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Abstract

TNF‐related apoptosis‐inducing ligand (TRAIL) induces apoptosis selectively in cancer

cells. For melanoma, the targeting of TRAIL signaling appears highly attractive,

due to pronounced TRAIL receptor expression in tumor tissue. However, mechanisms

of TRAIL resistance observed in melanoma cells may limit its clinical use. The Bcl‐2
family members are critical regulators of cell‐intrinsic apoptotic pathways. Thus, the

antiapoptotic Bcl‐2 protein myeloid cell leukemia 1 (Mcl‐1) is overexpressed in many

tumor types and was linked to chemotherapy resistance in melanoma. In this study,

we evaluated the involvement of antiapoptotic Bcl‐2 proteins (Bcl‐2, Bcl‐xL, Bcl‐w,

Mcl‐1, Bcl‐A1, and Bcl‐B) in TRAIL resistance. They were targeted by small interfering

RNA‐mediated silencing in TRAIL‐sensitive (A‐375, Mel‐HO) and in TRAIL‐resistant
melanoma cell lines (Mel‐2a, MeWo). This highlighted Mcl‐1 as the most efficient

target to overcome TRAIL resistance. In this context, we investigated the effects of

Mcl‐1‐targeting microRNAs as well as the Mcl‐1‐selective inhibitor S63845. Both

miR‐193b and S63845 resulted in significant enhancement of TRAIL‐induced
apoptosis, associated with decreased cell viability. Apoptosis induction was

mediated by caspase‐3 processing as well as by Bax and Bak activation, indicating

the critical involvement of intrinsic apoptosis pathways. These data may indicate

a high relevance of Mcl‐1 targeting also in melanoma therapy. Furthermore, the

data may suggest to consider the use of the tumor suppressor miR‐193b as a

strategy for countering TRAIL resistance in melanoma.
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1 | INTRODUCTION

Selective inhibitors for the mitogen‐activated protein (MAP) kinases

BRAF and MAP kinase‐ERK kinase, as well as immune checkpoint

modulators, have significantly improved melanoma therapy in recent

years, demonstrating the high potential of targeted strategies in

cancer.1‐3 Nevertheless, melanoma remains the major cause of skin

cancer‐related deaths.3 Thus, new ideas and strategies for further

improvement of melanoma therapy are still urgently needed. Most

anticancer therapies focus on two key hallmarks of cancer, either
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targeting excessive tumor cell proliferation or targeting induction of

apoptosis. Even immune‐modulating therapies finally aim at the

elimination of cancer cells by the induction of apoptosis.4,5 Two

major paths have been described for apoptosis induction, namely (a)

extrinsic pathways through death ligands such as TNF‐related
apoptosis‐inducing ligand (TRAIL) and (b) intrinsic, mitochondrial

pathways in course of cellular stress situations, for example, DNA

damage.6,7

TRAIL triggers apoptosis via the two agonistic death receptors

TRAIL‐R1/DR4 and TRAIL‐R2/DR5.8,9 Upon receptor binding, a

membrane‐bound, death‐inducing signaling complex is formed, where

initiator caspase‐8 and ‐10 are activated.10 In a caspase cascade,

effector caspases as caspase‐3 are further activated, which cleave a

large number of death substrates to finally execute apoptosis'

programs.11 Caspase‐3 is negatively regulated through the binding of

XIAP (chromosome X‐linked inhibitor of apoptosis protein).12

A particular advantage of TRAIL is selective apoptosis induction

in cancer cells, while normal tissue cells are largely spared.13,14 Al-

though melanoma cells have been shown to constitutively express

DR5, this does not guarantee TRAIL sensitivity, as roughly half of

melanoma cell lines reveal an intrinsic TRAIL resistance.15,16 To ad-

dress this limitation, different combination strategies have been

identified, which can sensitize melanoma cells for TRAIL‐induced
apoptosis. In this context, the control of mitochondrial apoptosis

pathways came into particular focus for explaining TRAIL resistance

in melanoma.17,18

Mitochondrial apoptosis pathways are decisively controlled by

the family of Bcl‐2 proteins, which share one to four distinct Bcl‐2
homology (BH) domains. Bcl‐2 proteins interact and control each

other by heterodimerization.19 In present models, proapoptotic,

multidomain proteins with three BH domains (Bax and Bak) are

bound and are antagonized by antiapoptotic Bcl‐2 proteins with four

BH domains (Bcl‐2, Bcl‐xL, myeloid cell leukemia 1 [Mcl‐1], Bcl‐w,

Bcl‐A1, and Bcl‐B). On top of this, proapoptotic BH3‐only proteins

(Bid, Bim, Bad, and several others), characterized by just the BH3 domain,

act as triggers in apoptosis through either binding and antagonizing the

antiapoptotic Bcl‐2 proteins or through directly activating Bax. BH3‐only
proteins themselves may be activated by several stimuli, as in particular

by cellular stress situations.20

Activation of Bax and Bak is associated with permeabilization of

the outer mitochondrial membrane and the release of mitochondrial

proteins, such as cytochrome c and Smac (second mitochondrial ac-

tivator of caspases). While cytochrome c promotes initiator caspase‐
9 activation via formation of the apoptosome, Smac inhibits the

caspase‐3 antagonist XIAP.21‐23

Expression of antiapoptotic Bcl‐2 proteins provides a basic me-

chanism to allow survival of normal cells and on the other hand, may

prevent apoptosis induction in malignant cells.24

Mcl‐1 appears of particular importance for the survival of dif-

ferent cell lineages during embryonic development, for example,

hematopoietic and neuronal cells.25,26 Its decisive role is also un-

derlined by embryonic lethality of Mcl‐1 knockout mice.27 In recent

years, the oncogenic activity of Mcl‐1 received particular

attention,28 which is indicated by the frequent genomic amplifica-

tion of Mcl‐1 in about 40% of tumors of different origin.29 Increased

Mcl‐1 protein levels were correlated to chemotherapy resistance of

leukemia as well as solid tumors as of the stomach, pancreas, and

bile duct.30,31

Besides transcription factors, gene expression is critically regu-

lated by small noncoding microRNAs (miRNAs) by the targeting

of complementary sequences on messenger RNA (mRNA). Some

miRNAs function as tumor suppressors through the downregulation

of antiapoptotic or oncogenic proteins, while others may be oncogenic

themselves through the downregulation of tumor suppressors. In the

context of Mcl‐1 regulation, miR‐339‐3p, and miR‐193b were de-

scribed as tumor suppressors in melanoma.32,33 On the contrary,

upregulated Mcl‐1 was associated with downregulation of miRNA‐32
in melanoma.34

In the present study, we investigated the effects of knockdown

of antiapoptotic Bcl‐2 proteins with regard to the sensitization of

melanoma cells for TRAIL‐induced apoptosis. This highlighted the

particular role of Mcl‐1. Thus, we further investigated and com-

pared different Mcl‐1 targeting strategies as the selective inhibitor

S63845, miR‐193b, and miR‐339‐3p to overcome TRAIL resistance

in melanoma cells.

2 | MATERIALS AND METHODS

2.1 | Cell culture

Origin of human melanoma cell lines used in this study (A‐375, SK‐
Mel‐13, SK‐Mel‐19, SK‐Mel‐23, Mel‐HO, JPC‐298, Mel‐2a, Mel‐JuSo,
and MeWo) has been described previously.35 Cells were cultivated

at 37°C, 5% CO2 in dulbecco’s modified eagle’s medium (DMEM)

(4.5 g/L glucose; Gibco, Invitrogen, Karlsruhe, Germany), supple-

mented with 10% fetal calf serum (FCS) and antibiotics (Biochrom,

Berlin, Germany).

For the different assays, melanoma cells were seeded in flat‐
bottom 24‐well plates at a density of 75.000 to 120.000 cells/well,

according to the growth performance of the cell lines. Single treat-

ments started at 48 hours after seeding (cell confluence at 50%‐70%).

Treatments of 100 ng/mL KillerTRAIL (AG‐40T; Adipogen, San Diego)

or 5 µM of the selective Mcl‐1 inhibitor S63845 (CAS# 1799633‐27‐4;
Abmole Bioscience Inc, Houston, TX) were usually applied for 24 hours,

when not stated differently.

Combination treatments with small interfering RNA (siRNA) and

miRNA, respectively, started early after seeding. Thus, 10 pmol

siRNA/miRNA and 1.5 µL Lipofectamine RNAiMAX (Thermo Fisher

Scientific, Waltham, MA) were diluted in 100 µL Opti‐MEM medium

(Invitrogen, Carlsbad, CA), which was given to freshly seeded cells.

After 24 hours, transfection medium was replaced by a fresh growth

medium (DMEM with 5% FCS, w/o antibiotics) and incubated for an

additional 24 hours. After this procedure (48 hours), cells received

additional treatments, for example, TRAIL and S63845 (usually for

another 24 hours).
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2.2 | Cell transfection with siRNA or miRNA

Transient reverse cell transfection with siRNA or miRNA was per-

formed with Lipofectamine RNAiMAX (Thermo Fisher Scientific) ac-

cording to the manufacturer´s protocol. An amount of 10 pmol

siRNA/miRNA and 1.5 µL Lipofectamine was given to 500 µL cell

suspension seeded in 24‐wells. The following siRNAs from Santa

Cruz Biotech (Dallas, TX): were applied: Bcl‐2 (sc‐61899), Bcl‐xL
(sc‐43630), Bcl‐w (sc‐37293), Mcl‐1 (sc‐35877), Bcl‐A1 (sc‐37285),
and Bcl‐B (sc‐90043) as well as a scrambled control (sc‐37007).
The following miRNAs were applied: miR‐339‐3p (hsa‐miR‐339‐3p:
HMI0497, Merck, Darmstadt, Germany) and miR‐193b (hsa‐miR‐193:
AM17100, Thermo Fisher Scientific, Life Technologies, Darmstadt,

Germany).

2.3 | Determination of apoptosis

For quantification of apoptosis, cell cycle analyses were performed.36

Cells harvested by trypsinisation were lysed in hypotonic buffer, and

isolated nuclei were stained for 1 hour with 40 µg/mL propidium

iodide (Sigma‐Aldrich, Taufkirchen, Germany). Cells in G1, G2, and

S‐phase, as well as sub‐G1 cells, were quantified by flow cytometry

(FL3A) with a FACS Calibur (BD Bioscience, Bedford, MA). Due to the

washing out of small DNA fragments, nuclei with less DNA than G1

(sub‐G1) correspond to apoptotic cells with fragmented DNA.

2.4 | Determination of cell viability and
mitochondrial membrane potential

Cell viability was determined by staining cells with calcein‐AM
(PromoCell, Heidelberg, Germany), which is converted in viable cells

to green‐fluorescent calcein by intracellular esterases. Cells, grown

and treated in 24‐well plates, were harvested by trypsinization and

stained with 0.5 µM calcein‐AM at 37°C for 1 hour. Labeled cells

were washed with phosphate‐buffered saline (PBS) and measured by

flow cytometry (FL2H).

Mitochondrial membrane potential (MMP) (Δψm) was de-

termined by staining cells with the fluorescent dye TMRM+ (Tetra-

methylrhodamine methyl ester perchlorate; Sigma‐Aldrich). Cells

grown in 24‐well plates and harvested by trypsinization were stained

for 20minutes at 37°C with 1 µM TMRM+. After two‐times washing

with PBS, cells were measured by flow cytometry (FL2H).

2.5 | Bax and Bak activation assays

For analysis of Bax/Bak conformational changes related to protein

activation, cells were stained with primary antibodies specific for the

Bax N‐terminal domain (Bax‐NT; rabbit; #06‐499; Merck Millipore,

Darmstadt, Germany) and for the Bak N‐terminal domain (Bak‐NT;

rabbit; #06‐536; Merck Millipore, Darmstadt, Germany),

respectively. Cells were harvested by trypsinisation and fixed for

30minutes at 4°C with 0.5% paraformaldehyde in PBS. Then, they

were incubated for 1 hour at 4°C in PBS/1% FCS containing Bax/Bak‐NT
antibodies (1:100) and 0.1% saponine for cell permeabilization.

Staining was proceeded by incubation for 1 hour at 4°C in the dark

using a goat anti‐rabbit secondary antibody (immunoglobulin G

[H + L]‐FITC; Jackson Immuno Research, West Grove, PA). After

washing and resuspension in PBS, cells were measured by flow

cytometry (FL1H).

2.6 | Western blotting

For preparing total protein extracts, cells were trypsinized, washed

with PBS and lysed in 150mM NaCl, 1% NP‐40 and 50mM Tris

(pH 8.0). To guaranty equal loading of samples in protein gels, con-

centrations of protein extracts were conscientiously determined in

triplicate determinations by Pierce Bicinchoninic acid protein assay

(Thermo Fisher Scientific). Western blotting on nitrocellulose mem-

branes was performed as described previously.35 Primary antibodies

were purchased from Cell Signaling (Danvers, MA): Cleaved caspase‐
3 (rabbit, 1:1000; #9661); caspase‐8 (mouse, 1:1000; #9746); cleaved

caspase‐9 (rabbit, 1:1000; #2002); Bcl‐xL (rabbit, 1:1000; #2762);

Mcl‐1 (rabbit, 1:1000; #4572); Bcl‐2 (rabbit, 1:1000; #2872); Bcl‐w
(rabbit, 1:1000; #2724) and glyceraldehyde 3‐phosphate dehy-

drogenase (GAPDH) (rabbit, 1:1000; #2118). Cells were finally

stained with secondary antibodies for 1 hour at room temperature,

using peroxidase‐labeled goat anti‐rabbit or goat anti‐mouse (dilution

of 1:5000; DakoPerkin Elmer, Waltham, MA). Proteins were detected

using Immobilon Western Chemiluminiscent HRP Substrate (Sigma‐
Aldrich, St Louis, MO) and visualized by Fusion FX Image analyzer.

2.7 | Real‐time polymerase chain reaction

To quantify the expression levels of Bcl‐A1 and Bcl‐B mRNAs, a

quantitative real‐time polymerase chain reaction (PCR) was used

(qTower; Analytik Jena, Jena, Germany). Total cellular RNA was

isolated with TRIzol lysis reagent (Thermo Fischer Scientific). For

reverse transcription, the First Strand complementary DNA Synth-

esis Kit of Thermo Fisher Scientific was applied. Real‐time PCR am-

plification for Bcl‐A1 and Bcl‐B was performed with the primers

given below using 2× PCR MasterMix (Thermo Fisher Scientific). For

normalization, a standard curve for GAPDH was used. Primers: Bcl‐
A1(FW), 5´‐GATAAGGCAAAACGGAGGCTGG‐3´; Bcl‐A1(Rev), 5´‐CT
CTTCTTGTGGGCCACTGAC‐3´; Bcl‐B(FW): 5´‐GGACACCGGGAC
ACGG‐3´; Bcl‐B(Rev): 5´‐GGGGGTCCTGAAGAAGTGAC‐3´.

2.8 | Statistical analyses

Assays were done in triplicate determinations, and at least two in-

dependent experiments were performed. For apoptosis and cell
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viability assays, depicted mean values and standard deviations were

calculated by enclosing all individual values of the independent ex-

periments. For MMP, Bax, and Bak assays, the mean values of re-

presentative experiments are shown. Statistical significance was

proven by the ANOVA test (two‐way, multiple comparisons), using

generally all obtained values of the independent experiments.

P values of less than .05 were considered statistically significant.

Depicted Western blot data were verified by at least two independent

series of cellular extracts.

3 | RESULTS

3.1 | Efficient knockdown of antiapoptotic Bcl‐2
proteins in melanoma cell lines by siRNA

To address the significance of antiapoptotic Bcl‐2 proteins in mela-

noma, expression of Bcl‐2, Bcl‐xL, Mcl‐1, and Bcl‐w was analyzed by

immunoblotting in a panel of nine representative melanoma cell lines

(A‐375, JPC‐298, Mel‐2a, Mel‐HO, MeWo, Mel‐JuSo, SK‐Mel‐13, SK‐
Mel‐19, and SK‐Mel‐23) (Figure 1A). Protein expression of anti-

apoptotic Bcl‐2 proteins Bcl‐A1 and Bcl‐B could not be determined

by commercial antibodies, due to low sensitivity (data not shown), as

also reported elsewhere.37,38 Consistently high expression was found

for Bcl‐xL, Bcl‐w, and Mcl‐1, whereas Bcl‐2 showed stronger variation,

with only weak expression in A‐375 and Mel‐JuSo (Figure 1A).

For investigating the role of antiapoptotic Bcl‐2 proteins in

TRAIL sensitivity of melanoma cells, protocols were established for

efficient knockdown by RNA interference. The established protocol

for siRNA transfection resulted in high knockdown efficiency at the

protein level, as demonstrated for Bcl‐xL, Mcl‐1, and Bcl‐w in Mel‐HO

and A‐375 as well as for Bcl‐2 in Mel‐HO (Figure 1B). Nonspecific off‐
target effects of siRNA transfection on Bcl‐2 protein expression were

largely excluded by transfection with a nonspecific siRNA (OffT). To

largely exclude also nonspecific effects of a given siRNA on other Bcl‐2
proteins, the expression levels of Bcl‐xL, Mcl‐1, Bcl‐2, and Bcl‐w were

determined after all siRNA treatments. Nontarget effects on other

Bcl‐2 proteins were less pronounced and mostly within the limits of

variation (Figure 1B).

As no suitable antibodies could be found for Bcl‐A1 and Bcl‐B,
we demonstrated the efficiency of their siRNA silencing in cell line

A‐375 at the mRNA level, using real‐time PCR. Thus, specific

knockdown by siRNAs resulted in a reduction of Bcl‐A1 mRNA levels

to 16% and 17%, respectively, as shown in two independent ex-

periments. Similarly, Bcl‐B mRNA was downregulated to 33% and

27%, respectively (Figure 1C).

3.2 | Sensitization of melanoma cells for TRAIL by
Mcl‐1 knockdown

To evaluate the significance of antiapoptotic Bcl‐2 proteins for cell

survival and TRAIL sensitivity of melanoma cells, Bcl‐2 proteins were

downregulated by six different siRNAs in TRAIL‐sensitive (A‐375 and

Mel‐HO) and in TRAIL‐resistant melanoma cell lines (MeWo and Mel‐
2a). Cells received TRAIL at 48 hours after the starting of siRNA

treatment, and effects on apoptosis (Figure 2) and on cell viability

(Figure 3) were analyzed after another 24 hours. TRAIL‐sensitive cell

lines responded to TRAIL with 21% (A‐375) and 11% apoptosis

(Mel‐HO), respectively. This effect was strongly enhanced by siMcl‐1,
resulting in 42% (A‐375) and 31% apoptosis (Mel‐HO). Resistant cell

lines (MeWo and Mel‐2a) showed no apoptotic response to TRAIL

(<6%). However, TRAIL‐induced apoptosis was significantly enhanced

by Mcl‐1 knockdown resulting in apoptosis values of 22% (MeWo)

and 20% (Mel‐2a), respectively. In contrast, combinations of TRAIL

with the other siRNAs were generally less effective for the induction

of apoptosis, and single treatments with siRNAs remained below 12%

(Figure 2).

The effects at the level of cell viability were largely in parallel.

Thus in A‐375 and Mel‐HO, TRAIL‐induced loss of cell viability was

enhanced by Mcl‐1 knockdown, leaving 39% and 28% viable cells,

respectively. In MeWo and Mel‐2a, the week effects of TRAIL on cell

viability were strongly enhanced, resulting in remaining viable cells of

only 57% (MeWo) and 35% (Mel‐2a). Again, other treatments were

less effective (Figure 3). Thus in four representative melanoma cell

lines, Mcl‐1 targeting turned out as the most promising strategy for

enhancing TRAIL sensitivity and for overcoming TRAIL resistance.

3.3 | Activation of mitochondrial apoptosis
pathways by TRAIL and Mcl‐1 knockdown

For better understanding, the pathways mediating enhanced TRAIL

sensitivity, activation of extrinsic initiator caspase‐8, intrinsic in-

itiator caspase‐9, and the predominant effector caspase‐3 were in-

vestigated by Western blotting in TRAIL‐sensitive A‐375 and in

resistant MeWo and Mel‐2a. In A‐375, TRAIL alone already resulted

in strong activation of the caspase cascade, seen by cleavage pro-

ducts of caspase‐9 (35 kDa), caspase‐8 (43, 41, and 18 kDa) and

caspase‐3 (21, 19, and 17 kDa) (Figure 4A). In contrast, almost no

caspase processing was seen in resistant MeWo and Mel‐2a in re-

sponse to TRAIL alone. In particular, no mature 17 kDa caspase‐3
cleavage product appeared (Figure 4B).

Mcl‐1 knockdown alone had some effect on caspase‐3 in the cell

lines as seen by the slightly enhanced 17 kDa product. This came

along with some processing of caspase‐9 in A‐375 and MeWo

(35 kDa) as well as some processing of caspase‐8 in Mel‐2a (18 kDa).

Strong activation of the caspase cascade as indicated by high ex-

pression of caspase‐3 cleavage products was seen in MeWo and

Mel‐2a under combination treatment (siMcl‐1 + TRAIL). In A‐375, the
effects of combination treatment were visible by a higher ratio of

caspase‐3 mature product (17 kDa) vs intermediate cleavage pro-

ducts of 19 and 21 kDa (Figure 4A). The finding of caspase‐8 acti-

vation in combinations may be at least partly explained by a positive

feedback loop leading from activated caspase‐3 up to caspase‐8, as
described earlier.39,40
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Loss of MMP, as an indicator of mitochondrial pathway acti-

vation, was investigated in A‐375, MeWo, and Mel‐2a at 72 hours

post‐siRNA transfection (TRAIL treatment for the last 24 hours).

Significant loss of MMP in course of TRAIL was seen in A‐375 (80%),

whereas MeWo and Mel‐2a were not responsive. Knockdown of

Mcl‐1 alone significantly decreased MMP in all three cell lines re-

sulting in 30% to 47% cells with low MMP. This effect was strongly

enhanced by combination treatment resulting in 96%, 51%, and 87%

1260 | SARIF ET AL.



cells with low MMP in A‐375, MeWo, and Mel‐2a, respectively

(Figure 4B).

The proapoptotic effectors Bax and Bak critically control in-

trinsic apoptosis pathways. Activation of both proteins was de-

termined due to characteristic conformational changes monitored by

Bax‐NT (N‐terminus) and Bak‐NT antibodies, respectively. Significant

activation of both Bax and Bak was seen in A‐375 and MeWo as a

result of Mcl‐1 knockdown, as compared to Off‐target controls. Thus
in A‐375, Bax and Bak were activated 51% and 38% of cells; in

MeWo, 71% and 45% of cells showed activation of Bax and Bak,

respectively. Bax and Bak activation were further enhanced in A‐375
in the combination with TRAIL (71%/75%), whereas TRAIL remained

without additional effect in MeWo (Figure 4C,D). The fact that TRAIL

remained without effect on Bax/Bak activation in TRAIL‐resistant cell
line MeWo may be at least partly explained by previous findings

showing a strong relation of TRAIL resistance and lacking Bax

activation in melanoma cells.17,41

These data demonstrate that although the Mcl‐1 knockdown did

not efficiently induce apoptosis by itself, it preactivated mitochon-

drial apoptosis pathways, thus opening a “mitochondrial gate.” This

was then used by TRAIL for enhanced apoptosis induction.

3.4 | Mcl‐1 targeting by the Mcl‐1 inhibitor S63845
and by miRNAs

The role of Mcl‐1 in TRAIL resistance was further investigated in

the TRAIL‐resistant cell line MeWo by the novel BH3 mimetic and

specific Mcl‐1 antagonist S63845. When applied alone, S63845

resulted in 15% apoptosis induction and reduction of viable cells to

60%. The proapoptotic Bcl‐2 proteins Bax and Bak were strongly

activated by S63845 (44%). In combination with TRAIL, apoptosis

was strongly enhanced (42%) and cell viability was further de-

creased (15% remaining viable cells), while Bax and Bak activation

were not further affected in MeWo cells by additional TRAIL

(Figure 5A).

To evaluate alternative strategies for Mcl‐1 targeting, miR‐193b
and miR‐339‐3p, reported to downregulate Mcl‐1 expression, were

applied in MeWo cells and were compared to siMcl‐1. Comparable to

the effects of siMcl‐1, miR‐193b enhanced TRAIL‐induced apoptosis

by 4‐fold (15%, Figure 5B) and further decreased cell viability (53%

remaining viable cells, Figure 5C), as compared to the off‐target
controls. The effects of miR‐339‐3p showed a similar tendency but

were less pronounced. Clearly indicating the activation of mi-

tochondrial apoptosis pathways, miR‐193b alone significantly acti-

vated Bax (64%, Figure 5D) and Bak (52%, Figure 5E), comparable to

siMcl‐1 effects. In conclusion, the targeting of Mcl‐1 appeared as a

highly promising strategy to enhance the antineoplastic effects of

TRAIL, which may finally pave the way for therapeutic approaches.

The activated pathways were generally based on the activation of

Bax and Bak, underlining their particular roles in TRAIL‐induced
apoptosis in melanoma cells.

4 | DISCUSSION

Despite the development of new therapeutic approaches for meta-

static melanoma, survival prognosis is still limited, particularly due to

acquired therapy resistance.3 New ideas and additional strategies

may help to finally defeat this deadly disease. Apoptosis resistance

represents a critical hallmark in cancer,4 and the targeting of apop-

tosis pathways, for example, by the death ligand TRAIL, appears as a

promising antitumor strategy.18 The particular advantage of TRAIL is

based on its capability to selectively induce apoptosis in cancer cells,

while normal cells are largely spared.13,14

TRAIL agonists have proven good tolerability and safety profiles

in clinical trials, however, an additional clinical benefit, when TRAIL

was applied in combination therapies, so far remained on a low level.

For example, in B‐cell lymphoma patients treated with recombinant

TRAIL (dulanermin) in combination with rituximab (phase I) as well as

in nonsmall‐cell lung cancer patients treated with dulanermin in

combination with paclitaxel, carboplatin, and bevacizumab (phase II),

positive combination effects of TRAIL were reported only within the

first 6 months.42,43 Comparable results were obtained in a phase III

trial for advanced nonsmall‐cell lung cancer patients treated with

dulanermin in combinations with vinorelbine and cisplatin. Also here,

the early improvement of progression‐free survival seen for the

combination, vanished after 12 months.44

Lack of sustained TRAIL efficacy can be attributed to resistance

mechanisms, as reported in different cancer cells, for example, of the

F IGURE 1 Efficient knockdown of antiapoptotic Bcl‐2 proteins by siRNA. A, Expression of Bcl‐2, Bcl‐xL, Bcl‐w, and Mcl‐1 was determined by
Western blot analysis in nine human melanoma cell lines (A‐375, JPC‐298, Mel‐HO, MeWo, Mel‐JuSo, SK‐Mel‐13, SK‐Mel‐19, and SK‐Mel‐23).
Equal protein amounts (30 µg) were loaded in each lane, as proven by Ponceau staining and GAPDH, used as a loading control. Molecular

weights (in kDa), as determined by a protein standard, are given on the right side. Three independent series of protein extracts revealed
comparable results. B, Melanoma cell lines Mel‐HO and A‐375 and were transfected with each 10 pmol of siRNA against Bcl‐xL, Mcl‐1, Bcl‐2,
Bcl‐w, Bcl‐A1, and Bcl‐B or scrambled control (OffT), as indicated. Proteins were harvested at 48 hours posttransfection for analysis of Bcl‐2,
Bcl‐xL, Bcl‐w, and Mcl‐1 expression by Western blotting. Equal protein amounts (30 µg) were loaded in each lane as proven by Ponceau staining
and GAPDH, used as a loading control. Some variations seen here for the GAPDH signals may result from technical challenges in Western
blotting. But two independent series of protein extracts revealed highly similar results. C, Results of real‐time RT‐PCR determined in cell line
A‐375 for Bcl‐A1 (left) and Bcl‐B mRNA expression (right) are shown. The values of siRNA‐treated cells (siBcl‐A1, siBcl‐B) vs nontreated controls (Ctr,

set to 100%) are shown in two independent experiments (Exp 01/02). GAPDH, Glyceraldehyde 3‐phosphate dehydrogenase; Mcl, myeloid cell
leukemia; mRNA, messenger RNA; siRNA, small interfering RNA
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breast, colon, and ovary45,46 as well as of melanoma.47,48 In the

present study, consistent TRAIL resistance in melanoma cells is re-

presented by the cell lines MeWo and Mel‐2a, while TRAIL‐sensitive
cell lines (A‐375, Mel‐HO) may still develop inducible TRAIL

resistance.47 Countering TRAIL resistance mechanisms represents a

basic condition for the development of efficient TRAIL‐based clinical

approaches.

Multiple strategies have been tested in melanoma cells for

overcoming TRAIL resistance.17 These have revealed an insufficient

caspase cascade via caspase‐8/caspase‐3 as well as the requirement

of the mitochondrial amplification loop. The level of Bcl‐2 proteins

thus represents a highly critical step in the control of TRAIL sensi-

tivity.17,41,49,50 Upregulation of antiapoptotic Bcl‐2 proteins is a fre-

quent issue in cancer, which was also associated with TRAIL

resistance, for example, in pancreatic carcinoma and prostate cancer

cells.51‐53 TRAIL‐induced apoptosis in melanoma cells was particu-

larly correlated with Bax activation and was abrogated by Bcl‐2
overexpression.17,54 Thus, the targeting of antiapoptotic Bcl‐2 pro-

teins represents a promising strategy to sensitize melanoma cells for

TRAIL. This approach was further investigated here.

F IGURE 2 Sensitization for TRAIL‐induced apoptosis by Bcl‐2 protein knockdown. Effects of Bcl‐2 protein knockdown by siRNA on

TRAIL‐induced apoptosis were determined in TRAIL‐sensitive cell lines A‐375 and Mel‐HO as well as in the TRAIL‐resistant cell lines MeWo and
Mel‐2a. Assays were performed at 72 hours after the transfection of indicated siRNAs and at 24 hours after TRAIL treatment (100 ng/mL).
Apoptosis was determined by PI staining and flow cytometry (cell cycle analysis). Cell cycle phases (G1, G2, and the S‐phase) are indicated in

overlays given below; apoptotic cells correspond to weakly PI‐stained cells (sub‐G1 cells). Indicated mean values and SDs correspond to all
individual values of at least two independent experiments (each one with triplicates, at least six independent values). Statistical significance is
indicated for the comparison of the combinations vs TRAIL treatment alone (*P < .05, ANOVA, two‐way, multiple comparisons). ANOVA, analysis

of variance; SD, standard deviation; siRNA, small interfering RNA; TRAIL, TNF‐related apoptosis‐inducing ligand
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The particular roles of six antiapoptotic Bcl‐2 proteins (Bcl‐2,
Bcl‐xL, Mcl‐1, Bcl‐w, Bcl‐A1, Bcl‐B) have been acknowledged in

models explaining the mutual regulation of Bcl‐2 proteins.19 A major

goal of the present study was to evaluate their particular contribu-

tion to the regulation of TRAIL sensitivity in melanoma cells. The

established siRNA strategies mediated high efficiency and largely

specific effects, as verified by Western blotting. Some improvement

of the TRAIL effects was seen upon the downregulation of several

antiapoptotic Bcl‐2 proteins in different melanoma cell lines. How-

ever, in terms of apoptosis induction and loss of cell viability,

knockdown of Mcl‐1 turned out as the most efficient strategy, which

was effective in all four melanoma cell lines, investigated.

The Mcl‐1 gene was reported as amplified in different human cancer

types, also in melanoma, and high Mcl‐1 expression has often been as-

sociated with therapy resistance.28,29,55 A particular significance of Mcl‐1
for melanoma cell survival was also demonstrated when Mcl‐1 and

Bcl‐A1 knockdown were combined with chemotherapy.38,56

Addressing the mechanisms, by which Mcl‐1 knockdown en-

hanced TRAIL‐induced apoptosis in melanoma cells, activation of the

caspase cascade and increased loss of MMP was shown. Of particular

F IGURE 3 Loss of cell viability by combined TRAIL and Bcl‐2 protein knockdown. Effects of Bcl‐2 protein knockdown by siRNA on TRAIL‐
induced loss of cell viability were determined in TRAIL‐sensitive cell lines A‐375 and Mel‐HO as well as in the TRAIL‐resistant cell lines MeWo
and Mel‐2a. Assays were performed at 72 hours after the transfection of indicated siRNAs and at 24 hours after TRAIL treatment (100 ng/mL).

Cell viability was determined by calcein‐AM staining and flow cytometry; viable and nonviable cell populations are indicated in the overlays
given below. Indicated mean values and SDs correspond to all individual values of at least two independent experiments (each one with
triplicates, at least six independent values). Statistical significance is indicated for the comparison of the combinations vs TRAIL treatment alone

(*P < .05, ANOVA, two‐way, multiple comparisons). ANOVA, analysis of variance; SD, standard deviation; siRNA, small interfering RNA; TRAIL,
TNF‐related apoptosis‐inducing ligand
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note, the proapoptotic Bcl‐2 proteins Bax and Bak were consistently

activated in course of Mcl‐1 knockdown, indicating the dominant role

of Mcl‐1 in suppressing the activity of these important proapoptotic

agonists. We already showed that Bax serves as a master regulator of

TRAIL‐induced apoptosis in melanoma cells.17,18 On the other hand,

apoptosis in melanoma cells can also be mediated by Bak pathways,

as shown for Bcl‐xS‐induced apoptosis.57 Bak has been described as a

particular target of Mcl‐1.58,59

Antiapoptotic Bcl‐2 proteins may be antagonized by BH3 mi-

metics, which mimic the activity of proapoptotic BH3‐only proteins.

For preparing clinical applications, several BH3 mimetics have been

developed, for example, ABT‐199 (venetoclax) directed against Bcl‐2;
ABT‐263 (navitoclax) directed against Bcl‐2 and Bcl‐xL as well as

ABT‐737 directed against Bcl‐2, Bcl‐xL, and Bcl‐w. Monotherapy with

ABT‐199 resulted in improved overall survival of multiple myeloma

patients.60,61 However, patients with advanced solid tumors fre-

quently did not profit, for example, as reported for the combination

of ABT‐263 and the EGFR inhibitor erlotinib.60,61 In preclinical

studies, BH3 mimetics, in general, have shown less efficiency in

melanoma as compared to hematological cancers.62

Several previous BH3 mimetics did not affect Mcl‐1, which may

at least partly explain their insufficiency in melanoma. In the mean-

time, also Mcl‐1‐specific BH3 mimetics have been established

(S63845, AMG‐176, AMG‐397, and AZD‐599), which are planned for

clinical trials in patients with hematological malignancies.63 For

S63845, antitumor effects and low toxicity have been reported in

preclinical studies of multiple myeloma and leukemia. Most melano-

ma cells, however, showed pronounced resistance to S63845 when it

was applied alone.64 Also melanoma cell line MeWo, as shown here,

was almost not responsive to S63845 in terms of apoptosis induction

and loss of cell viability. However, MeWo cells showed strong acti-

vation of Bax and Bak in response to S63845, thus suggesting that a

proapoptotic gate was opened. This resulted in sensitization for

TRAIL‐induced apoptosis. S63845 has shown also positive effects in

melanoma cells when combined with other BH3 mimetics or the

proteasome inhibitor bortezomib.62

F IGURE 4 Apoptosis mechanisms in response to Mcl‐1 knockdown. A, Processing of caspases‐8, ‐9, and ‐3 was monitored in A‐375, MeWo,

and Mel‐2a by Western blotting at 72 hours after starting siMcl‐1 or scrambled control siRNA (OffT) transfection and at 24 hours of TRAIL
treatment. Equal protein amounts (30 µg) were loaded as proven by Ponceau staining and GAPDH, used as a loading control. Molecular weights
(in kDa) determined by a protein standard, are given on the right side. Some variations seen here for the GAPDH signals may result from

technical challenges in Western blotting. But Western blots of two independent series of protein extracts revealed highly comparable results.
The caspase‐8 blot was cut to show the different protein fragments. B, Mitochondrial membrane potential (MMP) in response to Mcl‐1
knockdown and TRAIL treatment was determined by TMRM+ staining in A‐375, MeWo, and Mel‐2a at 72 hours after transfection and at

24 hours after TRAIL treatment. C and D, Bax and Bak activation was determined by staining with Bax‐NT (N‐terminus) and Bak‐NT antibodies,
at 60 hours after transfection and at 12 hours after starting TRAIL treatment. B‐D, At least two independent experiments, each one with
triplicates, revealed highly comparable results; mean values and SDs of a representative experiment are shown. Statistical significance was
determined by ANOVA test (two‐way, multiple comparisons) using all individual values (at least six); it is indicated for siMcl‐1 treatment vs

controls or for combination treatment vs siMcl‐1 alone (*P < .05). Examples of treated cells vs controls are given below the bar charts (overlays),
and cell populations with low MMP or activated Bax/Bak (#) are indicated. ANOVA, analysis of variance; Mcl, myeloid cell leukemia; SD,
standard deviation; siRNA, small interfering RNA; TRAIL, TNF‐related apoptosis‐inducing ligand
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Limiting efficiency of BH3 mimetics in melanoma cells has raised

the question about their general applicability for melanoma. We thus

investigated further strategies for posttranscriptional Mcl‐1 control.

miRNAs can efficiently regulate gene expression. Due to the small

size, they allow an efficient packaging in viral vectors, which may be

used in gene‐based therapy.65 Both miR‐339‐3p and miR‐193b have

been shown to suppress melanoma cell proliferation and/or invasion,

which was associated with Mcl‐1 downregulation.32,33 They were

used in the present study to restrict Mcl‐1 expression in MeWo.

Whereas miR‐339‐3p was less effective in combination with TRAIL,

the combination of miR‐193b and TRAIL resulted in significant loss of

cell viability and increased apoptosis. In parallel with the siMcl‐1
approach, strong Bax and Bak activation was observed, indicating the

activation of intrinsic apoptotic pathways.

In conclusion, tumor cells can be targeted by direct apoptosis

agonists, for example, by TRAIL, as well as by inhibition of

F IGURE 5 Use of miRNAs and S63845 to overcome TRAIL resistance. A, MeWo cells were treated with 5 µM S63845 and TRAIL
(100 ng/mL, light grey bars, following at 48 hours by determination of apoptosis (PI assay) and cell survival (calcein assay). Bax and Bak

activation was quantified by NT antibodies at 12 hours posttreatment. B‐E, MeWo cells were transfected with scrambled siRNA (OffT),
siMcl‐1, miR‐193b, miR‐339‐3p, or were nontransfected (Ctr). In addition, they were treated with TRAIL at 48 hours posttransfection
(100 ng/mL, light grey bars). TRAIL treatment was for 48 hours for determination of apoptosis (B) and cell survival (C), whereas for Bax

(D) and Bak activation assays (E), TRAIL treatment was for only 12 hours. A‐E, At least two independent experiments were performed,
each one with at least duplicates; data are expressed as means ±SDs of all individual values (n = 4). Statistical significance of single‐
treated cells (w/o TRAIL, dark grey bars) is indicated vs nontreated controls, whereas the statistical significance of combination

treatments (TRAIL+, light grey bars) is indicated vs TRAIL treatment alone (*P < .05). SD, standard deviation; siRNA, small interfering
RNA; TRAIL, TNF‐related apoptosis‐inducing ligand
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antiapoptotic mechanisms. The present study demonstrates the only

limited value of single treatments, while the combination of TRAIL

and Mcl‐1 targeting revealed high efficiency in 2D cultures of mel-

anoma cells. The principle strategy of combining apoptosis agonists

and the targeting of antiapoptotic pathways appears generally pro-

mising in cancer therapy. Also, further combinations with MAPK in-

hibitors may be considered, in particular also due to crosstalks

between MAPKs and Bcl‐2 proteins. Thus, MAPK activation results in

downregulation of the proapoptotic protein Bim, which serves as an

important antagonist of Mcl‐1.66,67

Of course, 2D cell cultures represent only a highly simplified

model of cancer. The situation may improve when more complex

models as 3D cultures or animals are used. Indeed, we have shown

previously the antitumor effects of TRAIL in melanoma nude mouse

models, when TRAIL was expressed by a replication‐competent

adenoviral vector.68 As other drugs, BH3 mimetics may reveal

varying efficacy in different tumor models as 2D, 3D, and in vivo, as

previously shown.56 Nevertheless, BH3 mimetics are presently pro-

mising enough for their clinical testing in patients with different

tumors.60‐62 Thus, it appears conceivable that the good combination

effects we saw here in a basic melanoma model may be finally

translated into a clinical situation. Thus, after possibly further testing

the particular effectors identified here in animal models, pharmaco-

logical use of TRAIL and S63845 or gene therapeutic use of

miR‐193b may be considered for melanoma therapy.
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