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Classification of Inflammatory Bowel Disease from
Formalin-Fixed, Paraffin-Embedded Tissue Biopsies
via Imaging Mass Spectrometry
Oliver Klein,* Franz Fogt, Stephan Hollerbach, Grit Nebrich, Tobias Boskamp,
and Axel Wellmann

Purpose: Discrimination between ulcerative colitis (UC) and Crohn’s disease
(CD) by histologic features alone can be challenging and often leads to
inaccurate initial diagnoses in inflammatory bowel disease (IBD) patients.
This is mostly due to an overlap of clinical and histologic features. However,
exact diagnosis is not only important for patient treatment but it also has a
socioeconomic impact. It is therefore important to develop and improve
diagnostic tools complementing traditional histomorphological approaches.
Experimental Design: In this retrospective proof-of-concept study, the
utilization of MALDI imaging is explored in combination with multi-variate
data analysis methods to classify formalin-fixed, paraffin-embedded (FFPE)
colon biopsies from UC (87 biopsies, 14 patients), CD (71 biopsies, 14
patients), and normal colonic (21 biopsies, 14 patients) tissues.
Results: The proposed method results in an overall balanced accuracy of
85.7% on patient and of 80.4% on sample level, thus demonstrating that the
assessment of IBD from FFPE tissue specimens via MALDI imaging is feasible.
Conclusions and Clinical Relevance: The results emphasize the high potential
of this method to distinguish IBD subtypes in FFPE tissue sections, which is a
prerequisite for further investigations in retrospective multicenter studies, as
well as for a future implementation into clinical routine.
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1. Introduction

More than five million people worldwide
are affected with Crohn’s disease (CD) or
ulcerative colitis (UC), with 1.4 million in
theUnited States alone, and threemillion
in Europe.[1] Distinction between these
two main forms of chronic inflamma-
tory bowel disease (IBD) can be achieved
in most cases based on clinical history,
radiologic and endoscopic findings, and
histomorphological parameters. Distin-
guishing both forms of IBD is important,
as patients with CD should, for instance,
not be exposed to an ileorectal anasto-
mosis due to wound healing problems
and significant clinical issue with a small
bowel pouch formation. However, up to
20% of IBD cases cannot be classified at
the time of diagnosis, which is mainly
due to inconclusive endoscopic and his-
tologic data.[2]

Until a definite diagnosis can be ren-
dered, the respective patients are often di-
agnosed as indeterminate chronic IBD.[3]
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When confronted with typical biopsy features of UC, such as rec-
tal involvement, mucosal inflammation and continuous disease
without significant involvement of the terminal ileum, the diag-
nosis can be made reliably in most cases. In contrast, cecal spar-
ing, deep “snail-trail” ulcerations and fissures, epitheloid gran-
uloma formation, fibrous stenosis, and significant ileitis with
“cobblestone pattern” discloses features that are typically seen
in CD. Although CD is usually considered to represent a seg-
mental disease with transmural involvement, there are signifi-
cant numbers of cases which will show diffuse and/or superficial
involvement.[3,4]

In order to help substantiate presence of eitherUCorCD, sero-
logical tests have been applied as non-invasive diagnostic tools
in IBD patients. Such tests include assays for perinuclear anti-
neutrophil cytoplasmic antibodies (pANCA), antibodies against
saccharomyces cervisiae (ASCA), and serum agglutinating anti-
bodies to anaerobic coccoid rods.[5] However, due to a low sensi-
tivity of thesemarkers, their clinical value appears to be limited.[6]

Furthermore, linkage analysis and genome wide association
studies have uncovered over 100 loci that have significant asso-
ciation with IBD.[7] Genetic tests from tissue used in discrimi-
nating UC from CD include specific genes associated with IBD,
such as solute carrier (SLC) 6A14, SLC 26A2, small protein as-
sociated with PDZ domain-containing protein 1 (SPAP), regen-
erating protein IV (RegIV), Vanin-1, matrix metalloproteinase 7
(MMP-7), and growth-related oncogene alpha (Gro-𝛼). While ini-
tially a high accuracy for classification models based on these
gene expression features was reported,[8] these results could not
be confirmed in follow-up studies.[9]

Consequently, accurate and reliable diagnostic assays for dif-
ferential IBD diagnosis are currently not available. Moreover,
tissue based proteomic and genomic techniques require large
amounts of homogenized tissue material, and do not allow a di-
rect correlation of differentially expressed molecular profiles to
tissue histology.
Matrix assisted laser desorption/ionization imaging mass

spectrometry (MALDI imaging) enables the label-free and mul-
tiplex determination of locally resolved molecular signatures
in tissue (e.g., proteins, peptides, lipids, metabolites) and al-
lows their correlation with alterations in tissue histology.[10,11]

In combination with supervised machine learning algorithms,
this method shows a high potential for the development of
diagnostic histopathological tests.[12,13] While most research is
focused on applications to tumor typing and subtyping,[14–16]

applications to, for example, neurodegenerative diseases,[17]

cardiology,[18] diabetes,[19] and regenerative medicine have also
been considered.[20]

The proposed methods primarily rely on the extraction of spec-
tral features from large sets of training data, involving statis-
tical tests for detecting discriminative spectral peaks, as well
as computational methods, such as principal component anal-
ysis (PCA),[21] probabilistic latent semantic analysis (PLSA) or
non-negative matrix factorization (NMF).[22,23] The extracted fea-
tures then form the basis for constructing a subsequent clas-
sification scheme based on linear discriminant analysis (LDA),
logistic regression, support vector machine (SVM), or random
forests (RF). Moreover, the application of convolutional neu-
ral networks to MALDI imaging based tissue typing has been
proposed.[24,25]

Clinical Relevance

More thanfivemillionpeopleworldwide are affectedwith
Crohn’s disease (CD)or ulcerative colitis (UC), the twomain
formsof chronic inflammatory bowel disease (IBD). In up to
approximately 20%of these cases it is impossible to distin-
guishbetweenbothpathologies at the timeof initial diagnosis
basedon clinical andhistological findings.However, a correct
diagnosis is essential because surgical treatment and long-
termprognosis differ forUCandCD.
MALDI imagingmass spectrometry (MALDI imaging)

showspromisingpotential to support diagnostic procedures
on tissue samples in clinical pathology. In particular, earlier
studieswere able to demonstrate that accurate IBDsubtyping
is possible throughMALDI imaging. Since these studieswere
conductedon fresh frozen colonic tissue, their findings can
be verified inmulticenter studies only to a very limited extent.
In thepresentwork,we examine theuseofMALDI imaging
in combinationwithmulti-variate data analysismethods to
distinguishbetweenCDandUCon formalin-fixed, paraffin-
embedded (FFPE) colonic tissue.Our results emphasize the
highpotential of thismethod todistinguish IBDsubtypes in
FFPE tissue sections.

With respect to IBD subtyping, a first study was able to demon-
strate that a MALDI imaging based classifier using signatures
from intact proteins and an SVM algorithm allows to discrimi-
nate CD and UC from fresh frozen colonic tissue at an accuracy
of 76.9%.[26,27] In this work, a histology guided approach was fol-
lowed, requiring the prior specification of inflammatory mucosa
and submucosa regions by a pathologist. Since tissue biopsies
from up to six sites around the colon and rectum are typically
investigated,[28] this process is time consuming and induces a
high observer dependence. Moreover, for a wide applicability in
clinical pathological routine, compatibility with formalin-fixed,
paraffin-embedded (FFPE) tissue samples is mandatory, as these
constitute most of the tissue collected and stored by pathologists
worldwide.
To overcome these limitations, the present study addresses

the use of MALDI imaging as a classification tool to discrimi-
nate UC, CD, and normal tissue biopsies from FFPE tissue sam-
ple sections. Our results suggest that MALDI imaging is able to
provide valuable support for the distinct pathological diagnosis
of IBD.

2. Results

Colon biopsies (179 samples, 42 patients) from UC (87 biopsies,
14 patients), CD (71 biopsies, 14 patients), and normal tissue (21
biopsies, 14 patients) were analyzed by MALDI imaging. A total
of 166 893 spectra were recorded (UC: 90 654, CD: 56 801, N:
19 483). Average spectra of exemplary UC, CD, and normal tissue
biopsies are shown in Figure 1.
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Figure 1. Average spectra of three selected colon biopsies and the corresponding hematoxylin and eosin (HE) staining. a) Crohn’s colitis, b) normal
colon, and c) ulcerative colitis.

Figure 2. Box plot of spectral intensities for seven discriminative m/z values shown separately for the tissue classes ulcerative colitis (UC), Crohn’s
disease (CD), and normal (N). Center markers, boxes, and dashed bars represent median values, interquartile and min/max ranges, respectively.
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Figure 3. Spectral intensity images of the four most discriminative m/z values shown for three-selected tissue samples corresponding to the classes
UC, CD, and N, as well as corresponding mean spectra close-ups.

Table 1. Selected m/z values and their receiver operating characteristic
(ROC) values with respect to each of the three tissue classes UC, CD,
and N.

m/z UC CD N

802.397 0.648 0.513 0.115

919.455 0.350 0.503 0.854

1115.552 0.192 0.749 0.698

1127.558 0.187 0.744 0.721

1042.516 0.556 0.591 0.167

1266.627 0.252 0.756 0.539

1138.563 0.489 0.359 0.833

2.1. Discriminative Peptide Values

The feature selection procedure described in Section 4, Discrim-
inative Feature Selection, reveals a list of seven m/z values for
which the spectral intensity distributions show considerable dif-
ferences between the three tissue classes (Figure 2, Table 1). An
example for intensity images corresponding to the first four of
these m/z values and three selected tissue samples (all from the
same slide OT1) is shown in Figure 3. As can be seen, the inten-
sities for m/z 919.5, 1115.6, and 1127.6 nicely reflect the overall
distributions shown in Figure 2. For m/z 802.4, however, this is
not the case in this particular example, which is due to the sta-
tistical nature of the feature selection procedure and the strong

variation of the observed features across all samples. The com-
plete set of m/z images for all slides (OT1–OT7) is available as
Figure S1, Supporting Information (mz images, generated using
SCiLS Lab, with weak denoising and hot spot removal at 97.5%
quantile).

2.2. Classification Models for Inflammatory Bowel Disease

The LDA classification models generated in the cross-validation
process as described in Section 4, Classification, result in predic-
tion scores for all samples. The distributions of these scores are
shown in Figure 4, grouped by slide (OT1–OT7, left to right) and
patient (top to bottom, separated by black lines). Each horizon-
tal bar represents prediction scores obtained for a single sample,
and incorrect scores, that is, scores indicating the wrong class for
this sample, shown in red.
For further evaluating the prediction accuracy on a per-sample

and per-patient level, the spot-wise prediction scores obtained
from the LDA classification were averaged for each sample and
patient, respectively. From the resulting receiver operating char-
acteristic (ROC) curves, the overall multi-class area under curve
(AUC) was computed as 90.6% on sample level and 92.8% on pa-
tient level. Assuming equal priors for each class, cut-off thresh-
olds were selected to maximize the balanced accuracy, that is, the
average of all three sensitivities, resulting in distinct class pre-
dictions for each sample and patient (Table 2). As can be seen,
discrimination between any of the two conditions of IBD and

Proteomics Clin. Appl. 2020, 14, 1900131 1900131 (4 of 8) © 2020 The Authors. Proteomics – Clinical Applications published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.clinical.proteomics-journal.com


www.advancedsciencenews.com www.clinical.proteomics-journal.com

Figure 4. Distribution of classification scores for the seven slides (OT1–OT7, left to right). Horizontal lines represent individual samples, grouped by
patient and tissue class. Extent of misclassification shown in red.

Table 2. Classification results per sample and per patient.

Sample prediction Patient prediction

Diagnosis UC CD N Sensitivity Specificity UC CD N Sensitivity Specificity

UC 64 16 7 73.6% 79.3% 12 2 85.7% 85.7%

CD 19 48 4 67.6% 85.2% 4 10 71.4% 92.9%

N 21 100.0% 93.0% 14 100.0% 100.0%

Balanced
accuracy

80.4% 85.7%

normal tissue is highly accurate on sample level (sens/spec =
93%/100% for colitis versus normal), and even more on patient
level (sens/spec= 100%/100%). Discrimination betweenUC and
CD is achieved with a balanced accuracy of 78.6% (UC 85.7%, CD
71.4%) on patient and 70.6% (UC 73.6%, CD 67.6%) on sample
level. The overall balanced accuracy for all three classes is 85.7%
on patient and 80.4% on sample level.

3. Discussion

Our aim in this pilot study was to investigate the potential of
MALDI imaging as a clinical diagnostic tool to differentiate be-
tween UC and CD in colonic biopsies. This application scenario
requires the compatibility to FFPE tissue specimen, which is why
we considered a sample preparation workflow consisting of de-
paraffination, antigen retrieval, and tryptic digestion. As a result
of this complex workflow, the acquiredMALDI imaging data con-
tain a significant amount of chemical and technical noise, posing
severe challenges to the subsequent data analysis methods.

Our data-preprocessing pipeline included a spatial denoising
step to increase the signal-to-noise ratio, as well as downsam-
pling to intervals of 0.4 Da width around the theoretically ex-
pected peptide masses. The latter processing step improves the
robustness against mass misalignment, which is likely to occur
inMALDI TOF data. Moreover, it heavily reduces the data dimen-
sionality, which is beneficial for the subsequent feature selec-
tion and classification algorithms. Thus, we were able to develop
a completely automated supervised machine learning workflow
that does not require prior peak picking or visual feature selec-
tion. In order to achieve this level of automation and to simplify
the cross-validation process described here, we had to perform
our data analysis using a programmable data analysis framework,
such as MATLAB. For subsequent validation of the discrimina-
tive spectral features derived in our analysis, it will be possible
to perform the classification directly in SCiLS Lab, as the clas-
sification algorithm used in our work (LDA) is no different from
the standard algorithms found in SCiLS Lab or other commercial
products.
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Based on a set of seven spectral features (m/z values), a classi-
fication model was trained that allowed to discriminate between
the three classes UC, CD, and normal at an AUC of 92.8% on pa-
tient level, evaluated using cross validation on slide level (“leave
one slide out”). With respect to discriminating IBD (UC or CD)
from normal, even a perfect classification result was achieved on
patient level (100% sensitivity and specificity). When considering
the IBD cases only, discrimination between UC and CD patients
was possible at a balanced accuracy of 78.6%.
In our study design, we decided to include multiple samples

per patient (varying between 1 and 10, median= 4), as this is con-
sistent with the typical diagnostic routine workflow, where often
up to six biopsy samples or more are investigated. On the other
hand, we did not pursue the histology guided MALDI imaging
approach, which would require prior identification of “hot spots”
of inflammatory regions by the pathologist. Instead, the classifi-
cation results are obtained on tissue samples that may include
both normal and inflammatory regions for an UC or CD patient.
In view of this background, we consider the reported accuracy
levels even more remarkable.
In order to arrive at a robust classification model linked to pu-

tative protein signatures associated with the two forms of IBD,
we took care to avoid obvious sources of confounding. For exam-
ple, we mixed patients of all three diagnostic categories (UC, CD,
normal) on each slide, and designed the cross validation scheme
to strictly separate on both the patient and the slide levels. More-
over, for improved robustness, cross validation was utilized not
only for estimating the classification accuracy, but also for per-
forming the feature selection.
As a caveat, however, we point out that the final feature set of

seven m/z values was in fact obtained taking into account data
from the full study cohort. Nevertheless, our study highlights
the potential of MALDI imaging to derive proteomic signatures
for the discrimination between UC and CD, and thus for sup-
porting differential diagnosis of IBD in clinical pathological rou-
tine. The disease manifestation and characteristic are heteroge-
neously distributed across the different biopsies from the individ-
ual patients. Based on the HE staining, morphological structures
and disease manifestations (crypt reconstruction, inflammation)
were assessed and aligned to the peptide intensity maps from
the MALDI imaging analysis. In case of, for example, m/z value
1115.6 Da, an increased intensity distribution could be observed
in regions of mostly regular crypts in UC and CD. In contrast,
areas with high inflammation and massive crypt reconstruction
(severe disease manifestation) revealed a decreased spectral in-
tensity (Figure S2, Supporting Information).
The proportion of regions with actual disease manifestations

in the IBD biopsies have an influence on the accuracy of the
classification. In our study, the misclassified biopsies were asso-
ciated with histological findings of mostly regular morphological
structures and almost no disease manifestations (see example in
Figure S2, Supporting Information). However, by considering all
available biopsies, the classification accuracy could be increased
from 80.4% on sample level to 85.7% on patient level. Thus, dif-
ferent proportions of disease manifestations in the IBD biopsies
had only little influence on the classification on patient level,
even without further time-consuming annotation of the biopsies
by the diagnostic pathologist. Nevertheless, a consideration of a
minimum of six biopsies per patient, as usually recommended

in clinical routine[29] remains advisable also for analysis by
MALDI Imaging.
This retrospective study demonstrates that MALDI imaging

based diagnostic assessment of IBD from FFPE tissue is techni-
cally and practically feasible. As FFPE tissue samples constitute
the largest part of all tissue collected in clinical routine, the
results of this study lay the foundations for more extensive
validation in multi-center studies. Future work will focus on
comparative clinical follow-up studies with larger patient co-
horts, further investigation of the seven m/z values and their
identification by proteomic techniques, as well as analyzing their
potential correlation with histologic features.

4. Experimental Section
Study Cohort and Histopathological Examination: FFPE colon biopsies

of 42 patients with UC, CD, and no IBD (normal) were retrospectively
recruited and diagnostically evaluated by an experienced, board-certified
pathologist (A.W.). The research study was implemented in accordance
with the relevant guidelines and regulations. Samples used in this study
were available from the tissue archive of the Institute of Pathology, Celle,
and were subjected to strict anonymization. Utilization of anonymized
archival material in retrospective studies without explicit patient consent
was approved by the ethical committee of MH Hannover (393-2008).

Chemicals: Alpha-cyano-4-hydroxycinnamic acid (HCCA) was ob-
tained from Bruker Daltonik (Bremen, Germany), ammonium bicarbon-
ate, acetonitrile (ACN), 0.1% trifluoroacetic acid (TFA) from Fluka (St.
Louis, USA) and trypsin from Promega (Madison, WI, USA). 100% TFA
was purchased from Merck (spectroscopy purity, Darmstadt, Germany)
and ammonium hydrogen phosphate from Sigma (St. Louis, USA).

Tissue Preparation: Tissue preparation and MALDI imaging data
acquisition were performed as previously described.[30] Briefly,
paraformaldehyde (PFA)-fixed specimens were dehydrated by wash-
ing sequentially with increasing concentrations of ethanol, subsequently
cleared in xylene and embedded in paraffin. 6 µm FFPE sections were
transferred to a total of seven indium-tin-oxide slides (Bruker Daltonik,
Bremen, Germany). Sections were dewaxed and passed through de-
creasing concentrations of ethanol according to a protocol adapted from
Casadonte et al.[11] Citric acid antigen retrieval (CAAR) adapted from
a previously described method[31] was performed. After drying slides
for 10 min, tryptic digest was performed. Using an automated spraying
device (ImagePrep, Bruker Daltonik, nine spraying cycles), 200 µL trypsin
solution (20 µg, 20 mm ammonium bicarbonate/acetonitrile 9:1) was
applied onto the section. This procedure took about 15 min; the following
settings were used: 39% spray power, 0% modulation (offset: 20), 9 spray
cycles, spray time of 1.25 s, drying time of 50 s. After tissue incubation (3
h at 37 °C, moist chamber), matrix solution (1 mL 7 g L−1 HCCA in 50%
ACN and 1% TFA) was deposited using ImagePrep (15% power, ±40%
modulation, 60 spraying cycles).

MALDI Imaging Analysis: MALDI imaging data acquisition was exe-
cuted as previously described.[30] Briefly, analysis was performed in mass
detection range ofm/z 600–3500, 200 laser shots per spot, sampling rate
of 1.25 GS s−1, and raster width of 50 µm on a Rapiflex MALDI time of
flight (TOF) using flexControl 3.0 and flexImaging 3.0 (Bruker Daltonik).
External calibration was performed using a peptide calibration standard
(Bruker Daltonik). Spectra processing was performed in flexAnalysis 3.0
(Bruker Daltonik). AfterMALDI imaging experiments, matrix was removed
with 70% ethanol and tissue sections were hematoxylin and eosin (HE)
stained.[11]

Data Preprocessing: Spectral data of each of the seven slides were
loaded into SCiLS Lab (version 2018a, SCiLS, Bremen, Germany) sepa-
rately, and total ion count (TIC) normalizationwas applied. For subsequent
processing, the data were exported to MATLAB (version 2016b, Math-
Works, Natick, MA, USA). The spectra were cropped to the mass range
m/z 700–2700, and spatial denoising was performed using local averaging
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on a 5-by-5 neighborhood around each spot. Next, spectra were resampled
to intervals of 0.4 Da width centered around expected peptide masses
according to the idealized “averagine” peptide mass model.[32] Thus,
the dimensionality of the data was reduced to 1999 intensity values per
spectrum.

Discriminative Feature Selection: Selection of discriminative peptide
masses was performed by receiver operating characteristic (ROC) analy-
sis. Based on the patients’ diagnosis, spectra where assigned to one of the
three classes UC, CD, and normal (N). For each class and eachm/z value
the Mann–Whitney–Wilcoxon statistic was computed, which is equivalent
to the empirical probability P that the spectral intensity at the given m/z
value in the given class is larger than that of a spectrum in any of the other
classes.[33] For selecting thosem/z values that were either over- or under-
represented in one of the classes, the ROC ranking criterion r = |P − 0.5|
(ROC score) was computed, and the top 10 m/z values were chosen. In
order to increase the robustness of this feature extraction step, the above
analysis was not performed on the full data, but instead on partial data us-
ing a k-fold cross validation scheme. Patients were randomly split into k =
5 subsets of approximately same size, each including all three diagnoses.
By removing one of these subsets in turn, five different training sets were
obtained, and ROC ranking was performed on each of these training sets
independently, resulting in five ranked lists of 10 m/z values each. Those
m/z values occurring in only one or two lists were discarded, leaving a list
of sevenm/z values with high ROC ranking in at least two training subsets.
A complete table of all top rankedm/z values for each of the five cross val-
idation subsets, including the corresponding ROC values for each of the
three classes, as well as the maximum ROC score across all classes, is
available (Table S1, Supporting Information—Peaks ROC values).

Classification: Given the discriminative features computed in the pre-
vious step and the corresponding class information, LDA[34] was applied
using the implementation available in the MATLAB Statistics and Ma-
chine Learning Toolbox (MathWorks, Natick, MA, USA). Since the authors
wanted to evaluate the classification method’s robustness toward tech-
nical variation between individual measurements, they chose to perform
cross validation on slide level instead of patient level. Seven cross vali-
dation folds were formed, each one consisting of data from six slides as
training data on which an LDA classification model was trained. The re-
spective remaining subset in each fold was used as test data. Combining
classification results from all folds, a full set of predictions was obtained
and compared to the ground truth class information. A multi-class exten-
sion of the area under curve (AUC) metric[35] was used to evaluate the
classification result.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The authors thank Angelika Krajewski for providing excellent technical as-
sistance in the imaging mass spectrometry sample preparation. This work
was supported by grants from the BCRT through funding by the German
Federal Ministry of Education and Research (BMBF). The funders had no
role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Data availability Statement
The data sets generated and/or analyzed in the current study are available
on request from the corresponding author.

Keywords
Crohn’s disease, imaging mass spectrometry, inflammatory bowel
disease, ulcerative colitis

Received: December 12, 2019
Revised: May 25, 2020

Published online: August 4, 2020

[1] J. Burisch, T. Jess, M. Martinato, P. L. Lakatos, E. EpiCom, J. Crohn’s
Colitis 2013, 7, 322.

[2] G. E. Tontini, M. Vecchi, L. Pastorelli, M. F. Neurath, H. Neumann,
World J. Gastroenterol. 2015, 21, 21.

[3] W. J. Tremaine, Gastroenterol. Hepatol. 2011, 7, 826.
[4] T. C. DeRoche, S. Y. Xiao, X. Liu, Gastroenterol. Rep. 2014, 2,

178.
[5] E. Viennois, Y. Zhao, D. Merlin, Inflammatory Bowel Dis. 2015, 21,

2467.
[6] X. Bossuyt, Clin. Chem. 2006, 52, 171.
[7] B. D. Ye, D. P. McGovern, Expert Rev. Clin. Immunol. 2016, 12,

1091.
[8] P. von Stein, R. Lofberg, N. V. Kuznetsov, A. W. Gielen, J.-O. Persson,

R. Sundberg, K. Hellstrom, A. Eriksson, R. Befrits, A. Ost, O. D. von
Stein, Gastroenterology 2008, 134, 1869.

[9] J. T. Bjerrum, C. Nyberg, J. Olsen, O. H. Nielsen, J. Intern. Med. 2014,
275, 484.

[10] A. Walch, S. Rauser, S. O. Deininger, H. Hofler, Histochem. Cell Biol.
2008, 130, 421.

[11] R. Casadonte, R. M. Caprioli, Nat. Protoc. 2011, 6, 1695.
[12] K. Schwamborn, R. M. Caprioli, Nat. Rev. Cancer 2010, 10, 639.
[13] R. D. Addie, B. Balluff, J. V. Bovee, H.Morreau, L. A. McDonnell, Anal.

Chem. 2015, 87, 6426.
[14] J. Kriegsmann, M. Kriegsmann, R. Casadonte, Int. J. Oncol. 2015, 46,

893.
[15] R. Casadonte, M. Kriegsmann, F. Zweynert, K. Friedrich, G. Baretton,

M. Otto, S.-O. Deininger, R. Paape, E. Belau, D. Suckau, D. Aust, C.
Pilarsky, J. Kriegsmann, Proteomics 2014, 14, 956.

[16] K. A. Veselkov, R. Mirnezami, N. Strittmatter, R. D. Goldin, J. Kin-
ross, A. V. M. Speller, T. Abramov, E. A. Jones, A. Darzi, E. Holmes,
J. K. Nicholson, Z. Takats, Proc. Natl. Acad. Sci. USA 2014, 111,
1216.

[17] Y. Ucal, Z. A. Durer, H. Atak, E. Kadioglu, B. Sahin, A. Coskun, A. T.
Baykal, A. Ozpinar, Biochim. Biophys. Acta, Proteins Proteomics 2017,
1865, 795.

[18] F. Spillmann, S. Van Linthout, G. Schmidt, O. Klein, N. Hamdani, T.
Mairinger, F. Krackhardt, B. Maroski, T. Schlabs, S. Soltani, S. Anker,
E. V. Potapov, D. Burkhoff, B. Pieske, C. Tschöpe, Eur. Heart. J. 2019,
40, 2164.

[19] S. Miyamoto, C.-C. Hsu, G. Hamm, M. Darshi, M. Diamond-Stanic,
A.-E. Declèves, L. Slater, S. Pennathur, J. Stauber, P. C. Dorrestein, K.
Sharma, EBioMedicine 2016, 7, 121.

[20] O. Klein, K. Strohschein, G. Nebrich, M. Fuchs, H. Thiele, P. Gi-
avalisco, G. N. Duda, T. Winkler, J. H. Kobarg, D. Trede, S. Geissler,
Sci. Rep. 2018, 8, 12677.

[21] S. O. Deininger, M. Becker, D. Suckau,Methods Mol. Biol. 2010, 656,
385.

[22] T. Boskamp, D. Lachmund, J. Oetjen, Y. C. Hernandez, D. Trede, P.
Maass, R. Casadonte, J. Kriegsmann, A. Warth, H. Dienemann, W.
Weichert, M. Kriegsmann, Biochim. Biophys. Acta, Proteins Proteomics
2017, 1865, 916.

[23] J. Leuschner, M. Schmidt, P. Fernsel, D. Lachmund, T. Boskamp, P.
Maass, Bioinformatics 2018, 35, 1940.

Proteomics Clin. Appl. 2020, 14, 1900131 1900131 (7 of 8) © 2020 The Authors. Proteomics – Clinical Applications published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.clinical.proteomics-journal.com


www.advancedsciencenews.com www.clinical.proteomics-journal.com

[24] J. Behrmann, C. Etmann, T. Boskamp, R. Casadonte, J. Kriegsmann,
P. Maaß, Bioinformatics 2018, 34, 1215.

[25] O. Klein, F. Kanter, H. Kulbe, P. Jank, C. Denkert, G. Nebrich, W. D.
Schmitt, Z. Wu, C. A. Kunze, J. Sehouli, S. Darb-Esfahani, I. Braicu,
J. Lellmann, H. Thiele, E. T. Taube, Proteomics Clin. Appl. 2019, 13,
e1700181.

[26] E. H. Seeley, M. K. Washington, R. M. Caprioli, A. E. M’Koma, Pro-
teomics – Clin. Appl. 2013, 7, 541.

[27] A. E. M’Koma, E. H. Seeley, M. K. Washington, D. A. Schwartz, R. L.
Muldoon, A. J. Herline, P. E. Wise, R. M. Caprioli, Inflammatory Bowel
Dis. 2011, 17, 875.

[28] E. F. Stange, S. P. L. Travis, S. Vermeire, W. Reinisch, K. Geboes, A.
Barakauskiene, R. Feakins, J. F. Fléjou, H. Herfarth, D.W.Hommes, L.
Kupcinskas, P. L. Lakatos, G. J. Mantzaris, S. Schreiber, V. Villanacci,
B. F. Warren, J. Crohn’s Colitis 2008, 2, 1.

[29] T. Kucharzik, A. U. Dignass, R. Atreya, B. Bokemeyer, P. Esters, K.
Herrlinger, K. Kannengießer, P. Kienle, J. Langhorst, A. Lügering, S.
Schreiber, A. Stallmach, J. Stein, A. Sturm, N. Teich, B. Siegmund, Z
Gastroenterol. 2019, 57, 1321.

[30] O. Klein, K. Strohschein, G. Nebrich, J. Oetjen, D. Trede, H. Thiele,
T. Alexandrov, P. Giavalisco, G. N. Duda, P. von Roth, S. Geissler, J.
Klose, T. Winkler, Proteomics 2014, 14, 2249.

[31] J. O. Gustafsson,M. K. Oehler, S. R.McColl, P. Hoffmann, J. Proteome
Res. 2010, 9, 4315.

[32] M. W. Senko, S. C. Beu, F. W. McLaffertycor, J. Am. Soc. Mass Spec-
trom. 1995, 6, 229.

[33] T. Fawcett, Pattern Recognit. Lett. 2006, 27, 861.
[34] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learn-

ing, Springer, New York 2009.
[35] D. J. Hand, R. J. Till,Mach. Learn. 2001, 45, 171.

Proteomics Clin. Appl. 2020, 14, 1900131 1900131 (8 of 8) © 2020 The Authors. Proteomics – Clinical Applications published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.clinical.proteomics-journal.com

