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General Introduction and Results

The research effort to understand the term structure of interest rates is vast.

Despite a large number of competing theoretical models and even competing

paradigms, there is general agreement on one aspect: The current shape of the

yield curve contains information on expected future developments of macroeco-

nomic variables (Gürkaynak and Wright 2012). For policy makers, it is central

to extract this information and to influence expectations of market participants.

Therefore, the term structure constitutes an integral part of monetary policy. But

what kind of information do the yields comprise? And why is it so important?

The yield curve contains market expectations about future interest rates. This

powerful result is based on the most widespread theory of interest rates, the expec-

tations hypothesis. It states that longer-term rates represent simple averages of

expected future short-term rates. If the yield curve is upward sloping, short-rates

are expected to rise. Yet, the extent to what this prediction applies depends on

the size of the risk premium which is demanded by investors to hold longer-term

bonds. In fact, the literature documents a fairly poor empirical performance of the

expectations hypothesis. The first part of this thesis shows, however, that some

of the negative evidence can be rationalized. It is argued that, after all, the ex-

pectations hypothesis should be considered as a reasonable first point of reference

when we think about the relation among interest rates of different maturities.

The yield curve also contains market expectations about future inflation rates.

According to the Fisher hypothesis, the difference between nominal and real in-

terest rates provides a measure of expected inflation. Over the last two decades,

observations of real interest rates have become available to researchers. In ad-

dition to the US, many European countries such as France, Germany, the UK

V



General Introduction and Results VI

or Sweden have developed very large markets of inflation indexed bonds. Since

these bonds adjust nominal payments by realized inflation, their yields can be

considered as real interest rates. Together with nominal yields, a term structure

of break-even inflation rates can be constructed (Gürkaynak et al. 2007, 2010a).

Break-even rates indicate expected inflation and hence represent very useful in-

formation. According to the forward looking Phillips curve – a standard element

of New Keynesian models – controlling inflation has a lot to do with managing

expectations. Therefore, it is decisive for monetary policy whether inflation expec-

tations are well anchored. Since it is not clear how the anchoring of expectations

can be assessed empirically, the second part of this thesis proposes an answer to

that question.

While there is no doubt among economists that the term structure contains valu-

able information for monetary policy, it remains debatable whether the yield

curve can be fully understood if we restrict our attention to only one type of

representative economic agent. According to the majority of term structure mod-

els, as the affine class, there solely exist risk-averse arbitrageurs who trade across

the whole maturity spectrum. On the contrary, recent advances in the litera-

ture on preferred-habitat models emphasize that bond yields do not only reflect

the expectations of arbitrageurs. A further type of agent, i.e. preferred-habitat

investors with a preference for specific maturities, is introduced. These models

predict that maturity-specific demand and supply affects bond prices (Greenwood

and Vayanos 2010). For practitioners, this implies that changing the supply and

hence the maturity structure of government debt can represent an alternative tool

for monetary policy. The third part of this thesis is dedicated to an analysis of

the statistical significance and the economic relevance of preferred-habitat effects.

In view of the methodology deployed in this thesis, linear and static approaches

do often not fully meet the econometric demands of testable economic hypothe-

ses. The predicted relations are frequently supposed to be time-varying. Market

volatility plays a key role in governing this time variation. In case of a time-

varying risk premium, as in the first paper, volatility can represent the amount

of risk. In case of time-varying risk aversion, as in the third paper, volatility can

proxy the sensitivity of economic agents to a given amount of risk. In both cases,
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volatility is connected to risk or uncertainty. This view is deeply rooted in the

financial literature (Engle et al. 1987, Bali and Engle 2010). It exists, however,

another prominent academic understanding which attributes volatility to the flow

of information (Fleming et al. 1998, Gagnon and Karolyi 2009). The two concepts

are not mutually exclusive but quite contrary. Exploring the nature of volatility

should therefore provide important insights in what volatility actually measures

and how we should exploit its time variation in empirical studies. The last part

of this thesis addresses precisely these questions.

All four papers of the present thesis are devoted to contribute new evidence and

to introduce new methodological approaches to the field of empirical macroeco-

nomics. In the following the main contributions and results of each individual

paper are briefly summarized.

• Paper 1: Mean-Variance Cointegration and the Expectations Hypothesis

This paper sheds further light on a well-known (alleged) violation of the

expectations hypothesis of the term structure - the frequent finding of unit

roots in interest rate spreads. It is shown that the expectations hypothesis

implies that the non-stationarity stems from the holding premium, which

is hence cointegrated with the spread. Within a stochastic discount fac-

tor framework the premium is modeled as being driven by the integrated

variance of excess returns. A test for cointegration between mean and vari-

ance of random variables is introduced and applied to US bond data. The

mean-variance cointegration test provides strong evidence for a long-run re-

lation between conditional first and second moments. The findings suggest

that the expectations hypothesis performs much better than we might have

thought.

• Paper 2: Assessing the Anchoring of Inflation Expectations

This paper proposes a new approach to assess the degree of anchoring of in-

flation expectations. The implicit unit root assumption of the predominant

news regressions is relaxed by introducing ESTAR non-linearities. The ap-

proach assumes globally stationary expectations and provides estimates of a

market-perceived inflation target as well as the strength of the anchor that

holds expectations at that target. A cross-country study is conducted based
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on a new data set of daily break-even inflation rates for the US, EMU, UK

and Sweden. In contrast to the news regressions, which would have found

unanchored expectations in all countries, the ESTAR results show that the

degree of anchoring varies significantly across countries and horizons of ex-

pectations. While inflation expectations appear well anchored in the EMU,

reasonably stable in the US and Sweden, they show signs of de-anchoring

in the UK.

• Paper 3: Testing the Preferred-Habitat Theory: The Role of Time-Varying

Risk Aversion

This paper tests the preferred-habitat model of Greenwood and Vayanos

(2012). Special attention is paid to time-varying risk aversion which implies

that the predicted positive relation between the term spread and relative

supply of longer-term debt is stronger, when risk aversion is high. To capture

this effect, a flexible time-varying coefficient model is introduced and applied

to German bond data. The results provide supportive evidence for the model

and indicate that the time variation is substantial: When risk aversion is

high, yield spreads react by about 3 times as much as when risk aversion is

low. The accumulated response of term spreads to a one standard deviation

change in debt supply ranges between 5 and 33 basis points.

• Paper 4: The Signal of Volatility

This paper analyzes the inherently ambivalent economic interpretation of

financial volatility in the academic literature. While volatility is considered

an indicator of either information flow or uncertainty, it is shown in a stylized

model economy that both views suggest volatility-dependent cross-market

spillovers. Observing theses spillovers to decrease (increase) with volatility

would favor the linkage to uncertainty (information). To this end, a si-

multaneous time-varying coefficient model is introduced in which structural

ARCH-type variances serve two purposes: Governing the time variation

of spillovers and ensuring statistical identification. Based on data of the

US and further stock markets, part of the results support the connection

between volatility and risk which was used in previous papers of this thesis.



Allgemeine Einführung und Ergebnisse

Die Forschungsanstrengungen zum Thema Zinsstruktur sind enorm. Trotz einer

großen Anzahl an konkurrierenden theoretischen Modellen und widersprüchlichen

empirischen Ergebnissen herrscht Einigkeit bezüglich eines Punktes: Die gegen-

wärtige Form der Zinsstrukturkurve enthält Informationen über die erwartete

Entwicklung makroökonomischer Variablen (Gürkaynak and Wright 2012). Es ist

ein zentrales Anliegen geldpolitischer Entscheidungsträger diese Informationen

herauszufiltern und die Erwartungen der Marktteilnehmer zu beeinflussen. Die

Zinsstruktur stellt daher einen integralen Bestandteil der Geldpolitik dar. Aber

welche Informationen sind es genau, die in den Zinsen stecken? Und weshalb sind

sie so bedeutend?

Zum einen enthält die Zinsstrukturkurve Informationen über erwartete Zinsen.

Dieses fundamentale Ergebnis basiert auf der wohl am weitesten verbreiteten

Theorie zur Zinsstruktur, der Erwartungshypothese. Die Theorie besagt, dass

langfristige Zinsen schlicht Durchschnittswerte erwarteter kurzfristiger Zinsen

darstellen. Entsprechend ist die Markterwartung, dass sich die kurzfristigen

Zinsen erhöhen, wenn die Zinsstrukturkurve steigend ist. Die Gültigkeit dieser

Aussage hängt jedoch maßgeblich von der Höhe der Risikoprämie ab, die

Investoren verlangen, um langfristige Anleihen zu halten. Und so gilt die

Erwartungshypothese, nach einhelliger Auffassung in der einschlägigen

Literatur, empirisch in der Tat als sehr dürftig. Der erste Teil dieser Arbeit zeigt

allerdings, dass ein Teil der empirischen Ergebnisse der Theorie nur vermeintlich

widerspricht. Die Erwartungshypothese sollte dementsprechend als ein

vernünftiger erster Referenzpunkt betrachtet werden, wenn über die

Beziehungen zwischen Zinsen unterschiedlicher Fristigkeit nachgedacht wird.

IX



Allgemeine Einführung und Ergebnisse X

Zum anderen enthält die Zinsstrukturkurve Informationen über erwartete Infla-

tion. Nach dem Fisher-Effekt ist die Differenz zwischen nominalen und realen

Zinsen ein Maß für Inflationserwartungen. Seit etwa zwei Jahrzehnten haben

Wissenschaftler tatsächlich die Möglichkeit reale Zinsen zu beobachten. Neben

den USA haben sich in mehreren europäischen Ländern wie etwa Frankreich,

Deutschland, Großbritannien und Schweden große Märkte für inflationsindizierte

Staatsanleihen entwickelt. Da diese Anleihen die nominalen Zahlungen an die

Inflation anpassen, kann deren Verzinsung als real betrachtet werden. Zusammen

mit den nominalen Zinsen ist es möglich, eine Strukturkurve sogenannter Break-

Even-Inflationsraten zu berechnen (Gürkaynak et al. 2007, 2010a). Break-Even-

Inflationsraten sind ein Maß für erwartete Inflation und beinhalten daher äußerst

relevante Informationen. Gemäß der zukunftsgerichteten Phillipskurve - einem

Standard-Element Neu-Keynesianischer Modelle - ist die Steuerung von Inflation

eng verbunden mit der Steuerung von Inflationserwartungen. Es ist daher eine

entscheidende Frage für die Geldpolitik, ob Inflationserwartungen gut verankert

sind. Da es in der Literatur allerdings bisher unklar ist, wie diese Verankerung

gemessen werden soll, schlägt das zweite Papier dieser Dissertation eine Antwort

auf diese Frage vor.

Während es unter Ökonomen Konsens ist, dass Zinsen für die Geldpolitik

wichtige Informationen enthalten, bleibt es strittig, ob ein theoretischer

Analyserahmen, der nur einen repräsentativen Agenten berücksichtigt, zum

Verstehen der Fristigkeitsstruktur ausreicht. Nach der Mehrzahl der

Zinsstrukturmodelle, wie etwa der Affinen Modellklasse, existieren ausschließlich

risikoaverse Arbitrageure, die über das gesamte Fristigkeitsspektrum hinweg

Anleihen handeln. Im Gegensatz dazu betonen neuere theoretische

Entwicklungen in der Literatur, dass Anleihezinsen nicht ausschließlich

Erwartungen von Arbitrageuren widerspiegeln. Es wird ein weiterer Agententyp

eingeführt: Investoren mit einer Präferenz für eine bestimmte Fristigkeit. Diese

Modelle sagen vorher, dass Anleihezinsen auch durch laufzeitspezifische

Angebote und Nachfragen beeinflusst werden (Greenwood and Vayanos 2010).

Für die Praxis impliziert dies, dass An- oder Verkäufe von Anleihen, und damit

die Beeinflussung der Fristigkeitsstruktur der Staatsverschuldung, ein
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alternatives Werkzeug für die Geldpolitik darstellen. Der dritte Teil dieser

Arbeit analysiert die statistische und ökonomische Signifikanz lokaler Angebots-

und Nachfrageeffekte.

Im Hinblick auf die in dieser Arbeit verwendete Methodik hat sich gezeigt, dass

lineare statische Ansätze den ökonometrischen Anforderungen ökonomischer

Hypothesen häufig nicht gerecht werden. So sind die theoretisch implizierten

Beziehungen oftmals zeitvariierend. Marktvolatilität spielt bei der Beschreibung

dieser Zeitvariation eine Schlüsselrolle. Im Fall einer zeitvariierenden

Risikoprämie, wie im ersten Papier dargestellt, kann Volatilität für die Menge

des Risikos stehen. Im Fall zeitvariierender Risikoaversion, wie im dritten Papier

gezeigt wird, kann Volatilität die Sensibilität ökonomischer Akteure bezüglich

einer gegebenen Menge an Risiko beschreiben. In beiden Fällen wird Volatilität

mit Unsicherheit in Verbindung gebracht. Diese Ansicht ist in der

Finanzierungsliteratur tief verwurzelt (Engle et al. 1987, Bali and Engle 2010).

Daneben existiert jedoch ein weiteres akademisches Konzept, in dem Volatilität

mit dem Fluss an Informationen gleichgesetzt wird (Fleming et al. 1998,

Gagnon and Karolyi 2009). Die beiden Sichtweisen schließen sich nicht

vollkommen gegenseitig aus, sind aber dennoch sehr gegensätzlich. Die Natur

von Volatilität zu untersuchen, sollte daher wichtige Erkenntnisse darüber

liefern, was durch Volatilität eigentlich gemessen wird und wie wir sie in

empirischen Studien benutzen können. Der letzte Teil dieser Dissertation geht

eben diesen Fragen nach.

Alle vier Papiere dieser Arbeit sollen dazu dienen, neue empirische Ergebnisse

und methodische Ansätze zum Feld der empirischen Makroökonomie zu liefern.

Im Folgenden sind die Beiträge und Resultate der einzelnen Aufsätze kurz zusam-

mengefasst.

• Papier 1: Mean-Variance Cointegration and the Expectations Hypothesis

Dieses Papier untersucht eine bekannte (scheinbare) Verletzung der Er-

wartungshypothese der Zinsstruktur - das häufig auftretende Ergebnis einer

Einheitswurzel in Zins-Spreads. Es wird gezeigt, dass die Erwartungshy-

pothese impliziert, dass die Instationarität von der Risikoprämie stammt,
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welche daher mit dem Spread kointegriert. In einem Modellrahmen mit

stochastischem Diskontierungsfaktor wird die Prämie durch die integrierte

Varianz von Überschussrenditen beschrieben. Es wird ein Test auf Koin-

tegration zwischen Mittelwert und Varianz von Zufallsvariablen eingeführt

und auf Zinsdaten aus den USA angewandt. Der Mittelwert-Varianz Kointe-

grations Test liefert starke Hinweise für eine langfristige Beziehung zwischen

bedingten ersten und zweiten Momenten. Die Ergebnisse deuten darauf

hin, dass die Erwartungshypothese weitaus besser funktioniert als bisher

angenommen.

• Papier 2: Assessing the Anchoring of Inflation Expectations

Dieses Papier schlägt einen neuen Ansatz zur Messung der Verankerung

von Inflationserwartungen vor. Durch die Verwendung des ESTAR Modells

wird die implizite Annahme einer Einheitswurzel im vorherrschenden Ansatz

der News-Regressionen aufgegeben. Der ESTAR Ansatz nimmt stattdessen

global-stationäre Erwartungen an. Er liefert Schätzungen eines vom Markt

wahrgenommenen Inflationsziels sowie Schätzungen der Stärke des Ankers,

der die Erwartungen an dem Inflationsziel hält. Die Arbeit beinhaltet eine

länderübergreifende Studie, basierend auf einem neuen Datensatz täglicher

Break-Even-Inflationsraten für die USA, EMU, UK und Schweden. Im

Gegensatz zu den News-Regressionen, die in allen Ländern nicht verankerte

Erwartungen gefunden hätten, zeigen die Ergebnisse der ESTAR Modelle,

dass der Grad der Verankerung beträchtlich zwischen den Ländern und Er-

wartungshorizonten variiert. Während Inflationserwartungen in der EMU

gut verankert und in den USA und Schweden recht stabil sind, erweisen sich

Erwartungen in Großbritannien als nicht verankert.

• Papier 3: Testing the Preferred-Habitat Theory: The Role of Time-Varying

Risk Aversion

Dieses Papier untersucht das Preferred-Habitat Modell von Greenwood

und Vayanos (2012). Besondere Aufmerksamkeit wird der zeitabhängigen

Risikoaversion zuteil, die besagt, dass die vom Modell implizierte positive

Beziehung zwischen dem Zins-Spread und dem relativen Angebot an
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längerfristigen Schulden stärker ist, wenn die Risikoaversion hoch ist. Um

diesen Effekt zu erfassen, wird ein flexibles ökonometrisches Modell mit

zeitvariierenden Koeffizienten eingeführt und auf deutsche Anleihedaten

angewandt. Die Ergebnisse stützen die ökonomischen Hypothesen und

zeigen, dass die Zeitvariation von großer Bedeutung ist: Wenn die

Risikoaversion hoch ist, reagieren Zins-Spreads etwa 3-mal so stark wie

unter niedriger Risikoaversion. Die akkumulierte Reaktion von

Zins-Spreads auf eine Änderung des relativen Angebots an Schulden in

Höhe einer Standardabweichung liegt im Bereich zwischen 5 und 33

Basispunkten.

• Papier 4: The Signal of Volatility

Dieser Aufsatz analysiert die ambivalente ökonomische Interpretation von

Finanzmarktvolatilität. In der Literatur wird Volatilität sowohl als Indika-

tor für den Fluss an Informationen als auch für Unsicherheit betrachtet.

Dieses Papier zeigt in einer stilisierten Modellökonomie, dass beide An-

sichten Spillover-Effekte zwischen Märkten implizieren, die von der Volatil-

ität abhängen. Eine Abnahme (Zunahme) dieser Spillover bei steigender

Volatilität würde die Interpretation als Unsicherheit (Information) stützen.

Um dies zu überprüfen, wird ein simultanes Modell mit zeitvariierenden Ko-

effizienten eingeführt, in dem strukturelle ARCH Varianzen zwei Zwecke er-

füllen: Sie treiben die Zeitvariation der Spillover und garantieren statistische

Identifikation. Basierend auf Daten aus den USA und weiteren Aktienmärk-

ten, unterstützt ein Teil der Ergebnisse die Verwendung von Volatilität als

Risikoindikator, so wie sie in anderen Teilen dieser Arbeit eingesetzt wurde.



1 Mean-Variance Cointegration and

the Expectations Hypothesis

1.1 Introduction

The relation between interest rates of different maturities plays a key role in

macroeconomics and finance. For monetary policy, the transmission mechanism

from short to long rates is of particular importance. An obvious and plausible

approach is given by the expectations hypothesis of the term structure (EHT),

which remains one of the most examined as well as one of the most rejected

theories.1 The present paper focuses on the common implication of the EHT that

interest rate spreads should be stationary, and provides an explanation why this

property is almost never found in empirical studies. We show that this notorious

lack of evidence can be attributed to a nonstationary term premium modeled by

means of a stochastic discount factor model. Using our newly introduced mean-

variance cointegration test, this explanation is verified by econometric results from

unit root and cointegration analysis.

The implication of stationary spreads was first shown by Campbell and Shiller

(1987). A popular linearized version of the EHT states that the spread equals

expected future short rate changes plus a constant term premium, θ. Considering

the two-period case, it is easy to see that for interest rates integrated of order one,

1A comprehensive survey covering early work and recent developments is provided by Gürkaynak

and Wright (2012).

1
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stationarity of the right-hand side in Y (2)
t − Y

(1)
t = 1/2E[∆Y

(1)
t+1|It] + θ goes hand

in hand with cointegration on the left-hand side. Here, Y (n)
t denotes the yield on

an n-period bond and E[ · |It] is the expectations operator, conditioning on the

information available up to time t, It.

However, much evidence contradicts the implication of mean-reverting spreads.

Among many others, Hall et al. (1992), Bremnes et al. (2001) and Hansen (2003)

find that stationarity of the spreads is often not reflected in US data. The larger

the difference in maturity the more often this outcome occurs. Wolters (1998) and

Carstensen (2003) obtain the same result for German bond data. A number of au-

thors argued that the assumption of a constant term premium may be unsuitable.

Evidence for a time-varying premium is provided by Mankiw and Miron (1986),

Evans and Lewis (1994), Hess and Kamara (2005), and Caporale and Caporale

(2008), to name just a few. However, the term premium is unobservable and the

EHT does not provide any guidance on how such a time-varying premium should

be modeled.

Meanwhile, a great deal of literature has been produced that concerns the ques-

tion of what exactly drives the commonly accepted time-variation in the term

premium. One way of summing up the ongoing academic effort is to classify the

different approaches within the broad class of stochastic discount factor (SDF)

models. Detailed discussion of SDF models is provided by Cochrane (2001), and

Balfoussia and Wickens (2007). Essentially, assets prices equal the expected dis-

counted value of their future pay-offs. Yet, we emphasize that a time-varying but

stationary premium that may be modeled by any particular SDF model does not

change the EHT implication of stationary spreads.

The finding of nonstationary spreads is often interpreted as evidence against the

validity of the EHT. This conclusion, however, ignores the possibility that the

nonstationarity comes from the term premium, which is included in the interest

rate spread. Therefore, the present paper argues that the unit root evidence can be

reconciled with the expectations hypothesis if integrated spreads come along with

integrated term premia (Hypothesis i). In that case, the nonstationarity puzzle

would be rationalized if spreads and premia were cointegrated. This is what we



Mean-Variance Cointegration and the Expectations Hypothesis 3

label mean-variance cointegration (Hypothesis ii). Cointegration is required since,

according to the expectations hypothesis, the difference between spread (mean)

and premium (variance) leaves only stationary variables, namely first differences

of the short rate.

In our analysis we apply the most simple, observable one-factor SDF model that

is able to describe such an extremely persistent premium: the Sharpe-Lintner

CAPM. The term premium is specified as the product of risk and its market

price, equaling the expected excess return. The conditional second moment of

excess returns thereby serves as the risk measure.2 We estimate the term premium

via a generalized autoregressive conditional heteroskedasticity (GARCH) model

(Engle 1982, Bollerslev 1986) and show that the null of integrated conditional

variance cannot be rejected. This result survives the inclusion of endogenous

structural breaks under the alternative hypothesis: a form of nonlinearity that

often induces artificial persistence. Finally, we propose a cointegration test and

simulate the appropriate distribution of the test statistic. Empirically, we actually

find cointegration relations between premia and spreads in US interest rate data.

This explains the (seeming) violation of the necessary condition for the EHT to

be valid, i.e., the frequent finding of nonstationary spreads.

The idea of cointegration between the conditional first and second moments can

be extended to a number of other prominent topics in applied macroeconometrics.

The Friedman (1977) hypothesis that inflation uncertainty has a negative effect

on output growth and the hypothesis of Cukierman and Meltzer (1986) that infla-

tion uncertainty increases the level of inflation imply interactions between means

and variances of two different time series. Grier and Perry (2000), for instance,

investigate these hypotheses in a bivariate setting (see also Fountas and Karana-

sos 2007). They fit ARMA-GARCH models to quarterly US output growth and

inflation series. The mean equations are augmented by both conditional variance

series as additional regressors that mostly appear insignificant. Using higher fre-

quency inflation data and taking the possibility of mean-variance cointegration

into account might show that the second moments actually have predictive power

2Common examples of that approach are Engle et al. (1987) and Bollerslev et al. (1988).
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for inflation. Fountas et al. (2004) estimate univariate AR-GARCH-in-Mean

models for quarterly Japanese real output growth data. According to unit root

tests, their GDP growth series is stationary. Yet, their point estimates of the coef-

ficients in the conditional variance equation suggest that the second moments may

be integrated of order one. In that case, the regression with GDP growth rates

would be unbalanced, suggesting a cointegration approach. This paper focuses

on solving the nonstationarity puzzle of interest rate spreads. However, whenever

conditional second moments appear in conditional mean equations, balancedness

of the equation requires the two moments to have the same degree of integration.

Our proposed cointegration test procedure can hence serve as a useful tool for

other interesting applications in applied time series econometrics.

The paper proceeds as follows. Section 1.2 discusses stochastic discount factor

models for term premia, looks at the EHT and derives two testable hypotheses. In

section 1.3 we introduce the econometric methodology. In particular, we propose

a procedure to test for mean-variance cointegration. This is followed by the pre-

sentation of the empirical results and several robustness checks. The final section

provides a summary and contains concluding remarks.

1.2 Term Premium Models and the Expectations

Hypothesis

In this section, firstly, the general framework of the SDF approach for modeling

term premia is briefly outlined. This is followed by the presentation of the specific

SDF model that we employ. Secondly, we turn to the relation between the term

premium and the interest rate spread. Showing that the empirical finding of unit-

root behavior in spreads can be explained by integrated term premia, we derive

two testable hypotheses. Thirdly, it is illustrated how this explanation carries

over from the SDF model to a (linearized) version of the EHT, which is prevalent

in a large strand of literature.
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1.2.1 The Stochastic Discount Factor Model and a

CAPM-motivated Pricing Kernel

The SDF model relates the price of an asset to the expected present value of the

future pay-off. Following the remarks of Smith and Wickens (2002) we have

Pt = E[Mt+1Xt+1|It] , (1.1)

where Pt denotes the price at time t. Xt+1 represents the pay-off at t+ 1, Mt+1

is the discount factor or pricing kernel (0 ≤ Mt+1 ≤ 1) and E[ · |It] indicates

the conditional expectation operator where the information set It contains all

information available up to time t. As we are interested in the return Rt+1 =

Xt+1/Pt − 1, it is noted that

1 = E[Mt+1(1 +Rt+1)|It] . (1.2)

By definition

E[Mt+1(1 +Rt+1)|It] = E[Mt+1|It]E[1 +Rt+1|It] +Cov[Mt+1, (1 +Rt+1)|It]

holds. Applying equation (1.2), the expected future gross return can be expressed

as

E[1 +Rt+1|It] =
1− Cov[Mt+1, (1 +Rt+1)|It]

E[Mt+1|It]
.

The return at t+1 from a riskless investment, denoted by rt, is known at t and is

hence included in the information set It. Therefore, regarding (1.2), this return

produces the relation

E[Mt+1|It] =
1

1 + rt
.

The latter equation allows us to write the expected excess return over the risk-free

rate as

E[Rt+1|It]− rt = −(1 + rt)Cov[Mt+1, (1 +Rt+1)|It] . (1.3)

Equation (1.3) represents the characteristic relation between risk and return. In

SDF models, risk is measured as the covariance of the return with the variables
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that represent the discount factor Mt+1, in other words, the factors that enter the

pricing kernel.

Smith and Wickens (2002) show in their survey that the SDF model can be seen as

the umbrella framework that includes the most prominent asset pricing models.

The SDF models proposed and investigated in the literature greatly differ in

the specification of the discount factor. One possible classification relates to the

nature of the factors as being either observable or latent variables.

In bond pricing, a recently widely used class is given by affine factor models.

They assume the discount factor to be a linear function of the observable or un-

observable factors. The Vasicek (1977) and the Cox, Ingersoll and Ross (1985)

(CIR) models represent two of the most popular latent variable affine factor ap-

proaches. Dai and Singleton (2000) compare several multi-factor CIR models. In

their influential study, Ang and Piazzesi (2003) augment a multi-factor Vasicek

model by additional observable macroeconomic factors, thereby highlighting the

importance of macroeconomic sources of risk for the short end, and that of la-

tent factors for the long end of the term structure. Cochrane and Piazzesi (2005)

show that one observable factor, a linear function of certain forward rates, can

account for a huge part of the term premium. In recent literature on affine factor

models, the intersection of macroeconomics and finance plays a prominent role;

see Gürkaynak and Wright (2012) for a survey.

Moreover, there are two prime examples of implicit observable one-factor models:

the CAPM (Sharpe 1964, Lintner 1965) and the CCAPM (Rubinstein 1976, Lu-

cas 1978). Both models have a long tradition in finance, capturing the risk-return

trade-off (see, e.g., Ghysels et al. 2005, Lundblad 2007 and Bali and Engle 2010).

The CAPM represents the model of choice in the present paper. It implicitly

assumes the factor to be the return on the market. The CAPM allows for an ap-

pealing economic interpretation due to the connection of risk as non-diversifiable

return volatility. We will show that it fits the purpose of the underlying study

well, i.e., explaining nonstationarity of spreads and introducing the concept of

mean-variance cointegration. Combining this approach with more comprehensive

risk models represents an attractive path for future research.
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The CAPM can be classified as an implicit observable one-factor model and repre-

sents a very parsimonious choice. However, as will be seen below, it is well suited

to account for the phenomenon of extremely persistent premia. The CAPM states

that excess returns are described by

E[Rt+1 − rt|It] = λ · Cov[Rm
t+1, Rt+1|It] . (1.4)

In (1.4) Rm
t+1 indicates the return on the market and, conditional on t,

λ =
E[Rm

t+1 − rt|It]
Var[Rm

t+1|It]

is constant. Comparing the well-known equation (1.4) to (1.3), it becomes obvious

that the CAPM may be understood as an implicit one-factor model with the

discount factor

Mt+1 = − λ

1 + rt
(1 +Rm

t+1) . (1.5)

1.2.2 Stationarity Properties of Spreads and Premia: Testable

Hypotheses

The present work is concerned with the term structure of interest rates and the

explanation of nonstationary spreads. Hence, we shall proceed by deriving theo-

retical implications and by taking a closer look at the exact form of (1.4) in case

of bond pricing and at the specific type of interest rate data that we investigate.

In order to focus primarily on the nonstationarity puzzle, we initially abstract

from cross-asset and cross-market dependencies. We consider the most simple

case of a stylized financial market that comprises only two assets: one risky and

one riskless asset. The risky asset is represented by a coupon-carrying n-period

bond with a yield to maturity (interest rate) of Y (n)
t . The other asset is given by

a one-period bond offering the riskless return Y
(1)
t . Let H(n)

t+1 denote the return

that one realizes at t+1 from holding the n-period bond for one period, i.e., from

t to t+ 1

H
(n)
t+1 =

P
(n−1)
t+1 − P

(n)
t + C

P
(n)
t

. (1.6)
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Here, P (n)
t denotes the price that was paid at t and P

(n−1)
t+1 refers to the price of

the bond at t+1, which now exists for one period and hence has only n−1 periods

left until maturity. C represents the coupon payment. Since we later investigate

holding returns constructed from yield data on bonds that are sold at par, we

note that for these bonds by definition P (n)
t = 1 and C = Y

(n)
t . The definition of

excess holding returns of these data reduces to

H
(n)
t+1 − Y

(1)
t = P

(n−1)
t+1 − 1︸ ︷︷ ︸

ct+1

+Y
(n)
t − Y

(1)
t︸ ︷︷ ︸

st

. (1.7)

According to (1.7), realized excess returns over the risk-free rate from holding the

n-period bond consist of two components. The first component equals the capital

gain (loss) over the holding period, ct+1 = P
(n−1)
t+1 −P

(n)
t . The second component

constitutes the excess interest income, or, the spread st = Y
(n)
t − Y

(1)
t . Expected

excess holding returns – also referred to as the holding premium3 – are found by

applying the conditional expectations operator to (1.7):

E[H
(n)
t+1 − Y

(1)
t |It] = φ

(n)
t+1︸︷︷︸

I(0) / I(1)

= E[ct+1|It]︸ ︷︷ ︸
I(0)

+ st︸︷︷︸
I(0) / I(1)

. (1.8)

Usually, the econometrician cannot observe expectations. From the right-hand

side of (1.4), however, we know that they can be described by the second moments

of excess returns. In the two-asset case, the conditional covariance with the market

becomes the conditional variance of the excess holding return of the n-period bond

itself. Hence, plugging the definition of realized excess returns from (1.7) into the

SDF model (1.4) yields

φ
(n)
t+1︸︷︷︸

I(0) / I(1)

= λ · Var[ct+1 + st|It] = λ · Var[ct+1|It]︸ ︷︷ ︸
I(0) / I(1)

, (1.9)

the SDF-CAPM, where λ refers to the same proportionality factor as in (1.4).

From (1.8) and (1.9) we draw two testable hypotheses:

3The literature sometimes confusingly uses ”term premium” as an umbrella term for forward,

holding and rollover premium. Since the following work requires the use of exact definitions,

we apply those from the notes of Shiller (1990).
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Hypothesis (i): Equal Degree of Integration

Given E[ct+1|It] ∼ I(0) and interest rate levels are integrated of order one, the

spread st and the holding premium φ
(n)
t+1 are either both stationary (I(0)) or both

nonstationary (I(1)).

Hypothesis (ii): Mean-Variance Cointegration

If spread and holding premium are nonstationary they must be cointegrated. The

cointegrating vector of st and Var[ct+1|It] equals (1, −λ).

Hypothesis (i) follows from (1.8). Assume E[ct+1|It] ∼ I(0).4 In order for the

equation to be balanced, the degrees of integration of spread and holding premium

must be equal. Hypothesis (ii) follows from (1.9). According to the SDF-CAPM

model, the holding premium equals λ ·Var[ct+1|It] and hence it is the conditional

second moment of excess returns that must be cointegrated with the conditional

first moment of the spread. We emphasize that the interest rate spread, as the

second component of excess holding returns, plays no part in the conditional

variance, as it is included in the information set It. Thus, if the interest rate spread

is integrated of order one, it must in fact be cointegrated with the conditional

variance of the corresponding capital gain series. This is what we label mean-

variance cointegration. The cointegrating vector of st and Var[ct+1|It] is (1, −λ).
In this model λ may be interpreted as the market price of risk (PoR).

1.2.3 Linkage to the Linearized Expectations Hypothesis

The way in which Hypotheses (i) and (ii), derived from the SDF-CAPM model,

carry over to the frequently used linearized version of the EHT is briefly outlined

here. The reasoning that nonstationary spreads can be explained by nonstationary

holding premia is shown to be consistent with the EHT.

4Theoretically, ct+1 can be considered as a series of price changes. Since prices of efficient

markets normally behave like random walks or more general I(1) processes, agents would

expect ct+1 to be I(0). Indeed, as will be seen later, this property of capital gains is found in

the data.
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The well-known form of the EHT is essentially only a linearization of stochas-

tic equations that define returns (prices) in a financial market in the absence of

arbitrage. Following the considerations of Shiller (1979), the holding return - ex-

pressed in terms of yields to maturity - can be linearized by means of a Taylor

expansion of order one. The linearized holding return is then simply substituted

for H(n)
t+1 in the definition of the holding premium E[H

(n)
t+1 − Y

(1)
t |It] = φ

(n)
t+1. The

solution of the resulting first order difference equation yields the familiar expres-

sion that relates the interest rate spread to expected future short rate differences

plus a rollover premium (for details see Appendix 1.A):

≡st︷ ︸︸ ︷
Y

(n)
t − Y

(1)
t︸ ︷︷ ︸

I(1)

=
n−1∑

k=1

ω′(k)E[∆Y (1)
t+k|It]

︸ ︷︷ ︸
I(0)

+

Rollover Premium︷︸︸︷
θt︸︷︷︸
I(1)

, (1.10)

θt =
n−1∑

k=0

ω(k)φ
(n−k)
t+k+1 (1.11)

and ω(k) = γ k 1−γ
1−γ n respectively ω′(k) = γ k 1−γ n−k

1−γ n with γ = 1/(1+Ȳ ), 0 < γ < 1.

Equation (1.10), the linearized expectations model, was the theoretical starting

point of numerous empirical investigations into the expectations hypothesis of

the term structure. The conclusion that spreads should be stationary can directly

be drawn from the above representation of the spread as a weighted average of

expected future short rate changes in (1.10). Given that interest rate series are in-

tegrated of order one, agents would expect the changes in
∑n−1

k=1 ω
′(k)E[∆Y (1)

t+k|It]
to be I(0). Furthermore, if the rollover premium θt is assumed to be stationary,

the same holds for the spread (Campbell and Shiller 1991).

As can be seen from (1.11), the rollover premium θt can be written as a weighted

sum of successive holding premia, in which the first summand equals φ(n)t+1 from

(1.9); see also Shiller (1990). Therefore, theoretically, the orders of integration

of the two different kinds of premia, φ(n)t+1 and θt, are equal. The conclusion

drawn from (1.8) that nonstationary spreads can be explained by nonstationary

holding premia is consistent with the linearized expectations model in (1.10) that
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would include an integrated rollover premium. Following the CAPM-motivated

SDF model (1.9) allows us to derive an estimable specification for the premium,

depending on the conditional variance of capital gains, Var[ct+1|It]. The results

then carry over to the linearized expectations model in (1.10), which takes no

independent stance on how θt might be measured.

1.3 Econometric Modeling

The methodology to be introduced follows three steps designed to empirically

investigate Hypotheses (i) and (ii):

Equal Degree of Integration

(a) We determine the order of integration of interest rate spreads (conditional

means) to obtain evidence of whether assuming stationary premia is appropriate.

(b) If spreads are I(1), a test for integrated premia (conditional variances) will

follow.

Mean-Variance Cointegration

(c) If our findings show that the premia are actually nonstationary5 too, we will

test for cointegration with the spreads and will estimate the proportionality co-

efficient as well as the adjustment speed.

Hence, at first, we discuss how to test for unit roots in the conditional mean of

a time series (the spread) that potentially exhibits heteroskedasticity. Secondly,

the same will be done with respect to nonstationarity of the conditional vari-

ance of a time series (the capital gain). Finally, we introduce the mean-variance

cointegration approach to test for cointegration between spread and premium.

5The term stationarity always refers to weak covariance stationarity.
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1.3.1 Testing for Integrated Interest Rate Spreads

Step (a) is conducted in this section. Whether there can be unit roots in interest

rates is debatable due to the zero lower bound and some upper bound that applies

under regular circumstances. Nonetheless, in limited samples the I(1) property

is often found to be empirically reasonable. Eventually, the conclusion of Camp-

bell and Shiller (1987) that spreads must be stationary holds, irrespective of the

persistence of the true data generating process (DGP) of interest rates.

Since the present data exhibits heteroskedasticity, a usual property of financial

time series, we allow innovations to follow GARCH processes. However, unit

root tests under conditional heteroskedasticity should be carried out with caution.

With regard to the impact of neglected GARCH on the (augmented) Dickey-Fuller

(ADF, Dickey and Fuller 1979) test, see, e.g., Kim and Schmidt (1993), Ling and

McAleer (2003) and the literature they refer to. Due to the invariance principle,

the ADF test proves to be asymptotically robust to covariance stationary GARCH

errors. Small-sample properties were, however, conjectured to be affected in case

of very persistent variance processes. Seo (1999), for instance, proposes a more

powerful test6. The distribution in his test depends on a nuisance parameter, the

relative weight 0 ≤ τ ≤ 1, and is bounded between the DF distribution (τ = 1)

and the standard normal (τ = 0). We will double-check the standard ADF test

results by the Seo test at a later stage. The well-known ADF test equation, or

the mean equation in the Seo test, is given by

∆xt+1 = δ + ψxt +

q∑

i=1

δi∆xt+1−i + ut+1 , (1.12)

6The test from Seo (1999) uses the information arising from conditional heteroskedasticity by

means of joint maximum likelihood estimation (MLE) of the autoregressive and the GARCH pa-

rameters. However, Charles and Darné (2008) find that for many practically relevant GARCH

parameter values (i.e., for a sum of the ARCH and GARCH coefficients between 0.8 and 1 and

for a GARCH parameter larger than the ARCH parameter) the DF test performs better than

the Seo test with respect to power and size. Recent work from Kourogenis and Pittis (2008)

explicitly analyzes integrated GARCH (IGARCH) innovations in the context of standard unit

root tests. The DF test is included in their Monte Carlo simulations as the special case of

uncorrelated innovations and appears to perform surprisingly well in the IGARCH case.



Mean-Variance Cointegration and the Expectations Hypothesis 13

where q denotes the lag length and ut+1 is (possibly heteroskedastic) white noise.

Under the null of a unit root, the lagged level in (1.12) has no effect on ∆xt+1.

The test statistic is given by the t value of ψ̂. It does not, however, follow a

t-distribution.

1.3.2 Testing for Integrated Holding Premia

Spreads found to be I(1) in unit root tests could only be consistent with EHT if

the premium, which we model as the conditional variance of capital gains, was

nonstationary (Hypothesis i, step b). To set up a suitable test procedure, the con-

ditional mean of capital gains is specified as an AR(pc) process with GARCH(1,1)

errors ǫc, t+1:

ct+1 = ac +

pc∑

i=1

ac,ict+1−i + ǫc, t+1 ,

hc, t+1 = ωc + αcǫ
2
c, t + βchc, t ,

(1.13)

where Var[ct+1|It] = E[ǫ2c, t+1| It] ≡ hc ,t+1. The parsimonious (I)GARCH(1,1)

specification is known to capture variance dynamics of most financial time series

fairly well. This is also true for the present data. The IGARCH(1,1) hypothesis

(see Engle and Bollerslev 1986), in which the slope coefficients in the conditional

variance equation sum up to one, is usually checked by likelihood ratio (LR)

tests. Lumsdaine (1995), however, shows that the LR test within a Monte Carlo

investigation is quite oversized in small samples. Busch (2005) proposes a robust

LR test based on quasi-MLE (QMLE). His test statistic proves to be well behaved

in small samples. The correction term k = 0.5(E[ξ4t ] − 1) with ξt = ǫt/
√
ht is

calculated under the alternative of a covariance stationary GARCH process. In

that case the test statistic

LRR = −2

k

(
l(θ̂r)− l(θ̂u)

)
(1.14)

has actual size close to nominal size, even for skewed disturbances.7 In (1.14), θ̂r

and θ̂u are the respectively restricted and unrestricted QMLEs for the parameter

7For further details, see Busch (2005).
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vector θ. However, since persistence in variance is a central question here, we

additionally conducted a small-sample simulation experiment. That is, we sim-

ulated the respective distribution of LRR under the null of a DGP according to

(1.13) with parameter vector θ̂r (αc + βc = 1). The resulting critical values will

be applied in addition to the χ2 quantiles. Moreover, we will provide evidence

from test variants, allowing for endogenous structural breaks under the alternative

hypothesis.

1.3.3 Testing for Mean-Variance Cointegration

We continue by discussing the methodological approach to examine Hypothesis

(ii): If spreads and holding premia are both nonstationary, they must be cointe-

grated (step c). Thus, a test is presented for cointegration between the mean of

the spread series and the variance of the capital gain series.

While one might test for cointegration by checking the residuals from a static

regression for stationarity, this approach is known to produce biased estimates

and to lack efficiency. In order to overcome these problems, we proceed by using

the dynamic cointegration test proposed by Stock (1987). Critical values for the

case of observable regressors are found in Banerjee et al. (1998) and Ericsson and

MacKinnon (2002). The test equation naturally follows from our approach in the

previous subsection through augmentation of the ADF test equation (1.12) by

the integrated variance series hc, t+1 from (1.13) (i.e., under the restriction that

αc + βc = 1):

∆st+1 = a+ ρst + γhc, t+1 +

p∑

i=1

ai∆st+1−i + ǫt+1 . (1.15)

Additionally, we control for GARCH effects in ǫt+1. Hence, (1.15) and the process

for ǫ2t+1 are estimated simultaneously by (Q)ML. Relation (1.15) describes an

ECM for the interest rate spread. Note that the capital gain variance-in-mean

of (1.15) is conditional on the information available at t. In view of (1.8) and

(1.9), that is exactly what follows from economic theory: cointegration between

st and hc, t+1 ≡ Var[ct+1|It]. To gain efficiency, lagged differences of hc, t+1 are

not included since they were found insignificant. The established reasoning when
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testing for cointegration in an error correction framework applies: In case of

cointegration, the common nonstationary factor of the two variables cancels out,

so that the linear combination zt ≡ (1, γ/ρ)(st, hc, t+1)
′ with ρ < 0 represents a

stationary time series. If so, the relation in levels should contribute significantly

to the explanation of ∆st+1. On the contrary; under the null zt is nonstationary

and thus ρ is zero.

Turning towards the to be applied critical values, one might first think of those

provided by Banerjee et al. (1998) or Ericsson and MacKinnon (2002) for the

case of one exogenous variable. Yet, in contrast to usual cointegration testing

in an error correction framework, the proposed test equation (1.15) contains an

unobservable regressor, the IGARCH series hc, t+1 (the capital gain variance) esti-

mated in a preceding step. Hence, (1.15) can be seen as a quasi-IGARCH-in-Mean

cointegration test since the variance that enters the mean equation is driven by

the squared residuals ǫ2c,t+1 that originate from a different mean equation, namely

relation (1.13). Although hc, t+1 is a martingale, it is known that the proper-

ties of such a series deviate from those of a random walk in many aspects (see

Nelson 1990 and Kim and Linton 2011). Besides, the innovations ǫt+1 in (1.15)

themselves are highly heteroskedastic8, as was found in specification tests. To the

best of our knowledge, a theory on testing for cointegration between a conditional

mean and an estimated conditional variance series has not yet been developed. In

order to fill this gap, we derive the distribution of the test statistic (the t-value

of ρ̂) via simulation (see Appendix 1.B).

At this point, a further property of realized excess holding returns on par bonds

is noteworthy. As can be seen from their definition in (1.7), excess returns on

coupon-carrying bonds consist of two components: the capital gain ct+1 and the

interest rate spread st. Excess returns are generally known to exhibit only a very

slight autocorrelation. However, as follows from Evans and Lewis (1994), this

empirical result may also occur in case spreads are nonstationary since variation

of capital gains is usually very high, relative to st. The persistence of ct+1 and

ct+1 + st is then statistically indistinguishable. In other words, due to a very low

8For a discussion of potential consequences of GARCH effects on standard cointegration tests

see, e.g., Seo (2007) and the literature cited therein.
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signal-to-noise ratio, statistical tests fail to detect the true order of integration of

excess returns in case of st being I(1). This fact may also underlie the general dif-

ficulties of empirical finance to find a significant risk-return trade-off when trying

to explain (statistically) strongly mean reverting excess returns by highly persis-

tent second moments. Importantly, our theoretical result remains: the orders of

integration of st and φt+1 must be equal. Therefore, if there is cointegration, the

ECM (1.15) estimates the PoR λ = γ
ρ superconsistently and determines the long-

run relation between the nonstationary component of excess returns, st, and the

conditional variance of excess returns, hc, t+1 ≡ Var[H(n)
t+1−Y

(1)
t |It] = Var[ct+1|It].

1.4 Empirical Results

1.4.1 Data

The subsequent analysis is based on weekly yields from 1/03/1992 to 12/29/2006

provided by the US Federal Reserve Statistical Release. The 15 years of US inter-

est rate data should ensure a sufficient number of observations (783). All series

are taken from the Treasury Constant Maturity data, which allows to directly

compare these rates.9 The sample period includes the timespan after the early

1990s recession and cuts off before the subprime and the euro crises. We choose

this period to reduce the probability of breaks in the conditional first and second

moments that often lead to artificial persistence, given that the true DGP exhibits

such nonlinearities. As shown by Lamoureux and Lastrapes (1990a), structural

breaks, which one would expect during the financial crisis, can produce spurious

nonstationarity of a time series.10

9All yields represent bond equivalent yields for securities that pay semi-annual interest.
10Tzavalis and Wickens (1995) argued that the regime of strong volatility of the very high interest

rates in the early and mid-1980s was the cause of persistence in second moments of excess

returns. In 1992, interest rates returned to their pre-early 1980s level and hence our sample

should not be affected by that peak.
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Excess holding returns and capital gains are calculated as, e.g., in Jones et al.

(1998) or Christiansen (2000).11 The calculation method is also described in

Ibbotson and Associates (1994) and applied in Engle et al. (1987) for the case

of effectively infinitely-lived bonds. Excess returns are defined as the return on

holding a longer-term bond over one period in excess of the riskless rate. Longer-

term bonds have maturities of 5, 7 and 10 years. The riskless rate is assumed

to equal the standard 3-month Treasury rate, which from this point on will be

referred to as the short rate. This is a common assumption and is considered to

be the best alternative against using a one-week money market rate, which would

imply, amongst other issues, discontinuities or outliers on settlement days (see

Nelson 1991 or Jones et al. 1998)

As expected, mean excess holding returns increase with maturity of the long-

term bond (0.032, 0.044 and 0.055). The same holds for the empirical standard

deviations (0.488, 0.628 and 0.786). Capital gains, as part of the excess returns,

are denoted by C5, C7 and C10. They equal the change in the present value

(price) from one week to another (see Figure 1.1).

Figure 1.1: Weekly Capital Gain Series C5, C7 and C10 for 5-, 7- and 10-Year Bonds
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11For the present yield data on par bonds and on a semi-annual basis, capital gains are defined

as ct+1 = P
(n−1)
t+1 − 1 = 1

(1+ 1
2
Y

(n−1)
t+1

)2n
+

∑2n
i=1

1
2
Y

(n)
t

(1+ 1
2
Y

(n−1)
t+1

)j
− 1; compare equations (1.6)

and (1.7). The first term represents the present value of the principle and the second term

represents those of the coupon payments. Since Y
(n−1)
t+1 is not available, Y

(n)
t+1 can be used

instead. There should be no measurable difference between the yield of a 10-year bond and

that of a bond with 9 years and 51 weeks to maturity, as pointed out by Shiller (1979), page

1197, footnote 8.
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Since we use weekly observations of annualized interest rates, spreads are calcu-

lated as the fraction (1/52) of the difference between the respective long and short

rate, that corresponds to a holding period of one week. Spread series are labeled

S5, S7 and S10. By way of example, S10 is displayed in annualized form in

Figure 1.2 (S5 and S7 exhibit a very similar shape).

Figure 1.2: Annualized Interest Rate Spread S10 between the 10-Year and the 3-Month

Bond
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1.4.2 Unit Root Tests for Interest Rate Spreads

In order to determine the integration order of interest rate spreads (Hypothesis i),

the ADF test is applied. Note that, as far as levels are concerned, the test equation

includes a constant, whereas the first differences do not have a deterministic part.

A linear trend would not be meaningful for interest rate spreads and is also not

supported by the data. The number of lagged differences is chosen according

to the Schwarz information criterion (SIC). Hecq (1996) shows that standard

information criteria can even be applied in the case of IGARCH and that the

SIC performs best compared to the Hannan Quinn criterion (HQC) and the final

prediction error (FPE). Since ADF test results are, however, known to be sensitive
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to the number of lagged differences in the test equation we double-checked our

results by using HQC and FPE. Table 4.2 summarizes the unit root test results.

It shows that nonstationarity is far from being rejected. Thus, all three spread

series should be considered as integrated of order one.12 When we apply HQC and

FPE, both criteria suggest to include more lags but test statistics barely change.

Performing Seo tests provides the same result: the null of a unit root cannot be

rejected.13

Table 1.1: ADF Tests for Interest Rate Spreads

Levels First differences

Variable t̂ q t̂ q

S5 −1.651 (0.456) 1 −22.916 (0.000) 0

S7 −1.466 (0.551) 1 −22.430 (0.000) 0

S10 −1.275 (0.643) 1 −22.021 (0.000) 0

Notes: Test statistics are denoted by t̂. q refers to the number of lagged differences

and p-values are given in parentheses.

1.4.3 IGARCH Tests for Holding Premia

So far we have seen that all spreads should be considered I(1). As capital gains

are clearly I(0), following Hypothesis (i) (equal degree of integration), the EHT

can only be valid in the presence of nonstationary holding premia. Since the

12The integration order of the interest rate series has been checked as well. According to ADF

test results, there is very strong evidence that all interest rate series can be considered as

integrated of order one.
13As the stationarity properties of interest rate spreads are crucial to the following analysis, we

also conducted the KPSS test (Bartlett kernel and Newey-West bandwidth selection) with the

null hypothesis of stationarity. This is to assure that non-rejections of nonstationarity are not

simply due to the possible power problem of ADF-type unit root tests. For the present data,

however, this does not seem to be the case, since the KPSS test clearly rejects stationarity.

All test results that are not reported here can be obtained upon request.
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SDF-CAPM model defines the holding premium as φ(n)t+1 = λ ·Var[ct+1|It], testing

Hypothesis (i) translates into testing for integrated capital gain variances; step

(b).

We fit AR(pc)-IGARCH(1,1) models to capital gain series, after which we test

these models against the alternative hypothesis of autoregressive processes with

covariance stationary variance series, that is, against AR(pc)-GARCH(1,1) mod-

els. Table 1.2 summarizes the test results.

Table 1.2: Robust Likelihood Ratio Tests for Integrated Holding Premia

Variable pc α̂c β̂c k̂ L̂RR χ2
0.90(1)

C5 1 0.035 0.951 1.598 2.648 2.706

[0.014] [0.022]

C7 1 0.037 0.948 1.406 2.699 2.706

[0.016] [0.025]

C10 1 0.033 0.953 1.241 2.163 2.706

[0.015] [0.024]

Notes: Unrestricted model:

ct+1 = ac +

pc
∑

i=1

ac,ict+1−i + ǫc, t+1 ,

hc, t+1 = ωc + αcǫ
2
c, t + βchc, t .

We tested for nonstationary holding premia φ
(n)
t+1 = λ ·Var[ct+1|It], i.e., for integrated

conditional variances, Var[ct+1|It], of the respective capital gains on 5-, 7- and 10-

year bonds, or C5, C7 and C10 respectively. α̂c and β̂c refer to the unrestricted

coefficient estimates. Under the null that αc + βc = 1, the robust LR test statistic

LRR = 2
k

(

l(θ̂u) − l(θ̂r)
)

is χ2(1). The estimated correction term is denoted by k̂.

ADF test statistics of −21.727, −13.363 and −13.290 for C5, C7 and C10 allow for

a strong rejection of the null of nonstationarity.

Since the test statistic LRR is χ2(1) and χ2
0.90(1) ≈ 2.706, the null of integrated

variances cannot even be rejected at the 10% level. In all three cases we choose

pc = 1, following the SIC. Additionally, we conducted a small-sample experiment:
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We simulated the distribution of LRR for C5, C7 and C10 with DGPs under

the null equal to our estimated AR(pc)-IGARCH(1,1) models. For conditional

normal distribution, a sample length of 783 observations and 100, 000 replications,

the 90% quantiles turned out to be 3.418, 3.470 and 3.448. Thus, these results

strengthened the test decision not to reject the null of IGARCH. It is, however,

well known that spurious persistence can be caused by nonlinearities such as

structural breaks neglected in the model specification (Lamoureux and Lastrapes

1990a). In our robustness section below, we also account for endogenous breaks

in the unconditional variance.

1.4.4 Mean-Variance Cointegration Tests

So far, our results have shown that interest rate spreads can be treated as I(1).

The last section demonstrated that the three corresponding holding premia are

also nonstationary. In order to test for Hypothesis (ii), cointegration between

spreads and premia, we apply the mean-variance cointegration test introduced in

section 1.3.3.

The following three ECMs were estimated:

∆S5t+1 = −0.0007
[−3.347]

− 0.022
[−3.967]

S5t + 0.005
[4.047]

ĥc, t+1 + 0.192
[5.685]

∆S5t + ǫ̂t+1 , (1.16)

∆S7t+1 = −0.0006
[−2.821]

− 0.016
[−3.455]

S7t + 0.003
[3.430]

ĥc, t+1 + 0.216
[6.001]

∆S7t + ǫ̂t+1 , (1.17)

∆S10t+1 = −0.0008
[−3.898]

− 0.017
[−4.116]

S10t+0.002
[4.435]

ĥc, t+1+0.222
[6.025]

∆S10t+ ǫ̂t+1 . (1.18)

Compared to the test statistics from ADF tests in Table 4.2, t-values of the lagged

level st increased considerably in (1.16), (1.17) and (1.18). Again, the lag length is

chosen according to the SIC14 and supported by specification tests for no residual

14Using different information criteria does not change cointegration test results.
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autocorrelation. Furthermore, we allowed the residuals in (1.16), (1.17) and (1.18)

to be GARCH(1,1) as well. Q statistics of standardized squared residuals, as well

as LM tests for remaining GARCH, show that the parsimonious GARCH(1,1)

specification proves to be reasonable.

Table 1.3 includes individual 1%, 5% and 10% simulated critical values for each

of the three models.15 There is only slight variation as the DGPs are very similar.

Test results are unequivocal: In models (1.16) and (1.18) the null of no cointegra-

tion can be rejected at the 1% level. In (1.17) we reject the null at the 5% level.

This is considered as strong evidence in favor of the existence of a cointegration

relation. Economically, this means that a long-run equilibrium between US in-

terest rate spreads and the corresponding one-period holding premia does in fact

exist.

Table 1.3: Critical Values - Mean-Variance Cointegration Test

Model t̂ 1% 5% 10%

∆S5 −3.967 −3.842 −3.247 −2.946

∆S7 −3.455 −3.838 −3.249 −2.939

∆S10 −4.116 −3.830 −3.247 −2.949

Notes: t̂ refers to the estimated t value of the

lagged level st in (1.16), (1.17) and (1.18).

Moreover, following our discussion in section 1.2, the coefficient λ = γ
ρ in the

respective attractor can be interpreted as the PoR. As mentioned earlier, we do

not estimate the PoR via the standard GARCH-in-Mean model on the basis of

excess return data. Instead, the PoR is estimated in a cointegration relation

between the nonstationary component of the excess return, that is to say, the

spread, and the integrated variance of the capital gain, meaning the component of

excess returns not included in the conditioning information set. Thereby, (super)

15As concerns the simulated critical values, some experiments made it clear that these depend on

the conditional variance parameters of the DGPs of the capital gain variance and the spread

series; see Appendix 1.B.
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consistency of the estimator is guaranteed by the existence of cointegration. In

(1.16), (1.17) and (1.18) we estimated PoRs of 0.228, 0.164 and 0.127. Compared

to other findings, these coefficients are relatively but not implausibly small (see,

e.g., Tzavalis and Wickens 1995, Bali and Engle 2010). For example, investors

holding 7-year Treasury bonds expect at t that, on average, the excess return they

will realize at t+ 1 will equal about one sixth of its variance. Assuming that the

conditional variance at t would equal the (empirical) unconditional variance of

0.381, the excess return expected for t+ 1 becomes 0.164 · 0.381 = 0.06%.

Regarding the above ECMs, adjustment coefficients may appear quite small at

first glance. If, for instance, the spread S10t exceeds its equilibrium value by one

unit (one percentage point), the spread will decrease by 0.017 units (percentage

points) over the next week. However, after 13 weeks (one quarter) the initial

equilibrium error has reduced to 0.771 and the half-life of the shock implied by

system (1.18) equals just 33 weeks.

Figure 1.3 illustrates the long-run relation s = a
ρ + γ

ρhc in the respective ECMs.

A graphical analysis supports the statistical results: The general impression from

Figure 1.3 is that there is quite a strong co-movement between the spreads and

the corresponding one-period holding premia. From the beginning of the sample

until the New Economy boom, the average level of all spreads decreases along

with the volatilities. We see three noticeable peaks during that period: in 1994;

between 1996 and 1997; and around the turn of the millennium. Whereas the

first one results from long rates rising faster than the short rate, the second and

third peaks were triggered by increasing long rates when the short rate remained

roughly constant. In view of equation (1.8), rising spreads are associated with

growing holding premia and hence with rising capital gain variances. Indeed,

we clearly see that the variance movement features similar peaks. However, the

period after 2001 when the short rate fell steeply for several years and, accordingly,

spreads went up, is most striking. In support of the cointegration test results, this

timespan is also characterized by high volatility.
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Figure 1.3: Spreads and Corresponding One-Period Holding Premia
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1.5 Robustness Checks

Finally, we conducted several robustness checks. Among other things, we were

concerned with three main issues: spurious persistence in the conditional variance

due to neglected nonlinearities such as structural breaks; initial value issues; and

the conditional normal distribution assumption.
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1.5.1 Endogenous Structural Breaks and Persistence in

Variance

We would like to stress the point that persistence in conditional second moments

can be a result of neglected structural change in the variance. Lamoureux and

Lastrapes (1990a) provide examples of that phenomenon. A specific example

is also found in Tzavalis and Wickens (1995), who show that the persistence in

volatility of US holding premia between 1970 and 1986 is the result of a structural

shift during a period of exceptionally high variances (October 1979 - September

1982). In general, the timing of structural breaks is quite difficult. In order

to avoid the arbitrariness of choosing break dates exogenously, we conducted an

endogenous break search. We therefore augmented the unrestricted conditional

variance equation by a shift dummy and selected the date where the dummy had

the highest t-value. As shown in the unit root literature (e.g. Zivot and Andrews

1992), the additional step of estimating the break date affects the distribution of

the test statistic. We therefore simulated the distribution, allowing for a break

in the GARCH constant under the alternative hypothesis. The results show that

none of the three capital gain series allow a rejection of the null of IGARCH at the

10% level. We also allowed two level shifts with endogenous break dates. This

improved the likelihood under the alternative hypothesis only slightly, so that

nonstationarity was not rejected in this case, either.

1.5.2 Initial Values and the Shape of the Variance Series

The choice of initial values has no impact on our simulation results. However,

the shape of the estimated capital gain variance series varies slightly, particularly

during the first year (about 52 observations) of initializing GARCH models us-

ing, for instance, backcast exponential smoothing (where h0 = κN/N
∑N

t=0 ǫ̂
2
t +

(1 − κ)
∑N

j=0 κ
N−j−1ǫ̂2N−j , 0 < κ ≤ 1) instead of simply the mean of squares

of residuals. Since the initial value impact essentially vanished after about one

year, we re-estimated the ECMs starting the sample at the beginning of 1993
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using 731 observations.16 Compared to the estimates in (1.16), (1.17) and (1.18),

test statistics decreased (i.e., increased in absolute value) to −4.512, −4.476 and

−4.402. The lower number of observations affects critical values only at the sec-

ond decimal place. We therefore reject the null of no cointegration at the 1% level

in all ECMs.

1.5.3 Distributional Assumption

We now turn to investigating how the distributional assumption affects our test

and simulation results. First of all, we drew random samples for

ξc, t+1 = ǫc, t+1/
√

hc, t+1 and ξs, t+1 = ǫs, t+1/
√

hs, t+1 from Student’s t-distributions

in both simulation experiments: the LR test for IGARCH (section 1.3.2) and

the mean-variance cointegration test (section 1.3.3). Degrees of freedom are set

to be equal to estimated values under the null and lie between 8 and 18. Most of

the estimated values are clearly larger than 10, indicating that the initial

assumption of normality is not violated too strongly for the present data. Since

sample excess kurtosis of all series is relatively small (between 0.8 and 1.5), this

is not surprising. In order to analyze the effect of possibly incorrectly specified

innovations our estimates actually become QMLEs in the sense that Gaussian

likelihoods are maximized even though we have generated t-innovations. As

expected, the smaller the number of degrees of freedom the more the

distribution of LRR shifts to the right. Hence, the decision not to reject the null

of integrated variances in section 1.4.3 is strengthened. Similarly, the

distribution of the t-value of ρ̂ also shifts to the right, so that we can reject the

null of no cointegration in section 1.4.4 at an even higher significance level (since

the t-values are negative).

1.6 Conclusion

The present paper empirically examines a well-known implication of the expec-

tations hypothesis of the term structure (EHT), namely, interest rate spreads

16Persistence in variances proves not to be affected by initial conditions.
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should be stationary. We shed more light on the question why there is much ev-

idence that contradicts the implication of mean-reverting spreads; see Hall et al.

(1992) or Hansen (2003).17 This implication has also been the pivotal element in

many studies that analyze the spread’s predictive power for short rate changes or

other macroeconomic variables such as inflation and GDP growth (Mankiw and

Miron 1986, Kugler 1988 or Caporale and Caporale 2008). The consequences of

theoretically implied stationarity properties of interest rate spreads are obviously

extensive. We are therefore concerned with the question why they are almost

never met and argue that nonstationary holding premia can provide an answer.

The theoretical starting point is the one-period holding premium, defined as the

sum of interest rate spread and expected capital gain, from which two testable

hypotheses are derived. Hypothesis (i): Given stationary capital gains, spread

and holding premium must exhibit the same order of integration. Hypothesis (ii):

If this order equals one, spread and holding premium must be cointegrated. With

respect to the economic and econometric modeling of spread and premium, we

refer to mean-variance cointegration.

We show that explaining a nonstationary spread by integrated holding premia

is consistent with the frequently used linearized version of the EHT. The latter

would include a nonstationary rollover premium that we explicitly link to the

holding premium. In modeling and estimating the holding premium, we employ an

observable single-factor SDF model with a CAPM-motivated pricing kernel. The

holding premium is proportional to the conditional variance of excess returns. In

order to test for Hypothesis (i), unit root tests are applied for spreads and robust

LR tests for IGARCH variances of excess returns. To test for Hypothesis (ii), a

mean-variance cointegration test in an error correction framework is proposed and

the small-sample distribution of the test statistic is derived through simulation.

Our approach may be seen as a quasi-IGARCH-in-Mean cointegration test as the

variance that enters the mean equation is estimated in a preceding step and is

driven by the squared residuals from a different mean equation.

17Further cointegration studies such as Shea (1992), Zhang (1993), Engsted and Tanggaard

(1994), Johnson (1994), Wolters (1995), Pagan et al. (1996), Wolters (1998), Carstensen

(2003) make the empirical finding of unit roots in interest rate spreads an almost stylized fact.
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The empirical analysis is based on weekly observations of US Treasury Constant

Maturity data. We examine three different spreads between the short rate (3-

month Treasury rate) and long rates with maturities of 5, 7 and 10 years. Follow-

ing the ADF test results, all spreads should be considered nonstationary. Further

unit root tests unanimously confirm the nonstationarity of the spreads. Subse-

quently, estimating conditional variances of excess returns shows that the null

hypothesis of IGARCH cannot be rejected. Additionally, this result holds when

endogenous structural breaks are incorporated. Hence, we conclude that hold-

ing premia are also integrated. The most important step follows: Testing for

cointegration between premia and spreads. As the main result of the present

work, we actually find highly significant long-run relations between all spreads

and corresponding premia.

Following the idea of arbitrage-free financial markets and rational expectations,

the EHT provides a simple and appealing description of the relation between

interest rates of different maturities. Long rates embody information on expected

future short rates and both rates are tied together within a long-term equilibrium

relation. This equilibrium can be captured by a cointegration relation. However,

the modeling of the term premium plays a key role here. This third variable should

be modeled carefully and sometimes, as in the present case, even be included in the

cointegration relation. The present paper has shown that nonstationary spreads

can be reconciled with the EHT if spreads and premia are cointegrated, i.e., in

case of mean-variance cointegration. The basic statement of the EHT concerning

the relation between interest rates of different maturities remains applicable when

the premium is modeled by means of approaches from finance theory. While the

present paper mainly focuses on the aspect of cointegration, it also underlines

the relevance of the vast and still evolving literature on identifying economically

interpretable driving forces of the premium (as e.g. Ang and Piazzesi 2003 or

Gürkaynak and Wight 2012).

Several extensions of the present approach appear interesting. First, our approach

could be generalized to non-diversifiable risk (e.g. Bollerslev et al. 1988 or Bal-

foussia and Wickens 2007). The frequent failure of the EHT would be explained

by integrated covariance series that could be obtained from multivariate GARCH
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models. This would allow to control for cross-asset and cross-market dependen-

cies. Second, since appropriate modeling of the persistence of the premium proved

to be crucial, a further possible extension would be to allow for fractional inte-

gration in interest rates (Connolly et al. 2007) and conditional variances (Baillie

et al. 1996). If, for example, the order of integration of spreads and premia is

equal, but appears to be less than one, cointegration tests may be carried out in

a fractionally (co)integrated framework. Third, as shown in the introduction, the

mean-variance cointegration approach also bears significant potential for applica-

tion in other macroeconometric topics. The empirical studies of Grier and Perry

(2000) and Fountas et al. (2004) on the interactions of inflation (uncertainty) and

output growth (uncertainty), inspired by the hypotheses of Friedman (1977) and

Cuckierman and Meltzer (1986), are two examples of these topics. We, however,

leave these issues for future research. 18

18A slightly different version of this paper is forthcoming as Strohsal and Weber (2013). Part

of the present work is based on results from my diploma thesis Strohsal (2009).
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1.A The Linkage from the Holding Premium in the

SDF-CAPM Model to the Rollover Premium in

the Linearized Expectations Model

The conclusion drawn from the SDF-CAPM model that nonstationary spreads

can be explained by nonstationary holding premia is consistent with the familiar

linearized version of the EHT that would include an integrated rollover premium.

The well-known form of the EHT that will be derived now is essentially a lin-

earization of equations that define returns (prices) in a financial market in the

absence of arbitrage.

Firstly, consider the definition of the yield to maturity of an n-period bond

P
(n)
t =

C

(1 + Y
(n)
t )

+
C

(1 + Y
(n)
t )2

+ · · ·+ 1 + C

(1 + Y
(n)
t )n

.

Most compactly, this can be written as:

P
(n)
t =

C

Y
(n)
t

+
Y

(n)
t − C

Y
(n)
t (1 + Y

(n)
t )n

(1.19)

The one-period holding return defined in (1.6) can be expressed in terms of yields

to maturity by using (1.19), so that

H
(n)
t+1 =

C

Y
(n−1)
t+1

+
Y

(n−1)
t+1 −C

Y
(n−1)
t+1 (1+Y

(n−1)
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+ C

C

Y
(n)
t

+
Y

(n)
t −C

Y
(n)
t (1+Y

(n)
t )n

− 1 . (1.20)

According to the considerations of Shiller (1979) we linearize (1.20) via a Taylor

expansion of order one. When H
(n)
t+1(Y

(n)
t , Y

(n−1)
t+1 , C) is considered a function

of three variables, we know from Taylor’s theorem that in the neighborhood of

Y
(n)
t = Y

(n−1)
t+1 = C = Ȳ it holds that
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H
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Plugging in (1.20) and evaluating the derivatives finally yields

H
′(n)
t+1 = δnY

(n)
t − (δn − 1)Y

(n−1)
t+1 , (1.20’)

where δn = 1 + Ȳ −1 − (Ȳ (1 + Ȳ )n−1)−1. If one applies H
′(n)
t+1 ≈ H

(n)
t+1 to the

definition of the holding premium, E[H(n)
t+1 − Y

(1)
t |It] = φ

(n)
t+1, the resulting first

order difference equation with variable coefficients is

Y
(n)
t = γnE[Y

(n−1)
t+1 |It] + (1− γn)(φ

(n)
t+1 + Y

(1)
t ) , (1.21)

where γn = (δn−1)/δn. The solution of (1.21) can be derived by recursive sub-

stitution. Therefore, we initially use the law of iterated expectations and note

that

E[Y
(n−1)
t+1 |It] =γn−1E[Y

(n−2)
t+2 |It] + (1− γn−1)E[φ

(n−1)
t+2 + Y

(1)
t+1|It]
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(n−3)
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(n−2)
t+3 + Y

(1)
t+2|It]

...

E[Y
(1)
t+n−1|It] =γ1E[Y

(0)
t+n|It] + (1− γ1)E[φ

(1)
t+n + Y

(1)
t+n|It] .

Recursive substitution of the above expressions into (1.21) yields
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Y
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This can be shortened to

Y
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ω(k)E[Y
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with the weighting scheme ω(k) = γ k 1−γ
1−γ n . Via the identity Y
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Rearranging terms produces the well-known expression for the interest rate

spread, i.e.„

≡s
(n)
t︷ ︸︸ ︷

Y
(n)
t − Y

(1)
t =

n−1∑

k=1

ω′(k)E[∆Y (1)
t+k|It] +

Rollover Premium︷︸︸︷
θt , (1.10)

where ω′(k) = γ k 1−γ n−k

1−γ n and θt =
∑n−1

k=0 ω(k)φ
(n−k)
t+k+1 with γ = 1/(1+Ȳ ), 0 < γ < 1.

This shows (1.10) and (1.11).
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1.B The Mean-Variance Cointegration Test:

Simulating the Distribution of the Test Statistic

As concerns the simulated critical values, some experiments made it clear that

these depend on the parameters of the DGPs of the capital gain variance and the

spread series. Under the null, these are the equations in (1.13) with αc + βc = 1

and

∆st+1 =

ps∑

i=1

as,i∆st+1−i + ǫs, t+1 ,

hs, t+1 = ωs + αsǫ
2
s, t + βshs, t ,

(1.22)

where the first-difference autoregression is implied by the unit root in the level

of the spread series; Var[∆st+1|It] = E[ǫ2s, t+1| It] ≡ hs ,t+1. Hence, we simulated

three different distributions of the test statistic in the error correction models

(1.16), (1.17) and (1.18) with parameters in (1.13) and (1.22) according to our

empirical estimates. Figure 1.4 illustrates the dependence on the parameters of

the variance process hc,t+1; the DGP (1.13).

It contains two Epanechnikov kernel density estimates19 of the distributions of

the test statistics for αc = 0.033 and αc = 0.3 (βc = 1 − αc) with all other

parameters unchanged and equal to our estimates for C10 and ∆S10 in (1.13)

and (1.22). It can be seen that the increase in αc shifts the distribution to the

right. The mean (variance) changes from −1.841 (0.791) to −1.771 (0.765). Both

distributions are slightly skewed (0.244 and 0.226) and exhibit kurtosis of 3.404

and 3.359. For αc → 0 the distribution moves leftwards but critical values change

only at the second decimal place. The subsequent steps sketch the simulation of

the test statistic of the mean-variance cointegration test proposed in section 1.3.3.

Step 1. Set initial values hc, 0 and hs, 0 in (1.13) and (1.22) equal to the mean of

squares of ǫ̂c, t+1 and ǫ̂s, t+1, respectively.20

Step 2. Draw two random samples of size N = 783 (equal to the number of obser-

vations in the present analysis) from a standard normal distribution.

19We use a data-based bandwidth selection according to Silverman (1986).
20Dependence on the initial values turned out to be negligible. The initial values of st, t =

0, ..., ps are arbitrarily chosen in the sense that they are realizations of two standard normally

distributed random variables.
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These random shocks are denoted by ξc, t+1 and ξs, t+1.

Step 3. Generate data recursively according to (1.13) and (1.22) with ǫc, t+1 =

ξc, t+1

√
hc, t+1 and ǫs, t+1 = ξs, t+1

√
hs, t+1.

Step 4. Estimate model (1.13) via ML (BHHH algorithm) and save ĥc, t+1.

Step 5. Estimate model (1.15) via ML, using the generated spread series from

Step 3 and the estimated capital gain variance from Step 4, and save the

t-value of ρ̂ based on robust standard errors following Bollerslev and

Wooldridge (1992).

Step 6. Repeat Step 1 to Step 5 100,000 times.

Step 7. Calculate the 1.00, 5.00 and 10.00 percentiles from the distribution of the

t-value of ρ̂.

Figure 1.4: Kernel Density Estimates of the Small-Sample Distribution of the Cointe-

gration Test Statistic
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Notes: The solid line shows the density of the test statistic in model (1.18) with αc = 0.033. The

dotted line describes the density for αc = 0.3 with all other parameters unchanged. Changing

αc moves the 5% quantile from −3.247 to −3.149.



2 Assessing the Anchoring of Inflation

Expectations

2.1 Introduction

Expectations play a key role in the conduct of modern monetary policy. In par-

ticular, the New-Keynesian Phillips curve stresses the importance of inflation

expectations for the rate of actual inflation. Central banks’ ability to achieve

price stability is thus directly linked to its ability to anchor inflation expecta-

tions at their target. Major central banks, including the Federal Reserve, the

Bank of England and the European Central Bank, monitor inflation expectations

as an indicator of inflation pressure. The quote "inflation expectations are well

anchored" is a frequently used phrase in press conferences and monetary policy

reports. Yet, in spite of their prominent role in monetary policy, inflation expec-

tations are still under-researched. Specifically, it is not clear how the degree of

anchoring of inflation expectations should be defined and measured empirically.

In monetary policy practice it is often argued that inflation expectations are well

anchored if their distance to a more or less explicit inflation target is sufficiently

small, see BoE (2010) and ECB (2011). More sophisticatedly, the empirical liter-

ature employs news regressions and a pass-through criterion. The news regression

approach exploits the idea that anchored inflation expectations should be insensi-

tive to economic news, compare Levin et al. (2004) and Gürkaynak et al. (2010b).

Similarly, the pass-through criterion of Jochmann et al. (2010) and Gefang et al.

35
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(2012) defines inflation expectations as anchored if longer-term expectations do

not respond to changes in shorter-term expectations. Both approaches restrict

their attention to first differences of the inflation expectations measure.

In the present paper, we argue that differencing leads to a loss of valuable in-

formation and imposes implausible dynamics of inflation expectations. Firstly, a

regression in first differences implies a unit root for the level of expected inflation,

i.e. shocks to the level never die out. Such extreme persistence appears hardly

compatible with the idea of anchored expectations. Secondly, within a first dif-

ference regression any information about the level of expected inflation is lost.

However, even if the central bank does not announce an explicit inflation target,

the level of inflation expectations should be of crucial importance.

We propose an exponential smooth transition autoregressive (ESTAR) model to

assess the degree of anchoring. Nobay et al. (2010) recently showed that the

ESTAR model captures the dynamics of the actual rate of US inflation remarkably

well.1 As a natural extension, we apply this model to inflation expectations

data. The distinguishing feature of the ESTAR approach is given by its flexible

dynamics. On the one hand, the model accounts for the locally high persistence

typically observed in expectations data, while on the other hand it implies global

stationarity, i.e. shocks to the level die out eventually.

The ESTAR model allows inflation expectations to return to some long-run equi-

librium value or anchor. This value will be interpreted as the market-perceived

inflation target, which may well deviate from an officially announced inflation

target of a central bank. The transition speed within the exponential function

determines how fast the reversion to the perceived target takes place and therefore

provides a natural measure of the strength of the anchor. The transition function

of the ESTAR model implies an increasing incentive to revise expectations the

more they deviate from the market-perceived target. These characteristics appear

suitable and also intuitive in view of anchored inflation expectations generated by

credible monetary policy. We include macroeconomic news variables as controls

1The ESTAR approach is also used to model the dynamics of other macroeconomic time series

as, for instance, exchange rates (Kilian and Taylor 2003).
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in the ESTAR model. Therefore, our approach represents an extension of the

news regression of Gürkaynak et al. (2010b) which is nested as a special case.

The crucial difference is, however, that even if economic news affect inflation ex-

pectations, they might still be well anchored. The main aspect of our criterion is,

how fast the impact of a shock decays.

We investigate the degree of anchoring of inflation expectations in the United

States (US), the European Monetary Union (EMU), the United Kingdom (UK)

and Sweden (SW). The expectations measure under consideration is the so called

break-even inflation (BEI) rate that is the most prominent measure of inflation

expectations within the news regression and the pass-through literature. BEI

rates can be derived from the spread of nominal and real government bond yields,

i.e. inflation-indexed bonds. Although the considered countries have highly liq-

uid nominal and real bond markets, constant maturity yields of real bonds de-

rived from term structure estimates are usually not readily available. In order to

avoid distortions triggered by different data sources and estimation techniques,

we closely follow the methodology of Gürkaynak et al. (2010a) and construct a

homogeneous data set of BEI rates for the countries under investigation.

With respect to the macroeconomic news variables, we find significant influence

in all countries, suggesting equally distorted inflation expectations. The differ-

ent mean-reverting properties of the expectations series, however, reveal that the

degree of anchoring of inflation expectations varies substantially across countries

and expectations horizons. We find that shorter-term expectations are anchored

more firmly than longer-term expectations, meaning that shocks of a given mag-

nitude die out faster in shorter-term expectations. Among the four countries, the

anchoring of expectations is strongest in the EMU, along with a perceived target

close to the ECB’s implied inflation target of 2%. In contrast, UK inflation expec-

tations exhibit the weakest degree of anchoring, reflecting very high persistence.

This is accompanied by a high market-perceived target of up to 4.3%. In view

of inflation expectations in the US, a comparison of a pre- and post-Lehman pe-

riod shows that the strength of the anchor of shorter-term expectations decreases,

while it increases for longer-term expectations.
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The remainder of the paper is structured as follows. Section 2.2 introduces the

anchoring criterion based on the ESTAR model. The measure of inflation expec-

tations, i.e. BEI rates, are introduced in Section 2.3. Furthermore, Section 2.3

comprises a preliminary data analysis. Estimation results, including an impulse

response analysis, are discussed in Section 2.4, and Section 2.5 concludes.

2.2 Assessing the Degree of Anchoring

We analyze the degree of anchoring by means of an exponential smooth transition

autoregressive (ESTAR) model. Similar ESTAR specifications are prominently

used in literature on purchasing power parity, and also to model the actual rate

of inflation, see among others Kilian and Taylor (2003) and Nobay et al. (2010),

respectively.2 The model is given by

yt = c+ exp
(
−γ(yt−1 − c)2

)
(

p∑

i=1

αiyt−i − c

)
+ βXt + εt , (2.1)

where yt represents the measure of inflation expectations, i.e. the BEI rate, and c

is a constant. The sum of autoregressive parameters is restricted to
∑p

i=1 αi = 1

and Xt constitutes a vector of economic news variables, with β as the correspond-

ing coefficient vector and εt as a zero mean white noise process. The dynamics of yt

are determined by the exponential smooth transition function exp(−γ(yt−1− c)2)
which is the source of non-linearity in this model. The transition function is

bounded between zero and one, and depends on the transition variable yt−1, the

smoothness parameter γ > 0, and a location parameter c. Given the restriction of

the sum of autoregressive parameters, model (2.1) behaves locally like a random

walk if the lagged expectations measure yt−1 equals c. If yt−1 departs from c, the

process is stationary and the degree of mean reversion at time t depends on the

squared difference between yt−1 and c. As shown in Kapetanios et al. (2003), the

ESTAR model is globally stationary despite its local non-stationarity.

2The adequacy of the ESTAR specification in the present context of inflation expectations is

evidenced by linearity tests as presented in Appendix 2.B
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In economic terms, the equilibrium value c can be interpreted as the market-

perceived inflation target. If the BEI rate was close to c in the last period, a shock

to inflation expectations would have a long lasting impact. That is, the model

allows for local high persistence when deviations from the target are so small

that they are economically negligible. However, when shocks drive the BEI rate

further away from the target, the anchoring pulls expectations back to c. Due to

the non-linearity of the model, the persistence of inflation expectations decreases

in the distance to the market-perceived target, i.e. the larger the gap between

yt−1 and c, the stronger the mean reversion. For a given distance, the parameter

γ controls the shape of the exponential function and hence the transition speed

towards c. Therefore, estimates of γ are considered a natural measure for the

strength of the anchoring of inflation expectations: the larger the γ, the stronger

the anchor. Apart from γ, the market-perceived inflation target c provides further

important information, namely the level of expectations, which may or may not

be close to the announced central bank’s inflation target.

Following the news regression literature, we also include major macroeconomic

and monetary news as control variables; compare Gürkaynak et al. (2010b). The

crucial difference between our econometric approach and the standard news re-

gression is that model (2.1) allows the expectations measure to mean revert. In

fact, the news regression given by

∆yt = βXt + εt (2.2)

implies a unit root in the level of yt. The ESTAR extension of (2.2) mitigates this

implausible assumption. It provides more flexible inflation expectations dynamics

and nests the news regression for the special case p = 1 and γ = 0. Furthermore,

the news regression approach in (2.2) is likely to suffer from an omitted variable

bias, i.e. due to data availability, the selection of news variables might be incom-

plete. In contrast, our approach does not rely on the completeness of the Xt

vector since the consistently estimated γ reflects the adjustment speed to a shock

of any nature, be it a shock in Xt or in εt.
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2.3 Break-Even Inflation Rates

The expectations data are extracted from nominal and inflation-indexed govern-

ment bond yields. According to the Fisher equation, the spread between nominal

and real yields provides a measure of inflation expectations, i.e. the break-even

inflation (BEI) rate. In contrast to a holder of a real bond, the investor of a nomi-

nal bond faces inflation risk. Hence, BEI rates are not a pure measure of inflation

expectations. In fact, break-even inflation rates consist of inflation expectations

and an inflation risk premium. Christensen et al. (2010) show, however, that

the average risk premium is virtually zero within an affine term structure model

for the US. Furthermore, given our interest in the anchoring of inflation expecta-

tions, including the premium as a part of the relevant variable provides important

information. More specifically, a central bank that aims to stabilize inflation ex-

pectations should also aim to minimize the inflation risk premium. Therefore, we

rely on BEI rates to evaluate the anchoring of inflation expectations.3

We investigate the degree of anchoring in the United States (US), the European

Monetary Union (EMU), the United Kingdom (UK) and Sweden (SW). This se-

lection is consistent with the former anchoring literature and is narrowed by data

availability. We investigate daily data from January 2004 to February 2011. By

starting in 2004, we ensure that the countries have highly liquid nominal and

real bond markets across a wide range of maturities. We follow the methodology

of Gürkaynak et al. (2007) and Gürkaynak et al. (2010a) and estimate nominal

and real Nelson-Siegel-Svensson yield curves to obtain coherent term structures

of BEI rates across the different countries under investigation.4 The inflation

expectations measure is the one-year forward break-even inflation rate. We con-

sider two different expectations horizons: the five-year horizon and the ten-year

3In order to disentangle the two components, affine term structure models of e.g. Adrian and Wu

(2009) and Christensen et al. (2010) are available. Such a filtered inflation measure, however,

strongly depends on the choice of the model and, of course, is subject to estimation uncertainty.
4By building a coherent dataset, we intend to minimize the risk of distortions induced by us-

ing different data sources that rely on different methodologies. For instance, the FED uses

the Nelson-Siegel approach while the Bank of England applies a spline method; the criteria

for choosing the specific bonds also differ between different data sources. For details on our

methodology see Appendix 2.A.



Assessing the Anchoring of Inflation Expectations 41

horizon. The one-year forward in five years captures the ability of central banks

to anchor inflation expectations within the often defined policy horizon of three

to five years. The ten-year horizon is commonly used in the anchoring literature

and represents longer-term expectations, compare Gürkaynak et al. (2010b) and

Beechey et al. (2011).

Figure 2.1: Five- and Ten-Year BEI Rates

Notes: Calculated via nominal and real forward rates from Nelson-Siegel-Svensson

yield curves. The five-year rate reflects expectations in five years for one year, the

ten-year rate expectations in ten years for one year.

Figure 2.1 depicts the five-year (upper graph) and ten-year (lower graph) expec-

tations horizons of the different countries. The figure indicates that market par-

ticipants expect inflation around two and three percentage points. As expected,

revisions of expectations are rather small on a daily basis, such that the depicted

series behave very persistently. The degree of anchoring over time is not obvious

but an impact of the global financial crisis is clearly visible. Therefore, both a

pre-crisis and a crisis period are considered. We follow a standard treatment of
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Table 2.1: Descriptive Statistics of Inflation Expectations

pre-crisis crisis

Horizon mean std. d mean std. d

US
5Y 2.63 0.16 0.75

[0.64,0.86]
2.54 0.40 0.56

[0.40,0.73]

10Y 3.05 0.32 0.87
[0.76,0.98]

3.11 0.29 0.63
[0.47,0.80]

EMU
5Y 2.40 0.18 0.77

[0.66,0.88]
2.09 0.28 0.52

[0.36,0.67]

10Y 2.37 0.19 0.63
[0.53,0.74]

2.71 0.31 0.93
[0.76,1.10]

UK
5Y 3.04 0.29 0.90

[0.80,1.02]
2.96 0.46 0.90

[0.74,1.08]

10Y 3.35 0.48 0.68
[0.57,0.79]

4.15 0.30 1.03
[0.87,1.22]

SW
5Y 2.20 0.28 0.64

[0.54,0.75]
1.93 0.22 0.76

[0.58,0.91]

10Y 2.33 0.32 0.70
[0.59,0.80]

2.20 0.26 0.82
[0.66,0.99]

Notes: Mean and standard deviation in percentage point and d the order of frac-

tional integration.Pre-crisis sample Jan 2004 - Sep 2008 (∼ 1200 obs.), crisis sample

Sep 2008 - Feb 2011 (∼ 630 obs.).

dating the crisis by defining the bankruptcy of Lehman Brothers on 15 September

2008 as its starting point. Note that our crisis period lasts until 2011 and thus

incorporates the European sovereign debt crisis as well.

Descriptive statistics of the break-even rates before and after the Lehman

bankruptcy are presented in Table 2.1. BEI rates across the different countries

and expectations horizons are on average well above the two percent mark. The

two percent mark is often viewed as an inflation target in the EMU, the UK and

Sweden and very recently in the US as well. The means and standard deviations

of most countries are larger for the ten-year horizon than for the five-year

horizon. A clear pattern of how the crisis affects the expectations measure is not

evident.

To get a first impression of the mean reversion properties of inflation expectations

we follow the literature on inflation persistence (e.g., Hassler and Wolters 1995,

Meller and Nautz 2012) and estimate the order of fractional integration, d. All
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estimates lie within the interval (0.5, 1), where processes are still mean revert-

ing but non-stationary.5 However, it is well-known that estimates of the order

of fractional integration are misleading if non-linearities of the true underlying

process are not considered, see e.g. Ohanissian et al. (2008) and Kruse and Sib-

bertsen (2011). In line with this interpretation, we conducted the Kapetanios et

al. (2003) and Teräsvirta (1994) linearity tests against ESTAR. These test results

provide strong evidence in favor of the ESTAR model (see Appendix 2.B).

2.4 Empirical Results on the Anchoring of Inflation

Expectations

2.4.1 Strength and Level of the Anchor

The effect of at least one macroeconomic news variable is statistically significant

in all countries under investigation (see Appendix 2.C.2). Strictly applying the

news regression criterion, we would conclude, that inflation expectations in the

EMU, the US, Sweden and the UK are equally de-anchored. Instead, our ex-

tended ESTAR model allows to further analyze shocks to inflation expectations.

Specifically, we estimate how long their effect lasts.

The empirical analysis focuses on the two model parameters γ and c in equation

(2.1) that provide information on the strength and level of the anchor. Since

the ongoing crisis potentially changes the degree of anchoring, we account for pa-

rameter shifts within our ESTAR specification (2.1). Specifically, a Lehman step

dummy LEH that takes the value one from 9/15/2008 until the end of the sample

captures breaks in c and γ.6 Estimation results on the anchoring of inflation ex-

pectations, given in Table 2.2, are interpreted with respect to three perspectives:

across the five- and ten-year expectations horizons; across countries; and across

the pre-crisis and the crisis period.7

5The non-stationarity is caused by an unbounded variance of the process.
6Note that we found estimation results of the time series dynamics to be robust against a sample

split, i.e. separate estimation of the pre-crisis and crisis sample.
7Note that the γ and c estimates are robust against the exclusion of the news variables.
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Table 2.2: Anchoring of Inflation Expectations

US EMU UK SW

5Y 10Y 5Y 10Y 5Y 10Y 5Y 10Y

c 2.613
(0.029)

3.233
(0.059)

2.416
(0.021)

2.491
(0.035)

3.113
(0.108)

3.463
(0.140)

2.169
(0.049)

2.310
(0.066)

LEH −0.181
(0.100)

−0.181
(0.075)

−0.370
(0.048)

0.162
(0.096)

0.102
(0.532)

0.830
(0.180)

−0.217
(0.092)

−0.140
(0.082)

γ 0.294
(0.086)

0.055
(0.016)

0.531
(0.188)

0.189
(0.059)

0.021
(0.014)

0.011
(0.007)

0.074
(0.026)

0.057
(0.025)

LEH −0.250
(0.088)

0.152
(0.071)

−0.023
(0.188)

−0.113
(0.071)

−0.015
(0.017)

0.020
(0.019)

0.047
(0.073)

0.108
(0.067)

p 1 4 2 3 2 3 2 2

Q(5) 0.59 0.26 0.95 0.28 0.08 0.05 0.23 0.58

Q(10) 0.60 0.41 0.97 0.35 0.01 0.14 0.18 0.75

ARCH(1) 0.58 0.00 0.86 0.02 0.01 0.10 0.63 0.22

ARCH(5) 0.67 0.11 0.89 0.29 0.07 0.47 0.24 0.56

Notes: yt = c+ cLEH+exp
(

−(γ + γ LEH)(yt−1 − (c+ cLEH))2
) (

∑

i αiyt−i − (c+ cLEH)
)

+βXt+εt is

estimated by ML. yt := daily BEI rates are measured in percentage points in the sample period Jan 2004 to

Feb 2011. Numbers in bold indicate significance at the 5% level. Bollerslev-Wooldrige heteroskedasticity

consistent standard errors of the estimated coefficients are given in parentheses. LEH:= step dummy that

takes the value one from 9/15/2008 until 2/14/2011 and zero elsewhere. Estimation results for the news

variables can be found in Appendix 2.C.2. The lag length p is determined by standard autocorrelation

tests. The p-values of Q-statistics Q(5) and Q(10) illustrate that no significant autocorrelation up to order

10 is left in the residuals. ARCH LM test results reflect that, apart from a few exceptions, the GARCH(1,1)

ensures no remaining ARCH effects.
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Anchoring Across Expectations Horizons

Estimates of γ are given in the third and fourth row of Table 2.2. The larger

the γ, the stronger the anchoring of inflation expectations. Our results indicate a

stronger anchoring of five-year BEI rates for all countries under investigation (the

US crisis sample excepted). One explanation of this finding might be that the

often defined policy horizon of central banks consists of a period between three and

five years. This reflects that markets expect a more active role of central banks

against medium term inflationary pressure. As a consequence, shocks to longer-

term expectations are more persistent. Results on the strength of the anchor are

confirmed by estimated market-perceived targets that, on average, take values

around 2.5 percentage points for five-year and close to 3 percentage points for

ten-year expectations horizon. Deviations of market-perceived targets from a

central bank target of two percent can in part be explained by a positive risk

premium. In line with Christensen et al. (2010), our findings reflect that markets

associate longer-term expectations with higher uncertainty about inflation and

thus with a larger premium.

Anchoring Across Countries

For a given level of the market-perceived target, our point estimates of γ suggest

that EMU expectations are anchored most firmly, followed by US, Sweden and

finally the UK. The transition speed of UK expectations is by far the slowest,

reflecting a very high degree of persistence. For the five-year horizon in the UK,

for instance, γ equals 0.02. In shorter-term expectations in the EMU, however,

we find γ = 0.53, which indicates a much lower degree of persistence. Considering

the location of the anchor, the cross-country comparison reveals that inflation

expectations are anchored around the smallest values (between 1.94 and 2.31) in

Sweden. For the EMU and US the level of the anchor is located between roughly

2.5 and 3.2 percent. In the UK data on the other hand, we find market-perceived

targets of up to 4.29 percent.
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Anchoring and the Financial Crisis

The impact of the crisis does not point in a unique direction. Market-perceived

targets, however, change significantly in all countries. In the US and Sweden, c de-

creases for both expectations horizons, indicating a decrease in inflation pressure.

In contrast, the market-perceived target strongly increases by 0.83 percentage

points in longer-term UK expectations. In the EMU the term structure of BEI

rates steepens due to a decreasing perceived target at the shorter-term horizon

(from 2.42 to 2.05) and a non-changing target of longer-term expectations. Unlike

the level, the strength of the anchor did not change significantly in most of the

countries during the crisis. An exception is given by the US BEI rates. While

the transition speed decreases for the medium-term horizon, it increases for the

longer-term horizon. This reflects an increasing degree of anchoring of longer-term

horizons and a declining degree of shorter horizons.

2.4.2 Impulse Response Analysis

In order to reveal what estimates of γ actually imply for the persistence of infla-

tion expectations, we compute impulse response functions. Since standard tech-

niques for linear processes are not applicable to the ESTAR model, we make use

of generalized impulse response functions (GIRFs) as suggested by Koop et al.

(1996).8 The analysis allows us to investigate the anchoring strength for the dif-

ferent countries and time horizons with respect to shocks of different magnitudes.

Specifically, non-linear dynamics of inflation expectations are highlighted by two

different shock sizes: a small shock of 10 basis points (bp) and a large shock of

100 bp. Given the estimated standard deviations of the BEI rates in Table 2.1,

the small shock roughly represents one half of a standard deviation, while the

large shock is approximately four times a standard deviation. In addition to the

impulse responses, we calculate half-lives that indicate the number of days an

initial shock needs to be absorbed by 50 percent.

8See Appendix 2.D for further details on computational steps.
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Figure 2.2: Impulse Response Functions of 5-Year BEI Rates

Notes: Generalized impulse response functions are based on ESTAR estimates of

the pre crisis as given in Table 2.2. Detailed simulation steps are described in

Appendix 2.D. Magnitudes of the shocks are set to 10 bp (small shock, indicated

by thin lines, right axis) and 100 bp (large shock, indicated by bold lines, left axis).

The x-axis reflects the number of days after the initial shock.

Figure 2.2 depicts the impulse response functions of the five-year expectations.

The figure clearly indicates the nature of the non-linear model: Impulse responses

of the large shock decrease much stronger than responses to the small shock. While

the initial impact of the large shock drives expectations far away from the per-

ceived target, the anchoring of inflation expectations results in a fast absorption

of the shock. In other words, the larger the initial shock, the stronger revisions

of expectations in the direction of the perceived target. This effect becomes more

pronounced when γ is larger. Half-lives, as reported in Table 2.3, confirm results

from the previous subsection. We elaborate along the same three perspectives:

across expectations horizons, across countries and through pre-crisis and crisis

sample.

Half-lives indicate the better anchoring of shorter-term expectations. In compar-

ison to the five-year horizon, a shock to inflation expectations at the ten-year

horizon needs, on average, about one week more to be absorbed by 50%.

Turning to the cross-country comparison, half-lives of up to 4 weeks mirror the

strong anchoring of EMU, Sweden and US expectations. In contrast, the time to

absorb 50% of a shock is 5 to 10 weeks in the UK. The overall impression from



Assessing the Anchoring of Inflation Expectations 48

Table 2.3: Half-lives in Days

pre-crisis crisis

Horizon 10 bp 100 bp 10 bp 100 bp

US
5Y 9 4 19 12

10Y 19 16 9 5

EMU
5Y 7 3 6 2

10Y 11 7 9 5

UK
5Y 34 25 28 24

10Y 43 40 49 42

SW
5Y 16 10 17 11

10Y 16 11 18 10

Notes: Reported values represent the absorption time mea-

sured in days for 50% of the initial shock size of 10 bp ("small

shock") and 100 bp ("large shock"), respectively.

Table 2.3 is, however, that shocks are absorbed fairly rapidly in all four countries,

which expresses a substantial degree of anchoring.

In view of the pre-crisis and crisis period, half-lives of US inflation expectations

reflect the significant break in the anchoring strength. The break reverses the

absorption time of longer- and shorter-term expectations in that shorter horizons

appear less anchored during the crisis. Since the expectations data for the EMU,

the UK and Sweden display no significant break in γ, the slight changes in half-

lives simply result from the particular set of histories used to compute impulse

responses in each subsample.

In sum, the decay of the impulse responses illustrates the main idea of the pro-

posed anchoring measure: well-anchored inflation expectations should display sta-

tionary characteristics and should therefore always tend to return to some long-run

equilibrium value.
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2.5 Conclusion

In this paper we propose a non-linear time series approach to determine the degree

of anchoring. We build on a well-known analytical framework for investigating

this topic, namely the news regression, wherein first differences of an expectations

measure are regressed on macroeconomic news. Specifically, the implicit unit root

assumption of the news regression approach is relaxed as we allow anchored in-

flation expectations to follow a globally stationary ESTAR process. This gener-

alization permits a shift in focus from the immediate news effect to the dynamics

of inflation expectations. Model parameters are economically interpretable as a

market-perceived inflation target and as the strength of the anchor that drives

expectations back to the target.

Macroeconomic news variables turn out to have a significant impact on inflation

expectations in the US, EMU, UK and Sweden. While in the news regression

context this result suggests equally distorted and non-stationary expectations,

the proposed ESTAR extension reveals mean-reversion and thus well anchored

inflation expectations in all countries under investigation. The ESTAR estimates

show, firstly, that shorter-term inflation expectations are anchored more firmly

than longer-term expectations. Secondly, expectations appear best anchored in

the EMU, followed by the US, Sweden and the UK. Thirdly, in most countries the

average level of inflation expectations decreases during the crisis. Given central

banks’ mandate to stabilize the actual rate of inflation, our results support the

view of credible policy strategies that anchor inflation expectations in all countries

investigated here. Apart from the UK, the market perceived inflation targets are

close to the usually imposed inflation targets of around 2 percent. Moreover,

expectations vary around these targets in a stationary manner. This leads to

the conclusion that expectation formation processes are successfully controlled by

central banks.

So far, the univariate setup implies that shocks to inflation expectations are un-

correlated across countries. Of course, for many cases, such as oil price shocks, the

uncorrelatedness assumption might be too rigid. A multivariate extension of the

present approach would therefore provide an interesting path for future research.
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2.A Term Structure Estimation

This appendix describes how the constant maturity series were estimated as well

as which and how many bonds were used. Our data set is based on bond yields

downloaded from the Bloomberg database (for an overview see Table 2.4). We

take all outstanding, standard government bonds (e.g. no callables) with more

than two years time to maturity into account. Bonds with less than 24 months

to maturity are cut out because real bonds’ indexation lags erraticate the yields

of these securities, as shown in Gürkaynak et al. (2010a).

Table 2.4: Nominal and Real Bonds - Overview

Short name indexation #′04 #′10 Obs.

US TREASURY N/B - 124 204
1792

TSY INFL IX US CPI 12 31

FRANCE O.A.T. - 31 34
1858

FRANCE O.A.T.I/L EMU HICP 4 6

UK TREASURY - 26 35
1856

UK TSY I/L UK CPI 9 17

SWEDEN GOVT - 12 9
1837

SWEDEN I/L CPI Sweden 5 5

Notes: #′04, #′10 report the number of outstanding bonds in

June 2004 and 2010, Obs. is the number of daily observations

within the time span of January 2004 until February 2011. EMU

HICP refers to the harmonized index of consumer prices of the

European Monetary Union.

For each day where yields for more than three bonds are available, we follow the

approach of Gürkaynk et al. (2007), and estimate constant maturity yields. The

standard parametric yield curve specification is based on a functional form that

was proposed by Nelson and Siegel (1987) and extended by Svensson (1994):

ẑt(τ) = β1+β2

[
1− e

− τ
λ1

τ
λ1

]
+β3

[
1− e

− τ
λ1

τ
λ1

− e
− τ

λ1

]
+β4

[
1− e

− τ
λ2

τ
λ2

− e
− τ

λ2

]
.
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The observed zero coupon yield for maturity τ is given by z(τ), whereas the

model-implied yield is ẑ(τ). We minimize
∑

(ẑ(τ) − z(τ))2 with respect to the

parameters β1, β2, β3, β4, λ1 and λ2 by the Differential Evolution approach

proposed by Storn and Price (1997). Forward rates are derived from zero-coupon

yield curves via

ft(n,m) =
1

m
((n+m)ẑt(n+m)− nẑt(n)) , (2.3)

in which ft(n,m) is the forward rate at time t for a period of m years, beginning

n years in the future. The n-year BEI rate reflects today’s expected inflation

rate (plus an inflation risk premium) and is given by BEI(n) = fnom
t (n,m) −

f real
t (n,m).

2.B ESTAR Specification Tests

For specification of the ESTAR model, we perform two different types of linearity

tests. Both approximate the exponential function in (2.1) around γ = 0 to obtain

an auxiliary regression. The t-test of Kapetanios et al. (2003) (KSS) tests the null

of a linear non-stationary autoregressive process against ESTAR non-linearities.

We also run the LM test of Saikkonen and Luukkonen (1988) and Teräsvirta (1994)

to test the null of a linear, stationary autoregressive process against ESTAR non-

linearities. Both tests are carried out since conventional autoregressive models

are close to non-stationarity up to such a degree, that standard unit root tests

show conflicting test results.

Table 2.5 shows the results of the two linearity tests. The LM test rejects the

null across all countries and almost all sample periods. For a given country, an

expectation horizon and a sample period, at least one of the two tests rejects the

null in favor of the ESTAR model.9 Consequently, we interpret these results as

9The exception is the Swedish five-year BEI rate in the crisis sample. However, the test statistic

of 7.41 corresponds to a p-value of 0.11 and the KSS test statistic of −2.33 falls above the 10%

level of −2.66. Even though tests fail to reject the null at the 10% level, they point in the

non-linear direction. In general, due to the sample split, linearity tests tend to suffer from low

power, which may partly explain the failure of rejecting the null in a few cases.
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Table 2.5: Linearity Tests Against ESTAR

H0 : stationary AR(p) H0 : non-stationary AR(p)

Horizon whole pre-crisis crisis whole pre-crisis crisis

US
5Y 41.4∗∗∗ 21.3∗∗∗ 10.6∗∗∗ −5.19∗∗∗ −4.10∗∗∗ −3.16∗∗

10Y 33.4∗∗∗ 44.5∗∗∗ 7.08 −4.01∗∗∗ −2.17 −2.91∗∗

EMU
5Y 59.5∗∗∗ 65.2∗∗∗ 6.70 −5.52∗∗∗ −10.8∗∗∗ −3.15∗∗

10Y 44.9∗∗∗ 44.9∗∗∗ 16.9∗∗ −2.14 −2.11 −1.96

UK
5Y 33.4∗∗∗ 44.5∗∗∗ 5.34 −3.99∗∗∗ −1.32 −2.75∗

10Y 46.6∗∗∗ 44.2∗∗∗ 42.9∗∗∗ −2.61 −1.37 −1.72

SW
5Y 11.9∗∗ 21.9∗∗∗ 7.41 −3.59∗∗∗ −3.11∗∗ −2.33

10Y 38.4∗∗∗ 30.6∗∗∗ 33.4∗∗∗ −4.55∗∗∗ −3.43∗∗∗ −4.22∗∗∗

Notes: Test statistics of the LM test with the null hypothesis of a stationary autoregressive

process and KSS with the null of a non-stationary autoregressive process. The lag length

is chosen in that residuals are free from significant autocorrelation. The rejection of the

respective null hypothesis at the 10% is indicated by ∗, at the 5% by ∗∗ and at the 1% level

by ∗∗∗. Sample periods: whole refers to January 2004 - February 2011; pre-crisis to January

2004 - September 2008; and crisis to September 2008 - February 2011.

conclusive evidence that the true underlying processes can be well-approximated

by an ESTAR model.

2.C News Variables

2.C.1 News Data

The news variables are calculated by the difference between the actual and the

expected value. The expected value is represented by the mean prediction of

the Bloomberg survey of professional economists, mostly consisting of bankers.

They submit their forecast before or on the Fridays prior to the data release.

The actual and forecasted values of the advanced estimate of the gross domestic

product (GDP), industrial production (IP), consumer price index (CPI) and the
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producer price index (PPI) refer to the percentage yearly basis. The GDP, IP,

CPI and PPI news measure the difference between the actual and forecasted value

in percentage points. The unemployment rate (UMP) and the monetary policy

rate (MP) are measured in percentages. The respective news variable reflects the

unexpected component in percentage points. In line with the rational expectations

assumption, mean forecast errors are close to zero, mostly uncorrelated and some

do not reject the null of normality.10

2.C.2 Estimation Results for News Variables

While time series dynamics determine the degree of anchoring, surprise compo-

nents of major economic announcements reveal potential sources of shocks that

drive expectations away from the market-perceived target. Estimation results on

the news coefficients are reported in Table 2.6. Numbers in bold reflect signifi-

cance at the 10% level, indicating news announcements that lead to systematic

revisions in inflation expectations. Monetary policy news, for example, show a

significant impact in all countries. In general, for each country we observe at least

one announcement that move markets’ expectations significantly.

10We run the same type of regressions with median expectations. Qualitative results remain the

same.
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Table 2.6: Estimation Results for News Variables

US EMU UK SW

5Y 10Y 5Y 10Y 5Y 10Y 5Y 10Y

GDP 0.006
(0.006)

0.002
(0.013)

0.088
(0.034)

−0.013
(0.032)

0.025
(0.028)

−0.002
(0.015)

−0.004
(0.010)

−0.003
(0.006)

IP 0.023
(0.010)

−0.019
(0.015)

0.002
(0.004)

−0.004
(0.003)

−0.002
(0.003)

−0.003
(0.004)

0.002
(0.002)

0.001
(0.002)

UEM −0.070
(0.037)

0.049
(0.031)

−0.074
(0.045)

−0.054
(0.047)

0.037
(0.030)

−0.007
(0.048)

0.001
(0.016)

0.051
(0.043)

CPI −0.023
(0.028)

−0.029
(0.037)

0.058
(0.079)

−0.110
(0.110)

0.085
(0.055)

0.043
(0.026)

−0.050
(0.023)

0.018
(0.024)

PPI 0.006
(0.004)

0.001
(0.013)

0.023
(0.618)

0.028
(0.024)

−0.011
(0.099)

0.010
(0.008)

0.011
(0.009)

0.007
(0.010)

MP −0.280
(0.063)

−0.469
(0.070)

0.182
(0.414)

0.657
(0.349)

−0.021
(0.033)

−0.048
(0.018)

0.044
(0.059)

0.167
(0.084)

Notes: ML estimation results for the news variables Xt in equation (2.1), yt = c + cLEH +

exp
(

−(γ + γ LEH)(yt−1 − (c+ cLEH))2
) (

∑

i αiyt−i − (c+ cLEH)
)

+ βXt + εt. Daily BEI rates, yt, are

measured in percentage points in the sample period January 2004 to February 2011. Bollerslev-Wooldrige

heteroskedasticity consistent standard errors of the estimated coefficients are given in parentheses. Symbols

in bold indicate significance at the 10% level. c and γ estimates are reported in Table 2.2.
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2.D Generalized Impulse Response and X-Life

2.D.1 Impulse Response

In order to calculate the GIRFs, we follow Koop et al. (1996). The GIRF at t+h

is defined as the difference between the expected value of a stochastic process

conditioned on an impulse ξ hitting the process at time t, and the conditional

expectation that is obtained without such a shock:

GIRF(h, ξ, ωt−1) = E[yt+h|yt + ξ, ωt−1]− E[yt+h|yt, ωt−1] , (2.4)

where ωt−1 refers to one particular history of the process yt. GIRF(h, ξ, ωt−1)

represents one realization of the random variable GIRF(h, ξ,Ωt−1) and can be

approximated via stochastic simulation. To calculate E[yt+h|yt + ξ, ωt−1] and

E[yt+h|yt, ωt−1], we average over 1000 future paths, in which each yt+h is created

by iterating it on the ESTAR model with parameter values equal to those from

the empirical estimates and with randomly drawn GARCH(1,1) errors with i.i.d.

normal innovations. The impulse ξ is set to the size of one residual standard devi-

ation, i.e. ξ = σε. The aspect of interest of the random variable GIRF(h, σε,Ωt−1)

is given by its unconditional mean:

E[GIRF(h, σε,Ωt−1)] = E[yt+h|yt + σε]− E[yt+h|yt] . (2.5)

We approximated equation (2.5) by averaging over all ωt−1 observed in the sample.

Note that it is the unconditional mean of the GIRF that we refer to simply as

GIRF or impulse response throughout the paper.

2.D.2 X-Life

Following Dijk et al. (2007), X-lives are estimated by:

X-life(x, σε) =
∞∑

m=0

(
1−

∞∏

h=m

(x, h, σε)

)
,with (2.6)

(x, h, σε) =

(∣∣∣∣E[GIRF(h, σε,Ωt−1)]− lim
h→∞

E[GIRF(h, σε,Ωt−1)]

∣∣∣∣

≤ x

∣∣∣∣σε − lim
h→∞

E[GIRF(h, σε,Ωt−1)]

∣∣∣∣
)

.

0 ≤ x ≤ 1 refers to the chosen fraction of noise absorption (x = 0.5 and x = 0.75

in the application) and (·) is the indicator function.



3 Testing the Preferred-Habitat

Theory: The Role of Time-Varying

Risk Aversion

3.1 Introduction

A key question for monetary policy is how to effectively influence longer-term

yields in order to control inflation or to provide stimulus to aggregate demand.

One possible answer is to alter the maturity structure of government debt. This

view is advocated by the preferred-habitat approach, which received increasing

attention in a series of recent papers (Vayanos and Vila 2009, Greenwood and

Vayanos 2010, Greenwood and Vayanos 2012 and Guibaud et al. 2013). The basic

idea of the preferred-habitat theory is that investor clienteles with preferences for

certain maturities play a crucial role in the determination of bond yields. The

main theoretical implication is a positive relation between yields and the relative

supply of longer-term debt. The literature emphasizes, however, an important

qualification of this prediction. The strength of the positive relation depends on

the risk aversion of arbitrageurs that participate in the bond market and undo

the preferred-habitat effects.

Despite the growing theoretical literature, empirical evidence on a relation be-

tween debt and bond yields is limited. Reinhart and Sack (2000) find the term

spread to be negatively related to the government surplus, indicating that debt

56
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supply affects the yield curve. Bernanke, Reinhart and Sack (2004) and Green-

wood and Vayanos (2010) provide some descriptive results on how bond yield

movements in the US may be attributed to changes in the maturity structure

of government debt. On days where long-term debt purchases or ceasing of new

issuance are announced, figures of yield spreads display a distinct decline.

This paper builds on the approach of Greenwood and Vayanos (2012) who show

in a regression analysis of US data that the impact of relative longer-term debt

supply on term spreads is economically and statistically significant. In static

regressions with constant coefficients, spreads are found to react by up to 38 basis

points to a one standard deviation increase in longer-term debt. Even though the

standard regression framework constitutes the natural empirical starting point, it

might be too restrictive to test for preferred-habitat effects. Therefore, we propose

to extend the approach in two dimensions.

Firstly, the preferred-habitat theory implies that the impact of debt supply on

yield spreads is stronger when risk aversion of arbitrageurs is high. Imposing con-

stant coefficients rules out any state-dependency of the relation a priori. Secondly,

bond yields and relative supply of long-term debt are typically very persistent.

A static model does not control for serial correlation and may therefore produce

spurious results.

We show that it is essential to take both aspects into account when the preferred-

habitat theory is analyzed empirically. On the one hand, we propose an aug-

mented distributed lag (ADL) model. The ADL model avoids the risk of spurious

results, even in case of extremely persistent time series. On the other hand, we

allow the effect of debt supply on spreads to depend on the state of risk aversion.

Thereby, risk aversion is proxied by bond market volatility.

Over a variety of asset pricing models, there is agreement on counter-cyclical

risk aversion which increases when marginal utility is high and decreases when

marginal utility is low, see Campbell and Cochrane (1999), Rosenberg and Engle

(2002) or Gordon and St-Amour (2004). Market volatility also features counter-

cyclical movements. It is commonly known to be higher in bad than in good

times which makes a connection to risk aversion intuitive. In fact, it is often
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elaborated on a theoretical relation between risk aversion and market volatility.

Mele (2007) and Aydemir (2008), for instance, argue that counter-cyclical risk

aversion is the major driving force of volatility, since rational asset evaluation

depends on the current state of the economy. Above all, our risk aversion proxy

fits the conjecture of Gürkaynak and Wright (2012) that one should observe more

pronounced preferred-habitat effects in turbulent than in normal times.

The present paper applies these considerations to the empirical analysis of the

preferred-habitat theory and considers volatility as a natural proxy of risk aver-

sion. To this end, we use the most simple candidate of market volatility that

can be extracted directly from yield data, i.e. the GARCH variance of the term

spread at time t. Methodologically, this amounts to a dynamic regression with the

conditional variance entering the mean equation to govern the state-dependency

of the effect of longer-term debt supply on spreads.

The analysis is based on daily observations of German government bonds. While

constant maturity series of yields can be easily obtained, data on the maturity

structure of debt are not readily available. Therefore, this paper generates a new

data set of relative debt supply constructed from daily bond prices. At any point

in time, the data contain all future coupon and principal payments due within a

certain period.

Our empirical results indicate the following. First, estimates from a static regres-

sion indicate a significant constant impact of relative supply of longer-term debt

on yield spreads. The estimated coefficients are remarkably similar in magnitude

to those obtained in previous studies of monthly US data. In a dynamic regres-

sion, however, these effects turn out to be spurious. Second, the introduction

of state-dependent coefficients reveals strong evidence that a relation between

spreads and debt actually exists. Most importantly, this relation survives in the

ADL specification. The reaction of spreads to a one standard deviation increase

in longer-term debt supply ranges from 5 basis points in times of low risk aversion

to 33 basis points when risk aversion is high.

The rest of the paper proceeds as follows. The next section briefly reviews the

preferred habitat-model and states the testable hypotheses. Section 3.3 introduces
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the econometric methodology. The data on German bond yields and relative

supply of longer-term debt are presented in Section 3.4. Section 3.5 discusses the

empirical results and section 3.6 concludes.

3.2 The Preferred-Habitat Theory

The key implication of the preferred-habitat model of Greenwood and Vayanos

(2012) is that the term spread should react positively to changes in the relative

supply of longer-term debt. The reaction of the spread, however, is supposed

to be stronger when risk aversion is high. To see this, we initially review the

main aspects of the model and then turn to the intuition behind the theoretical

predictions.

3.2.1 The Model Greenwood and Vayanos (2012)

The yield of a τ -year bond is determined by the interaction between three types

of agents: the government, investors with a preference for maturity τ1 and ar-

bitrageurs. The gross supply of τ -year bonds through the government less the

demand of preferred-habitat investors results in a net supply, NS(τ)
t , at that spe-

cific maturity. The time t value of net supply is assumed to be negatively related

to the yield y(τ)t :

NS(τ)
t = ψ(τ)− ω(τ)τy

(τ)
t . (3.1)

The constant ψ(τ) and the slope parameter ω(τ) are some functions of τ , with

the only restriction that ω(τ) > 0. The negative dependency on the yield is

motivated as follows. First, a higher yield would raise the demand of preferred-

habitat investors. Second, if yields increase, prices decrease. Both effects have a

negative impact on the value of net supply.

1Investors with a preference for shorter maturities are typically associated with banks who prefer

to stay liquid whereas demand at longer maturities is often ascribed to insurance companies or

pension funds.
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For the market to clear, NS(τ)
t has to be absorbed by the demand of arbitrageurs,

x
(τ)
t . They aim for high mean and low variance of their wealth changes dWt:

max
{x(τ)

t }τ∈(0,T ]

[
Et(dWt)−

a

2
Vart(dWt)

]
. (3.2)

The remaining part of the model follows the standard Vasicek (1977) setup: The

short-rate is the only source of uncertainty in the model and its dynamics are

Ornstein-Uhlenbeck. Bond prices are assumed to be affine functions of the short

rate.

In equilibrium, it can be shown that the risk premium θ
(τ)
t (a) for holding a τ -year

bond is given by the product of the bond’s sensitivity to short rate risk, A(τ, a),

and the market price of risk λ(a):

θ
(τ)
t (a) = A(τ, a)λ(a) . (3.3)

The parameter a in (3.2) and (3.3) refers to the degree of arbitrageurs’ risk aver-

sion and constitutes a decisive element to qualify the predictions of the preferred-

habitat theory. To see this, it is important to note that any preferred-habitat

effect, i.e. any response of yields to changes in bond supply, occurs through the

risk premium. Without risk aversion, there are no preferred-habitat effects.

3.2.2 Testable Hypotheses

The testable hypotheses can be derived from the equilibrium term structure of

the model. All formal proofs are given in Greenwood and Vayanos (2012). In the

following, assume that risk aversion a is positive and constant.

Hypothesis 1: Changes in Debt Supply

The term spread between the yield of τ -year bond and the short-rate is increasing

in the relative supply of longer-term debt. The effect is stronger for larger τ .

To see the intuition behind this prediction, suppose that the relative supply of

longer-term debt increases. According to Greenwood and Vayanos (2012), this
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is modeled as a decrease in the constant term ψ(τ) of the net supply equation

(3.1) for small τ and an increase for large τ . The consequences for equilibrium

yields are best described if the bond price formation process is thought of as being

sequential.

Figure 3.1: Reaction of Yields to Supply Shocks

Yield 

Maturity 

preferred-habitat investors (local demand effect)  

trading with arbitrageurs (risk premium effect) 

term spreads widen = yield curve becomes steeper 

 

 

Notes: The solid black line represents the yield curve at some arbitrary day. In absence of arbitrageurs,

as a response to a shock to relative supply of longer-term debt, local preferred-habitat demand causes

shorter-term yields to decrease and longer-term yields to increase, i.e. the yield curve rotates. The

new yield curve is given by the dashed black line. Arbitrageurs react to the rotation by buying long-

term bonds and selling short-term bonds. Thereby, the risk premium increases. Because of the higher

premium, trading across maturities raises shorter-term yields even above the solid black line and pushes

longer-term yields below the dashed black line. The new yield curve, given by the solid gray line, is the

result of an upward shift and a counter-clockwise rotation.

If there were no arbitrageurs, yields would be solely determined by (3.1) and the

market of τ -year bonds would clear for y(τ)t = ψ(τ)/ω(τ)τ . Therefore, longer-

term bond yields increase while shorter-term yields decrease. In Figure 3.1 this

is illustrated by a rotation of the yield curve from the solid black line to the

dashed black line. Arbitrageurs would now exploit the differences in yields by

selling longer-term and buying shorter-term bonds. They thereby tend to reverse
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the initial changes in yields. As a matter of fact, however, the risk exposure of

arbitrageurs has increased since the reshuffling of their portfolios implies that they

hold a larger amount of longer-term bonds. This leads to a higher market price of

risk and thus to an increase in risk premia at all maturities. The increase in risk

premia, in turn, reduces prices and raises yields. Since the sensitivity of bonds to

short-rate risk is higher for longer maturities, the increase in premia is stronger

for longer-term bonds. Thus, the rise in yields is more pronounced for longer

maturities and term spreads between τ -year bonds and short-term bonds widen.

The solid gray line in Figure 3.1 represents the new equilibrium yield curve after

a shock to the relative supply of longer-term debt.

Hypothesis 2: Changes in Risk Aversion

When arbitrageurs are more risk averse, the effect of longer-term debt supply on

spreads is stronger for all τ .

Suppose that the risk aversion of arbitrageurs changes. It is a central comparative

static result of the model that the response of the term spread to an increase in

the relative supply of debt is stronger when a is high. The idea behind this

result can be explained as follows. In the extreme case where arbitrageurs are

risk neutral, i.e. a = 0, the market price of risk would be zero. Local effects of

supply changes would be completely offset by arbitrageurs so that yields would

remain unchanged. In fact, bond yields are fully determined by expectations

of arbitrageurs on future short-rate developments. In the other extreme case,

where arbitrageurs are infinitely risk averse, i.e. a→ ∞, risk premia would go to

infinity and arbitrageurs would not participate in the market at all. Instead, bond

markets would be completely segmented and yields would be fully determined by

local demand and supply. For all intermediate cases, the rise in risk premia caused

by an increase in the average maturity of arbitrageurs’ portfolios, is stronger when

risk aversion is high. This is because both components of the premium in (3.3),

that is, the sensitivity of bonds to risk and the market price of risk, are increasing

in a. A comparison of Figure 3.1 to a situation of higher risk aversion in Figure 3.2
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illustrates this mechanism. The steepening of the yield curve is more pronounced

when risk aversion is high.

Figure 3.2: Reaction of Yields to Supply Shocks Under High Risk Aversion

Yield 

Maturity 

preferred-habitat investors (local demand effect)  

trading with arbitrageurs (risk premium effect) 

term spreads widen more = yield curve becomes even steeper 

 

 

Notes: This figure shows a state where risk aversion of arbitrageurs is high. The solid black line represents

the yield curve at some arbitrary day. In absence of arbitrageurs, as a response to a shock to relative

supply of longer-term debt, local preferred-habitat demand causes shorter-term yields to decrease and

longer-term yields to increase, i.e. the yield curve rotates. The new yield curve is given by the dashed

black line. Arbitrageurs react to the rotation by buying long-term bonds and selling short-term bonds.

Thereby, due to the high risk aversion, the risk premium increases considerably. Because of the higher

premium, trading across maturities raises shorter-term yields well above the solid black line and pushes

longer-term yields only slightly below the dashed black line. The new yield curve, given by the solid gray

line, is the result of an upward shift and a counter-clockwise rotation.
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3.3 Econometric Methodology

3.3.1 The Static Regression

To estimate the effect of relative supply of longer-term debt on yield spreads,

Greenwood and Vayanos (2012) propose the following regression:

s
(τ)
t = β0 + β1Dt + ut . (3.4)

Here, s(τ)t denotes the spread between a τ -year bond and the short-rate and Dt

refers to the value of longer-term debt supply relative to the total value of debt.2

The regression in (3.4) is considered the natural starting point. Since the theo-

retical model also assumes exogeneity of debt supply, we adopt this assumption

throughout the empirical analysis. However, the approach in (3.4) is extended in

two respects. Firstly, in order to ensure sound inference, we propose a dynamic

regression. Secondly, to capture changes in risk aversion, we allow the response

of s(τ)t to Dt to be state-dependent and do not impose the restriction that β1 is

constant.

3.3.2 Introducing Dynamics

The dynamic version of (3.4), including lagged values of both variables, only

constitutes the straightforward transformation if autocorrelation is present in ut.

In that case, inference in a static regression can be severely biased and produce

spurious results. Note that it is very likely for the ut’s to be serially correlated

since yields spreads and relative debt supply represent two highly persistent time

series.3 The corresponding extension of (3.4) is given by

s
(τ)
t = β0 + β1Dt + ψ(L)Dt−1 + φ(L)s

(τ)
t−1 + ǫt . (3.5)

In (3.5), ψ(L) = ψ0+ψ1L+ψ2L
2+...+ψr−1L

r−1 and φ(L) = φ0+φ1L+φ2L
2+...+

φp−1L
p−1 represent polynomials in the lag operator L. In practice, lag orders p

2The measuring of Dt is discussed in detail in the next section.
3Appendix 3.B discusses the borderline case of extreme persistence.
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and r are chosen so that residuals are white noise and standard inference can be

applied. Note that the overall impact of Dt on s(τ)t in the ADL model is given by

[β1 + ψ(1)] · [1− φ(1)]−1.

3.3.3 How To Proxy Risk Aversion

The specification in (3.5) rules out any state-dependency of the impact of relative

longer-term debt supply on the spread. Therefore, we drop the restriction that

β1 is constant and allow the coefficient to depend on risk aversion.

According to the literature on time-varying risk preferences (e.g. Campbell and

Cochrane 1999, Rosenberg and Engle 2002 or Gordon and St-Amour 2004), risk

aversion is supposed to be high (low) in precisely those periods when marginal

utility is also high (low). This counter-cyclical property of risk aversion is also

reflected in market volatility. In bad times, we usually observe higher volatility

than in good times. Mele (2007) and Aydemir (2008) support this connection,

stating that time-varying risk aversion is the major driving force behind counter-

cyclical volatility.

We follow this literature and consider volatility as a reasonable choice to proxy risk

aversion. This leaves us with the question of a meaningful measure of bond market

volatility. To approach this problem, we examine the variability of shocks to the

slope of the yield curve, i.e. to the spread s
(τ)
t . The slope represents a central

summary statistic of the bond market and the shocks to it can be approximated

directly from the data that is being researched here by taking the first differences

of s(τ)t .

In order to provide a rough idea of the current state of risk aversion, we consider

the rolling standard deviation of ∆s(τ)t over some period, say σ̂roll
t over one quarter.

If a state-dependent relation between s(τ)t and Dt actually exists, it is natural to

analyze a linear dependency as a first approximation. Figure 3.3 shows two scatter

plots. The first one plots s(5)t against Dt, whereas the second one plots s(5)t against
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σ̂roll
t · Dt, the relative supply of longer-term debt adjusted by risk aversion.4 It

is difficult to determine whether there is any relation by only looking at the first

plot. The observation pairs in the second plot, however, clearly indicate that

time-varying risk aversion may reveal a significantly positive relation and thus

represents a decisive element in the analysis of the preferred-habitat theory.

Figure 3.3: The Term Spread Against Unadjusted and Adjusted Relative Supply of

Longer-Term Bonds
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Notes: The first picture shows a plot of s
(5)
t against Dt whereas a plot of s

(5)
t against σ̂roll

t ·Dt is shown

in the second picture. σ̂roll
t refers to the rolling standard deviation of changes in the term spread with

a window of one quarter. Relative supply of longer-term debt is denoted by Dt, measuring the value of

debt that has to be paid in 5 years hence or later relative to the total value of debt.

Because of the intention to conduct a thorough, empirical investigation, we ap-

ply a more sophisticated measure than the rolling standard deviation, i.e. the

GARCH variance. A GARCH still represents a fairly simple candidate to esti-

mate time t volatility and can be integrated into a tractable time-varying coef-

4We choose s
(5)
t arbitrarily as a representative example. Since we later analyze several different

yield spreads, it is noted that any of them generates almost the same scatter plots as in Figure

3.3.
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ficient framework. Building on the dynamic regression in (3.5), we propose the

following ADL-GARCH-M model5:

s
(τ)
t = β0 + β1tDt + ψ(L)Dt−1 + φ(L)s

(τ)
t−1 + ǫt (3.6a)

β1t = b0 + b1ht|t−1 (3.6b)

h2t|t−1 = σ2(1− δ − γ) + δǫ2t−1 + γh2t−1|t−2 . (3.6c)

This approach constitutes a simplified version of the model in Demos (2002),

who generalizes the GARCH-M framework of Engle et al. (1987) to the case of

stochastic volatility and time-varying coefficients. In (3.6a) to (3.6c), volatility is

non-stochastic which eliminates identification issues and drastically alleviates esti-

mation. The model is flexible enough, however, to serve our purpose, i.e. allowing

for state-dependent effects. Moreover, in empirical applications, the parsimonious

GARCH(1,1) has often been sufficient to control for conditional heteroskedastic-

ity. The use of the standard deviation in (3.6b) has some dampening effect on

extreme volatility spikes. We maximize the likelihood function under the assump-

tion of normally distributed shocks. Since the normality assumption is often too

restrictive for financial time series data, we rely on quasi-maximum likelihood and

obtain robust standard errors as in Bollerslev and Wooldridge (1992).

We use (3.6a) to (3.6c) to test Hypotheses 1 and 2 as follows. We run a series

of regressions for several s(τ)t . Hypothesis 1 is tested by checking whether β1t is

positive and increasing in τ for all t. Hypothesis 2 would be supported if β1t > 0

for all t and b1 > 0 since this would reflect that the impact of Dt increases in risk

aversion. Finally, we note that compared to (3.4), where the overall impact of Dt

on s(τ)t is measured by β1, the analogue of the total effect in the ADL-GARCH-M

model is given by [β1t + ψ(1)] · [1− φ(1)]−1.

5In principle, this model can be generalized such that the coefficients of lagged values ofDt in the

polynomial ψ(L) are also allowed to vary over time. The specification in (3.6a)–(3.6c), however,

already implies the long-run effect, given by [β1t + ψ(1)] · [1 − φ(1)]−1, to be time-varying.

Moreover, in the empirical application below, lagged values of Dt are found insignificant.
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3.4 Data: Yield Spreads and the Maturity Structure

of Debt

Since the end of 1997 the Deutsche Bundesbank publishes daily observations

of constant maturity yield series. The main empirical analysis below starts at

1/1/1998 and ends at 31/12/2007. We initially cut off data from 2008 onwards to

put the focus primarily on the years before the financial crisis. This allows for a

meaningful comparison of our results to those of Greenwood and Vayanos (2012),

where the crisis is also excluded.6

Throughout the remainder of the paper, we will refer to the 6-month rate, the

shortest rate available from the Bundesbank data bank, as the short-rate. To

provide an overview of the effects of relative supply of longer-term debt on spreads

along the maturity spectrum, we consider several maturities of longer-term rates,

namely τ = 3, 4, 5, 7 and 10 years. Term spreads are then calculated as the

difference between the longer-term rates and the short-rate and are denoted by

s
(3)
t , s(4)t , s(5)t , s(7)t and s

(10)
t . Table 3.1 provides some descriptive statistics. On

average, spreads are positive and are increasing and more volatile for larger τ .

The issuance of German bonds is executed by the Finanzagentur GmbH. The

bonds can be classified in those listed at the stock exchange and those not listed.

Since the yield data is based only on traded debt, we ensure consistency by also

using solely listed bonds to measure debt supply.7 The bonds include Federal

Treasury notes (maturities ranging from 6 months to 2 years), Five-year Federal

notes (maturity of 5 years) and Federal bonds (predominately with a maturity of

10 years, but also with 30 years). Traded debt should still provide a reasonably

precise indication of the maturity structure of total German government debt,

since from 1998 onwards the fraction of non-traded debt out of total debt de-

creased quickly and steadily from about 10% to less than 2% (see column 3 of

6The extreme increase in interest rate spreads in the course of the financial crisis requires certain

adjustment of our model. Results from the extended sample ending at 31/12/2012 are presented

and discussed in detail in Appendix 3.A.
7Non-traded debt includes Federal Treasury financing paper and Federal savings notes of type

A and B. These bonds have maturities similar to listed bonds.
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Table 3.2). Over the historical course of debt accumulation, a continuous ma-

turity spectrum of bonds became available at any given point in time. This is

particularly true for maturities up to 10 years.

Table 3.1: Spreads and Debt - Descriptive Statistics

mean σ̂ min max

spreads

s
(3)
t 0.457 0.371 −0.350 1.410

s
(4)
t 0.623 0.449 −0.330 1.700

s
(5)
t 0.770 0.512 −0.270 1.900

s
(7)
t 0.971 0.588 −0.150 2.120

s
(10)
t 1.288 0.707 −0.020 2.530

debt

Dt 45.351 2.328 36.761 51.589

Notes: This table reports descriptive statistics of the

term spreads and the relative supply of longer-term debt.

All statistics are measured in percent and calculated

from daily observations over the sample 1/1/1998 to

31/12/2007.

Following Greenwood and Vayanos (2012), relative supply of longer-term debt is

defined as debt that is to be paid within a certain period in the future divided

by the total value of debt. Total debt at t refers to the sum of all principals

and coupon payments due until the very last bond is matured. The average

maturity of German debt is found to be around 5 years throughout the whole

sample period (see Table 3.2). Therefore, we set relative supply of longer-term

debt as equal to the fraction that is to be paid in 5 years hence and label it by

Dt.8 Correspondingly, any payments to be made within the coming 5 years are

interpreted as shorter-term debt.

8Greenwood and Vayanos (2012) define Dt as the fraction of debt that is to be paid in 10 years

hence. Particularly in more recent times, however, they also report longer average maturities

for US debt of around 7 years.
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A time series of Dt is not readily available. Therefore, this paper generates a new

data set of relative debt supply. The data required to construct the debt variable

are obtained from Bloomberg. According to information directly provided by

the Finanzagentur GmbH, the amount of traded debt more than doubled from

e 438.2 billion on 12/31/1998 to e 909.22 billion on 12/31/2007. This matches

closely with the data available from Bloomberg, allowing to trace back, on average,

99% of traded debt.

Table 3.2: The Maturity Structure of German Government Debt

end of
the year

total
debt

traded debt
total debt

# of
bonds τ̄ percentage of debt due within τ years

1 3 5 7 10 30

1998 478.9 89.8 76 4.6 13.2 37.5 56.7 66.7 84.1 100

1999 708.3 93.9 72 4.6 15.1 36.9 56.7 66.7 83.2 100

2000 715.6 94.7 67 4.9 12.2 32.6 48.4 64.5 78.5 100

2001 697.3 96.0 62 4.7 14.6 34.6 52.3 60.3 82.3 100

2002 719.4 97.3 60 4.7 15.5 36.3 53.6 63.5 84.6 100

2003 760.4 98.2 58 4.7 14.5 35.0 53.0 67.0 80.7 100

2004 803.0 98.5 55 4.8 15.7 37.3 55.6 64.1 82.2 100

2005 872.6 98.6 54 4.6 15.7 37.9 54.7 66.3 80.0 100

2006 902.0 98.5 53 4.6 16.4 39.6 56.3 65.7 81.4 100

2007 922.0 98.6 54 4.7 17.2 39.2 56.4 66.9 80.1 100

Notes: This table reports descriptive statistics of the maturity structure of German govern-

ment debt. Total debt equals the value of all outstanding bonds, i.e. the sum of listed and

non-listed bonds. Debt is measured in e billion. τ̄ refers to the average maturity of debt

measured in years. Column 2 and 3 are based on data directly provided by the Finanzagentur

GmbH. The rest of the statistics is based on data obtained from Bloomberg.



The Preferred-Habitat Theory and Time-Varying Risk Aversion 71

The debt variable is generated as follows. For any bond, we observe the out-

standing amount denoted in euro, the issue date, the number of days left until

maturity, the principal, the coupon and the coupon frequency. This information

allows us to track each bonds’ payment flow over its lifetime, i.e. coupon and

principal payments. As can be observed in the last row of Table 3.1, longer-term

debt roughly varies between a good third and one half, and averages about 45%

with a standard deviation of 2.3 percentage points. Both relative debt supply and

the term spreads are shown in Figure 3.4.

Figure 3.4: Interest Rate Spreads and Relative Supply of Longer-Term Bonds
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3.5 Empirical Results

3.5.1 Static Regressions

We begin the empirical analysis by running the static regression given in (3.4) by

OLS. According to Hypothesis 1, the slope coefficient β1 of this regression should

be positive and increasing in τ . Our regression results for the German data can be



The Preferred-Habitat Theory and Time-Varying Risk Aversion 72

Table 3.3: Spreads and Debt - Static Regressions

sτt = β0 + β1Dt + ut

Greenwood and
Vayanos (2012)

s
(τ)
t β̂1 R2 DW β̂1 R2

s
(3)
t 0.003 0.4 · 10−3 0.012 0.025∗∗∗ 0.055

[1.093] [2.564]

s
(4)
t 0.011∗∗∗ 0.003 0.010 0.034∗∗∗ 0.062

[2.809] [2.742]

s
(5)
t 0.016∗∗∗ 0.005 0.008 0.040∗∗∗ 0.065

[3.742] [2.799]

s
(7)
t 0.021∗∗∗ 0.007 0.006 −− −−

[4.265]

s
(10)
t 0.030∗∗∗ 0.009 0.005 0.077∗∗∗† 0.097

[4.913] [3.677]

Notes: This table reports results from static regressions. Columns

2 – 4 refer to the results obtained from daily German data over

the period 1/1/1998 – 12/31/2007. The numbers is brackets denote

t-values and DW refers to the Durbin-Watson statistic. The last

two columns show the results reported in Greenwood and Vayanos

(2012) which are based on monthly US data over the sample June

1952 – December 2005 and robust standard errors following Newey-

West (1987). Estimates for s
(7)
t and s

(10)
t are not provided and the

value indicated by † stems from a regression with s
(20)
t . ∗∗∗ denotes

significance at the 1% level.

found in Table 3.3 together with the results reported by Greenwood and Vayanos

(2012), which they obtained from US data in the same specification.

The first major result is that our estimates are positive and increasing in τ .

Moreover, apart from the case of s(3)t , the t-values in brackets document that the

coefficients are highly significant. Therefore, the static model appears to provide
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strong evidence in favor of Hypothesis 1, i.e. term spreads widen when the relative

supply of longer-term debt increases. Compared to the results for the US data

in the last two columns of Table 3.3, our point estimates are consistently lower

but still of similar magnitude. The R2’s are considerably higher in the US case.

At least in part, however, this could be attributed to the lower (monthly) data

frequency.

In fact, the extremely low R2’s of our regressions indicate that almost no variation

of the spreads is explained by the relative supply of longer-term debt. Moreover,

the Durbin-Watson (DW) statistics in column 4 of Table 3.3 are startling. In

all regressions the DW statistics are close to zero, which means that very high

first order autocorrelation is present in the residuals. This raises serious concerns

about whether the inference in model (3.4) is sound.

3.5.2 Dynamic Regressions and State-Dependent Coefficients

We continue the empirical analysis in two steps. In order to control for the

strong autocorrelation present in the static regressions, we estimate the dynamic

model (3.5), with two lags of the dependent variable.9 Thereafter, we estimate

the ADL-GARCH-M model (3.6) to test for state-dependent effects. Results are

summarized in Table 3.4.

A comparison between columns 2 in Tables 3.3 and 3.4 shows that, once the

serial correlation is taken into account, t-values decrease considerably. In fact,

the relation between debt supply and spreads vanishes in the dynamic model. At

the 5% level, none of the estimated coefficients is significant anymore. Hence, the

static regression results were spurious. The Lagrange multiplier statistics LM(10)

and corresponding p-values in column 3 indicate that there is no autocorrelation

up to order 10.10 This suggests that the inference in the dynamic model is sound.

9The choice to include two lags is based on residual autocorrelation tests. Lags of the indepen-

dent variable were also considered but found insignificant.
10Since the DW statistic tests only for first order autocorrelation and is also biased toward 2

when a lagged dependent variable is included in the regression, we conduct LM tests instead.
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Table 3.4: Spreads and Debt - Dynamic Regressions and State-Dependent Coefficients

dynamic regression with dynamic regression with

constant coefficients state-dependent coefficients

s
(τ)
t = β0 + β1Dt s

(τ)
t = β0 + β1tDt + φ1s

(τ)
t−1 + φ2s

(τ)
t−2 + ǫt

+φ1s
(τ)
t−1 + φ2s

(τ)
t−2 + ǫt β1t = b0 + b1ht|t−1

h2t|t−1 = σ2(1− δ − γ) + δǫ2t−1 + γh2t−1|t−2

total effect

β̂1t · (1− φ̂1 − φ̂2)
−1

if risk aversion is

s
(τ)
t β̂1 LM(10) b̂1 R2

static low mean high impact of
σ̂-change

in Dt

s
(3)
t 0.5 · 10−3 1.508 0.007∗∗∗ 0.103 0.021 0.034 0.060 5 bp

[1.474] (0.130) [3.080] 14 bp

s
(4)
t 0.6 · 10−3 1.340 0.008∗∗∗ 0.200 0.026 0.043 0.078 6 bp

[1.652] (0.203) [3.598] 18 bp

s
(5)
t 0.7 · 10−3 1.287 0.008∗∗∗ 0.258 0.033 0.052 0.099 8 bp

[1.755] (0.232) [3.310] 22 bp

s
(7)
t 0.7 · 10−3 0.841 0.008∗∗∗ 0.333 0.042 0.066 0.126 10 bp

[1.830] (0.589) [2.982] 29 bp

s
(10)
t 0.8 · 10−3 0.577 0.007∗∗∗ 0.412 0.049 0.080 0.141 11 bp

[1.801] (0.834) [2.727] 33 bp

Notes: This table reports results from dynamic regressions with constant coefficients

(columns 2 and 3) and state-dependent coefficients (columns 4 – 9). Numbers in brack-

ets show t-values based on robust standard errors from Bollerslev and Wooldridge (1992).
∗∗∗ and ∗∗ indicate significance at the 1% and 5% level. LM(10) denotes the F -statistic of a

Lagrange multiplier test for autocorrelation up to order 10. The corresponding p-values are

given in parentheses. R2
static refers to the R2 from a static regression with state-dependent

coefficients and reflects the explained variation that is not simply due to the inclusion of

lags. Columns 6 – 8 document the total effect of Dt on s
(τ)
t , depending on the state of risk

aversion. The last column presents the total impact under low and high risk aversion of a

one standard deviation shock in Dt on s
(τ)
t , measured in basis points (bp).
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We now turn to the estimates obtained from the ADL-GARCH-M model shown

in columns 4 – 9 of Table 3.4.11 Most strikingly, the coefficient b1, that governs

the state-dependency in the relation between s
(τ)
t and Dt, is positive and highly

significant, which is in line with Hypothesis 2. That is, the time-varying coefficient

specification reveals that there actually is a relation after all, which would have

remained undiscovered in the constant coefficient model.12

In order to allow for a comparison of our results to those from the US data,

we calculate the total effect of a change in debt supply on spreads. While the

overall impact in the static model is simply given by the slope coefficient β1,

in the dynamic model the response accumulates due to the lags. Hence, in the

ADL-GARCH-M specifications the total effect is given by β̂1t · (1 − φ̂1 − φ̂2)
−1.

Since β̂1t depends on ht|t−1, columns 6 – 8 of Table 3.4 report the values of β̂1t for

the minimum, mean and maximum value of the conditional standard deviation.

First, we compare column 7 of Table 3.4 with column 5 of Table 3.3. Under the

mean level of risk aversion, we find a total effect that is almost the same as the

one for the US. Moreover, the fact that the values are increasing from 0.034 to

0.080 not only supports Hypothesis 1 but also Hypothesis 2. The results under

low and high risk aversion highlight the relevance of the state-dependency. In

times of high risk aversion, the response of the term spread to changes in debt

supply is up to 3 times as high as in times of low risk aversion.

As to the explained variation, we consider the statistic R2
static reported in Table

3.4. In order to allow for a meaningful comparison of the R2’s in our ADL-

GARCH-M regressions with the R2’s from the US data, we excluded the lagged

values. This is because all R2’s in the dynamic specification are almost 1 due to

the autoregressive components. Therefore, the statistic R2
static refers to a static

regression with a state-dependent slope coefficient. The values are fairly large,

11As in the dynamic regression with constant coefficients, including two lags is based on resid-

ual autocorrelation tests. Lags of the independent variable were also considered but found

insignificant. Autocorrelation and heteroskedasticity specification tests as well as additional

estimation results can be found in Appendix 3.C.
12The constant term b0 was found to be insignificant without exception. This is in line with the

result that β1 is not significant in the constant coefficient ADL model. If there were constant

effects, one would expect to see them also in the standard ADL specification.
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ranging from about 10% to more than 40%. Accordingly, relative supply of longer

term debt - if adjusted by risk aversion - has substantial explanatory power for

term spreads.

The last column of Table 3.4 illustrates the economic relevance of the parameter

estimates. We calculated the long-run reaction of s(τ)t to a one standard deviation

shock in Dt. Since the standard deviation of Dt is about 2.3 percentage points,

such a shock would roughly equal a shift of e 21 billion of debt from shorter to

longer maturities. The exact widening of the term spread would depend on τ and

the level of risk aversion. From the shorter end to the middle of the maturity

spectrum, we see a reaction between 5 and 22 basis points (bp). At the longer

end, we observe an impact between 10 and 33 bp.

3.6 Conclusion

Building on Modigliani and Sutch (1966), recent approaches in the term structure

literature elaborate on the role of preferred-habitat investors (Vayanos and Vila

2009, Greenwood and Vayanos 2010, Greenwood and Vayanos 2012, Guibaud et

al. 2013). Bond prices are understood to be determined by the supply of bonds

through the government and by the demand for bonds through preferred-habitat

investors and arbitrageurs. The models predict that an increase in the relative

supply of longer-term debt should drive up interest rate spreads. Preferred-habitat

effects are, however, supposed to be more pronounced when risk aversion of arbi-

trageurs is high and their participation in the bond market is limited.

This paper argues that the degree of risk aversion is central to the empirical

analysis of the preferred-habitat theory. We propose an econometric framework

that is flexible enough to account for changing risk aversion by allowing for state-

dependent coefficients. Moreover, our methodology takes the strong autocor-

relation, present in term spreads and debt supply, into account. Formally, we

introduce an ADL-GARCH-M where the conditional standard deviation proxies

the degree of risk aversion and governs the state-dependency of the coefficients in



The Preferred-Habitat Theory and Time-Varying Risk Aversion 77

the mean equation. We apply the model to a new data set of daily observations

of relative supply of longer-term debt in Germany.

Our results suggests that there is a significantly positive relation between yield

spreads and the relative supply of longer-term debt, which crucially depends on

the state of risk aversion. In line with the model predictions, the impact of debt

supply on term spreads is stronger for larger differences in maturities between

long-term and short-term rates. For all analyzed spreads it holds that the reaction

to changes in debt supply is approximately three times larger in times of high

risk aversion than in those of low risk aversion. The responses of spreads to

a one standard deviation increase in debt supply varies between 5 and 33 basis

points. Moreover, a static regression with constant coefficients would substantially

underestimate the effect of debt supply on the term spread.

Due to the decisive role of risk aversion that we document empirically, our results

suggest that explicit theoretical modeling of time-varying preference parameters

may provide valuable new insights into the role that is played by preferred-habitat

investors in bond markets. The policy implication of preferred-habitat models is

that a change in the maturity structure of government debt alters bond yields. On

the basis of German bond data, this paper supports that view. There is, however,

a crucial reservation: the effect may only be of sufficient economic relevance in

relatively turbulent times characterized by high volatility and high risk aversion.

Hence, bond purchasing programs as the Outright Monetary Transactions of the

European Central Bank should be most effective in crisis times.
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3.A Results from the Extended Sample

Figure 3.5: Yield Spreads and Relative Supply of Longer-Term Bonds
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During the ongoing financial crisis, bond yields show extraordinary developments,

especially at the short end of the maturity spectrum. This makes the recent

sample period particularly interesting to examine. At the same time, however,

the econometric methodology may require some adjustment towards this new

regime. In the present case, we modify our framework in two respects. Firstly, we

include a shift dummy, β̃0d, in our ADL-GARCH-M regressions that allows for a

structural break in the constant term at the Lehman crash. Secondly, due to the

extraordinary movements associated with flight-to-safety effects at the very short

end of the yield curve during the end of 2008, we use the 1-year yield as short-rate

over the extended sample period. When we simply ignore the enormous shift in

spreads being clearly visible in Figure 3.5, our results from Section 3.5.2 do not

hold.
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Figure 3.6: 10-Year Yield – 6-Month Yield
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In order to visualize the structural break more clearly, Figure 3.6 shows only

s
(10)
t as a representative example. Comparing the empirical means before and

after September 2008, we observe an increase from about 1.25% to 2.25%. We

take this structural change into account by modeling it as structural break in

the unconditional mean. To recognize the difference between the 6-month yield,

which was considered as the short-rate in the main empirical analysis, and the 1-

year yield, see Figure 3.7. Compared to the other yields, the 6-month rate drops

drastically from a level that exceeds the ones of longer-term yields before the

Lehman crash, to a remarkably low level with a trough at 1.5%. This suggests

that movements at the very short end of the yield curve are largely driven by

extreme events, such as extensive usage of German short-term bonds as a safe

haven for banks to temporarily place funds. The 1-year yield already shows a

pattern that seems much more closely linked to longer-term bonds. Therefore, we

replaced the 6-month rate by the 1-year rate over the extended sample period.
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Figure 3.7: Bond Yields After the Lehman Crash 2008
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Results in the extended sample are given in Table 3.5. As in the shorter sample

period, we find b̂1 to be positive, significant and increasing in τ . Furthermore,

in view of columns 4 and 6, the minimum and maximum values of β1t show that

β1t is positive for all t. Therefore, the results provide supportive evidence for

Hypotheses 1 and 2. Compared to the shorter sample period, the variation in β1t

due to changing risk aversion has increased. This reflects the strong increase in

our risk aversion proxy during the crisis.
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Table 3.5: Spreads and Debt - Dynamic Regressions and State-Dependent Coefficients

1/1/1998 – 12/31/2012

dynamic regression with

state-dependent coefficients

s
(τ)
t = β0 + β1tDt + φ1s

(τ)
t−1 + φ2s

(τ)
t−2 + β̃0d+ ǫt

β1t = b0 + b1ht|t−1

h2t|t−1 = σ2(1− δ − γ) + δǫ2t−1 + γh2t−1|t−2

total effect

β̂1t · (1− φ̂1 − φ̂2)
−1

if risk aversion is

s
(τ)
t b̂1 R2

static low mean high impact of
σ̂-change

in Dt

s
(3)
t 0.003∗∗∗ 0.030 0.015 0.032 0.089 4 bp

[2.679] 22 bp

s
(4)
t 0.004∗∗∗ 0.080 0.029 0.047 0.123 7 bp

[3.318] 31 bp

s
(5)
t 0.005∗∗∗ 0.133 0.034 0.058 0.145 9 bp

[3.394] 37 bp

s
(7)
t 0.005∗∗∗ 0.237 0.044 0.074 0.173 11 bp

[3.190] 44 bp

s
(10)
t 0.005∗∗∗ 0.337 0.051 0.085 0.182 13 bp

[3.001] 46 bp

Notes: This table reports results from dynamic regressions with

state-dependent coefficients. Numbers in brackets show t-values

based on robust standard errors from Bollerslev and Wooldridge

(1992). ∗∗∗ and ∗∗ indicate significance at the 1% and 5% level.

R2
static refers to the R2 from a static regression with state-dependent

coefficients. Columns 4 – 6 document the total effect of Dt on s
(τ)
t ,

depending on the state of risk aversion. The last column presents

the total impact under low and high risk aversion of a one standard

deviation shock in Dt on s
(τ)
t , measured in basis points (bp).
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3.B Results for the Limiting Case: Non-Stationarity

of Term Spreads and Debt Supply

As a further robustness check, we consider the extreme case of a unit root in term

spreads and also in the relative supply of longer-term debt. Even though both

variables are clearly bounded from an economic point of view, and hence should be

stationary, I(1) processes may empirically provide the best approximation of the

data generating process. Whether this is the case, however, often remains unclear.

The outcome of unit root tests can, among other things, depend crucially on the

null hypothesis specified by the researcher.

We apply two tests: the GLS-ADF test of Elliott et al. (1996) with the null of

a unit root and the KPSS test of Kwiatkowski et al. (1992) with the null of a

stationary process, see Table 3.6. In the extended sample we use the test of Zivot

and Andrews (1992) (ZA) instead of the GLS-ADF test. The ZA test allows for

an endogenous structural break in the unconditional mean, which is motivated

by Figures 3.5 and 3.6. It should be noted that the ZA test finds the break at

the Lehman crash, just as we have specified in our ADL-GARCH-M regressions

in Appendix 3.A.

As can be seen from Table 3.6, regardless of the sample, both tests fail to reject the

null – non-stationarity or stationarity – at any conventional level. If we followed

the GLS-ADF and ZV test results, we would conclude that all variables contain

a stochastic trend. In that case, the following equations would represent a more

convenient representation of the ADL-GARCH-M model.

∆s
(τ)
t = α(c+ s

(τ)
t−1 + β1tDt−1) + ω(L)∆Dt + κ(L)∆s

(τ)
t−1 + ǫt (3.7a)

βt = b0 + b1ht|t−1 (3.7b)

h2t|t−1 = σ2(1− δ − γ) + δǫ2t−1 + γh2t−1|t−2 . (3.7c)
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Table 3.6: Spreads and Debt - Unit Root Tests

1/1/1998 – 12/31/2007 1/1/1998 – 12/31/2012

GLS-ADF KPSS ZA KPSS

spreads

s
(3)
t −1.469 0.172 −3.762 0.200

s
(4)
t −1.184 0.184 −3.631 0.218

s
(5)
t −0.986 0.199 −3.687 0.233

s
(7)
t −0.761 0.239 −3.638 0.242

s
(10)
t −0.587 0.312 −3.700 0.244

debt

Dt −0.646 0.195 −0.866 0.377

Notes: This table reports unit test results of the GLS-ADF test (Elliott

et al. 1996), the KPSS test (Kwiatkowski et al. 1992) and the ZA test

(Zivot and Andrews 1992). To the variable Dt the GLS-ADF test is

applied in both samples. ∗∗∗ and ∗∗ indicate rejection at the 1% and

5% level.

The framework in (3.7a) – (3.7c) constitutes an error correction model with a

time-varying cointegrating vector. Accordingly, the parameter β1t now has a

different interpretation than in the ADL model, i.e. it represents the total effect.

The test statistic for a cointegration relation is given by the t-value of α. It is

not immediately clear, however, which critical values should be applied. Banerjee

et al. (1998) provide critical values for single equation error correction models

with a constant cointegrating vector. For the present model, where we have time-

varying coefficients, a simulation experiment showed that the critical values of

Banerjee et al. (1998) are also valid. The following steps indicate the design of

our simulation.
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Step 1. Draw two random samples of size N = 2539 (equal to the number of ob-

servations in the present analysis) from a standard normal distribution.

Denote these shocks by ξs, t and ξd, t.

Step 2. Generate data under the null of no cointegration. The term spread s(τ)t

follows an integrated autoregressive process of order 2 with GARCH(1,1)

errors driven by ht|t−1 ξs, t. The relative supply of longer-term debt Dt

follows an integrated autoregressive process of order 2 driven by ξd, t.

Set the parameters equal to those obtained from estimating the model

under the null.

Step 3. Estimate model (3.7a) – (3.7c) via ML (BHHH algorithm) using the ge-

nerated series of spread and debt supply. Save the t-value of α̂ based on

robust standard errors following Bollerslev and Wooldridge (1992).

Step 4. Repeat Step 1 to Step 3 25,000 times.

Step 5. Calculate the 5.00 and 10.00 percentiles from the distribution of the

t-value of α̂.

For s(3)t , s(4)t , s(5)t , s(7)t and s
(10)
t , the point estimates of the long-run multiplier

remain unchanged. The t-values of the α’s are −3.385, −3.617, −3.406, −3.095

and −2.732. These values can be compared to the critical valules in Banerjee et

al. (1998). The 10% and 5% quantiles are given by −2.89 and −3.19. Hence, apart

from s
(10)
t , the results even survive the I(1) case, at least at the 10% significance

level. We conclude that a significant state-dependent relation in levels between

term spreads and the relative supply of longer-term debt exists. Whether this

is a cointegration relation or a relation between two stationary variables is not

the pivotal question since neither the interpretation of the estimates nor the test

decisions in the inference hinge on that distinction.
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Table 3.7: State-Dependent Coefficients: Estimation Results and Specification Tests

dynamic regression with state-dependent coefficients

s
(τ)
t = β0 + β1tDt + φ1s

(τ)
t−1 + φ2s

(τ)
t−2 + ǫt

β1t = b0 + b1ht|t−1

h2
t|t−1 = σ2(1− δ − γ) + δǫ2t−1 + γh2

t−1|t−2

s
(τ)
t β̂0 b̂1 φ̂1 φ̂2 δ̂ γ̂ Q(5) Q(10) LM(5) LM(10)

s
(3)
t −0.009 0.007 0.824 0.168 0.053 0.933 4.072 14.485 1.242 1.224

[−2.581] [3.080] [39.007] [7.954] [5.333] [74.913] (0.539) (0.152) (0.286) (0.270)

s
(4)
t −0.010 0.008 0.824 0.167 0.055 0.933 2.026 11.980 1.038 0.973

[−2.933] [3.598] [40.045] [8.119] [5.883] [83.130] (0.846) (0.286) (0.393) (0.464)

s
(5)
t −0.011 0.008 0.813 0.179 0.052 0.935 1.002 9.086 1.154 0.727

[−2.759] [3.310] [40.893] [9.087] [6.998] [105.878] (0.962) (0.524) (0.329) (0.706)

s
(7)
t −0.012 0.008 0.808 0.186 0.042 0.947 1.040 5.472 1.1115 0.646

[−2.805] [2.982] [38.715] [8.894] [5.750] [110.266] (0.956) (0.857) (0.350) (0.775)

s
(10)
t −0.012 0.007 0.804 0.190 0.027 0.967 1.271 3.706 0.782 0.553

[−2.570] [2.727] [38.181] [8.983] [5.623] [166.068] (0.938) (0.960) (0.563) (0.853)

Notes: This table reports estimation results and specification tests from dynamic regressions with state-dependent

coefficients over the sample 1/1/1998 to 12/31/2007. Numbers in brackets show t-values based on robust standard

errors following Bollerslev and Wooldridge (1992). The coefficient b0 was found insignificant and was set to zero in

order to gain efficiency. Q(5) and Q(10) represent Q-statistics for remaining autocorrelation in ǫt up to order 5 and

10 respectively. LM(5) and LM(10) denote F -statistics of Lagrange multiplier test for remaining GARCH effects

up to order 5 and 10 respectively. Corresponding p-values in both specification tests are given in parentheses.



4 The Signal of Volatility

4.1 Introduction

The present study examines the economic interpretation of volatility in financial

markets and proposes a new and flexible econometric approach. Firstly, we pin-

point two fundamental understandings of volatility that have emerged from the

financial literature during the last decades. On the one hand, the fact that prices

vary is interpreted as a sign of information flow. On the other hand, high vari-

ability is often seen as a mirror image of pronounced uncertainty in the market.

Both views suggest volatility-dependent stock market interaction, albeit in differ-

ent directions, and we aim at shedding light on the inherent ambivalence. In a

simple economic framework, we show that higher volatility in one market should

lead to higher (lower) reactions in another market if volatility reflects informa-

tion (uncertainty). To the best of our knowledge, these two views of volatility

have never been explicitly contrasted and empirically examined. Secondly, we

propose a strategy to infer the dominating signal of return variability from the

data: we analyze different reactions of investors to observed returns, depending

on the prevailing level of volatility. As our econometric framework, we introduce a

simultaneous time-varying coefficient model, where time variation is a function of

ARCH-type variances. The analysis is based on daily data of major stock indexes

from the Americas, Australia and the Asian region.

Let us first provide some background concerning the two signals of volatility

we put up for discussion and review some literature we see connected to our

86
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line of reasoning. From one point of view, volatility is often associated with

uncertainty or risk. Considering the global financial crisis for instance, future

market developments are highly uncertain. In the public discussion, the image of

labile and disoriented financial markets prevails. Intuitively, the extensive stock

market volatility is often interpreted as the reflection of this uncertainty. In the

present study this concept of volatility shall be summarized as the uncertainty

hypothesis.

Regarding the pricing of assets, it seems natural that investors expect to be com-

pensated for bearing uncertainty in their portfolios. In fact, in academia the

understanding of volatility as risk long plays an important role with a prominent

example given by the µ-σ-utility function and the CAPM. Originating from Engle

et al. (1987), financial econometricians translated this idea into the variance-in-

mean model (see also French et al. 1987, Bali and Engle 2010 and the references

therein). Another example for volatility proxying uncertainty is given by interac-

tions between output or inflation uncertainty and the conditional means of these

variables (e.g. Grier and Perry 2000). In a further strand of literature, numer-

ous studies analyze how uncertainty about exchange rate movements affects trade

volume and foreign direct investment, e.g. Cushman (1985), Chowdhury (1993)

and Kiyota and Urata (2004). For instance, volatility might negatively impact

the size of trade flows if exchange rate uncertainty renders trade less profitable

for risk averse agents.

On the other hand, we will refer to the view of volatility being a measure of

information flow intensity as the information hypothesis. Some representatives of

the literature who elaborate on the volatility-information link are Clark (1973),

Epps and Epps (1976), Ross (1989) and Fleming et al. (1998). Overall, the

idea is that no motivation for further trading would exist in a situation where all

prices have settled at their equilibrium values. Thus, volatility would be zero in

absence of relevant news. If, however, additional information becomes available,

price adjustments will generate fluctuations until a new equilibrium is reached.

Of course, in reality, shocks are too frequent to allow conventional asset prices

to ever settle at some constant consensus value, and perception and handling of

information both represent more complicated processes than assumed in stylized
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model economies. Nonetheless, the line of reasoning exemplifies how volatility is

connected to information arrival.

The information content of price movements is normally not observable. This is

likely to be one of the main reasons why information flow was associated with

volatility in the first place. By the same token, a strand of literature examined

trading volume as an observable variable that is at least partly driven by the

information arrival process; see Tauchen and Pitts (1983), Harris (1987), Lam-

oureux and Lastrapes (1990b), Foster and Viswanathan (1993, 1995), Gagnon

and Karolyi (2009). Certainly, volume cannot explain volatility, in the sense of

an exogenous variable. Instead, both are affected simultaneously by the latent

information process. Moreover, many trades are unlikely to be linked to informa-

tion arrival, such as in the cases of liquidity management (e.g. Andersen 1996),

strategic trading under asymmetric information (e.g. Kyle 1985) or differences

of opinions on the interpretation of signals (e.g. Kim and Verrecchia 1991). At-

tempts have been made to proxy information arrival directly by, for example,

central bank decisions, macroeconomic news or firm-specific announcements. For

studies of corresponding volatility effects, see e.g. Andersen and Bollerslev (1998),

Kalev et al. (2004) or Goeij and Marquering (2006). Nonetheless, even if impor-

tant insights into news effects could be gained, such direct observable measures

cannot represent more than a fraction of the universe of information arriving in

financial markets. Above all, they hardly capture private information, which is a

major factor behind volatility (French and Roll 1986).

Our distinct hypotheses serve to fix ideas concerning the character of volatil-

ity. Naturally, they are not mutually exclusive. Rather, exploring the "signal of

volatility" amounts to asking which effect predominates. In fact, this calls for a

mechanism connecting the latent variables information and uncertainty to a mea-

sure that is estimable from the data. In the present approach, we propose letting

the reaction of market participants decide the character of volatility instead of

leaving this task up to the econometrician. Specifically, we make use of the in-

tensity by which shocks feed into actual market prices, thereby connecting a high

intensity to high information content, as further explained below. However, given

a single observed time series, identifying the size of the shocks themselves (i.e.,
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volatility) and the size of their impact on the price separately, proves evidently

impossible.

We approach this problem by extending the information set to the multivariate

case. In particular, we examine the intensity of spillover between two different

markets. Logically, while shocks can be identified in the "source" market, trans-

mission intensity is measured in the "target" market. In case observed price

changes in the source market are interpreted as highly informative (uncertain)

signals by the target market, the latter will incorporate a relatively large (small)

fraction of the innovation into its own price. We illustrate this principle in a

stylized model economy, based on signal extraction by rational agents. Overall,

high volatility in the target market associated with high spillover intensity would

support the information hypothesis, while evidence for the uncertainty hypothesis

would follow from an inverse linkage.

Econometrically, we measure this nonlinear effect in a time-varying coefficient

model governed by the (autoregressive) conditional variance of the source market,

i.e., we utilize time variation in volatility to identify its impact on transmission

intensity. Such an empirical strategy has not yet been considered in the liter-

ature. Our concept does not aim at explaining the mere fact that markets are

interconnected, e.g. by trade, policy coordination or common shocks. Rather,

we exploit the existing interaction for estimating the spillover intensity and its

link to volatility. Furthermore, the a priori division into "source" and "target"

markets is an artificial one. In reality, once one introduces spillover effects, one

must take a stance on how to resolve endogeneity. Our model set-up will generally

allow for bi-directional transmission between the US and the second country of

interest. Identification is achieved by making use of the heteroskedasticity in the

data, which can be exploited to uniquely pin down the structure of simultaneous

systems; compare Sentana and Fiorentini (2001) or Rigobon (2003). Therefore,

both the direction and the size of spillovers can be determined empirically. These

considerations on simultaneity apply to markets with overlapping trading hours,

like in the Americas. For models of the US and the major Asian or Australian

stock indexes, the spillover direction is given by the sequence of time, since these
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markets trade with substantial time shifts. Consequently, identification problems

are alleviated in this setting.

Our first major result is that in all countries under investigation spillover inten-

sity significantly depends on volatility. As regards the information content of

volatility, our results tell that it crucially depends on the combination of "sender"

and "receiver" of volatility signals. For industrial countries, the information hy-

pothesis holds. As for emerging economies, however, the uncertainty hypothesis

prevails in their relations to the US.

The rest of the paper proceeds as follows. The next section presents a stylized

model of stock market returns and derives the testable hypotheses. Section 4.3

introduces the econometric model and discusses identification issues and the esti-

mation procedure. Section 4.4 applies the methodology to daily returns of major

stock indexes from the Americas, Australia and the Asian region. The last section

concludes.

4.2 Volatility Signals in a Stylized Model Economy

4.2.1 The Market Participant: Signal Extraction Problem

First we illustrate the idea of the signal of volatility in a stylized model econ-

omy. This should help fix ideas on how stock market interaction could depend

on return variability. Moreover, the nature of this interdependence should reveal

the character of volatility, i.e., it should indicate whether volatility in one market

means information or uncertainty (noise) to the other. A prominent model from

the literature, which can be used for this purpose, was considered by King and

Wadhwani (1990). We adopt this framework to demonstrate that in a signal ex-

traction context, the prevailing character of volatility can be identified from the

optimal reaction of investors to observed returns.

For the present purpose, it is sufficient to consider two stock markets where price

changes are associated with the arrival of relevant information and with noise,
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i.e., uncertainty. The first consists of two parts: directly observed information

and a reaction to information that is not fully observed in that market but only

in the other:

y1t = ι1t + α12E[ι2t|I1t] + ν1t (4.1)

y2t = α21E[ι1t|I2t] + ι2t + ν2t . (4.2)

Stock returns are given by yt, information is denoted by ιt, νt refers to noise

and E[·|Ijt] represents the expectations operator conditional on the information

observed in market j at time t. The model reflects the usually positive correlation

of international stock returns, i.e. α12 ≥ 0, α21 ≥ 0 .

When investors form expectations, say in market 1, they face a simple signal ex-

traction problem, since all they can observe from market 2 is the contemporaneous

price change. In order to extract the signal from the part of the price movement

in market 2 that is not simply due to information in market 1, agents in market

1 have to find β1 in

E[ι2t|I1t] = β1(y2t − α21E[ι1t|I2t]) . (4.3)

The solution to (4.3) is given by the minimum-variance estimator:

β1 =
Var[ι2t]

Var[ι2t] + Var[ν2t]
. (4.4)

Evidently, β1 becomes time varying, i.e., β1t, in case volatility of either ι2t or ν2t

changes over time.

Of course, agents in market 2 follow an analogous rationale. Using (4.3) and

(4.4) to substitute for the conditional expectations in (4.1) and (4.2) yields the

following simultaneous equations system of stock returns:

y1t = A12ty2t + ǫ1t (4.5)

y2t = A21ty1t + ǫ2t , (4.6)

where the spillover coefficients are given by A12t = α12β1t and A21t = α21β2t. The

shocks result as ǫ1t = (1−α12α21β1tβ2t)(ι1t+ν1t) and ǫ2t = (1−α12α21β1tβ2t)(ι2t+

ν2t).
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In our application, we will choose the US as the first country and switch between

several other stock markets in y2. Logically, the model will change according

to the choice of the second country. In addition to the second equation, this

concerns also the first one, (4.1). Apart from the spillover, the partitioning of the

return shock into information and noise, and thus also β and A, depend on the

perspective of the second country. In order to keep the notation simple, we write

down model (4.1)-(4.2) only for a given set of countries.

4.2.2 The Econometrician: Testable Hypotheses

The model (4.1)-(4.2) cannot be estimated directly since all four shocks are un-

observable. Otherwise, we could simply estimate their variances to see which

volatility effect dominates. However, we have shown that under the assump-

tion that the model in (4.5) and (4.6) is identified, one could exploit the time

variation in the spillovers in order to measure volatility signals. Following the

reasoning from above, the contemporaneous impact from one market to the other

depends on the variances of both signal (information) and noise (uncertainty).

The econometrician can approach the problem of measuring volatility signals by

estimating the variance of ǫt, i.e. the entire shocks to the returns. Taking the typ-

ical time-varying nature of financial time series volatility into account, we denote

the conditional variance of ǫt by Var[ǫt|It−1] = ht and let the spillover coefficients

depend on the variances by

Aijt = fij(hjt) i, j = 1, 2 and i 6= j . (4.7)

As can be seen in (4.4), beta would be constant if the variation, i.e. the rate

of change in Var[ιjt|It−1] and Var[νjt|It−1], was exactly identical. Assume, for

instance, that ∂fij
∂hjt

> 0, so that Var[ιjt|It−1] dominates the dynamics of market

volatility in the sense that its rate of change is higher than the one of Var[νjt|It−1].

This would favor the information hypothesis. On the contrary, ∂fij
∂hjt

< 0 would

represent evidence for the uncertainty hypothesis. In sum, examining the time

variation in spillover strength can provide us with decisive information on which

of the shocks contributes more to the volatility dynamics.
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While the theoretical model in the previous section serves as a motivation, we

argue that empirically the functional form of f(·) over the whole value range is

not known a priori. As discussed in detail in the next section, allow for flexibility

by approximating f(·) on an empirical basis. So far, we summarize the following

two testable hypotheses:

Information Hypothesis:

The spillover intensity Aijt in (4.5) and (4.6) depends positively on the level of

volatility in the respective other market, i.e., ∂Aijt

∂hjt
> 0.

Uncertainty Hypothesis:

The spillover intensity Aijt in (4.5) and (4.6) depends negatively on the level of

volatility in the respective other market, i.e., ∂Aijt

∂hjt
< 0 .

4.3 Empirical Approach: Measuring Investors

Reaction to Observed Returns

4.3.1 Simultaneous Model and Identification

In order to explore the signal of volatility, we first discuss our simultaneous model

setup. The considered stock returns are collected in the n-dimensional vector

yt. The data generating process is approximated by the following simultaneous

system:

Ayt = µt + εt , (4.8)

where µt represents a vector of predictable components such as lags or a constant

term and εt is a n-dimensional vector of structural innovations. The contempo-

raneous impacts are included in matrix A with diagonal elements normalized to

one. It is these effects that model the spillovers between returns in the current

setting and that we will allow to depend on volatility later on. Common shocks

will be accommodated by allowing for correlation of εt, as explained below.
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The simultaneous specification (4.8) is not meant to take a stance on fundamental

causality, in the sense that an impulse say in market j is necessarily the true causal

origin of a spillover to market i. Of course, one can think of idiosyncratic events in

market j affecting market i, based on economic linkages or psychological effects.

However, an impulse in market j may well be initiated by some information that

is equally relevant for market i, where investors observe the signal from j. Then

it would evidently be the third-party origin of the information, and not market

j itself, which would underlie the impact on market i. In summary, spillovers

characterize signals in one stock index that are incorporated by other markets,

but not necessarily based on actual bivariate causality.

Statistically, model (4.8) as it stands is not identified: In the matrix A with a

normalized diagonal, n(n−1) simultaneous impacts have to be estimated, whereas

the covariance matrix of the reduced-form residuals A−1εt delivers only n(n−1)/2

determining equations due to its symmetry. However, as for instance Sentana and

Fiorentini (2001) and Rigobon (2003) show, unobservable factor structures like

(4.8) become unique if heteroskedasticity is present in the stochastic components.

The idea is that, although breaks in the structural variances introduce additional

unknowns (i.e., the variances in the new regime), they shift the whole covariance

matrix in the reduced form, from which available information (i.e., variances and

covariances) is doubled. Time-varying volatility is a common feature of financial

variables, often modeled as ARCH-type processes. Indeed, the approach of Sen-

tana and Fiorentini (2001) subsumes the case of regime switches just as other

forms of heteroskedasticity such as ARCH. Here, we follow Weber (2010), who

specifies multivariate EGARCH processes for the structural shocks.

Formalizing the model setup, first denote the conditional variances of the elements

in εt by

Var(εjt|Ωt−1) = h2jt j = 1, . . . , n , (4.9)

where Ωt−1 stands for the whole set of available information at time t− 1.

Furthermore, denote the standardized innovations by

ε̃jt = εjt/hjt j = 1, . . . , n . (4.10)
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EGARCH(1,1)-processes are then given by

log h2jt = cj+gj log h
2
jt−1+dj(|ε̃jt−1|−

√
2/π)+fj ε̃jt−1 j = 1, . . . , n , (4.11)

where cj , gj , dj and fj represent the coefficients. The term
√
2/π serves to demean

the absolute shock. In addition, going beyond the pure magnitude of shocks, the

signed ε̃t introduce asymmetric volatility effects. The logarithmic formulation

ensures positive variances without relying on parametric restrictions.

Common shocks are taken into account via the structural constant conditional

correlation (SCCC) approach of Weber (2010). The advantage of the SCCC

model is to relax the uncorrelatedness assumption for structural shocks on the

one hand but to keep up the identification of the simultaneous model achieved

through heteroskedasticity on the other. The covariances of structural shocks are

recovered by the CCC specification

Cov(εit, εjt|It−1) = hijt = ρijhithjt i 6= j , (4.12)

where ρij denotes the correlation between the ith and the jth innovation.1 This

correlation can be thought of as arising from the exposure of variables i and j to

unobserved common factors.

For markets with non-overlapping trading hours identification problems are allevi-

ated. The fact that country i is only trading while the stock exchange in country

j is closed implies that contemporaneous spillovers do not appear. In our model

setup, this amounts to specifying a triangular coefficient matrix At. Even though

the index t then does not refer to the same time for all variables, we keep the

notation for simplicity purposes.

4.3.2 Time-Varying Coefficients

Up to this point, the off-diagonal elements of matrix A in (4.8) imply spillovers

between the endogenous variables that are proportional to the size of shocks with

1We also considered the structural dynamic conditional correlation (SDCC) approach. However,

empirical evidence for time variation could not be found.
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proportionality factors constant over time. While this represents the standard

in simultaneous systems, the current research question requires a more complex

specification. Therefore, we develop a framework that combines the heteroscedas-

tic structural model introduced above with a time-varying spillover specification.

In order to discriminate between the information and uncertainty hypotheses, we

allow the transmission intensity to depend on source market volatility as derived

in section 4.2.2.

Strictly speaking, A is substituted by At in (4.8). The elements Aijt, i 6= j, denote

the coefficients of transmission from variable j to i at time t. As a parsimonious

functional form, consider the linear specification of (4.7):

Aijt = aij + bijhjt , (4.13)

for all i, j. Here, the conditional standard deviation hjt serves as the transition

variable. Since At stands on the left hand side, negative values represent positive

transmission. Therefore, aij is expected to be smaller than zero. Accordingly,

a one-unit increase in source market volatility decreases spillover intensity by

bij . Hence, from the above discussion it follows that bij < 0 would favor the

information hypothesis, whereas prevalence of the uncertainty hypothesis requires

bij > 0. Alternatively, bij = 0 would bring us back to the case of constant

parameters.

We note that this specification can be compared to the GARCH-in-mean model,

where returns are explained by their own conditional variances. In our approach,

the variance series is also employed for an interaction effect with the level. How-

ever, we allow the spillover in one mean equation to depend on the conditional

variance of another return.

No case can be made, a priori, that the transition function (4.13), i.e., the volatility

effect on spillover intensity, is necessarily linear. While the advantage lies in para-

metric parsimony, the exact functional form of (4.7) should be determined on an

empirical basis. For instance, let us assume a situation with a < 0 and evidence

for the uncertainty hypothesis, say b > 0. At a certain point, a linear transi-

tion function could approach a negative correlation between markets (i.e., with

a positive left-hand-side coefficient). Since such a constellation appears rather
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implausible, the transition effect is likely to exhibit dampening non-linearity for

high volatility values. Still, if such realizations are rare in the sample, (4.13)

might work well as approximation of the transition function (4.7).

As an alternative specification, literature on smooth transition regression (STR)

(e.g. Luukkonen et al. 1988) has adopted flexible functions to grasp time variation

in coefficients. Specifically, consider

Aijt = aij + αij/(1 + e−γij(hjt−βij)) . (4.14)

The exact form of the transition is determined by the logistic function (1 +

e−γ(h−β))−1, which is monotonically increasing2 in hjt and bounded between zero

and one. The slope parameter γ indicates the speed or smoothness of transition:

as γ → ∞, the logistic function approaches the indicator function I(hjt > c), i.e.,

a single threshold. In contrast, γ = 0 simply gives the linear case. The parameter

β represents the location of the transition. In sum, the STR-based specification

lets the data decide about the shape of the volatility effect on spillover size.

Nonlinear functional forms are one way of dealing with large realizations of the

conditional standard deviation. Another straightforward option is given by trans-

forming the transition variable. While we use the standard deviation, taking

logarithms as in (4.11), for instance, would further dampen extreme volatility

spikes. While there is little reason to believe that a "correct" option could be

chosen on theoretical grounds, our results proved robust in this respect.

A last comment concerns the testing of statistical significance of the transition

variables in the STR setup. Luukkonen et al. (1988) show that straightforward

hypotheses like αij = 0 or γij = 0 are inappropriate because of the presence of

unidentified nuisance parameters under the null. Instead, for testing purposes the

functions are approximated by a Taylor series of a higher order, usually of order

three:

Aijt = aij + bij,1hjt + bij,2h
2
jt + bij,3h

3
jt . (4.15)

2We think of volatility effects on transmission strength being monotonous, even if they are not

necessarily linear. More involved STR functions should thus not be required.
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Here, standard likelihood ratio (LR) principles apply to the hypothesis bij,1 =

bij,2 = bij,3 = 0. Of course, linearization may adversely affect the power of the

test. However, as Skalin (1998) points out, simulation-based techniques would

be extremely computationally demanding and bootstrapping does not provide

superior size and power properties. Therefore, we will rely on the LR test in the

transition model (4.15). Furthermore, if bij,2 = bij,3 = 0 but bij,1 6= 0 is found,

the transition function can be approximated by the linear specification (4.13). We

maximize the likelihood function under the assumption of normally distributed

shocks. As the normality assumption is usually too restrictive for financial time

series data, we rely on quasi- maximum likelihood.

4.4 Application: The Signal of International Stock

Market Volatility

4.4.1 Data

We examine a balanced sample from 1/1/1988 to 12/31/2010 of daily returns on

major stock indices from the US (S&P 500) and a second country of interest. From

the Americas we choose Canada (S&P/TSX 60), Argentina (TOTMKAR3), Brazil

(Bovespa Index) and Mexico (IPC) as examples for contemporaneous trading.

The markets of Australia (S&P/ASX 50), Japan (Nikkei), Korea (KOSPI) and

the Philippines (PSEi) are all located overseas from the US and represent markets

with non-overlapping trading hours.

Stock returns are depicted in Figure 4.1. The time variation in volatility appears

very pronounced in all series. This is also statistically indicated by significant

autocorrelation of squared returns found in preliminary data inspection. The

presence of heteroskedasticity is of special importance to our approach, as it allows

estimation of volatility effects on spillover intensity.

3Due to data availability for Argentina we use the TOTMKAR provided by Datastream instead

of the MERVAL, see http://product.datastream.com/navigator/HelpFiles/DatatypeDefinit

ions/en/3/DSGI_total_market_data.htm.
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4.4.2 Specification Tests

The set of equations to be estimated consists of bivariate simultaneous models

with conditional heteroskedasticity for the US and a second country of interest.

The empirical application starts with specifying the functional form of the transi-

tion function by means of likelihood ratio tests. The specification test procedure

can be described as follows:

Since stock market trading hours in Canada and the US are exactly the same and

those in Argentina, Brazil and Mexico largely coincide with the US, we allow for

bi-directional simultaneous effects. Identification is achieved through the SCCC

approach. In the Asian region and Australia, stock markets open after those in the

US have closed so that identification issues are alleviated due to this chronology.

Hence, we only test for the functional form of the transition function in one

direction.

Firstly, we test the null of constant coefficients against linearly time-varying co-

efficients in all countries. Secondly, the null of linear spillover in both directions

is tested separately against the alternative of nonlinear (STR) spillover. In view

of the third order Taylor approximation this translates into testing two linear re-

strictions in (4.15) for each case: H0: b12,2 = b12,3 = 0 and H0: b21,2 = b21,3 = 0,

respectively.

Columns 2 and 3 of Table 4.2 include p-values of LR specification tests corre-

sponding to the null given in the first row. Bold numbers reflect rejection of the

respective null. Column 4 shows the final model specification.4 5 To mention one

example, in the case of the US and Canada (second row), we find evidence in favor

of linear spillover on the US (not rejecting the null in column 2) and nonlinear

spillover on Canada (rejecting the null in column 3).

4In two cases we do not follow the outcome of the specification tests, namely the Argentinian

and Brazilian spillover on the US. Even though statistically nonlinear effects are indicated by

the p-values, we restrict the spillover to zero. A closer analysis of these two cases revealed that

the smooth transition function actually serves as a dummy to capture only very few outliers

at the beginning of our sample while the spillover on the US is otherwise constant and close to

zero (between 1% and 2%).
5Estimation results from constant coefficients and linearly time-varying coefficient models are

provided in Appendix 4.A.
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Figure 4.1: Daily Stock Returns on (a) S&P 500, (b) S&P/TSX 60, (c) TOTMKAR,

(d) Bovespa Index, (e) IPC, (f) S&P/ASX 50, (g) Nikkei, (h) KOSPI and

(i) PSEi
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Table 4.1: Specification Tests and Estimation Results

H0: linear on US H0: linear on X signal

X H1: STR on US H1: STR on X final model coefficient estimates of

p-values for df = 2 p-values for df = 2 specification volatility

Canada 0.54 0.05 linear on US a12 = 0 b12 = −0.45 information

STR on Canada a21 = 9.16 α21 = −9.46 γ21 = 9.47 β21 = −0.19 information

Australia – 0.25 no spillover on US –

linear on Australia a21 = −0.35 b21 = −0.08 information

Japan – 0.04 no spillover on US –

STR on Japan a21 = −0.28 α21 = −0.18 γ21 = 32.51 β21 = 0.34 information

Korea – 0.00 no spillover on US –

STR on Korea a21 = −0.20 α21 = −0.22 γ21 = 25.65 β21 = 0.40 information

Argentina 0.03 0.00 no spillover on US –

STR on Argentina a21 = −11.31 α21 = 10.73 γ21 = 5.74 β21 = −0.40 uncertainty

Brazil 0.03 0.00 no spillover on US –

STR on Brazil a21 = −13.30 α21 = 12.58 γ21 = 5.58 β21 = −0.56 uncertainty

Mexico 0.00 0.09 STR on US a12 = 0 α12 = −0.04 γ12 = 14.81 β12 = 0.64 information

linear on Mexico a21 = −0.78 b21 = 0.10 uncertainty

Philippines – 0.00 no spillover on US –

STR on Philippines a21 = −0.45 α21 = 0.16 γ21 = 22.49 β21 = 0.72 uncertainty

Notes: Columns 2 and 3 report p-values of likelihood ratio tests of the indicated null hypotheses with degrees of freedom equal to df. Bold numbers reflect

the rejection of the null. In Argentina and Brazil, we restricted the spillover on US to zero even though test statistics point to nonlinear spillovers; see also

footnote 7, page 13. The final specification of the functional form for the time-varying spillover is found in column 4. Columns 5 to 8 show the estimated

coefficients. The last column lists the signal for market i that emerges from volatility in market j. Linear or STR specifications of the transition function

refer to Aijt = aij + bijhjt and Aijt = aij + αij/(1 + e−γij(hjt−βij)) of the simultaneous model:

(

1 A12t

A21t 1

)

yt = εt .
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During estimation we set µt constant, as autocorrelation of returns is mostly

very close to zero. Results turn out to be insensitive to the inclusion of lagged

terms in (4.8). Furthermore, standardized squared residuals appear free from

autocorrelation. Thus, we can be confident that our parsimonious EGARCH(1,1)

specification is sufficient to capture the time variation in the volatility series.

4.4.3 Results

The first major result is that we find evidence for time-varying spillover coefficients

in all countries under investigation. In particular, LR tests (not presented in Table

4.2) of constant against linearly time-varying spillover result in p-values of 0.00

(Canada), 0.08 (Australia), 0.03 (Mexico), 0.000 (Argentina), 0.02 (Brazil), 0.02

(Japan), 0.000 (Korea) and 0.03 (Philippines).6 That is, for all countries test

results suggest the rejection of constant parameters.

Estimated coefficients are presented in columns 5 to 8 of Table 4.2. The hypothe-

sis favored by our evidence is listed in the last column. The results can be divided

into two groups. First, the information hypothesis prevails in Australia, Canada,

Japan and Korea as US volatility increases the fraction of US shocks that feed into

stock prices of these countries. The same holds for Canadian volatility, signaling

information for US traders. Second, Argentinian, Brazilian, Mexican and Philip-

pine stock markets seem to understand US volatility as uncertainty since higher

volatility leads to a reduction of spillover intensity in these markets. Considering

the opposite direction, we find the information hypothesis to dominate in the US

with respect to Mexican volatility. However, the small effect from Mexico on the

US is economically of minor importance. The transition functions of these mar-

kets are plotted in Figures 4.2 to 4.9 (right hand side) together with the spillover

intensities (left hand side). We obtain the following results.

Evidence for the Information Hypotheses in Industrial Economies

- In Canada, the effect of US volatility is quite pronounced, indicated by a steep

transition function. This results in a transmission that varies between 10% in

times of low and approximately 30% in times of high volatility.

6The p-value for Korea refers to a test of constant against non-linear spillover. Testing constant

against linear spillover yields a p-value of 0.14.



The Signal of Volatility 103

- The information signaling effect of Canadian volatility is also substantial. It

produces an even higher spillover variation on the US but, of course, with a

lower mean.

- In Australia the information signaling US volatility leads to spillover intensity

between roughly 36% and 43%. The spike towards the end of the sample re-

sulting from high US volatility during the crisis drives up transmission strength

to 50%.

- Transition functions in Japan and Korea are both strongly increasing in a range

of low volatility. Spillover intensity increases for higher levels of volatility by

up to 20 percentage points.

Evidence for the Uncertainty Hypotheses in Emerging Economies

- The transition functions and spillover intensity for Argentina and Brazil are of

similar shape. In Argentina, however, transmission strength varies around a

lower level (70%) than in Brazil (80%). US volatility strongly reduces spillover

intensity and is thus interpreted as signaling uncertainty. In both cases, the

variance of domestic shocks is high compared to the US, and also to Australia

and Canada. Thus, despite high spillover, domestic shocks represent a major

factor of return variation in Argentina and Brazil.

- Analogously, transmission strength takes values between 60% and 76% in Mex-

ico with an average of 73% and US volatility having a negative impact. On the

contrary, in the US, Mexican volatility increases spillover. Yet, economically

the effect fluctuating between zero and a few percent appears to be of secondary

importance.

- The contemporaneous impact from the US on the Philippines equals about 45%

during times of low volatility. When volatility approaches 1, spillover strongly

decreases and falls below 30%.
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Figure 4.2: Spillover and Transition Function for Canada and the US
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Figure 4.3: Spillover and Transition Function for Australia
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Figure 4.4: Spillover and Transition Function for Japan
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Figure 4.5: Spillover and Transition Function for Korea
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Figure 4.6: Spillover and Transition Function for Argentina
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Figure 4.7: Spillover and Transition Function for Brazil
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Figure 4.8: Spillover and Transition Function for Mexico and the US
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Figure 4.9: Spillover and Transition Function for the Philippines
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Interpreting the Stock Market Evidence

Returning to the discussion at the beginning of the paper, the answer to the

question whether volatility predominantly signals information or uncertainty is

- literally - in the eye of the beholder. On the one hand, identifying shocks

in the "source" market and measuring their impact on transmission intensity

in the "target" market renders identification and estimation possible. On the

other hand, this implies one particular combination of "sender" and "receiver"

of volatility signals in each model. The differences in the results across countries

show that this combination is crucial. The generally high level of US spillover on

the countries under investigation indicates the important role of US stock market

developments as a major point of reference. However, even though the "sender of

volatility" remains the same in all cases, in times of high volatility this importance

decreases for some "receivers", whereas for others it increases.

An intuition for these results might be found in the interconnection and com-

monalities of each country and the US. Specifically, factors such as trade, policy

coordination or institutional similarities might be one reason for the industrial

countries Australia, Canada, Japan and Korea to predominantly identify infor-

mation from stock market fluctuations in the US. The US signal bears highly

relevant and well-understood information that outweighs the uncertainty, and, is

priced instantaneously. By contrast, the reduction of spillover intensity to the

emerging economies Argentina, Brazil, Mexico and the Philippines in times of

rising US volatility may be explained in the light of dissimilarities, for instance,

in the institutional, legal and regulatory framework and relative political and

economic instability. The information content in US price changes becomes less

visible during turbulent times, which are perceived as propagating uncertainty

instead.

4.4.4 Crisis, Correlation and Coefficients

During turbulent times, such as the ongoing global financial crisis, stock market

co-movement is commonly perceived to be more pronounced. Indeed, splitting

the present sample in a pre- and post-Lehman period with break date 9/15/2008
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reveals a substantial increase in the empirical return correlation between each

country and the US. Yet, at the same time, our previous results showed de-

creasing spillover intensity in some markets (Argentina, Brazil, Mexico and the

Philippines). Even though we already specified a time varying coefficient model,

these findings suggest that the volatility effect on the transmission strength might

exhibit a structural break. So far, our approach implicitly assumed that either the

information or the uncertainty hypotheses predominates over the whole sample

period. Therefore, we pursue this issue further with emphasis on a pre-crisis and

a crisis sample.

It is also well known, however, that a rise in correlation between two variables

might very well simply be triggered by an increased variance of the explanatory

variable. Forbes and Rigobon (2002), for instance, document this crucial role of

volatility changes that can result in biased estimates of correlation coefficients.

For the present data we evaluated this effect in a small simulation study. Denoting

US returns by xt and those of the other country by yt, we simulated yt = βxt+ ǫt

for the pre- and post-Lehman period with parameters according to our empirical

estimates from the above models. Thereby, the following rule of thumb was used:

We set β to the average spillover intensity and drew ǫt and xt from normal dis-

tributions with zero mean and Var(ǫt) and Var(xt) equal to the average ARCH

variances - before and after 9/15/2008, respectively.

With this parametrization we were able to reproduce the sharp rise in return

correlation during the crisis period. Thus, the increasing US volatility turned

out to be the major driving force behind the rising correlations with Argentina,

Brazil, Mexico and the Philippines. At the same time, this implies that the

transition functions with stable parameters are compatible with the data. Despite

the increase in return correlations, our approach is able to identify what we have

termed the uncertainty effect, i.e., spillover strength decreases in volatility. The

reason is that the variance changes, which affect the correlation coefficients, are

explicitly taken into account in our model.
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4.5 Conclusion

The present study motivated volatility-dependent simultaneous stock market in-

teraction by discussing the fundamental character of volatility, which we argue

is inherently ambivalent. Regarding the academic literature, volatility is used to

proxy two different latent variables: information and uncertainty. We summarize

the first view as the information hypothesis referring to studies where volatility

is directly related to information flow intensity (see e.g. Ross 1989, Foster and

Viswanathan 1993, 1995 or Kalev et al. 2004). The uncertainty hypothesis, on

the other hand, has its source in large strands of literature where volatility is

functioning as an uncertainty-proxy (see e.g Engle et al. 1987, Grier and Perry

2000, Kiyota and Urata 2004, Bekaert et al. 2009 or Li 2011).

We propose an econometric approach that consists of a simultaneous equations

model with time-varying parameters. The time-variation of the spillover coeffi-

cient in one market is driven by the volatility of the other. In this setting it is

the effect of volatility on the spillover strength that reflects whether the infor-

mation hypothesis (positive effect) or the uncertainty hypothesis (negative effect)

dominates.

Our main finding is that stock market interaction depends significantly on volatil-

ity in all countries under investigation. Evidence for the information hypothesis is

found for the industrial countries (Australia, Canada, Japan and Korea), whereas

the data of developing countries (Argentina, Brazil, Mexico and the Philippines)

support the uncertainty hypothesis.

This paper reveals that foreign volatility plays a crucial role in the interaction of

stock markets. Thereby, the signal of volatility differs substantially across coun-

tries. We show that, apart from the well-known capability of conditional variances

to capture volatility clusters and ensuring efficient estimation, they constitute a

useful tool for further purposes. Namely, conditional variances also help iden-

tify simultaneous effects and, especially, describe the time-varying nature of these

effects in financial applications.
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4.A Constant, Linear and Non-Linear Spillover

Table 4.2: Constant, Linear, and Non-Linear Spillover

constant linearly time-varying non-linearly time-varying

coefficients coefficients coefficients

spillover on aij aij bij aij bij,1 bij,2 bij,3

US −0.24 −0.05 −0.50 −0.01 −0.52 −0.01 0.06
[0.07] [0.06] [0.09] [0.07] [0.13] [0.00] [0.11]

Canada −0.27 −0.20 −0.27 0.04 −1.33 1.64 −0.72
[0.03] [0.04] [0.06] [0.13] [0.72] [1.24] [0.65]

US − − − − − − −

Australia −0.39 −0.35 −0.08 −0.33 −0.05 −0.23 0.14
[0.01] [0.02] [0.04] [0.10] [0.44] [0.58] [0.21]

US − − − − − − −

Japan −0.42 −0.35 −0.14 −0.17 −0.77 0.53 −0.10
[0.01] [0.03] [0.05] [0.14] [0.58] [0.73] [0.26]

US − − − − − − −

Korea −0.35 −0.29 −0.09 −0.06 −0.72 0.18 0.12
[0.02] [0.04] [0.06] [0.16] [0.72] [0.92] [0.34]

US 0.02 0.04 −0.01 0.17 −0.11 0.02 −0.00
[0.00] [0.01] [0.00] [0.03] [0.03] [0.01] [0.00]

Argentina −0.69 −0.97 0.36 −1.84 2.93 −2.42 0.68
[0.02] [0.05] [0.07] [0.24] [0.89] [1.04] [0.35]

US 0.02 0.04 −0.01 −0.02 0.10 −0.06 0.01
[0.00] [0.01] [0.01] [0.02] [0.01] [0.00] [0.00]

Brazil −0.80 −0.97 0.22 −1.58 2.60 −2.57 0.78
[0.02] [0.06] [0.08] [0.24] [0.92] [1.08] [0.38]

US −0.01 0.04 −0.05 0.39 −1.00 0.80 −0.20
[0.01] [0.03] [0.02] [0.11] [0.31] [0.30] [0.09]

Mexico −0.68 −0.77 0.11 −0.90 0.47 −0.33 0.09
[0.03] [0.05] [0.04] [0.15] [0.55] [0.63] [0.21]

US − − − − − − −

Philippines −0.42 −0.46 0.07 −0.35 −0.65 1.26 −0.54
[0.02] [0.03] [0.04] [0.14] [0.55] [0.65] [0.23]

Notes: This table shows results from a constant coefficient model, from a linear tran-

sition function and from a non-linear transition function. Standard errors are given

in brackets. The estimated coefficients refer to the transition functions Aijt = aij ,

Aijt = aij + bijhjt and Aijt = aij + bij,1hjt + bij,2h
2
jt + bij,3h

3
jt of the simultaneous

model:
(

1 A12t

A21t 1

)

yt = εt .
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