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Pooling, room temperature, and extended storage time increase
the release of adult-specific biologic response modifiers in platelet

concentrates: a hidden transfusion risk for neonates?

Miriam Waubert de Puiseau,1,† Lina K. Sciesielski ,1,† Oliver Meyer,2 Zhi-Jian Liu,3

Chiara-Aiyleen Badur,1 Helge Schönfeld,4 Rudolf Tauber,4 Axel Pruß,2 Martha C. Sola-Visner,3 and

Christof Dame 1

BACKGROUND: Adult donor platelets (PLTs) are
frequently transfused to prevent or stop bleeding in
neonates with thrombocytopenia. There is evidence for
PLT transfusion–related morbidity and mortality, leading
to the hypothesis on immunomodulatory effects of
transfusing adult PLTs into neonates. Candidate factors
are biologic response modifiers (BRMs) that are
expressed at higher rates in adult than in neonatal PLTs.
This study investigated whether storage conditions or
preparation methods impact on the release of those
differentially expressed BRMs.
STUDY DESIGN AND METHODS: Pooled PLT
concentrates (PCs) and apheresis PCs (APCs) were
stored under agitation for up to 7 days at room
temperature (RT) or at 2 to 8°C. The BRMs CCL5/
RANTES, TGFβ1, TSP1, and DKK1 were measured in
PCsʼ supernatant, lysate, and corresponding plasma.
PLT function was assessed by light transmission
aggregometry.
RESULTS: Concerning the preparation method, higher
concentrations of DKK1 were found in pooled PCs
compared to APCs. In supernatants, the concentrations
of CCL5, TGFβ1, TSP1, and DKK1 significantly
increased, both over standard (≤4 days) and over
extended storage times (7 days). Each of the four BRMs
showed an up to twofold increase in concentration after
storage at RT compared to cold storage (CS). There was
no difference in the aggregation capacity.
CONCLUSION: This analysis shows that the release of
adult-specific BRMs during storage is lowest in short-
and CS APCs. Our study points to strategies for
reducing the exposure of sick neonates to BRMs that
can be specifically associated to PLT transfusion–related
morbidity.

ABBREVIATIONS: ADP = adenosine diphosphate;

APC(s) = apheresis-derived platelet concentrate(s);

BPD = bronchopulmonary dysplasia; BRM = biologic response

modifier(s); CCL5 = chemokine C-C motif 5 alias RANTES;

CRP = C-reactive protein; CS = cold storage; DKK1 = Dickkopf-

related protein 1; IL-6 = interleukin-6; LoD = limit of detection;

PPC(s) = pooled platelet concentrate(s); RCT = randomized

controlled trial; RT = room temperature; TGFβ1 = transforming

growth factor β1; TSP1 = thrombospondin 1.
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T
hrombocytopenia and hemorrhage are frequent
issues in very preterm or sick neonates.1 To
prevent or to stop bleeding in neonates with
thrombocytopenia, adult donor platelets (PLTs)

are commonly transfused.2 However, neither a causal
association between PLT count and bleeding risk nor a
reduction of bleedings by prophylactic PLT transfusion
could be confirmed in a recent systematic review.3 Most
recently, the randomized controlled trial (RCT) on PLTs
for Neonatal Transfusion (PlaNeT2) showed that among
preterm infants with thrombocytopenia those who
received a prophylactic PLT transfusion at a threshold of
50 × 109/L had a significantly higher rate of death or
major bleeding than those neonates with a restrictive PLT
transfusion threshold of 25 × 109/L.4 In another RCT on
PLT transfusion for closure of a patent ductus arteriosus
in preterm infants, liberal PLT transfusion thresholds
were associated with a significantly higher rate of intra-
ventricular hemorrhage.5 Thus, against common beliefs,
clinical data indicate that PLT transfusions may indeed
harm preterm and sick term neonates.6

The exact cause for the association between PLT
transfusion and adverse outcomes is unknown. More gen-
erally, transmission of infectious diseases, transfusion-
related lung injury, and transfusion-related circulatory
overload were repeatedly discussed, especially in adult
intensive care. In pediatric patients, PLT transfusion was
associated with an increased incidence of allergic transfu-
sion reactions when compared to adults.7 In neonates,
PlaNeT2 showed increased rates of bronchopulmonary
dysplasia (BPD) in infants randomly assigned to the high-
threshold PLT transfusion group.4 The higher risk of hem-
orrhage and the increased rate of BPD associated with a
PLT transfusion in infants suggest that adult donor PLTs
lead to organ damage as consequence of disturbances in
the developing hemostatic system and/or of reactive
proinflammatory properties.8

The accumulation of various molecules released from
donor PLTs, such as (pro-) inflammatory mediators, micro-
particles, membrane lipids, and biologic response modifiers
(BRMs) has been theorized as cause for noninfectious
adverse events after PLT transfusion. This theory is even
more relevant for neonates, since certain BRMs were found
at higher concentrations in adult than in neonatal PLTs.
Such BRMs include chemokine C-C motif 5 (CCL5 alias
Regulates on Activation Normal T cell Expressed and
Secreted [RANTES]), Transforming growth factor β1
(TGFβ1), thrombospondin 1 (TSP1), and Dickkopf-related
protein 1 (DKK1). These proteins are present in the PLTʼs
alpha-granule9–12 and have the capacity to regulate recruit-
ment and/or activation of various immune cells,13–17

inhibiting both megakaryopoiesis and angiogenesis.17,18

Among these proteins, CCL5 has previously been studied in
transfusion reactions,19–21 and both TGFβ1 and TSP1 have

been found to be associated with BPD and retinopathy of
prematurity.22 This raises the question of whether such
BRMs are released from stored adult donor PLTs and if the
release is impacted by PLT preparation (apheresis-derived
PLT concentrates [APCs] or whole blood–derived pooled
PLT concentrates [PPCs]) and storage conditions (time,
temperature).

MATERIALS AND METHODS

PCs

Both PPCs, prepared by the buffy coat method, and APCs
were leukoreduced and nonirradiated.23 PLTs were stored
in clot-preventing additive solutions (Supplement S1, avail-
able as supporting information in the online version of this
paper). PCs were limited to blood group O, while Rh factor
status or sex were not considered. Analysis was started
when the PCs would have been available for transfusion.
Matched pairs of APCs and nonmatched pairs of PPCs were
stored either at 22°C (room temperature [RT]) or at 2 to 8°C
(cold storage [CS]), both with constant horizontal agitation.
PCs were sampled on Days 1 (only APCs), 2, 3, 4, and 7.

Blood count and immature PLT fraction

Blood count variables, including mean PLT volume (MPV)
and immature PLT fraction values, were determined by an
automated hematology analyzer (SN-1000, Sysmex).

PC supernatants and lysates, analysis of IL-6 and
C-reactive protein

Platelet supernatants were collected by centrifugation at
3000 × g for 10 minutes at RT and stored in aliquots at −80°
C until enzyme-linked immunosorbent assays (ELISAs) were
performed. Corresponding PLT lysates were prepared by an
optimized freeze–thaw method.24 PC lysates were cleared
from cellular components by centrifugation at 3000 × g for
5 minutes at RT and stored at −80°C. Interleukin 6 (IL-6)
and C-reactive protein (CRP) concentrations were deter-
mined using the Elecsys IL-6 (on Cobas e801 analyzer) and
CRP Gen.3 assay (on Cobas c701 analyzer, all Roche),
respectively.

ELISA

Concentrations of CCL5, TGFβ1, TSP1, and DKK1 were
determined in supernatants and lysates, as well as in plasma
of the APC donor, using DuoSet ELISAs (R&D Systems).
Absorbance was read with an microplate absorbance reader
(iMARK, Bio-Rad). Samples were diluted in reagent diluent
(Supplement S2, available as supporting information in the
online version of this paper).
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Light transmission aggregometry

For light transmission aggregometry, a fresh 600-μL aliquot
of PC was centrifuged at 939 × g without brake for 7 minutes
at 37°C. The pellet was resuspended in 1 mL of suspension
buffer (Supplement S3, available as supporting information
in the online version of this paper). The PLT count was
measured with an analyzer (KX 21 N, Sysmex ), and suspen-
sion buffer was added to achieve a final PLT concentration
of 250 × 109/L. Before testing, PLTs rested for 60 to
70 minutes at 37°C with manual agitation every 15 minutes.
Light transmission aggregometry was performed using an
aggregometer (PAP-4 series, Biodata Corporation) with col-
lagen (final concentration 10 μg/L) and thrombin receptor-
activating peptide 6 (TRAP6; final concentration 0.1 mmol/
L, both from HART Biologica).

Swirling, pH, and sterility

To verify the quality of the PC, the presence of swirling was
assessed and the pH was determined by soaking pH paper.
Sterility of the PCs was evaluated after 7 days in an auto-
mated blood culture system (BacT/ALERT, bioMérieux).

Statistical analysis

Data were analyzed with computer software (SPSS Statistics
22, IBM Corp.). Two-way analysis of variance (ANOVA) was
used to examine differences over time between the four
groups and each condition and for comparing standard ver-
sus extended storage time. Longitudinal changes were
examined by Friedmanʼs test (K-linked sample analysis).
The t test was used to investigate differences in PLT count
and MPV between conditions at each time point.

Ethical approval

Approval for the study was given by the institutional review
board (EA2/152/17).

RESULTS

Swirling, sterility, and pH

At the initiation of the experiments, swirling was assessed
in each PC. PCs stored at RT retained their swirling
throughout the whole storage time, unlike CS PCs where
no swirling could be observed from 24 hours of CS
onward. A 7-day incubation in a blood culture system con-
firmed sterility in each PC on Day 7 of storage. In all PCs,
pH values did not change from initiation with a mean
(range) of 7.0 (6.5-7.3) to 6.9 (6.6-7.4) on the final
trial day.

Blood count, MPV, and immature PLT fraction

To evaluate degradation or changes in the shape of PLTs
during the entire storage time, PLT count and MPV were
determined comparing both the methods of preparation
and the different types and times of storage. Generally, the
measured PLT counts and MPV were higher in PPCs than
in APCs, that is, at both RT and CS and at all times
(Table 1). Comparing time points of storage, significantly
higher PLT counts and MPV were measured 24 hours after
initiation of CS compared to baseline values in both CS
PPCs and APCs, but not at RT. Both variables remained sta-
ble during the later course of storage. For CS PPCs and
APCs, PLT counts and MPV also did not change after return
to RT (data not shown). Baseline values varied 1) between
different PPCs (2.5 � 1.1%) and 2) between the APCs of the

TABLE 1. PLT count and MPV during storage time*
Baseline (at initiation of storage) 24 hours (after initiation of storage) Day 4 Day 7

A. PLT count
RT APC 821 � 154 789 � 105 777 � 110 807 � 109
p value NS

RT PPC 1055 � 263 1074 � 300 1046 � 282 1043 � 252
p value NS

CS APC 858 � 118 989 � 79 961 � 137 962 � 114
p value 0.004

CS PPC 1044 � 138 1290 � 121 1307 � 187 1290 � 130
p value <0.001

B. MPV
RT APC 9.2 � 0.5 9.1 � 0.5 9.0 � 0.4 9.1 � 0.5
p value NS

RT PPC 9.6 � 0.4 9.8 � 0.3 9.8 � 0.3 10.1 � 1.1
p value NS

CS APC 9.2 � 0.5 9.9 � 0.6 10.0 � 0.5 10.1 � 0.7
p value 0.003

CS PPC 9.4 � 0.2 10.3 � 0.3 10.5 � 0.4 10.9 � 0.3
p value <0.001

* Absolute values (A, ×109 /L; B, fL) are presented as mean � SD, n = 6 in each group. Significance (p < 0.05) was determined by paired t test.
NS = not significant.
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individual donors (1.5 � 1.0%), but showed no significant
changes over storage time (data not shown).

IL-6 and CRP

IL-6 and CRP concentrations were measured to evaluate
whether the amount of standard inflammatory markers
varied depending on PC preparation method, storage
time, or storage temperature. In 50% of specimens, the
concentration of IL-6 (as early inflammatory marker pro-
tein) was found slightly above the limit of detection (LoD)
of the assay (LoD 1.5 ng/L, range of measured values
<1.5-3.6 ng/L). This finding was equally distributed
between PPCs versus APCs and RT versus CS (Supple-
ment S4, available as supporting information in the
online version of this paper). In 96% of supernatants from
PPCs, CRP (as unspecific late inflammatory marker

protein) was present at concentrations above LoD (LoD,
0.3 mg/L; maximal value measured, 1.2 mg/L), while
detectable CRP was found only in 20% of APC superna-
tants (Supplement S5, available as supporting information
in the online version of this paper). This difference was
significant (p < 0.001). However, the concentrations of
both IL-6 and CRP were extremely low in all specimens
(data not shown), suggesting lack of any clinical
significance.

CCL5, TGFβ1, TSP1, and DKK1

CCL5, TGFβ1, TSP1, and DKK1 concentrations were deter-
mined to examine whether the putative release of BRMs
from PLTʼs alpha-granules varies depending on the prepa-
ration method, storage time, or storage temperature. To
reduce the influence of varying PLT counts, the protein
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concentrations were normalized to the initial PLT count of
each PC. All four BRMs were measured at concentrations
far above the LoD in both lysates and supernatants (Figs. 1–
4), but below (TGFβ1, DKK1) or just above (CCL5, TSP1)
the LoD in the donor’s plasma (data not shown).

At the initiation (Day 2), only the concentration of
DKK1 differed significantly with higher baseline concentra-
tion in PPCs than in APCs (Fig. 1A). Depending on the
preparation method and the storage conditions, both in PC
supernatants and in PC lysates, specific patterns of changes
in CCL5, TGFβ1, TSP1, and DKK1 concentrations were
observed. In PC supernatants, a significant increase of
CCL5, TGFβ1, TSP1, and DKK1 was observed over both
standard (Days 2-4) and extended (Days 2-7) storage times
(Figs. 1–4).

At all time points, the mean concentration of all four
BRMs was higher in lysate than in supernatant. In contrast
to PC supernatant, the concentrations of CCL5 and TGFβ1
in PC lysates showed a significant increase only over
extended storage time, but not during standard storage
time (Figs. 2B and 3B). There was no significant change in
the concentration of TSP1 in lysates of PCs (Fig. 4B). The
concentration of all four alpha-granule proteins with
higher expression in adult PLTs increased significantly
more in RT PCs than in CS PCs over both standard and
extended storage times (Figs. 1C-4C). Notably, the direct
comparison between undetectable/very low BRM concen-
trations in the donorʼs plasma and those from PC superna-
tant and PLT lysate indicates that the BRMs were indeed
released from the stored PLTs.
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PLT function test

Light transmission aggregometry was used for monitoring

PLT function. In CS, PCs PLT counts increased after at least

24 hours of CS (Table 1). During storage time, both APCs

and PPCs showed a decrease of the final aggregation with

both agonists tested (TRAP6 and collagen; Fig. 5), which

was generally pronounced, but significant only if activation

was performed with collagen. However, this phenomenon

was obvious only in APCs stored at RT and in PPCs stored

at 4°C (Figs. 5B and 5D). Since the type of PLT preparation

had no effect on final aggregation (data not shown), the

question of the impact of temperature on PLT function was

addressed by comparing PLT function in RT versus CT APCs

(Figs. 5A and 5B) as well as RT versus CT PPCs (Figs. 5C

and 5D). However, there was also no significant difference

in the aggregation depending on the storage at RT or at 2 to
8°C (Figs. 5E and 5F). In addition, adenosine diphoshate
(ADP) was tested at different concentrations (3-20 μmol/L),
but no aggregation was observed (data not shown).

DISCUSSION

Herein, we present the first systematic analysis on the
release of BRMs during storage of PCs known to be
expressed at higher levels in adult than in neonatal PLTs
(CCL5/RANTES, TGFβ1, TSP1, and DKK1). Notably, the
release of each of these BRMs changed specifically
depending on the pretransfusion variables: 1) preparation
method, 2) storage time, and 3) temperature. Concerning
the preparation method, a significant difference in the
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initial concentration of the four BRMs was found only for
DKK1. Particularly, APCs showed a significantly lower
release of DKK1 than PPCs (Fig. 1A). The most robust
findings for all four factors were 1) the increased release of
the BRMs with storage time and 2) the higher concentra-
tions in the supernatants of PCs stored at RT versus CS
(Figs. 1–4). These experimental data argue for using rather
fresh PLTs in transfusing preterm and term neonates.
However, there is a continuous debate on whether trans-
fusing fresh versus standard-issue blood products into criti-
cally ill pediatric patients reduces the incidence of new or
progressive multiple organ dysfunction. Concerning red
blood cell (RBC) transfusion, the recently published RCT
“Age of Blood in Children in Pediatric Intensive Care Unit”
(ABC-PICU) did not find a significant correlation between
the storage length of the blood product and the clinical
outcome variables.25 However, such RCT is currently not
available for stored PCs.

Quantitatively, the most prominent impact of storage
temperature was found when determining the concentra-
tion of CCL5 in supernatants (Fig. 2A). More generally, a
previous study has also shown CS PCs to release less BRMs
than RT PCs.26 However, each BRM analyzed in our panel
deserved further attention regarding its biologic function
and putative consequence for PLT transfusion in clinical
neonatology.

The concentration of CCL5 increased by 10% during
standard (Days 2-4) and by 17% during extended storage
(Days 2-7) in CS, while the corresponding values for RT
were 60 and 130%, respectively (Fig. 2A). The accumulation
of CCL5 over storage time and the decreased release in CS
found in this study are concordant to findings of previous
studies.26–29 CCL5 is a proinflammatory chemoattractant
released by a variety of cells, including PLTs.15 It attracts
lymphocytes, neutrophils, and basophils among others and
has also been shown to induce histamine release in baso-
phils and degranulation of eosinophils.15,30,31 Due to these
allergic properties, CCL5 has been investigated in associa-
tion with allergic response(s) after PLT transfusion.19–21

Assuming that CCL5 was limited to the intravascular space
and had a molecular weight of approximately 8 kDa,20 an
adult 70-kg patient would be exposed to a final concentra-
tion of 1.6 or 1.1 nmol/L after being transfused with 250 mL
(approximately 3 mL/kg body weight) of a 4-day-old RT or
CS PC, respectively. In neonates, donor PLTs are commonly
transfused with a volume of 15 mL/kg body weight,32 which
would result in a fivefold higher CCL5 exposure of this
patient group if PLTs were stored as RT and CS PC, respec-
tively, resulting in 8.1 or 5.4 nmol/L in neonatal plasma.

Cold-stored PCs and APCs showed a significantly lower
release of DKK1 than RT PCs and PPCs, both over standard
and over extended storage (Fig. 1). DKK1 is a
proinflammatory protein, a major suppressor of the Wnt/β-
catenin signaling pathway and exerts important regulatory
functions in white blood cell (WBC) infiltration and T-cell
cytokine production.13,33 DKK1 has also been shown to

increase PLT-mediated release of inflammatory cytokines
from endothelium.34 Such mechanism could also contribute
to transfusion-associated morbidity in neonates.

Transforming growth factor β1 was also released less in
CS PCs than in RT PCs (Fig. 3). The concentration of TGFβ1
increased 23% for standard and 58% for extended storage in
the CS PCs, while the corresponding values for RT PCs were
81 and 148%, respectively. TGFβ1 is a predominantly anti-
inflammatory protein involved in fibrosis, immune response
suppression, angiogenesis, and inflammation.16 TGFβ1 is
stored in its latent form and released from various immune
cells, including PLTs upon activation, and can then be acti-
vated by different molecules. The half-life of activated
TGFβ1 is only a couple of minutes. TGFβ1 is a potent inhibi-
tor of megakaryopoiesis,18 and thus TGFβ1 could have
counterproductive effects when being transfused to a
thrombocytopenic neonate. Former studies investigating the
concentrations of BRM in PCs have performed screenings
with preloaded cytokine antibody arrays to determine which
BRMs to further examine.26,29 Considering the samples in
these studies were not activated before measurement, the
concentrations of TGFβ1 were very low or undetectable and
TGFβ1 was not studied further.26,29 However, the activation
of TGFβ1 is required—as we did in our experiments—to
reflect it endogenous biologic response that it would exert
in the human body.

TSP1 is one of the molecules identified as an activator
of TGFβ135 and was also released less in CS PCs compared
to RT PCs (Fig. 4). TSP1 is a BRM with functions in both
pro- and anti-inflammatory pathways, including regulation
of migration, proliferation, cell adhesion, hemostasis, and
growth factor activity.17 TGFβ1 and TSP1, as regulators of
angiogenesis, have been suggested as potential protective
mediators in BPD and retinopathy of prematurity.22 Thus,
increased concentrations of TGFβ1 and TSP1 could contrib-
ute to the higher rate of BPD associated with liberal PLT
transfusion thresholds in the PlaNeT2 trial.4,8

More generally, we observed an early increase of PLT
count in CS, which is not in line with the results of other
authors who found a decrease over storage time.36–38 The
observed increase in MPV in CS PCs was expected and
reflects the CS-induced conformational change from dis-
coid to spherocytic shape of the PLTs.36 There were also
no changes in the very low numbers of RBCs and WBCs
counted. The early increase of PLT counts in CS PCs is
difficult to explain and is likely an artifact of counting in
the fully automated blood analyzer. Moreover, the
decrease in final aggregation by light transmission
aggregometry reflects the known storage lesion depen-
dent on glycolytic metabolism of stored PLTs.38,39 CS may
reduce this glycolytic metabolism leading to higher maxi-
mal aggregation.39 Multiple studies showed that PCs and
whole blood stored at 4°C are hemostatically more effec-
tive than those stored at RT.40,41 Such effect was not obvi-
ous in our analysis (Fig. 5). Interestingly, the releasate
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from TRAP6-activated PLTs was able to increase megakar-
yocyte proPLT formation, probably via CCL5.42

In neonatal intensive care, it should be considered,
however, that CS PCs contain more microparticles than
those stored at RT,26 which might be of concern since
microthromboembolisms are accused of causing
transfusion-associated necrotizing enterocolitis. Further-
more, it should be taken into account that in a human-
ized animal model CS, PLTs display an accelerated
clearance from the circulation,43 predisposing them
rather for treatment of acute bleeding than for prophylac-
tic PLT transfusion in the thrombocytopenic neonate. In
pediatric trauma patients with hemorrhagic shock, how-
ever, a recent clinical trial on the transfusion of CS versus
RT whole blood PLTs showed no differences in posttrans-
fusion PLT numbers and function.44

Development-specific differences between neonates
and adults are evident both for PLT biology as well as
plasmatic coagulation and hemostasis.45,46 Transfusion of
either adult PLTs into the neonatal plasmatic coagulation
system or of adult plasma that reacts with neonatal PLTs
seem to disturb the unique hemostatic balance in the
neonate, particularly in the very preterm infant, resulting
in a higher risk of (secondary) major hemorrhage. Our
data strongly suggest that besides this development-
specific mismatch on PLT function, the accumulation of
BRMs with higher adult than neonatal expression could
be causal or contribute to noninfectious adverse events
after PLT transfusion.

There is currently no experimental evidence that a sin-
gle BRM (at a certain concentration) can be responsible for
PLT transfusion–associated morbidity (e.g. BPD), but this
hypothesis needs to be tested in appropriate animal models.
However, our study points to an easy strategy for reducing
the exposure of sick neonates to BRMs with high adult
expression levels by using the freshest PC available, poten-
tially even stored in the cold.
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