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Abstract

Pathological aggregation of amyloid-b (Ab) is a main hallmark of
Alzheimer’s disease (AD). Recent genetic association studies have
linked innate immune system actions to AD development, and
current evidence suggests profound gender differences in AD patho-
genesis. Here, we characterise gender-specific pathologies in the
APP23 AD-like mouse model and find that female mice show
stronger amyloidosis and astrogliosis compared with male mice. We
tested the gender-specific effect of lack of IL12p40, the shared
subunit of interleukin (IL)-12 and IL-23, that we previously reported
to ameliorate pathology in APPPS1 mice. IL12p40 deficiency gender
specifically reduces Ab plaque burden in male APP23 mice, while in
female mice, a significant reduction in soluble Ab1–40 without
changes in Ab plaque burden is seen. Similarly, plasma and brain
cytokine levels are altered differently in female versus male APP23
mice lacking IL12p40, while glial properties are unchanged. These
data corroborate the therapeutic potential of targeting IL-12/IL-23
signalling in AD, but also highlight the importance of gender consid-
erations when studying the role of the immune system and AD.
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Introduction

Alzheimer’s disease (AD) is a chronic progressive neurodegenera-

tive disorder associated with extracellular and intracellular protein

aggregates [1] which induce synaptic dysfunction and degeneration

of neurons and cause a characteristic clinical syndrome with promi-

nent cognitive impairment [2,3]. Extracellular amyloid-b (Ab)
deposits are one of the prominent hallmarks of the disease [1], and

a dysregulation of Ab metabolism is thought to be one of the earliest

pathological changes observable in AD patients, decades before first

clinical symptoms occur [4,5]. Mouse models of Ab deposition

provide a useful tool to study amyloidogenesis in vivo [6] which in

these mouse models is accompanied by an activation of the innate

immune response characterised by activated microglia surrounding

Ab plaques [7], mimicking microglia activation observed in the

brains of AD patients [8].

In the last decade, the importance of the innate immune response

in AD pathogenesis has risen, driven by the discovery of multiple

variants in immune system-associated genes conferring an increased

risk for the development of sporadic AD, including the microglia cell

surface receptors TREM2 and CD33 [9,10]. Even though these data

suggest that the innate immune system plays an important role in

AD, the exact nature of this immune response and its impact on

disease is still far from clear [7,11]. While the short-term depletion

of microglia had no major impact on development or progression of

Ab pathology [12,13], suggesting that microglia are rather inefficient

in acutely regulating Ab load, there are numerous examples in

which modulation of the microglia response towards Ab did have a
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major impact on disease progression [14–16], especially in long-

term depletion settings [17]. Similarly, we have reported an upregu-

lation of the inflammatory cytokines interleukin (IL)-12 and IL-23

by microglia in the brain of AD-like APPPS1 mice and demonstrated

that targeting IL12p40, the common subunit of both IL-12 and IL-23,

using either genetic or pharmacological strategies reduced Ab
pathology and ameliorated cognitive deficits inherent in these mice

[18]. The finding that IL12p40 levels are also de-regulated in the

cerebrospinal fluid (CSF) of AD patients [18], the correlation

between IL12p40 levels in plasma and mild cognitive impairment

(MCI) and AD [19] and the detection of elevated levels of IL12p70

in brain tissue of AD patients [20], further emphasises the relevance

of these pathways for the human disease condition.

Another observation derived from epidemiological studies

implies differences in the prevalence to develop AD between male

and female subjects [21–23]. Additionally, there are known dif-

ferences in both the innate and adaptive immune responses between

males and females [24], including gender-specific differences in

male versus female microglial phenotypes [25–27]. Single-cell tran-

scriptome analyses confirmed these notions by finding a gender-

specific response within all brain cell populations of male and

female AD patients, including microglia [28]. In light of these obser-

vations, our study aimed at identifying whether the effect of target-

ing the microglia-expressed IL12p40 on disease pathogenesis is

model- and/or gender-specific. We therefore crossed mice deficient

in IL12p40 to yet another AD-like mouse model, namely APP23 mice

[29]. APP23 mice show a much slower rate of Ab deposition than

APPPS1 mice [30] utilised in earlier studies, which recapitulates

more closely Ab pathology of human AD patients with respect to

the Ab accumulation time course and the histopathological Ab
composition consisting of a sound mixture of “soft”/”diffuse” and

“core” Ab plaques. Similar to effects described in human AD patient

populations [21–23], gender differences in plaque deposition have

been described in this mouse model, although these have not been

characterised thoroughly to the best of our knowledge [31,32]. To

address the latter, we assessed gender-specific properties of Ab
deposition as well as Ab processing, surrogate markers of neuritic

dystrophy and glial activation in male and female APP23 mice lack-

ing or harbouring the IL-12/IL-23 signalling pathway.

Results

Female APP23 mice show increased Ab pathology and astrogliosis
compared to male mice

We and others have previously described an increase in the IL12p40

subunit shared by the cytokines IL-12 and IL-23, in AD-like mouse

models [18,33], as well as CSF [18], plasma [19] and brain tissue

[20] of AD patients, but so far, no analysis of potential gender dif-

ferences has been performed. In order to validate these findings in a

mouse model of AD with slow Ab accumulation, more closely repre-

senting Ab pathology and Ab composition in sporadic AD patients,

we made use of the APP23 mouse model harbouring the Swedish

(KM670/671NL) mutation in the gene encoding the amyloid precur-

sor protein (APP) [29]. The APP23 mouse model reportedly shows

gender differences when examining Ab plaque load and behavioural

characteristics [31,32], which appears to relate more closely to the

pathogenetic events mimicking sporadic AD [21–23]. However, to

our knowledge no gender-specific side-by-side comparison of the

AD-like changes in male and female APP23 mice has been reported

so far. We therefore aimed at quantifying late-stage plaque burden

in 21-month-old APP23 male versus female mice using biochemical

and histological methods.

In order to gain insights into Ab accumulation, we generated

consecutive protein homogenates with increased detergent strin-

gency [34] of brains from male and female APP23 mice which were

each analysed on the Meso Scale Diagnostics (MSD) platform to

measure Ab1–40 and Ab1–42 content. Compared to male mice, we

found that female APP23 mice contain twofold higher levels of the

soluble (TBS fraction) and insoluble (SDS fraction) Ab1–40 isoform

(Fig 1A) as well as the Ab1–42 isoform (Appendix Fig S1A). We

could also confirm the published observation that Ab1–40 species are
the main Ab isoform present in brains of APP23 mice, while the

more aggregation-prone Ab1–42 isoform is less abundant (Fig 1A;

Appendix Fig S1A). Histologically, Ab plaque burden can be charac-

terised as being “diffuse” or “compact” [35]. Both types of plaques

can be detected with antibodies targeting the Ab protein itself, such

as 4G8 or the chemical compound pFTAA [36]. Additionally,

compact plaques can be visualised specifically using b-sheet-binding
dyes such as Congo Red [37]. In APP23 mice, we observed that the

cortical area covered by 4G8-, pFTAA- and Congo Red-positive

amyloid-b plaques was twice as high in female mice compared to

male mice (Fig 1B–D). Using the ratio between the area covered by

4G8-positive plaques and Congo Red-positive compact plaques, we

determined that compact plaques only account for a quarter of total

plaques in both male and female APP23 mice (Appendix Fig S1B).

To further investigate the differences between males and females

in the APP23 model, a filter retardation assay was used to determine

the presence of Ab aggregates in protein lysates [38]. Protein homo-

genates from APP23 mouse brains were positively selected for

aggregates larger than 0.2 lm in size. Immunostaining for 6E10,

staining the Ab protein, revealed that male mice have Ab aggregates

in the TBS-soluble protein fractions, few in the Triton-X fraction and

none in the SDS fraction. However, an increased amount of aggre-

gates was found in the FA fraction. In female mice, on the other

hand, aggregates were found increasingly in the Triton-X fraction,

SDS-soluble fraction and FA fraction at higher levels than in male

mice (Fig 1E; Appendix Fig S1C). This indicates gender-specific Ab
aggregation properties and higher levels of insoluble Ab aggregates

in female mice. Neuritic dystrophy is another common pathological

characteristic found in APP23 mice [29,39]. We thus stained tissue

sections with BACE1, which has been suggested to act as a surrogate

marker of neuritic dystrophy [40–43]. We noted that plaque-asso-

ciated BACE1 immunoreactivity normalised to 4G8-positive Ab
plaques did not show any gender-specific differences (Fig 2A). The

APP23 mouse strain also shows prominent microgliosis and astrocy-

tosis around the amyloid deposits found in the brain [29,44–46].

Stereological analysis revealed a rise in the number of cortical astro-

cytes in female APP23 mice (Fig 2B), which correlated with

increased Congo Red- and 4G8-positive plaque burden (Fig EV1A).

To phenotype microglial characteristics, we quantified the number

of plaque-associated microglia within 30 lm of the plaque border as

well as their expression of Clec7a, which has been described as a

marker of activated microglia in various disease contexts [47,48].

Both the number of plaque-associated microglia and the Clec7a
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staining intensity within these cells were similar in male and female

APP23 mice (Fig 2C). We used radial intensity profiling of 4G8-posi-

tive signal within Iba1-positive microglia as an indicator of micro-

glial Ab uptake. This analysis showed 4G8 intensity peaks inside the

cell (~4 lm), but revealed no significant difference between both

4G8 traces, i.e. intracellular Ab levels between male and female

APP23 mice (Fig 2D). Analysis of pro- and anti-inflammatory

cytokines (IFNc, IL-10, IL-1b, IL-2, IL-4, IL-5, IL-6, TNF-a, CXCL1)
revealed increased levels of IL-4 in the plasma, IL-10 in both plasma

and brain as well as TNF-a and CXCL1 in brain homogenates of

female APP23 mice, compared to male mice (Fig EV2A–I). We also

noted a positive correlation between CXCL1 levels in the brain and

both soluble and insoluble Ab1–40 levels (Fig EV1B). In summary,

male and female APP23 mice show distinct differences in plaque

accumulation at an age of 21 months. In both biochemical and

histological analyses, female APP23 mice had twice the amount of

Ab accumulation and plaque load, and Ab aggregates are more

insoluble and more abundant than those in age-matched male

APP23 mice. We also identified an Ab burden-dependent increase in

cortical astrocytes in female APP23 mice while microgliosis and

BACE1-positive dystrophic neurites were unchanged between

genders. Moreover, brain and plasma cytokine levels were regulated

differently in male versus female APP23 mice. Due to the observed

gender differences in Ab deposition and associated pathology, the

impact of IL12p40 deficiency on pathological outcomes in this

mouse model was assessed separately in female and male APP23

mice.

Microglial IL12p40 is increased in APP23 mice

To examine whether the IL12p40 subunit also is a relevant interven-

tional immune target in the APP23 mouse model, we examined

IL12p40 expression in aged APP23 mice. Firstly, we could validate

our previous findings [18], namely that IL12p40 (Il12b) gene expres-

sion in the brain was specific to microglia irrespective of gender

(Fig 3A). On protein level, APP23 mice showed a ~45% increase in

IL12p40 compared to age-matched wild-type (WT) littermates that

were not influenced by the gender of the mice (Fig 3B).

To further understand the role of IL12p40 on disease pathophysi-

ology in this mouse model, we crossed APP23 mice to IL12p40�/�

knock out mice [49] (APP23p40�/�) and investigated whether a lack

of the IL12p40 subunit influences plaque pathology as it did in the

APPPS1 model [18]. We confirmed by ELISA analysis that

APP23p40�/� mice lack IL12p40 expression irrespective of the

gender of the mice (Fig 3B).

Male APP23p40�/� mice exhibit reduced Ab deposits compared to
APP23 mice

To investigate the effect of IL12p40 deficiency, brain tissues of male

and female APP23 and APP23p40�/� mice were analysed for Ab
levels, the abundance of Ab aggregates, surrogate markers of

neuritic dystrophy, astrogliosis, plaque-associated microglia, the

levels of pro- and anti-inflammatory cytokines as well as Ab
processing enzymes using histological and biochemical methods.

In male mice, biochemical analysis of Ab1–40 levels in TBS,

Triton-X and SDS-soluble protein fractions did not reveal any dif-

ferences between the APP23 and APP23p40�/� genotypes (Fig 4A).

Additionally, Ab1–42 concentration was not influenced by IL12p40

deficiency (Appendix Fig S2A), as was the presence of Ab aggre-

gates as measured by native filter test (Fig 4E; Appendix Fig S3).

Histological analyses of brain sections, however, did reveal a strong

reduction in the area covered of both diffuse and compact plaques.

Here, genetic deficiency of IL12p40 led to a 58% decrease in the

cortical area covered by 4G8-positive plaques (Fig 4B) and to a 42%

reduction in the area covered by pFTAA-positive plaques (Fig 4C).

Similarly, Congo Red-positive “core” plaques were reduced by 52%

(Fig 4D). The presence of filtered Ab aggregates (Fig 4E), the total

ratio of diffuse versus core plaques (Appendix Fig S2C) and expres-

sion levels of APP, APP-cleaving protein BACE1 and Ab degrading

enzymes neprilysin and insulin-degrading enzyme (IDE) were not

influenced by IL12p40 deficiency (Fig EV3A and B), similar to what

has been reported for APPPS1 mice lacking IL12p40 [18]. Deficiency

of IL12p40 also did not affect plaque-associated BACE1 immunore-

activity or astrocyte numbers in male APP23 mice (Fig 5A and B),

which also showed no alteration in the number of plaque-associated

microglia and of Clec7a-positive activated microglia (Fig 5C) or Ab
uptake (Fig 5D). While most pro- and anti-inflammatory cytokines

assessed by us were not altered in brain homogenates of male

APP23 and APP23p40�/� mice, we noted a threefold reduction in

IFNc levels in plasma samples of male mice lacking IL12p40

(Fig EV3C–K).

Female APP23p40�/� mice show a reduction in soluble and
insoluble Ab1–40 compared to APP23 mice

In contrast to male mice, IL12p40 deficiency in female APP23 mice

had substantial effects on Ab levels. In the TBS and Triton-X soluble

protein fractions, a 38% and a 45% decrease in Ab1–40 levels could

be detected in female APP23 versus APP23p40�/� mice (Fig 6A).

No effect was seen on SDS-soluble Ab (Fig 6A) and aggregated Ab

◀ Figure 1. Female APP23 mice at 21 months have higher Ab burden than male APP23 mice.

A Quantitative analysis of the Ab1–40 protein in the TBS (*P = 0.0212), Triton-X (P = 0.0544) and SDS (**P = 0.0063) fractions of brain homogenates from male (n = 7)
and female (n = 10) APP23 mice. Mean � SEM, statistical analysis: two-tailed unpaired t-test.

B Stereological analysis of cortical area covered by 4G8-positive plaques in male (n = 10) and female (n = 8) APP23 mice (left) and representative images (right), scale
bar = 500 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, ***P = 0.0004.

C Fluorescence intensity-based analysis of pFTAA-stained Ab plaques in the cortex of male (n = 10) and female (n = 8) APP23 mice (left) and representative images
(right), scale bar = 1 mm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, **P = 0.0011.

D Stereological analysis of cortical area covered by Congo Red-positive plaques in male (n = 10) and female (n = 8) APP23 mice (left) and representative images (right),
scale bar = 500 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, ***P = 0.0001.

E Native filter assay analysis of TBS (P = 0.2453), Triton-X (P = 0.0604), SDS (*P = 0.0196) and formic acid (FA) (**P = 0.0057) fractions from male (n = 8) and female
(n = 7) APP23 mouse brain homogenates. Mean � SEM, statistical analysis: two-tailed unpaired t-test between the same fractions.
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as measured by filter assays (Fig 6E; Appendix Fig S3). As in male

mice, Ab1–42 levels were not affected by a lack of IL12p40

(Appendix Fig S2B) as were the expression levels of APP, BACE1,

Neprilysin and IDE (Fig EV4A and B).

To confirm whether these changes also affected the amount of

deposited Ab, brain sections of female APP23 and APP23p40�/�

mice were stained with 4G8, pFTAA and Congo Red. The percentage

of the cortical area covered by 4G8-, pFTAA- and Congo Red-positive

plaques was unchanged in female APP23 mice lacking or harbouring

IL12p40 (Fig 6B–D), contrary to the findings in male mice. The ratio

of diffuse versus core plaques also was not influenced by a lack of

IL12p40 (Appendix Fig S2D). Plaque-associated BACE1 immunoreac-

tivity, cortical astrocyte number, the number of activated plaque-

associated microglia and microglial Ab uptake were all unchanged in

female APP23p40�/� mice (Fig 7A–D).

Analysis of pro- and anti-inflammatory cytokines (IFNc, IL-10, IL-
1b, IL-2, IL-4, IL-5, IL-6, TNF-a, CXCL1) in plasma showed reduced

expression of IL-5 and IL-6 as well as an increased expression of IL-

1b and CXCL1 in female APP23p40�/� mice when compared to

APP23 mice. In brain homogenates, a twofold decrease in CXCL1

protein levels was noted in APP23p40�/� mice (Fig EV4C–K).

Discussion

Using the Ab-producing APP23 mouse model of AD-like pathology,

we identified specific gender differences in plaque accumulation,

amyloid composition and aggregation characteristics, astrogliosis as

well as brain and plasma cytokine levels. We further show that the

deletion of the IL12p40 subunit, which is the essential component of

the cytokines IL-12 and IL-23, differentially affects pathology in age-

matched male and female mice.

Given that male and female APP23 mice are known to show

varying levels of pathology and behavioural deficits, most studies

using APP23 mice analyse male and female animals independently

[31,32]. Previously observed sex differences in spatial learning para-

digms may be explained by hormonal variances [50], yet an influ-

ence of hormones upon plaque pathology has not been described in

◀ Figure 2. Female APP23 mice have higher astrocyte numbers than male mice.

A Histological analysis of plaque-associated BACE1 immunoreactivity in male (n = 10) and female (n = 8) APP23 mice. BACE1 area covered was normalised to 4G8-
positive area covered of the same image (left). Right: representative images, scale bar = 50 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test,
P = 0.3724.

B Stereological quantification of the number of cortical GFAP-positive astrocytes in male (n = 10) and female (n = 8) APP23 mice (left). Right: representative images of
GFAP staining, scale bar = 200 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, *P = 0.0134.

C Quantification of activated microglia within 30 lm from plaque borders. Top: numbers of Iba1-positive microglia were normalised to the size of the nearest 4G8-
positive plaque and quantified in male (n = 10) and female (n = 8) APP23 mice. Mean � SEM, statistical analysis: two-tailed unpaired t-test, P = 0.0576. Bottom:
histogram representing Clec7a staining intensity within plaque-associated Iba1-positive microglia in male (n = 10) and female (n = 8) APP23 mice. Mean � SEM,
statistical analysis: two-tailed unpaired t-test with Bonferroni correction for each single bin, P = N.S.. Right: representative images, scale bar = 40 lm.

D Radial intensity profiles of Iba1 and 4G8 around the centre of the nucleus of plaque-associated Iba1-positive microglia in male (n = 10) and female (n = 8) APP23
mice. Iba1 intensity declines until a radius of ~6 lm, marking the cell periphery. 4G8 intensity peaks inside the cell (~4 lm), but stays high outside the cell. This is
very likely due to the close proximity to 4G8-positive plaques. Mean � SEM, statistical analysis: two-tailed unpaired t-test with Bonferroni correction for the number
of binned radii shows no significant difference between both 4G8 traces.

Source data are available online for this figure.

A B

Figure 3. APP23 mice have increased microglia-specific Il12b/IL12p40 levels in the brain.

A Gene expression analysis of IL12b in whole brain (n = 3 per gender, Il12b undetected), Cd11b-negative non-microglial cells (n = 3 per gender, Il12b undetected) and
CD11b-positive microglia (n = 5 per gender, P = 0.3540) in male and female APP23 mice. Gapdh expression was used as an internal reference gene. Mean � SEM,
statistical analysis: two-tailed unpaired t-test for each fraction.

B ELISA measurements of the IL12p40 concentration in the TBS-soluble protein fraction derived from wild-type (WT) (n = 5), APP23 (n = 17) and APP23p40�/� (n = 16)
mice. Male mice are depicted by blue squares, while female mice are shown as red squares. Mean � SEM, statistical analysis: one-way ANOVA, Tukey post hoc test,
*P = 0.0276, ***P = < 0.0001.
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this mouse model to date. Since none of the studies assessing plaque

pathology in APP23 mice undertook thorough comparative analyses

of aged male and female mice [31,50–52], and as recent reports

highlight differences in the innate immune response between males

and females including differences in male and female microglia [25–

28], we undertook gender-specific analyses of various pathological

readouts where we observed robust differences between male and

female mice at late stages of pathology (21 months). Female APP23

mice showed a twofold higher pathology in both biochemical and

histological analyses of Ab accumulation compared to male mice,

indicating faster disease progression. Furthermore, Ab aggregation

properties differed between genders since in female mice increased

amounts of Ab aggregates were found in SDS- and FA-extracted

protein fractions. In male mice, aggregates were mainly found in

TBS- and FA-soluble fractions. Previous studies have shown that the

vast majority of Ab plaques in APP23 mice in an age range of 14–

24 months are densely aggregated core plaques and that diffuse

plaques only appear in very old mice [29,39,53]. Contrary to these

reports, diffuse Ab plaques, as visualised by immunohistochemistry,

constituted the majority of plaques in our analyses of 21-month-old

male and female mice, their levels being four times as high as core

plaques. We also did not observe any gender-specific differences in

plaque-associated BACE1 immunoreactivity, a surrogate marker of

neuritic dystrophy [40–43]. Additionally, female APP23 mice, in

accordance with the increase in plaque burden, also showed higher

numbers of cortical astrocytes and increased levels of CXCL1 (also

known as KC/CRO or GRO1) in the brain, which positively corre-

lated with Ab1–40 pathology. It is of note that in a mouse model of

multiple sclerosis, astrocyte-specific induction of CXCL1 augmented

disease progression via recruitment of neutrophils [54], while in an

AD-like mouse model, blocking the entry of neutrophils into the

brain was shown to have a beneficial effect upon pathogenesis [55].

CXCL1, as one of the differentially regulated cytokines in male

versus female APP23 mice lacking or harbouring IL12p40, may thus

not only present a possible (non-exclusive) explanation for the

gender-specific differences in AD pathology, but may also qualify as

an interesting target to study in AD pathogenesis. While the cytokine

signatures in brain and plasma of male and female APP23 mice seem

to differ, we could not observe any gender-specific differences in the

number of plaque-associated microglia, their expression of Clec7a, a

marker of activated microglia in various disease contexts [47,48] and

Ab uptake, suggesting that altered microglial functions are not the

cause of gender-specific pathogenesis in this mouse model.

We previously reported that genetic deletion or pharmacological

blockage of the pro-inflammatory IL12p40 in the APPPS1 mouse

model led to a marked decrease in plaque pathology at both early

and late stages of Ab deposition (4 and 8 months, respectively) as

well as a reduction in cognitive deficits [18]. This study also found

that the IL12p40 subunit was expressed by microglia, describing for

the first time a role of IL-12/IL-23 signalling in AD carried out by

glial cells in the CNS. Given that the APPPS1 mouse model is char-

acterised by a rapid accumulation of Ab deposits, it may not fully

represent the rather slow Ab accumulation and disease progression

that typically is described for sporadic human AD. Our data using

the APP23 AD-like mouse model now show that a lack of IL12p40

similarly leads to a reduction in Ab burden in a mouse model with a

rather slow disease course. We therefore provide further evidence of

the involvement of IL-12 and/or IL-23 signalling in AD pathogene-

sis, which also strengthens the hypothesis that the blockage of

certain pro-inflammatory factors secreted by glia can have beneficial

◀ Figure 4. In male APP23 mice, IL12p40 deficiency reduces Ab plaque deposition but not does not affect biochemical characteristics of Ab.

A Mesoscale analysis for the Ab1–40 protein in the TBS (P = 0.2298), Triton-X (P = 0.1329) and SDS (P = 0.7184) fractions of brain homogenates from male APP23
(n = 10) and APP23p40�/� (n = 8) mice. Total protein concentration of each sample was used as an internal reference. Mean � SEM, statistical analysis: two-tailed
unpaired t-test.

B Stereological analysis of cortical area covered by 4G8-positive plaques (left) and representative images of 4G8-staining in APP23 (n = 10) and APP23p40�/� (n = 8)
mice (right), scale bar = 500 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, **P = 0.0039.

C Fluorescence intensity-based analysis of pFTAA-positive area covered in the cortex of APP23 (n = 10) and APP23p40�/� (n = 8) mice (left) and representative images
for each genotype (right), scale bar = 1 mm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, **P = 0.0051.

D Stereological analysis of cortical area covered by Congo Red-positive plaques in APP23 (n = 10) and APP23p40�/� (n = 8) mice (left) and representative images (right),
scale bar = 500 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, **P = 0.0070.

E Native filter assay analysis of TBS (P = 0.7124), Triton-X (P = 0.3170), SDS (P = 0.4833) and formic acid (FA) (P = 0.8144) fractions from APP23 (n = 8) and
APP23p40�/� (n = 8) mouse brain homogenates. Mean � SEM, statistical analysis: two-tailed unpaired t-test between the same fractions.

▸Figure 5. Lack of IL12p40 does not affect plaque-associated BACE1 immunoreactivity or glial properties in male APP23 mice.

A Histological analysis of plaque-associated BACE1 immunoreactivity in male APP23 (n = 10) and APP23p40�/� (n = 8) mice. BACE1 area covered was normalised to
4G8-positive area covered of the same image (left). Right: representative images, scale bar = 50 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test,
P = 0.1780.

B Stereological quantification of the number of cortical GFAP-positive astrocytes in male APP23 (n = 10) and APP23p40�/� (n = 8) mice (left). Right: representative
images of GFAP staining, scale bar = 200 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, P = 0.3148.

C Quantification of activated microglia within 30 lm from plaque borders. Top: numbers of Iba1-positive microglia were normalised to the size of the nearest 4G8-
positive plaque and quantified in male APP23 (n = 10) and APP23p40�/� (n = 8) mice. Mean � SEM, statistical analysis: two-tailed unpaired t-test, P = 0.1925.
Bottom: histogram representing Clec7a staining intensity within plaque-associated Iba1-positive microglia in male APP23 (n = 10) and APP23p40�/� (n = 8) mice.
Mean � SEM, statistical analysis: two-tailed unpaired t-test with Bonferroni correction for each single bin, P = N.S. Right: representative images, scale bar = 40 lm.

D Radial intensity profiles of Iba1 and 4G8 around the centre of the nucleus of plaque-associated Iba1-positive microglia in male APP23 (n = 10) and APP23p40�/�

(n = 8) mice. Iba1 intensity declines until a radius of ~6 lm, marking the cell periphery. 4G8 intensity peaks inside the cell (~4 lm), but stays high outside the cell.
This is very likely due to the close proximity to 4G8-positive plaques. Mean � SEM, statistical analysis: two-tailed unpaired t-test with Bonferroni correction for the
number of binned radii shows no significant difference between both 4G8 traces.

Source data are available online for this figure.
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effects upon Ab pathology. The importance of IL-12/IL-23 signalling

in AD is supported further by other studies demonstrating that

targeting IL12p40 via small interfering RNA in the SAMP8 AD-like

mouse model of accelerated ageing induced a reduction in cerebral

Ab as well as reduced neuronal loss and cognitive function [33].

Analysis of genetic data within the Han Chinese population also

indicated specific polymorphisms in the IL-12/IL-23 pathway as risk

factors for late-onset AD [56,57]. Additionally, increased levels of

IL-23 and/or IL-12 were found in serum and plasma [19,58] and a

correlation was made between IL12p40 CSF levels and cognitive

performance in AD patients [18]. Given that IL-12/IL-23 has been

shown to be regulated in MCI and AD subjects [18–20] and biologi-

cals that inhibit IL-12 and/or IL-23 have already been approved by

the US Food and Drug Administration (FDA) for other diseases such

as psoriasis and Crohn’s disease, the immediate suitability for repur-

posing existing drugs targeting these innate immune molecules in a

first clinical AD trial is obvious.

In addition to previous data assessing the effect of a lack of

IL12p40 on Ab plaque burden in AD-like mice, we noted differential

effects of IL-12/IL-23 deficiency in age-matched female and male

APP23 mice. Compared to APP23 mice, male APP23p40�/� mice

showed a significant reduction in diffuse and core plaques when

histologically assessing cortical plaque burden, while Ab1–40 levels

and Ab aggregation properties were not altered. Contrary to male

mice, female APP23p40�/� mice did have reduced levels of soluble

Ab1–40 when compared to APP23 mice, though cortical plaque burden

appeared to not be affected. In both male and female mice, the

observed changes in Ab pathology upon IL12p40 deficiency were not

mediated by differential APP expression or Ab processing. Interest-

ingly, despite the differences in Ab pathology, BACE1-positive

dystrophic neurites, the number of cortical astrocytes or plaque-asso-

ciated microglia were not affected upon IL12p40 deletion, including

the expression of microglial Clec7a and Ab uptake. These observa-

tions suggest that microglial IL12p40 does not seem to excerpt its

detrimental effect upon Ab pathology by modulating microglial func-

tions. Alternatively, an indirect effect of IL12p40-mediated intercellu-

lar signalling could take place given that the IL12p40 receptor was

found to be expressed on non-microglial cells in an AD model [18].

Since IL12p40 deficiency does not affect Ab processing, it could act

upon other cell types by restoring cellular metabolism and thus intra-

cellular degradation of Ab or by modulating peripheral cells that

might affect Ab deposition such as neutrophils via CXCL1 [55]. The

gender-specific effects of IL12p40 deletion upon Ab pathology could

also be explained by the underlying pathological differences between

male and female APP23 mice at the age of 21 months. Pathology in

female APP23 mice could already be so advanced that potential

effects of lack of IL12p40 are overshadowed by the abundance of Ab
deposits. In male APP23 mice, on the other hand, fewer Ab aggre-

gates at a given stage are present which is why effects of IL12p40 defi-

ciency on plaque accumulation are still observable.

In summary, we show that genetic ablation of the IL-23/IL-12

p40 subunit has a different effect on plaque and cellular pathology

in age-matched male and female APP23 mice, a mouse model of

slow Ab accumulation with gender-specific temporal pathogenesis.

While in female APP23 mice, deletion of IL-12/IL-23 signalling

specifically decreased soluble Ab1–40 levels, the pathology in male

mice was characterised by a reduction in cortical Ab plaque load.

Our results provide important evidence on the role of IL-12 and IL-

23 signalling in a mouse model of amyloid deposition, which adds

to data suggesting a detrimental effect of this signalling cascade

◀ Figure 6. In female APP23 mice, IL12p40 deletion leads to a reduction in soluble Ab1–40 but not Ab plaque load.

A Mesoscale analysis for the Ab1–40 protein in the TBS (*P = 0.0208), Triton-X (*P = 0.0440) and SDS (P = 0.0540) fractions of brain homogenates from APP23 (n = 7)
and APP23p40�/� (n = 8) mice. Total protein concentration of each sample was used as an internal reference. Mean � SEM, statistical analysis: two-tailed unpaired
t-test.

B Stereological analysis of cortical area covered by 4G8-positive plaques (left) and representative images of 4G8-staining in APP23 (n = 8) and APP23p40�/� (n = 10)
mice (right), scale bar = 500 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, P = 0.1831.

C Fluorescence intensity-based analysis of pFTAA-positive area covered in the cortex of APP23 (n = 8) and APP23p40�/� (n = 10) mice (left) and representative images
for each genotype (right), scale bar = 1 mm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, P = 0.3406.

D Stereological analysis of cortical area covered by Congo Red-positive plaques in APP23 (n = 8) and APP23p40�/� (n = 10) mice (left) and representative images (right),
scale bar = 500 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, P = 0.4542.

E Native filter assay analysis of TBS (P = 0.6823), Triton-X (P = 0.1146), SDS (P = 0.0508) and formic acid (FA) (P = 0.6603) fractions from APP23 (n = 7) and
APP23p40�/� (n = 7) mouse brain homogenates. Mean � SEM, statistical analysis: two-tailed unpaired t-tests between the same fractions.

▸Figure 7. Lack of IL12p40 but does not affect plaque-associated BACE1 immunoreactivity or gliosis in female APP23 mice.

A Histological analysis of plaque-associated BACE1 immunoreactivity in female APP23 (n = 8) and APP23p40�/� (n = 10) mice. BACE1 area covered was normalised to
4G8-positive area covered of the same image (left). Right: representative images, scale bar = 50 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test,
P = 0.5402.

B Stereological quantification of the number of cortical GFAP-positive astrocytes in female APP23 (n = 8) and APP23p40�/� (n = 8) mice (left). Right: representative
images of GFAP staining, scale bar = 200 lm. Mean � SEM, statistical analysis: two-tailed unpaired t-test, P = 0.1579.

C Quantification of activated microglia within 30 lm from plaque borders. Top: numbers of Iba1-positive microglia were normalised to the size of the nearest 4G8-
positive plaque and quantified in female APP23 (n = 8) and APP23p40�/� (n = 10) mice. Mean � SEM, statistical analysis: two-tailed unpaired t-test, P = 0.8240.
Bottom: Histogram representing Clec7a staining intensity within plaque-associated Iba1-positive microglia in female APP23 (n = 8) and APP23p40�/� (n = 10) mice.
Mean � SEM, statistical analysis: two-tailed unpaired t-test with Bonferroni correction for each single bin, P = N.S.. Right: representative images, scale bar = 40 lm.

D Radial intensity profiles of Iba1 and 4G8 around the centre of the nucleus of plaque-associated Iba1-positive microglia in female APP23 (n = 8) and APP23p40�/�

(n = 10) mice. Iba1 intensity declines until a radius of ~6 lm, marking the cell periphery. 4G8 intensity peaks inside the cell (~4 lm), but stays high outside the cell.
This is very likely due to the close proximity to 4G8-positive plaques. Mean � SEM, statistical analysis: two-tailed unpaired t-test with Bonferroni correction for the
number of binned radii shows no significant difference between both 4G8 traces.

Source data are available online for this figure.
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[18–20,33,56–58]. While future research aimed at successfully

targeting IL12p40 in AD implies the need to dissect its downstream

mechanisms and to identify whether it is IL-12 or IL-23 specifically

that influences AD pathogenesis, it will be equally interesting to

address whether this signalling pathway also plays a gender-specific

role in other CNS proteinopathies such as Parkinson’s disease or

tau-driven pathologies.

Materials and Methods

Animals

We crossed heterozygous APP23+/� mice (Tg(Thy1-APPKM670/

671NL)23) [29], termed APP23 throughout this manuscript, to mice

lacking the IL12p40 gene Il12b, termed Il12p40�/� mice [47], gener-

ating APP23p40�/� mice and APP23 littermate controls. Cohorts of

male and female APP23 mice were compared to each other and

used as control groups in comparison to APP23p40�/� littermates.

Thus, data points of male and female APP23 mice shown in

Figs 1A–E, 2A–D, EV2A–I and S1A–B served also as references in

Figs 4A–E, 5A–D, EV3C–K and S2A and C analysing male APP23

mice as well as in Figs 6A–E, 7A–D, EV4C–K and S2B and D

analysing female APP23 mice. Mice were group-housed under

specific pathogen-free conditions on a 12-h light/dark cycle; food

and water were provided ad libidum. We did not observe any dif-

ferences in mortality between male and female APP23 and

APP23p40�/� mice. All animal experiments were performed in

accordance with the national animal protection guidelines approved

by the regional offices for health and social services in Berlin

(LaGeSo, licence number O 0132/09).

Tissue processing

Transgenic APP23 and APP23p40�/� mice and littermate controls

were aged to 21 months. For tissue collection, mice were deeply

anaesthetised and transcardially perfused with PBS. Venous blood

was collected from the right atrium into EDTA-coated tubes. After

centrifugation, the plasma supernatant was collected, snap-frozen in

liquid nitrogen and stored at �80°C. Plasma samples could not be

collected for all experimental animals. Brains were rapidly removed

from the skull and divided into half sagittally, and the cerebellum

was removed. One hemisphere was snap-frozen in liquid nitrogen

and stored at �80°C until further processing for biochemical analy-

sis, and the other hemisphere was fixed in 4% paraformaldehyde

over night at 4°C. Subsequently, the hemisphere was immersed in

30% sucrose for at least 24 h until sectioning for immunohisto-

chemical analysis. For some animals, the fresh frozen hemispheres

were not available for further biochemical analyses. For RNA analy-

sis, tissue from male and female APP23 mice aged 648–764 days

was processed as described below.

RNA isolation of brain fractions

For RNA analysis, the left hemisphere was used to isolate microglia

and the microglia-negative fraction from fresh tissue while the right

hemisphere was snap-frozen in liquid nitrogen to generate RNA

from whole brain. Microglia were isolated using magnetic-activated

cell sorting (MACS) according to manufacturer’s protocol. In brief,

tissue was dissociated using the Neural Tissue Dissociation Kit (P)

(Miltenyi Biotec, 130-092-628) on a gentleMACS Octo Dissociator

with Heaters (Miltenyi Biotec, 130-096-427) and the resulting single-

cell suspension labelled with CD11b MicroBeads (Miltenyi Biotec,

130-093-634) and passed through LS columns (Miltenyi Biotec, 130-

042-401) to positively select for microglia. The CD11b-negative

flow-through was also collected as the microglia-negative brain frac-

tion. Both cell fractions were pelleted via centrifugation, snap-frozen

and stored at �80°C until further use. For whole brain RNA, the

frozen right hemisphere was homogenised in RLT buffer (RNeasy

Mini Kit, Qiagen, 74106) using M tubes (Miltenyi Biotec, 130-093-

236) on the gentleMACS Octo Dissociator with Heaters (Miltenyi

Biotec, 130-096-427) before continuing with the downstream RNA

isolation protocol. For RNA isolation, the RNeasy Mini Kit (Qiagen,

74106) was used and cDNA was generated using the High-Capacity

cDNA Reverse Transcription Kit (Thermo Fisher, 4368813) accord-

ing to manufacturer’s protocols.

Quantitative real-time PCR

Gene expression analysis was performed on 12 ng cDNA per reac-

tion using the TaqMan Fast Universal Master Mix (Applied Biosys-

tems, 4364103) and TaqMan primers for Il12b (Thermo Fisher,

Mm00434174_m1) and Gapdh (Thermo Fisher, Mm99999915_g1).

Quantitative PCR analysis was performed on a QuantStudio 6 Flex

Real-Time PCR System (Applied Biosystems). Data were analysed

using the Double Delta Ct method to determine fold change expres-

sion changes between samples. The number of mice per group anal-

ysed was as follows: for CD11b-positive cell fractions: female APP23

n = 5, male APP23 n = 5; for whole brain and CD11b-negative

samples: female APP23 n = 3, male APP23 n = 3.

Histology

Formalin-fixed and sucrose-treated hemispheres were frozen and

cut coronally in serial sections at 40 lm using a cryostat (Thermo

Scientific HM 560). Sections were kept in cryoprotectant (0.65 g

NaH2PO4 × H2O, 2.8 g Na2HPO4 in 250 ml ddH2O, pH 7.4 with

150 ml ethylene glycol, 125 ml glycerine) at 4°C until staining. For

immunohistochemistry, sections were washed in PBS, mounted on

SuperFrost Plus slides (R. Langenbrink), dried and blocked in PBS

with 0,3% Triton X-100 and 10% normal goat serum (NGS) for 1 h,

before incubation with Ab-specific antibody anti-4G8 targeting aa.

17–24 of human Ab (1:1,000 dilution, Covance, SIG39320) or astro-

cyte-specific antibody anti-GFAP (1:1,000 dilution, Dako, Z0334)

over night at 4°C in PBS with 0.3% Triton X-100 and 5% NGS. Next,

sections were quenched with 0.5% H2O2 for 30 min at room temper-

ature, washed and then incubated with peroxidase-conjugated goat

anti-mouse secondary antibody (1:100 dilution, Dianova, 115-035-

068) or peroxidase-conjugated goat anti-rabbit secondary antibody

(1:100 dilution, Jackson ImmunoResearch, 111-035-003) in PBS

with 0.3% Triton X-100 and 5% NGS for 1 h at room temperature.

The staining was developed using diaminobenzidine (DAB)

substrate (Sigma-Aldrich). Sections were counterstained with

matured haematoxylin, followed by signal development in tap

water. Subsequently, sections were dehydrated in ascending ethanol

concentrations (70, 80, 96, 100%) and xylene and embedded with
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hydrophobic mounting medium (Roti Histokitt, Carl Roth).

Immunofluorescent co-labelling of anti-4G8 (1:1,000 dilution,

Covance, SIG39320) and anti-BACE1 (1:500 dilution, Abcam,

ab108394) was performed as above with primary antibody incuba-

tion for 48 h at 4°C and incubation with secondary antibodies Alexa

Fluor 568 goat anti-rabbit IgG (H+L) (1:500 dilution, Invitrogen,

A11011) and Alexa Fluor 647 goat anti-mouse IgG (H+L) (1:500

dilution, Invitrogen, A21236) for 2 h at room temperature.

Immunofluorescent labelling of anti-4G8 (1:1,000 dilution, Covance,

SIG39320), anti-Iba1 (1:500 dilution, Wako, 019-19741) and marker

of activated microglia anti-Clec7a (Dectin-1) (1:30 dilution, Invi-

voGen, mabg-mdect) was modified to include a 10 min permeabili-

sation step at room temperature in TBS with 0.2% Triton-X. For all

following steps, no Triton-X was added to the solutions. Blocking

was performed in TBS with 10% NGS and antibody incubations in

TBS with 5% NGS. Again, primary antibodies were incubated for

48 h at 4°C and secondary antibodies Alexa Fluor 488 goat anti-

mouse IgG (H+L) (1:500 dilution, Invitrogen, A11001), CyTM3 Affini-

Pure Donkey Anti-Rat IgG (H+L) (1:500 dilution, Jackson ImmunoR-

esearch, 712-165-153) and Alexa Fluor 647 goat anti-rabbit IgG

(H+L) (1:500 dilution, Invitrogen, A21244) were incubated for 2 h

at room temperature. Following fluorescent immunostaining,

sections were counterstained with DAPI (1:2,500 dilution, Sigma-

Aldrich, 10236276001) and embedded with fluorescence mounting

medium (Dako, S3023).

Congo Red staining [37] was performed on mounted and dried

sections counterstained with matured haematoxylin. Sections were

incubated in stock solution I (0.5 M NaCl in 80% ethanol, 0.01%

hydrous NaOH) for 20 min and in stock solution II (8.6 mM Congo

Red in stock solution I, 0.01% NaOH) for 45 min. Subsequently,

sections were rinsed in 80% EtOH and xylene and embedded with

hydrophobic mounting medium.

For staining with pentameric formyl thiophene acetic acid

(pFTAA) [36], sections were washed in PBS, stained for 30 min with

2 lg/ml pFTAA in PBS and counterstained with 40,6-diamidino-2-

phenylindole (DAPI) (1:5,000, Sigma-Aldrich). Sections were

embedded in fluorescent mounting medium (Agilent).

Stereological analysis of Ab plaque burden and cortical
astrocyte number

For quantifying Ab plaque load and astrocytes number, the Stereo

Investigator system (MBF Bioscience) mounted on an Olympus

BX53 microscope, equipped with the QImaging camera COLOR 12

BIT and a stage controller MAC 6000 was used. Quantification of

cortical area covered by 4G8-positive or Congo Red-positive Ab
plaques was undertaken using the Stereo Investigator 64-bit soft-

ware (MBF Bioscience) (settings: 10× objective, counting frame

90 × 90 lm, scan grid size 450 × 450 lm, Cavalieri grid spacing

10 lm). For counting cortical astrocytes, the Optical Fraction Frac-

tionator tool of the Stereo Investigator 64-bit software (MBF

Bioscience) was used (settings: 40× objective, counting frame

75 × 75 lm, scan grid size 500 × 500 lm). The values from “Esti-

mated Population using User Defined Section Thickness” and

“Measured Volume (lm³)” were divided and used to calculate the

number of cells per cortical volume. For quantification of pFTAA-

positive plaques, the Olympus cellSens Dimension software was

used. Sections were exposed at 400 ms, and a region of interest

(ROI) was selected around the cortex. The image was converted to

grey scale, and the same threshold was applied to obtain the area

fraction of pFTAA-positive signal (%). For each stain, 10 serial coro-

nal sections per brain were used for analysis. The number of mice

per group analysed was as follows: female APP23 n = 8, female

APP23p40�/� n = 10, male APP23 n = 10 and male APP23p40�/�

n = 8.

Analysis of BACE1/4G8 ratio

Images of BACE1/4G8 co-labelled sections were taken on an Olym-

pus BX53 microscope, equipped with the QImaging camera COLOR

12 BIT and controlled by the Olympus cellSens Dimension software.

Per animal, images were taken from 10 serial coronal sections and

three regions per section. In ImageJ, we performed a batch conver-

sion of raw TIFF images as contrast-optimised, greyscale JPEG files,

and using a custom R script, we extracted the generated histograms

and used these to calculate the respective proportion of stained and

unstained pixels. A fixed analysis threshold was chosen based on

variance and mean image intensity of all analysed images belonging

to the BACE1 antibody and 4G8 antibody staining, respectively.

Quality of the histological stainings and image material was esti-

mated by a cross-comparison of each image’s characteristics to (i)

all other images of the same animal and (ii) all other images of the

same experimental group and all images that did not meet the

defined acceptable range of 2*SD were excluded from downstream

analysis (10.7% of images total). The median BACE1/4G8 ratio of

16–30 images per animal was taken for analysis, and the mean and

SEM of all animals from one group was plotted. The number of mice

per group analysed was as follows: female APP23 n = 8, female

APP23p40�/� n = 10, male APP23 n = 10 and male APP23p40�/�

n = 8. The R script has been deposited on Github (https://github.c

om/eedep/Image-processing).

Quantification of Clec7a-positive plaque-associated microglia
and Ab uptake

Three-dimensional image stacks (1 lm step size, 40× objective) of

4G8/Clec7a/Iba1-stained sections were taken on a Leica TCS SP5

confocal laser scanning microscope controlled by LAS AF scan soft-

ware (Leica Microsystems, Wetzlar, Germany). Per animal, 10 serial

coronal sections and three regions per section were used for

analysis. The number of mice per group analysed was as follows:

female APP23 n = 8, female APP23p40�/� n = 10, male APP23

n = 10 and male APP23p40�/� n = 8.

The expression levels of Iba1 and Clec7a, 4G8 positive plaques,

radial intensity profiles, cell numbers and distances to the nearest

plaque (Figs 2C, 5C and 7C) were quantified from maximum projec-

tions of the confocal stacks. The quantification was performed in an

automated manner using custom-written ImageJ macros (segmenta-

tion) [59] and python scripts (radial profiles and other statistics),

which can be found on GitHub (https://github.com/ngimber/Alzhe

imersWorkflow). Data were pooled by calculating the median from

all images per animal and plotting the mean and SEM of all animals

from one group. Data that are displayed as a histogram were binned

image-wise. Histograms and radial intensity profiles were normal-

ised (divided by its own integral) and then pooled as mentioned

above.
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Segmentation (ImageJ)
Nuclei were segmented from blurred DAPI channels (Gaussian blur,

sigma = 720 nm) by histogram-based thresholding (Otsu binarisa-

tion) [60] followed by watershed segmentation of the Euclidean

distance map of the binary image using ImageJ. Plaques were

segmented from the blurred 4G8 channel (Gaussian blur,

sigma = 7.2 lm) followed by Otsu binarisation. Only objects above

720 lm² were regarded as plaques.

Quantification (Custom Python scripts)
The mean intensities within segmented nuclear regions (s. above)

were used as a measure for Iba1 and Clec7a expression levels. Cells

were classified as Iba1-positive/-negative by auto-thresholding

(Otsu’s method on all cell-specific expression levels within one

image). Only Iba1-positive cells were used for further analysis (e.g.

Clec7a expression levels, cell numbers, distances to the nearest

plaque and radial intensity profiles). The size of the nearest plaques

was determined for each cell based on the segmented regions

mentioned above. Radial intensity profiles were calculated for all

channels around the centre of mass of the segmented nucleus.

Brain homogenisation

For analysis of protein levels, frozen hemispheres were subjected to a

4-step protein extraction protocol, using buffers with increasing strin-

gency [34]. In brief, hemispheres were homogenised consecutively in

Tris-buffered saline (TBS) buffer (20 mM Tris, 137 mM NaCl,

pH = 7.6), Triton-X buffer (TBS buffer containing 1% Triton X-100),

SDS buffer (2% SDS in ddH2O) and FA (70% formic acid in ddH2O).

Immediately before use, cOmpleteTM Mini Protease Inhibitor Cocktail

Tablets (Roche, 1 tablet per 10 ml) were added to all buffers. Initial

homogenisation occurred mechanically by consecutive passing the

solution through a 2-ml syringe and cannulas with decreasing diame-

ter (G23, G27 and G30). Brain extracts were incubated 30 min on ice

(except SDS homogenate, which was incubated at RT) and centrifuged

at 100,000 g for 1 h at 4°C. The supernatant was collected, aliquoted,

snap-frozen in liquid nitrogen and stored at �80°C until further use.

The remaining pellet was re-suspended in subsequent buffers. Protein

concentrations of each fraction were determined using the Quantipro

BCA Protein Assay Kit (Pierce) according to the manufacturer protocol

using the Photometer Tecan Infinite� 200M (Tecan).

ELISA analysis

An IL-12/IL-23 total p40 enzyme-linked immunosorbent assay

(ELISA) (eBioscience) was performed according to manufacturer’s

instructions. Undiluted TBS brain homogenate was analysed in

duplicate. Absorption was read at 450 and 570 nm (for wavelength

correction) on a microplate reader (Infinite� 200M, Tecan) and anal-

ysed using the Magellan Software (Tecan).

Quantification of Ab levels

Brain extracts of all TBS, Triton-X and SDS fractions were analysed

for Ab40 and Ab42 levels using the 96-well MultiSpot Human 6E10

Ab Triplex Assay Kit (Meso Scale Diagnostics, MSD). In brief,

samples were analysed in duplicate and were diluted to fit the stan-

dard curve (Ab Peptide 3-Plex). After blocking the MSD plate with

1% Blocker A Solution, the detection antibody solution and sample

or calibrator were added and incubated for 2 h. After washing the

plate with 0.05% Tween-20 in PBS, 2× Reading Buffer was added to

the wells and the plate was analysed on a MS6000 machine (MSD).

The number of mice per group analysed was as follows: female

APP23 n = 7, female APP23p40�/� n = 8, male APP23 n = 10 and

male APP23p40�/� n = 8.

Quantification of cytokines

Pro- and anti-inflammatory markers [IFNc, IL-10, IL-1b, IL-2, IL-4,
IL-5, IL-6, TNF-a, CXCL1 (KC/GRO)] were analysed in the TBS frac-

tion of brain homogenates and plasma samples using the 96-well

10-plex Pro-inflammatory Panel 1 (mouse) Mesoscale Kit according

to manufacturer’s instructions (MSD In brief, undiluted TBS homo-

genate, plasma samples diluted 1:100 or the calibrator was added in

duplicate to the MSD plate and incubated for 2 h. After washing in

0.05% Tween-20 in PBS, the detection antibody solution was added

and incubated for further 2 h. After washing the plate with 0.05%

Tween-20 in PBS, 2× Reading Buffer was added to the wells and the

plate was analysed on a MS6000 machine (MSD). The number of

mice per group analysed was as follows: female APP23 n = 7,

female APP23p40�/� n = 8, male APP23 n = 10 and male

APP23p40�/� n = 8.

Western blot analysis

For the quantification of BACE1, neprilysin and insulin-degrading

enzyme (IDE), the Triton-X fraction of brain homogenates (30 lg/
lane) was separated by SDS–PAGE using 10% Tris-Glycine gels. For

quantifying 6E10, the SDS fraction of brain homogenates (30 lg/
lane) was separated by SDS–PAGE using NovexTM 10–20% Tricine

protein gels (Invitrogen, EC66255BOX). Proteins were transferred by

wet blotting onto a nitrocellulose membrane.

Membranes were blocked with 3% milk powder and stained with

the anti-Ab 6E10 antibody (1:2,000, BioLegend, 803002), anti-BACE1

(1:1,000, Abcam, ab108394), anti-Neprilysin (CD10) (1:500, Invitro-

gen, PA5-29354), anti-IDE (1:1,000, Merck, PC730) and either anti-b-
Actin (1:50,000, Sigma, A1978) or anti-GAPDH (1:500, Merck,

MAB374). Blots pre-stained with anti-IDE were stripped using the

Abcam Mild Stripping protocol in order to re-stain with anti-Nepri-

lysin. Secondary staining was performed using the ECL HRP-linked

anti-mouse antibody (1:5,000, GE Healthcare, NA931) or ECL HRP-

linked anti-rabbit antibody (1:5,000, GE Healthcare, NA934) and for

visualisation of the bands the SuperSignal� West Femto Chemilumi-

nescent Substrate (Thermo Fisher) for the detection of horseradish

peroxidase activity was used. For quantification, the intensities of

the corresponding bands for each protein were determined with

ImageJ and the amount of the respective protein was normalised

either to the b-actin or GAPDH protein content. For the analysis of

BACE1, Neprilysin and IDE, some of the loaded Triton-X samples did

not contain enough protein sufficient for analysis (based on GAPDH

content). These specific samples were removed from the analysis.

Filter retardation test

A native filter test was applied to analyse size and stability of Ab
aggregates on non-denatured samples [modified from 38]. In brief,
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brain homogenates from all four protein fractions (10 lg total

protein per dot) were filtered in triplicate through a 0.2-lm cellulose

acetate membrane. Synthetic pre-fibrillar Ab was used as a positive

control and NSP buffer (10 mM K3PO4, 10 mM NaCl pH 7.4) as a

negative control. Filters were washed in PBS and incubated with the

6E10 antibody (1:2,000, BioLegend, 803002), followed by a mouse

secondary HRP-conjugated antibody (Sigma, A0168), to allow

chemiluminescent detection of the aggregated proteins remaining on

the filter. Membranes were exposed for 1 min, and signals were

analysed using the Aida program. A detailed setup of the membrane

can be found in Appendix Fig S2.

Statistics, data analysis, study design and data availability

General
Data were generated based on multiple exploratory histological and

biochemical analyses aimed at generating hypotheses and biostatis-

tical planning for future confirmatory studies. Data analysis,

processing, descriptive and formal statistical testing were done

according to the current customary practice of data handling using

Excel 2016, GraphPad PRISM 5.0, ImageJ, Python 3.7.4 and R

version 3.5.1 “Feather Spray” (code available via Github). To

display data in a consistent manner, graphs were generated using

PRISM, while correlation graphs were done by the use of ggplot2 in

R. All data generated or analysed during this study are included in

this article.

Statistics
Student’s t-test was used for pairwise comparison between two

experimental groups. For Clec7a column analysis, a Bonferroni

correction for each single bin was applied. Pearson r-value and

P-value for correlations were identified using correlation analysis.

One-way ANOVA testing was applied for comparison of more than

two groups, with post hoc analysis using Tukey’s multiple compar-

ison test. Statistical significance is indicated as follows: *P ≤ 0.05,

**P ≤ 0.01 and ***P ≤ 0.001.

Expanded View for this article is available online.
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