an

abstract limiting probability measure is needed, which is given by the Gaussian measure

obtained from Theorem 5.4.2 and its covariance operator T defined by (5.4), just as

shown in the proof of Merlèvede (2008, Theorem 2). We can therefore analyze properties

of K by considering the Cameron–Martin space of the centered Gaussian measure induced

by T , which is examined in the previously mentioned literature. The identity (A.4) can

be verified by translating the abstract Banach space definition of (Kuelbs, 1976, Equation
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(2.3)) to our scenario of the separable Hilbert space S2(H ) as, for example, described

by Bogachev (1998, Remark 2.3.3).

From (A.4), we obtain

‖A‖S2(H ) ≤
∥∥∥T 1/2

∥∥∥ ‖A‖H , A ∈ H. (A.5)

Since K = {A ∈ H | ‖A‖H ≤ 1}, a bound for
∥∥T 1/2

∥∥ = ‖T‖1/2 depending on the mixing

rate of (ξt)t∈Z is sufficient in order to provide a bound for elements of K in the norm of

S2(H ).

We now give a norm bound for T = E[ξ0 ⊗ ξ0] +
∑∞

t=1 E[ξ0 ⊗ ξt] +
∑∞

t=1 E[ξt ⊗ ξ0]. We

clearly have

‖E[ξ0 ⊗ ξ0]‖ ≤ 4c2,

since ξ0 is almost surely bounded by 2c by (5.2).

Let α(n) be the mixing coefficients of (Xt)t∈Z. We now note that by (3.14), we have

α((ξt)t∈Z, n) ≤ α(n− η) for all n ∈ N. This allows to give a bound for the two remaining

summands of T :∥∥∥∥∥
∞∑
t=1

E[ξt ⊗ ξ0]

∥∥∥∥∥ ≤
∞∑
t=1

‖E[ξt ⊗ ξ0]‖

=

∞∑
t=1

sup
‖A‖S2(H )=1

‖B‖S2(H )=1

|E[〈ξt, B〉 〈ξ0, A〉]|

≤
∞∑
t=1

sup
‖A‖S2(H )=1

‖B‖S2(H )=1

4α(σ(ξt), σ(ξ0)) ‖〈ξt, B〉‖L∞(P) ‖〈ξ0, A〉‖L∞(P)

≤
∞∑
t=1

16 c2α(t− η) = 16 c2M,

where we use Ibragimov’s covariance inequality for strongly mixing and bounded random

variables (Ibragimov, 1962, Lemma 1.2) in the third step (note that 〈ξt, B〉 and 〈ξ0, A〉 are

centered real-valued random variables which are P-a.e. bounded by 2c because of (5.2)).

By symmetry, we obtain the same bound for ‖
∑∞

t=1 E[ξ0 ⊗ ξt]‖ and we end up with the

total norm bound

‖T‖ ≤ 4c2 + 32 c2M, (A.6)

which proves the claim in combination with (A.5). �

Proof of Theorem 5.6.1. The key idea for this proof is to make use of the fact that the

product RKHS S2(H ) 'H ⊗H is isometrically isomorphic to a Gaussian RKHS. This
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allows to interpret Γ as a (centered) convolution operator in order to apply classical

results from the theory of integral equations.

Let G denote the RKHS induced by the Gaussian kernel ` : E2 × E2 → R,

`(z, z′) = exp

(
−‖z − z′‖2R2d

2σ2

)
,

where ‖·‖R2d is the Euclidean norm on E2. Let ψ : E2 → G be the feature map corre-

sponding to G . Then the pointwise defined map

ν : H ⊗H → G

ϕ(x)⊗ ϕ(y) 7→ ψ((x, y))

is an isometry, which can be seen by expressing the respective inner products in terms

of the corresponding kernels and using the fact that k(x, x′)k(y, y′) = `((x, y), (x′, y′)).

Extending ν to linear combinations gives a bijective isometry from the dense subset

span{ϕ(x)⊗ϕ(x′) | x, x′ ∈ E} of H ⊗H to the dense subset span{ψ((x, x′)) | (x, x′) ∈ E2}
of G . Finally, extending ν continuously to the respective completions yields an isometric

isomorphism from H ⊗H to G .

We now decompose Γ = Γ1 − Γ2, where Γ1 := E [(ϕ(Xη)⊗ ϕ(X0))⊗ (ϕ(Xη)⊗ ϕ(X0))]

and Γ2 := C(η) ⊗ C(η). Since Γ2 is a rank-one operator, Γ has the same asymptotic

eigenvalue behavior as Γ1 (Gohberg and Krĕın, 1969, Chapter II, Corollary 2.1). It

is therefore sufficient to only consider the eigenvalue decay of Γ1. The isomorphism ν

constructed above allows to interpret Γ1 as an integral operator with respect to the

Gaussian kernel `, which makes the application of classical results from the theory of

integral equations possible. For every operator A ∈ S2(H ) 'H ⊗H and all x, x′ ∈ E,

we write A(x, x′) = 〈A, ϕ(x)⊗ ϕ(x′)〉H ⊗H where we identify A with its representation

in H ⊗H via its singular decomposition. We get the representation

(Γ1A)(y, y′) =
〈
Γ1A, ϕ(y)⊗ ϕ(y′)

〉
H ⊗H

=

∫ 〈
ϕ(Xη)⊗ ϕ(X0), ϕ(y)⊗ ϕ(y′)

〉
H ⊗H

A(Xη, X0) dP

=

∫
k(Xη, y)k(X0, y

′)A(Xη, X0) dP

=

∫
`((Xη, X0), (y, y′))A(Xη, X0) dP

=

∫
E
`(z, z′)A(z) dL(Xη, X0)(z)

for all y, y′ ∈ E, where z := (x, x′) and z′ := (y, y′). We can therefore consider the

eigenvalue problem

(Γ1A)(z′) =

∫
E
`(z, z′)A(z) dL(Xη, X0)(z) = λA(z′), (A.7)
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where A is interpreted as a real-valued function on E2. The solution of integral equations

of the form (A.7) for A ∈ L2(E2,F⊗2
E ,L(Xη, X0);R) is well examined. Let (λj)j>0

denote the eigenvalues of Γ1. When E is a compact domain, the eigenvalues have a

super exponential decay of the form O(exp(−cj log j)) for some constant c > 0. When no

assumptions about the domain E are made, exponential decay of the Lebesgue density of

L(Xη, X0) on E2 leads to an exponential eigenvalue decay in terms of O(exp(−cj)), which

is a special case of results by Widom (1963) (see for example Bach and Jordan, 2002,

Appendix C.2 for the specific cases considered in this context). Without any additional

assumptions about the domain or the underlying distribution, a nearly exponential decay

of eigenvalues of the form O(exp(−cj1/2d) is always guaranteed (Belkin, 2018, Theorem

5).

Note that when we interpret (A.7) as an operator on product RKHS functions in H ⊗H

instead of L2(E2,F⊗2
E ,L(Xη, X0);R), the resulting operator Γ1 has the same eigenvalues

as its L2-analogue (Rosasco et al., 2010, Proposition 8), which proves all assertions of

the theorem. �

A.2. Functional analysis

We collect basic results from functional analysis.

A.2.1. Projection operators

Theorem A.2.1. Let B and B′ be Banach spaces and K : B → B′ be a compact

operator. Let (An)n∈N be a sequence of bounded operators on B′ converging to an operator

A : B′ → B′ in strong operator topology. Then AnK → AK in operator norm topology.

A proof based on the uniform boundedness principle is given by Hackbusch (1995, Lemma

4.3.7. and Lemma 4.3.8.) for the case that K operates on a single space B and can easily

be extended to the scenario of two distinct spaces B,B′ given above.

Corollary A.2.2. Let H and H ′ be Hilbert spaces and K : H → H ′ be a compact

operator. Let furthermore (Πn)n∈N and (Π′n)n∈N be sequences of orthogonal projection

operators on H and H ′ converging strongly to the identities on H and H ′ respectively.

Then we have ∥∥K −Π′nKΠn

∥∥→ 0 as n→∞.

Proof. Since (Πn)n∈N and (Π′n)n∈N converge strongly to the identity operators, the

sequences (Π⊥n )n∈N and (Π′⊥n )n∈N of the complementary projection operators given by

Π⊥n := IdH −Πn and Π′⊥n := IdH′ −Π′n converge strongly to the zero operator on H and
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H ′. We have

∥∥K −Π′nKΠn

∥∥ ≤ ∥∥K −Π′nK
∥∥+

∥∥Π′nK −Π′nKΠn

∥∥
=
∥∥∥Π⊥nK

∥∥∥+
∥∥∥Π′nKΠ⊥n

∥∥∥ ≤ ∥∥∥Π⊥nK
∥∥∥+

∥∥∥KΠ⊥n

∥∥∥
=
∥∥∥Π⊥nK

∥∥∥+
∥∥∥Π⊥nK

∗
∥∥∥

and hence the assertion follows from Theorem A.2.1. �

A.2.2. Low-rank approximation

For every compact Hilbert space operator A : H → H ′ with SVD

A =
∑
i∈I

ρi(A)ui ⊗ vi,

we define the rank-r truncation of A as

Ar :=
r∑
i=1

ρi(A)ui ⊗ vi.

for every r < rank(A). The following well-known result characterizes the truncated

operator Ar as the optimal approximation to A with rank constraint r.

Theorem A.2.3 (Eckart–Young–Mirsky theorem). Let A : H → H ′ be a compact operator

and r < rank(A). Then we have

arg min
B∈B(H,H′)
rank(B)=r

‖A−B‖ = Ar

with ‖A−Ar‖ = ρr+1(A). If additionally A ∈ S2(H,H ′), then we have analogously

arg min
B∈B(H,H′)
rank(B)=r

‖A−B‖S2(H,H′) = Ar

with ‖A−Ar‖2S2(H,H′) =
∑

i>r ρ
2
i (A).

A proof for the approximation in operator norm is given by Gohberg and Krĕın (1969,

Chapter II, Theorem 2.1), the Hilbert–Schmidt case is shown by Hsing and Eubank

(2015, Theorem 4.4.7.).
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A.3. Statistical learning theory

It is well-known that for F ∈ L2(E,FE , π; H ), the standard least squares risk

R(F ) := E
[
‖ϕ(Y )− F (X)‖2H

]
,

can be rewritten in terms of the regression function

Fp(x) :=

∫
E
ϕ(y) p(x,dy) = E[ϕ(Y ) | X = x] ∈ L2(E,FE , π; H ).

We report the proof here for completeness (see also Cucker and Smale, 2002, Proposition

1 for a proof in the scalar case).

Theorem A.3.1 (Risk and regression function). Under Assumptions 1–3, the risk R

can equivalently be rewritten as

R(F ) = ‖F − Fp‖2L2(E,FE ,π;H ) +R(Fp) (A.8)

for all F ∈ L2(E,FE , π; H ).

Proof. We have

R(F ) = E
[
‖ϕ(Y )− F (X)‖2H

]
= E

[
‖ϕ(Y )− Fp(X) + Fp(X)− F (X)‖2H

]
= E

[
‖ϕ(Y )− Fp(X)‖2H

]
+ 2E

[
〈ϕ(Y )− Fp(X), Fp(X)− F (X)〉H

]
+ E

[
‖F (X)− Fp(X)‖2H

]
,

where we see that the first summand equals to R(Fp). The second summand which

contains the mixed terms vanishes since we have

E
[
〈ϕ(Y )− Fp(X), Fp(X)− F (X)〉H

]
=

∫
E

〈∫
E
ϕ(y) p(x,dy)︸ ︷︷ ︸

=Fp(x)

−Fp(x), Fp(x)− F (x)

〉
H

dπ(x).

The last summand can be rewritten as

E
[
‖F (X)− Fp(X)‖2H

]
= ‖F − Fp‖2L2(E,FE ,π;H )

by change of measure, proving the assertion. �
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A.4. Spectral subspace perturbation

The basic perturbation of the spectrum of compact operators can for example be described

in terms of Weyl’s inequalities, which are widely known in the context of matrix analysis

(Bhatia, 1997, Section III.2). We state an infinite-dimensional version concerning the

singular values of operators between two real Hilbert spaces.

Theorem A.4.1 (Gohberg and Krĕın 1969, Chapter II, Corollary 2.3). Let A : H → H ′

and Â : H → H ′ be compact operators between Hilbert spaces H and H ′. Then we have

sup
i∈N

∣∣∣ρi(A)− ρi(Â)
∣∣∣ ≤ ∥∥∥A− Â∥∥∥ ,

where we set ρi(A) := 0 whenever i > rank(A) and analogously ρi(Â) := 0 whenever

i > rank(Â).

However, we are more interested in the perturbation of the subspaces associated with

eigenvalues and singular values. In particular, we aim to understand the perturbation of

the eigenspaces or singular components associated with the r dominant eigenvalues or

singular values in a uniform fashion. Following the seminal work of Davis and Kahan

(1970), we now give a very basic overview of the perturbation of finite-dimensional spectral

subspaces of linear operators. At the heart of the approach lies the idea to measure the

distance between two subspaces in terms of the so-called canonical angles. We refer the

reader to (Stewart and Sun, 1990, Sections I.5 and II.4) and Bhatia (1997, Sections V.II.1

and V.II.3) for modern expositions of this theory.

We consider two orthonormal systems U = {u1, . . . , ur} and Û = {û1, . . . , ûr} in a real

Hilbert space H. We define the r canonical angles between the subspaces spanU and

span Û as the inverse cosines of the top r singular values of the operator ΠUΠ
Û

given

by

arccos ρ1(ΠUΠ
Û

), . . . , arccos ρr(ΠUΠ
Û

).

Note that equivalently, the canonical angles are sometimes defined as the inverse sines

of the singular values of the operator Π⊥UΠ
Û

, (Bhatia, 1997, pp. 201–202). We define

Θ(U, Û) ∈ Rr×r as the matrix which contains the canonical angles on the diagonal.

Additionally, let sin Θ(U, Û) ∈ Rr×r denote the matrix which contains the sines of the

canonical angles on the diagonal.

Remark A.4.2 (Infinite dimensions). Although the typical theory of canonical angles

is formulated for finite-dimensional Hilbert spaces H in terms of matrices, it can be

extended straightforwardly to infinite-dimensional ambient spaces as long as U and Û are

finite. The ambient dimension of H is not explicitly present in the results. To apply the

finite-dimensional theory in infinite dimensions, it is therefore sufficient to just restrict
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the setting to a finite-dimensional subspace of H that contains both spanU and span Û .

We directly formulate the results in an infinite-dimensional setting here.

The norms of the matrix sin Θ(U, Û) containing the sines of the canonical angles can be

written in terms of distances between the corresponding projectors. These distances again

allow for a geometrical interpretation as the gap (Stewart and Sun, 1990) or aperture

(Akhiezer and Glazman, 1993) between the subspaces.

Lemma A.4.3 (Distances between projectors). With the above notation, we have∥∥∥sin Θ(U, Û)
∥∥∥ =

∥∥Π
Û
−ΠU

∥∥
as well as ∥∥∥sin Θ(U, Û)

∥∥∥
F

=
1√
2

∥∥Π
Û
−ΠU

∥∥
S2(H)

,

where ‖·‖F denotes the Frobenius norm.

Proof. Both assertions follow from Stewart and Sun (1990, Theorem I.5.5.) and the fact

that
∥∥Π

Û
−ΠU

∥∥ = ρ1(Π
Û
−ΠU ) and

∥∥Π
Û
−ΠU

∥∥2

S2(H)
=
∑

i∈I ρi(ΠÛ
−ΠU )2. �

The importance of the canonical angles is reflected in the so-called Davis–Kahan theorem

(Davis and Kahan, 1970), which gives a bound for the perturbation of the canonical

angles of the eigenspaces of self-adjoint matrices. We present an infinite-dimensional

extension of Yu et al. (2015, Theorem 2), which simplifies the original results by Davis

and Kahan.

Theorem A.4.4 (Eigenspace perturbation). Let A : H → H and Â : H → H be

compact positive self-adjoint operators with nonincreasingly ordered eigenvalues (µi(A))i∈I
and (µi(Â))

i∈Î . Let furthermore r < min{rank(A), rank(Â)} and U and Û be the sets

containing the first r eigenvectors of A and Â. Assume µr(A) 6= µr+1(A). Then we have

∥∥∥sin Θ(U, Û)
∥∥∥
F
≤

2 min

{
√
r
∥∥∥A− Â∥∥∥ ,∥∥∥A− Â∥∥∥

S2(H)

}
µr(A)− µr+1(A)

.

Proof. Let W and Ŵ be the sets of first r + 1 eigenvectors of A and Â, respectively. We

define the operators A0 := Π
W∪ŴAΠ

W∪Ŵ and Â0 := Π
W∪Ŵ ÂΠ

W∪Ŵ . By construction,

the first r + 1 eigenvalues and eigenvectors of A0 and Â0 coincide with the first r + 1

eigenvalues and eigenvectors of A and Â, respectively. By choosing some orthonormal

basis of the finite-dimensional space span(W ∪ Ŵ ) and expressing A0 and Â0 in terms

of matrices, we can apply Yu et al. (2015, Theorem 2) to A0 and Â0 and obtain the

assertion. �
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The above theorem can be directly transferred to the singular value decomposition by

applying the proof provided by Yu et al. (2015, Theorem 3).

Corollary A.4.5 (Singular subspace perturbation). Let A : H → H ′ and Â : H → H ′

be compact operators. Let furthermore r < min{rank(A), rank(Â)} and U and Û be the

sets containing left singular functions corresponding to the top r dominant singular values

of A and Â, respectively. Assume ρr(A) 6= ρr+1(A). Then we have

∥∥∥sin Θ(U, Û)
∥∥∥
F
≤

2
(

2ρ1(A) +
∥∥∥A− Â∥∥∥)min

{
√
r
∥∥∥A− Â∥∥∥ , ∥∥∥A− Â∥∥∥

S2(H)

}
ρr(A)2 − ρr+1(A)2

.

The above bound also holds when U and Û are replaced with the sets of top r right singular

functions V and V̂ of A and Â, respectively.

A.5. Concentration bounds in Hilbert spaces

We present concentration inequalities for both independent and weakly dependent vector-

valued random variables defined on a common probability space (Ω,F ,P).

A.5.1. Generalized Hoeffding bound

We review a well-known vector-valued version of Hoeffding’s inequality in Hilbert spaces

due to Pinelis (1992, 1994). We call a sequence of random variables (Sk)k∈N a martin-

gale sequence, if E[Sn+1 | Fn1 ] = Sn for all n ∈ N, where Fn1 is the σ-field induced by

(S1, . . . , Sn).

Theorem A.5.1 (Pinelis 1994, Theorem 3.5). Let (Sk)k∈N be a martingale sequence with

values in a separable real Hilbert space H such that
∑∞

k=1 ess sup ‖Sk − Sk−1‖2H ≤ C2 for

some constant C2 > 0. Then for every ε > 0, we have

P
[
sup
k∈N
‖Sk‖H ≥ ε

]
≤ 2 exp

(
− ε2

2C2

)
.

The following vector-valued generalization of Hoeffding’s inequality is an immediate

consequence.

Corollary A.5.2 (Hoeffding’s inequality in Hilbert spaces). Let ξ1, . . . , ξn be independent

random variables in a separable Hilbert space H such that P-a.e. ‖ξi‖H ≤M and E[ξi] = 0

for all 1 ≤ i ≤ n. Then for all ε > 0, we have

P

[∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
H

≥ ε

]
≤ 2 exp

(
− nε2

2M2

)
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Proof. For a fixed n ∈ N, define the martingale sequence (Sk)k∈N by

(Sk) := 1(1≤k≤n)

(
k∑
i=1

ξi

)
, 0 ≤ k.

Then Sk clearly satisfies

∞∑
k=1

ess sup ‖Sk − Sk−1‖2H =
n∑
k=1

ess sup ‖ξk‖2H ≤ nM
2.

For every ε > 0, applying Theorem A.5.1 to (Sk)k∈N yields

P

[∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥
H

≥ ε

]
≤ 2 exp

(
− ε2

2nM2

)
,

which implies the assertion by multiplying ε with n. �

A.5.2. Generalized Bernstein bound

When the higher moments of the random variables ξ1, . . . , ξn can be bounded, results

like the following version of Bernstein’s inequality due to Pinelis and Sakhanenko (1986,

Corollary 1) can be proven and may lead to sharper inequalities.

Theorem A.5.3 (Bernstein’s inequality in Hilbert spaces). Let ξ1, . . . , ξn be independent

random variables in a separable real Hilbert space H such that E[ξi] = 0 for all 1 ≤ i ≤ n
and there exist constants σ2 > 0 and L > 0 such that

n∑
i=1

E[‖ξi‖pH ] ≤ p!

2
σ2Lp−2 for all p ≥ 2. (A.9)

Then for all ε > 0, we have

P

[∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
H

≥ ε

]
≤ 2 exp

(
− n2ε2

2(σ2 + nLε)

)
.

Note that whenever we have ‖ξi‖H ≤ L P-a.e. and E[‖ξi‖2H ] ≤ σ̃i
2 for all 1 ≤ i ≤ n,

then
n∑
i=1

E[‖ξi‖pH ] ≤
n∑
i=1

E[‖ξi‖2H ]Lp−2 ≤ nσ̃2Lp−2

such that (A.9) holds with σ2 := nσ̃2.
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A.5.3. Generalized Bernstein bound for weakly dependent random

vectors

We now briefly review a version of a tail bound for weakly dependent Hilbertian random

variables due to Rhomari (2002).1 This result can be understood as a generalized Bernstein

bound for β-mixing sequences and incorporates variance proxies of the involved random

variables in terms of second moments of their respective norms. The structure of these

bounds is comparable to the bounds provided by Bosq (2000, Theorem 2.12 and Corollary

2.4) for α-mixing sequences which we apply in Section 5.5 and Section 5.6.

Both types of bounds can be used to derive convergence rates for corresponding strong

laws of large numbers under additional assumptions on the mixing rates (Bosq 2000,

Corollary 2.4; Rhomari 2011, Corollary 14.4).

We now state the vector-valued Bernstein bound for β-mixing sequences as given by

(Rhomari 2002, Théorème 3.1). Note that the original reference states the result below

for nonstationary sequences. We state it directly for stationary case and incorporate the

resulting simplifications.

Theorem A.5.4 (Generalized Bernstein bound for β-mixing sequences). Let (ξt)t∈Z be

a stationary stochastic process taking values in a separable real Hilbert space H such that

E[ξ0] = 0 with β-mixing coefficients β(n). Fix some n ∈ N. Suppose there exist constants

σ2 > 0 and M > 0 such that for 1 ≤ l ≤ bn/2c, we have

‖ξ1 + · · ·+ ξl‖H ≤ lM P-a.e., (A.10)

E[‖ξ1 + · · ·+ ξl‖2H ] ≤ lσ2. (A.11)

Then for all ε > 0, the bound

P

[∥∥∥∥∥ 1

n

n∑
t=1

ξt

∥∥∥∥∥
H

≥ ε

]
≤ 4 exp

(
− nε2

4(1 + 2l/n)σ2 + 4lMε/3

)
+
(n
l

+ 2
)
β(l)

holds.

Remark A.5.5 (Simplification for bounded random variables). The conditions of Theo-

rem A.5.4 are fulfilled if the ξt are almost surely bounded. In particular, if ‖ξ0‖H < M

P-a.e. then (A.10) holds trivially and (A.11) holds with

σ2 ≤M2

(
1 + 5

l−1∑
i=1

β(i)

)
, (A.12)

which is a slightly stronger version of the simplification provided (but not proven) by

Rhomari (2002, 2011). We now prove (A.12). Let Ft ⊆ F be the σ-field induced by

1see also Rhomari (2011) for related results in English
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the random variable ξt. We recall the definition of the strong mixing coefficients from

Section 3.6.2. Then by using the covariance inequality for α-mixing almost surely bounded

sequences by Dehling and Philipp (1982, Lemma 2.2), we have

E[‖ξ1 + · · ·+ ξl‖2H ] = E
[〈 l∑

i=1

ξi,
l∑

j=1

ξj
〉
H

]
= E

[ l∑
i,j=1

〈ξi, ξj〉H
]

≤
l∑

i=1

E
[
‖ξi‖2H

]
+

l∑
i 6=j

∣∣∣E[ 〈ξi, ξj〉H ]∣∣∣
≤ lM2 +

l∑
i 6=j

10M2α(Fi,Fj)

≤ lM2 + l

l−1∑
i=1

10M2α(i)

= lM2

(
1 + 10

l−1∑
i=1

α(i)

)
.

The hence the assertion (A.12) follows from α(i) ≤ 1
2β(i) for all i.

A.6. Inverse problems and regularization

We give a concise overview of the most important concepts of ill-posed linear inverse

problems in Hilbert spaces and their regularization. For details, we refer the reader

to Engl et al. (1996).

In what follows, we consider two real Hilbert spaces H,F and a bounded operator

A : H → F . We are interested in finding a solution h ∈ H to the operator equation

Ah = f (A.13)

for a given right-hand side f ∈ F . The operator A is often called forward operator and f

is often called data in this context. Problem (A.13) is called well-posed, if

(i) for all f ∈ F , a unique solution h ∈ H exists and

(ii) the solution depends continuously on the data.

If these two conditions do not hold, then we call (A.13) ill-posed. Note that a necessary

condition for (i) is range(A) = F , which already fails to hold in case A is compact and F

is infinite-dimensional.

We now generalize the notion of a solution to problem (A.13) in order to deal with

ill-posed problems in a meaningful way.
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Definition A.6.1. An element u ∈ H is called least squares solution of (A.13), if

‖Au− f‖2F = inf
h∈H
‖Ah− f‖2F .

And element u ∈ H is called best approximate solution of (A.13), if

‖u‖H = inf{‖h‖H |h ∈ H is a least squares solution of (A.13)}.

Thus, the best approximate solution is a least squares solution of minimal norm. We

characterize the existence of these solutions through the Moore–Penrose pseudoinverse

of A. We first observe that the restriction of A to the orthogonal complement of its

nullspace is always bijective: that is,

A
∣∣
ker(A)⊥

: ker(A)⊥ → range(A)

admits a bounded inverse. We now make use of this fact to define the Moore–Penrose

pseudoinverse. Additionally, for two subsets S ⊆ F and S′ ⊆ F , we introduce the

shorthand notation

S + S′ := {f + f ′ | f ∈ S, f ′ ∈ S′} ⊆ F.

Definition A.6.2 (Pseudoinverse). Consider the (not necessarily closed) set

M := range(A) + range(A)⊥ ⊆ F.

We call the operator A† : M → H given by

A†f :=

0 f ∈ range(A)⊥,

(A
∣∣
ker(A)⊥

)−1f f ∈ range(A)

the Moore–Penrose pseudoinverse or simply pseudoinverse of A.

Remark A.6.3. While A† can always be defined on the domain M , it is generally not a

bounded operator and is furthermore not globally defined as an operator from F to H.

Note that range(A) is typically not a closed subspace of F , so in this case we have

M = range(A) + range(A)⊥ 6= F.

It can be shown that A† is bounded if and only if range(A) is closed (Engl et al., 1996,

Proposition 2.4).

For a more detailed analysis of the properties of generalized inverse operators, we refer

the reader to Ben-Isreal and Greville (2003). We now describe the connection between

A† and the best approximate solutions of (A.13).
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Theorem A.6.4 (Engl et al. 1996, Theorems 2.5 & 2.6). The problem (A.13) has a least

squares solution if and only if f ∈M = dom(A†) ⊂ F . In this case, the best approximate

solution is unique and is given in terms of

u† := A†f ∈ H.

Equivalently, u† can be characterized as the best approximate solution to the so-called

normal equation

A∗Ah = A∗f, h ∈ H

and therefore admits the representation

u† = (A∗A)†A∗f,

i.e., we have A† = (A∗A)†A∗.

In practical applications, we face the situation that we only have access to perturbed

versions of the forward operator A or the data f (for example through discretization

or empirical estimation). So even if the analytical best approximate solution u† = A†f

exists, we can not be certain that the perturbed problem can be solved and is stable,

since A† is generally not continuous. We therefore regularize the problem by introducing

globally defined operators which approximate A†.

Definition A.6.5 (Regularization). A parametrized family of globally defined bounded

operators

{gλ(A) : F → H |λ ∈ (0,∞]}

is called a regularization strategy for A, if for every f ∈M = dom(A†), there exists a

sequence (λn)n∈N ∈ (0,∞], such that

gλn(A)f → u† = A†f, n→∞.

In particular, we focus on the special case of Tikhonov–Phillips regularization (Phillips,

1962; Tikhonov and Arsenin, 1977) in this work.

Theorem A.6.6 (Tikhonov–Phillips regularization). For every λ > 0, the operator

A∗A+ λIdH : H → H

is bijective and therefore admits a bounded inverse. The family of operators

gλ(A) := (A∗A+ λIdH)−1A∗, λ > 0

is a regularization strategy and for every f ∈M = dom(A†), we have

uλ := gλ(A)f → u†
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as λ→ 0. Furthermore, the regularized solution uλ ∈ H is the unique minimizer of the

Tikhonov error functional

h 7→ ‖Ah− f‖2F + λ ‖h‖2H , h ∈ H.

For proofs of the above results, may consult Engl et al. (1996, Theorems 4.1 & 5.1).

When f ∈M = dom(A†), a natural question is to ask how fast the regularization error∥∥uλ − u†∥∥H converges to 0 depending on the rate of λ→ 0. It is known that in general,

the convergence rate can be arbitrarily slow and may be assessed under smoothness

assumptions about the data f (Schock, 1984).

In practice, a perturbed problem given by an approximation Aδ1 : H → F of the forward

operator and an approximation fδ2 ∈ F of the data is usually considered instead of

problem (A.13). That is, we solve

Aδ1h = fδ2

under the assumption that ‖Aδ1 −A‖ < δ1 and ‖fδ2 − f‖F ≤ δ2 hold as approximation

errors of the forward operator and the data. One of the central goals of regularization

theory is to assess the rate of convergence of the perturbed regularized solution

uλ,δ1,δ2 := gλ(Aδ1)fδ2 ∈ H

to the true best approximate solution u† depending on the regularization strategy gλ
and a suitable regularization parameter scheme λ = λ(δ1, δ2) under the assumption that

δ1 → 0 and δ2 → 0.
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