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Abstract

Introduction

Kidney diseases are a major health issue. To address this clinical need, non-invasive imaging may provide
markers to inform on the different stages of pathophysiology.

Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to
tissue water movement and can be used to differentiate between tissue properties. DWI studies
commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering
from geometric distortion. Fast spin-echo imaging techniques (e.g. Rapid Acquisition Relaxation
Enhancement - RARE) are less susceptible image distortions and can be an alternative to ss-EPI.
Renal-DWI studies commonly use a mono or bi-exponential signal decay model which does not
differentiate between the different water diffusion sources.

Firstly, this thesis focuses in the implementation of a novel image acquisition technique: diffusion
sensitized split-echo RARE technique. Secondly, show the feasibility of a novel image analysis approach:
continuum modeling, using non-negative least squares (NNLS) for separate the different renal water

diffusion sources.

Methods

The Stejskal-Tanner preparation was used to introduce diffusion sensitization to a RARE variant to ensure
renal-DWI free-of-geometric distortion for high field preclinical DWI at 9.4 T. Validation studies in standard
liquids and in vivo were performed to validate the implementation of DW split-echo RARE.

Numerical simulations were conducted to gauge the performance of the data-driven NNLS approach using
conventional least square fitting (LS) as reference. The simulations aimed at optimizing renal DWI
protocols (number of b-values, SNR, b-value range) for separate the different renal water diffusion sources

for different physiological conditions (increased tubular volume fraction and fibrosis).

Results

Validation studies provided diffusion coefficients consistent with reported values from the literature.
Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border
displacement (2.60 vs. 0.75).

NNLS showed the same high degree of reliability as the non-linear LS. Mean absolute percentage error

(MAPE) of the tubular volume fraction (fusues) decreased with: increasing SNR, increasing the number of



b-values and using b-rangeiarge. FiXing Dpioog and Drissue Significantly reduced MAPEgubues. NNLS was able to

detect the (fourth) fibrotic compartment and to distinguish between 10% versus 30% fibrosis.

Conclusion

In this thesis, | demonstrated the feasibility of the split-echo RARE as an alternative to the common ss-EPI
technique in DWI studies.

This work demonstrates the feasibility of continuum modelling using NNLS, a data-driven approach for
renal DWI to separate the different renal water diffusion sources under different (patho)physiological

conditions including increased tubular volume fraction and different degrees of fibrosis.



Zusammenfassung

Einleitung

Nierenerkrankungen sind ein grof3es Gesundheitsproblem. Um diesen dringenden, ungedeckten klinischen
Bedarf zu decken, kann die nicht-invasive Bildgebung Marker liefern, die liber die verschiedenen Stadien
der Pathophysiologie informieren.

Die Diffusionsgewichtete Bildgebung (DWI) ist ein nicht-invasives Verfahren, das auf die Wasserbewegung
im Gewebe reagiert. Die DWI kann zur Differenzierung von Gewebeeigenschafte beitragen.

Bei DWI-Studien werden Ublicherweise single-shot-echo-planar-imaging (ss-EPI)-Techniken verwendet,
die anfallig fir geometrische Verzerrungen sind. Schnelle Spin-Echo-Bildgebungstechniken (z. B. Rapid
Acquisition Relaxation Enhancement - RARE) sind weniger anfillig flir Bo-Inhomogenitats-bedingte
Bildverzerrungen und konnen eine gute Alternative zu ss-EPI sein.

Nieren-DWI-Studien verwenden Ublicherweise ein mono- oder bi-exponentielles Signalabklingmodell, das
nicht zwischen den verschiedenen Wasserdiffusionsquellen unterscheidet.

Diese Arbeit konzentriert sich erstens auf die Implementierung einer neuartigen Bildaufnahmetechnik: die
diffusionssensibilisierte Split-Echo-RARE-Technik. Zweitens wird die Machbarkeit eines neuartigen
Bildanalyseansatzes aufgezeigt: Kontinuumsmodellierung unter Verwendung der non-negative least

squares (NNLS) zur Trennung der verschiedenen renalen Wasserdiffusionsquellen.

Methoden

Die Stejskal-Tanner-Vorbereitung wurde verwendet, um eine Diffusionssensibilisierung in eine RARE-
Variante einzufuhren, die eine Nieren DWI frei von geometrischer Verzerrung fir praklinisches DW/ im
Hochfeld bei 9.4 T ermoglicht.

Es wurden Validierungsstudien in Standardflissigkeiten und in vivo durchgefiihrt, um die Implementierung
von DW Split-Echo RARE zu validieren.

Es wurden numerische Simulationen durchgefiihrt, um die Leistung des datengesteuerten NNLS-Ansatzes
unter Verwendung der konventionellen least-square Anpassung (LS) als Referenz zu bewerten. Die
Simulationen zielten darauf ab, die renalen DWI Protokolle (Anzahl der Messpunkte auf dem Signalabfall,
SNR, Stdrke der letzten Diffusionswichtung) fur die Trennung der verschiedenen renalen

Wasserdiffusionsquellen flir zwei physiologische Bedingungen zu bewerten.



Ergebnisse

Validierungsstudien lieferten Diffusionskoeffizienten, die mit den berichteten Werten aus der Literatur
Ubereinstimmen.

Die Split-Echo-RARE (ibertraf den konventionellen ss-EPI, wobei der ss-EPl eine 3.5-mal groRere
geometrische Verzerrung (2.60 vs. 0.75) hat.

Die NNLS zeigte den gleichen hohen Grad an Zuverldssigkeit wie die LS, da sie in der Lage ist, die drei
wichtigsten renalen Wasserdiffusionsquellen zu trennen. Der mittlere relative Fehler (MAPE) der
tubuldren Volumenfraktion (fwsuwi) Nnahm mit zunehmendem SNR ab. Die Fixierung Dpiood UNd Dyissye
reduzierte die Unsicherheiten der Volumenfraktionen sehr stark. NNLS in der Lage, das (vierte) fibrotische

Kompartiment zu erkennen und zwischen 10 % und 30 % Fibrose zu unterscheiden.

Fazit

In dieser Arbeit habe ich die Machbarkeit des Split-Echo-RARE als Alternative zur lblichen ss-EPI Technik
in DWI Studien demonstriert.

Diese Arbeit demonstriert die Durchfiihrbarkeit der Kontinuummodellierung mit NNLS, einem
datengesteuerten Ansatz fiir renale DWI als eine Alternative zur Trennung der verschiedenen renalen
Wasserdiffusionsquellen unter verschiedenen (patho)physiologischen Bedingungen, einschlieRlich eines

erhohten tubularen Volumenanteils und verschiedener Fibrosegrade.



1. Introduction

Part of this thesis is based on the work published on Periquito, et al. 2019 (1) and Periquito, et al.
"Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the
kidney tubule system." Quantitative Imaging in Medicine and Surgery 11.7 (2021): 3098-3119.; therefore,

it contains direct passages from both publications.

Kidney diseases are a major health issue, with increasing incidence and an estimated two million deaths
per year worldwide due to acute kidney injury (AKI) and chronic kidney disease (CKD) and its incidence
continues to grow (2-7). While several biomarkers are currently being investigated for renal diagnosis, to
date clinical point-of-care biomarkers are still lacking(8-11). To address this urgent unmet clinical need,
MRI may provide non-invasive imaging markers to inform on the different stages of pathophysiology,
improve prediction and interception of disease progression and evaluate treatment of kidney diseases (6,

12).

1.1 Diffusion-weighted MRI

Diffusion-weighted MRI (DWI) allows non-invasive quantitative measurements that reflect micro-
morphological and physiological changes in renal tissues. The relevance and applicability of renal DWI has
been demonstrated in numerous preclinical and clinical studies, which used it either as a diagnostic tool
or to assess treatment response. Applications include AKI (13) and characterization of renal masses (14),
tumors (15-18), lesions (19, 20) and cysts (21), as well as the assessment of renal fibrosis (22-25), allograft

pathophysiology (26, 27) diabetic nephropathy (28), and functional changes in CKD (29, 30).

1.1.1 Diffusion-weighted Echo Planar Imaging (EPI)

The most commonly employed DWI technique is single shot echo planar imaging (ss-EPI) because of its
fast imaging speed. It is currently the standard method on preclinical MR systems that is suitable for in
vivo studies. It offers excellent temporal resolution, insensitivity to bulk motion and provides reasonable
spatial resolution. Notwithstanding these advantages, ss-EPI is prone to magnetic susceptibility artifacts
that present themselves as signal loss, image distortion and off-resonance effects. These detrimental
effects are even more severe at ultrahigh magnetic field (Bo) strengths, and particularly pronounced in
regions with a poor Bo homogeneity. Hence, diffusion weighted ss-EPI in kidney regions adjacent to bowels
or in close proximity to skin/fat/muscle boundaries is particularly challenging and prone to loss of

anatomical integrity due to geometric distortions.



Geometric distortions caused by ss-EPI may have serious consequences for the quantitative analysis of
renal MRI data. Manual definition of regions-of-interest (ROI) can be extremely challenging when these
image distortions are present, as it requires clear distinctions between the renal layers. Semi-automated
ROI analysis techniques, such as concentric object analysis (31, 32) or the morphology-based ROI-

placement (33, 34) can be severely compromised by geometric distortions.

1.1.2 Diffusion-weighted Rapid Acquisition with Relaxation Enhancement (RARE)

Fast spin-echo imaging techniques are largely insensitive to Bo inhomogeneity related image distortions
and hence present a valuable alternative to EPI particularly at (ultra)high magnetic field strengths (35-42).
This makes diffusion sensitized fast spin-echo imaging a promising approach for improving anatomical
integrity in renal DWI. The suitability of single-shot Rapid Acquisition with Relaxation Enhancement (ss-
RARE) (43) for DWI has been shown for the human kidney at typical clinical field strengths of 1.5 T (44) and
3.0 T (45).

1.2 Separate renal water diffusion sources with continuum modelling: IVIM-NNLS

The renal tubules are a unique anatomical compartment of the kidney, comprising a large fraction of the
renal volume. The tubular volume fraction can change due to (i) changes in the glomerular filtration rate,
(i) alterations in tubular outflow towards and beyond the renal pelvis, (iii) modulation of the transmural
pressure gradient and (iv) changes in tubular fluid resorption (34). Hence, MR-based assessments of
(changes in) the tubular volume fraction are of high relevance in elucidating renal pathophysiological

mechanisms.

As mentioned, DWI provides a method for in vivo evaluation of water mobility. In the kidneys water
mobility may be linked to three different sources: i) tissue water diffusion, ii) blood flow, and iii) tubular
flow. To account for the tubular volume fraction in renal diffusion assessment the commonly used
mono/bi-exponential intravoxel incoherent motion (IVIM) modelling, was recently extended to a tri-
exponential approach (46). Nevertheless, the use of these rigid multi-exponential models in DWI
acquisition and analysis protocols is common practice for IVIM MRI of the kidney. The data are forced to
conform to a priori assumptions of simplified multi-exponential models, however these approaches may
not accurately reflect the renal microstructure. The performance of these rigid multi-exponential models

is often highly dependent on starting values (47).

Here, | explored the feasibility of separating the different renal water diffusion sources and assessing

tubular volume fraction changes with continuum modelling using the non-negative least squares (NNLS)

10



approach that is data-driven and requires no a priori knowledge (number of exponential components,

starting values, fixed coefficients).

1.3 Goal of this doctoral work

The goal of this doctoral work is firstly to implement and adapt a diffusion sensitized split-echo RARE
technique (48). Validate the proposed technique thoroughly in phantom studies and confirm the
hypothesis that DW split-echo RARE outperforms the conventional DW ss-EPI in terms of anatomical

integrity and variability of measurements in an in vivo DWI study in rats.

The second goal of this work is to show the feasibility and investigate the performance of continuum
modelling using NNLS algorithm as a data-driven alternative to rigid models for IVIM techniques to
disentangle the different renal water diffusion sources and assess tubular volume fraction changes in

different pathophysiological conditions.

11



2. Materials and Methods

2.1 DW split-echo RARE implementation

A Stejskal-Tanner preparation scheme was used to introduce diffusion sensitization (Figure 1) to a RARE
variant (35): diffusion gradients were placed around the first refocusing pulse and split-echo RARE
acquisition was implemented to avoid destructive interferences between even and odd echoes (48).
Dummy RF pulses (n=4) were applied prior to data acquisition to balance the signal amplitude between
odd and even echo groups (49). A central phase encoding scheme was employed to reduce the time
between the diffusion sensitization module and the acquisition of the central k-space region. For
comparison, the commonly used diffusion weighted spin-echo (SE) echo-planar imaging (EPI) method was
used. A single-shot set-up was chosen, because of the excellent temporal resolution it provides, which is
essential for in vivo studies of functional dynamics, such as those involving short and reversible

physiological stimuli (50).

12
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Figure 1: Pulse sequence diagram. a): Basic scheme of the diffusion-sensitized split-echo RARE sequence (48)
showing the RF pulse train, the frequency encoding, phase encoding and the slice selection gradients. The dephasing
frequency encoding gradient prior to the second refocusing RF pulse a is unbalanced, i.e. the Oth moment of this
gradient does not equal half the Oth moment of the readout gradient. Unipolar diffusion sensitization gradients of
amplitude G and duration 6, separated by the delay between the onset of the gradient pulses (A), surround the first
refocusing pulse in phase, frequency and slice encoding. After the third refocusing pulse, the odd (E1) and the even
(E2) echo are generated for the first time. The odd (E1) and the even (E2) echoes are acquired within each echo
spacing, reconstructed separately, with the resulting images being added afterwards. b): The evolution of the
magnetization is illustrated in the extended phase graph. Only the two pathways contributing to the signal are shown:
the odd echo (red solid line) and the even echo (green dashed line) (1).

2.1.1 Phantoms studies

A phantom containing different substances with known diffusion properties was prepared in order to (i)
validate the measured diffusion parameters and furthermore to (ii) examine the propensity of DW ss-EPI
and DW split-echo RARE to geometric distortions. The custom-made phantom consisted of three tubes
(outer diameter: 7.8 mm) filled with vegetable oil (sunflower oil), de-ionized water, and acetone,
respectively. These tubes were placed in a larger cylindrical tube (outer diameter: 30 mm) filled with a 5%
solution of agarose to facilitate the imaging, achieve a sensible loading of the RF coil, and reduce

macroscopic distortions of the magnetic field Bo.

13



2.1.2 Animal studies

All investigations were approved by the Animal Welfare Department of Berlin’s State Office of Health and
Social Affairs (LaGeSo) in accordance with the German Animal Protection Law. The procuration of animals,
husbandry and experiments conformed to the European Convention for the Protection of Vertebrate
Animals used for Experimental and other Scientific Purposes (Council of Europe No 123, Strasbourg 1985).
The animals had ad libitum access to food (standard diet) and water and were housed under standard
conditions with environmental enrichment. Female Wistar rats (aged 12-13 weeks, body weight 288-330
g, n=7; Harlan-Winkelmann, Borchen, Germany) underwent MRI under isoflurane anesthesia (2.0% in air).
Core body temperature was monitored by means of a rectal fiber-optic temperature probe (AccuSens,
Opsens, Québec City, Canada). Body temperature was maintained at 37°C with a pad containing circulating
warm water connected to a water-bath. Respiration rate was monitored throughout the experiment using
a small balloon placed on the chest of the animal (Model 1025, SA Instruments, Stony Brook, NJ, USA) and

served for triggering the MRI data acquisition.

2.1.3 MR imaging

All MRl measurements were carried out on a 9.4 Tesla small animal MR system (Bruker Biospec 94/20;
Bruker Biospin, Ettlingen, Germany). For phantom experiments, a quadrature transceiver birdcage
radiofrequency (RF) volume resonator (inner diameter: 72 mm; Bruker Biospin, Ettlingen, Germany) was
employed. In vivo studies used a curved 4-channel surface RF coil array (rat heart RF coil, Bruker Biospin,
Ettlingen, Germany) for signal reception in conjunction with the above birdcage volume resonator for

signal transmission.

| compared the proposed DW split-echo RARE approach against the DW spin-echo EPI method, commonly
used in rodents. Images obtained from a DW spin-echo (SE) sequence were used as reference for the
phantom assessments. In vivo, a gradient-echo sequence (FLASH) served as anatomical reference to
measure geometric distortions, since the very long acquisition time of DW SE imaging render this method
unfeasible for in vivo MRI. These comparisons aimed to validate the measured diffusion parameters and

also to examine the propensity of DW ss-EPI and DW split-echo RARE for geometric distortions.

DWI was performed on the phantom and on four Wistar rats in vivo using the imaging parameters
summarized in Table 1. Acquisition parameters were chosen such that both DW ss-EPl and DW split-echo
RARE had the same acquisition time. Apart from the fast single-shot protocols, a multi-shot protocol was
also used for DW split-echo RARE to demonstrate the image quality achievable at higher spatial resolution.

Such protocols for diffusion sensitized split-echo RARE kidney MRI would be of interest for experiments in

14



which high temporal resolution is not essential, such as in chronic kidney disease (CKD) where pathological

changes are rather sluggish.

Table 1: Summary of DWI acquisition parameters for the three set-ups used in the experiments (1).

Experimental set-up (1) phantom, (2) in vivo (3) in vivo (high-resolution)

DWI technique ss-EPI split-echo split-echo RARE
RARE

Receiver Bandwidth 300 kHz 131 kHz 131 kHz

Echo time (TE) 25 ms 16 ms 20 ms

Repetition time (TR) approx. 2.3 s (respiration triggered)

Field of view (45x45) mm?

Effective Acquisition matrix 96 x 192 128 x 256

Spatial resolution 0.47x0.23 0.35x0.18

Slice thickness 1.5mm 1.5 mm

segments / Echo train length (ETL) 1/192 4/64

Averages 8 8

Acquisition time per b-value 18s 73s

Total acquisition time (5x3 b-values) 4 min30s 18 min 15 s

Diffusion weighting was achieved using the following b-values: 0, 200, 300, 500 and 700 s/mm?. In the
homogenous phantom one diffusion direction was used. To account for diffusion anisotropy effects in the
kidney, each of these acquisitions was performed in three orthogonal diffusion directions, yielding 15 (5
b-values x 3 directions) acquisitions in total. Respiratory motion artifacts were reduced by triggering the

data acquisition based on the respiratory signal trace.

2.2 Quantification of water diffusion

2.2.1 Phantom studies
Diffusion coefficient maps were generated for the diffusion phantom by a pixel-wise linear fitting

performed after taking the logarithm of the signal intensities obtained at the 5 b-values.
S(b) = S, .e7PP [Eq. 1]

where S is the signal intensity and Sy is defined as the signal intensity at b=0 s/mm?2. D is the diffusion

coefficient also referred to as the “apparent diffusion coefficient” (ADC), recognizing that is depends on

15



both, the nature of the media studied and on experimental conditions. ROl analysis was performed to
determine the mean diffusion coefficient for the three compounds, which were benchmarked against

literature values.

2.2.2 Rat kidney in vivo

The IVIM approach was used. This consists of a two compartment bi-exponential model, in order to obtain
pure diffusion values, without contamination from pseudo-diffusion (i.e. incoherent movement of water
by blood perfusion). According to the IVIM approach, the relation between signal intensity and the b-

values can be described as:
S(b) = Sy (fe™PPr + (1 — f)ePP) [Eq. 2]

where S is the signal intensity, D, is pseudo-diffusion coefficient, f is flow fraction and D is slow diffusion
(pure diffusion) coefficient. Sp is defined as the signal intensity at b=0 s/mm?2. For b > 200 s/mm? no
contribution from D, is assumed because the signal decay of D, is much faster than D (D, >> D). Therefore,
| calculated the pure diffusion coefficient from a non-linear least square fit to the signal intensities at b 2
200 s/mm?, which allowed us to use the simplified Equation 1. All three directions were averaged to

account for diffusion anisotropy.

ROIs were defined according to the morphological features of the kidney using semi-automated kidney
segmentation. ROIs were defined on a coronal kidney image: 5 in the renal cortex (COR), 5 in the outer
medulla (OM) and 3 in the inner medulla (IM) as previously described (33). The mean diffusion coefficient

of each renal layer (COR, OM, IM) was computed as the average of all ROls within the layer.

2.2.3 Quantification of geometric distortion

Contours drawn around the cylindrical structures of the phantom in the spin-echo (DW-SE) images were
defined as the distortion-free reference. For in vivo DWI, a contour drawn around the kidney on a gradient-
echo image was used instead. To illustrate the extent of geometric distortions in DW ss-EPl and DW split-
echo RARE, | used color-coded difference-maps between the contours drawn in these images and the

reference contour.

Geometric distortions were quantified using an in-house developed method of border displacement
analysis (program written in MATLAB; The Mathworks, Natick, MA, USA). The metric border displacement
between two contours was based on their symmetric difference. For the simple case of two identical

contours, there are no pixels outside their intersection; hence the symmetric difference is zero. The
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greater the geometric difference between contours A and B, the larger the number of pixels outside their

intersection shown in Figure 2

Kidney Outline  Binary Mask

;\ n Distortion Map

— | N,
DW|mage , e -1
(e.g. EPI RARE)

Perimeter Symmetric Difference
P(B) AAB

l \ Border Displacement ' J
BD =

=(A A B)/P(B)

Reference
A
(e.g. FLASH)

Figure 2: Assessing geometric distortion. The kidney outline (red contour - border of the kidney) was created for the
reference image and the DW image. Binary masks were generated for each image using the kidney outline. The
distortions maps were calculated by subtracting the binary mask of the DW image to the binary mask of the reference
image, a pseudo-colour scale [-1 1] was used from blue (-1) via white to red (1). The red pixels of the distortion map
represent missing pixels, and the blue pixels are pixels, which should not exist with respect to the reference mask.
Border displacement was calculated by dividing the number of pixels of the distortion map (A A B) by the perimeter
(P(B)) of the kidney outline of the DW Image (1).

2.2.4 Statistics

A normal distribution of the calculated border displacements and diffusion coefficients cannot be
assumed, because the susceptibility-induced image distortions influence both in an unpredictable manner.
To this end, the results are given as the median together with the minimum to maximum value range
(rather than the commonly used mean * standard deviation). For testing statistical differences, | used the
non-parametric Mann-Whitney U test with a significance level of 5%. This test does not make any
assumptions about the form of the distributions, requiring only that both groups have the same

distributions under the null hypothesis.
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2.3 Separate renal water diffusion sources with continuum modelling: IVIM-NNLS

2.3.1 IVIM-NNLS implementation

A multi-exponential analysis based on the NNLS algorithm of Lawson and Hanson (51) was used. The NNLS
MATLAB (Mathworks, Natwik, USA) implementation was adapted from the open-source software
AnalyzeNNLS from Bjarnason and Mitchell, developed for a multi-exponential analysis of T, relaxation of

the brain allowing quantification of sub-voxel structures due to water compartmentalization (52).

The output of NNLS is a diffusion coefficient distribution with distinct log-normal-like peaks. Each peak
corresponds to a major (pseudo-)diffusion compartment. These peaks can be characterized by i) area

under the curve fraction; ii) geometric mean D coefficient.

2.3.2 NNLS numerical simulations
All numerical simulations were implemented in MATLAB. The ground truth signal was created assuming a

three compartment IVIM model using the follow equation:

SI = frissue * €Xp(—b * Dyissue) + frubuies * €XP(—b * Deypyies) t+ foiooa * €Xp(—b * Dpio0q)  [Eq. 3]

where Sl is the signal intensity as a function of b (b-value), fissue the signal fraction of the tissue component,
Drissue the diffusion coefficient of restricted water diffusion in renal tissue, fiuues the signal fraction of the
tubular component, Dubures the pseudo-diffusion coefficient of the tubular fluid component, fuood the signal

fraction of the blood component, and Dsioos the pseudo-diffusion coefficient of the blood component.

Since the number of compartments might change in pathophysiological conditions of the kidney including

the development of fibrosis, a fourth compartment was applied.
Sl = ffibrosise_b Dribrosis + ftissuee_b Deissue + ftubulese_b Deubutes + fbloode_b Dbiood [EQ- 4]

where fibrosis is the signal fraction of the fibrotic component, Dyirosis the diffusion coefficient of restricted

water diffusion in fibrotic tissue.

The ground truth signal was created assuming a three-compartment or a four-compartment model [eq. 3

and eq. 4] using three sets of parameters:
e The first parameter set was used to represent baseline conditions.

e The second parameter set was used to represent pathophysiological conditions of increased

tubular volume fraction (fiubues).
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e The third parameter set was used to represent pathophysiological conditions of two degrees of

renal fibrosis (fibrosis).-

Table 2: Summary of multi-exponential parameters used for the generation of the synthetic diffusion decay data.

Increase of Fibrotic Fibrotic
Parameters Baseline (46) | tubular volume | conditions conditions

fraction 10% 30%
Fraction blood (fbioo0d) 0.10 0.05 0.10 0.10
Fraction tubules (fiubules) 0.30 0.50 0.30 0.30
Fraction tissue (fiissue) 0.60 0.45 0.50 0.30
Fraction fibrotic tissue (ffibrosis) 0.00 0.00 0.10 0.30
Diffusion blood (Dbiood) 180.0 x 10 mm?/s
Diffusion tubules (D:ubues) 5.80 x 10 mm?/s
Diffusion tissue (Dtissue) 1.50 x 103 mm?/s
Diffusion fibrotic tissue (Djibrosis) 8 x 10 mm?/s

Figure 3 describes the workflow from simulation of these parameters to visualization and mean absolute
percentage error assessment (MAPE). Admittedly, these parameters obtained from the literature (46)
provide a fair approximation but do not fully reflect the complexity and heterogeneity of the renal
architecture. All parameters used for (i) baseline, (ii) increased fusues and (iii) fibrosis conditions are

presented in Table 2.

For each b-value, Rician noise was added to the signal. The signal [eq. 3 and eq. 4] was then fitted using
the NNLS implementation and the common non-linear least square fitting routine (LS). The process was
repeated N=500 times for each variation: physiological condition (baseline and increased fiusues), b-value
range (small range [0-800 mm?/s] and large range [0-2180 mm?/s] where SNR [40 80 120 160 200 280 360
440 520 640 760 880 1000] and number of b-values [10 15 20 25 30 35 40 45 50] were varied.

The effect of fixing the diffusion coefficients Drissue and Deiood Was also studied. Fixing fitting parameters to
improve the robustness of the fit is common practice (47), especially when dealing with multi-exponential

functions, where at least six parameters are needed.
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2.3.3 Mean absolute percentage error (MAPE)

The mean absolute percentage error (MAPE) was used to show the percentage difference between the
calculated value and the true value, for the 9 x 13 matrix of b- and SNR values (Figure 3). MAPE is defined

as:

e x|

MAPE = - 100 [Eq. 5]

where x’is the calculated parameter and x the true-value.
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Definition of Simulation Parameters

(Patho)physiological Condition Baseline Increased Tubular Fraction
~ Small Large
b-value Range [0 - 800 s/mm?] [0 - 2500 s/mm?]
STEP 1 FixationofD, ., D, . Fixed Not-fixed
Number of b-values 1015 20 25 30 354045 50
SNR 40 80 120 160 200 280 360 440 520 640 760 880 1000

Diffusion Decay Simulations
(for each parameter combination + 3-compartment model)
n=500 curves

STEP 2 Sl “ground truth” - “with added noise”
(fblood tubules "tissue (fblood tubules "tissue
Dbloothubules hssue) Dblood DtubulesDn‘ssue)
b-value ' b-value
Fitting: Parameter Calculation
STEP 3 Levenberg-Marquardt (LS) NNLS-IVIM
s 15 s is NS ¢NNLS  GNNLS NLS ~NNLS  NNLS
(f:ood ftubules f:'sssue Dblood Dtubules Dtissue) (f:lood f::bules f’!:ssue DNblood D':ubules Dtissue)
Determination of Mean Absolute Percentage Error (MAPE)
(for each of the 6 parameters: f, _ f = f_ D, osPibuies Prissue fOF bOth fitting methods)
Heatmap Plotting MAPE (%)
- ' 100 ,
STEP4 G o - mape =X %1 100 %)
iz g 75 X
o 3
€8 50
g _Z x" calculated parameter
z 25 X true value
- 0
SNR
Heatmap and Statistical Analysis
(parameter combinations yielding MAPE<10% and <5% for both fitting methods)
Heatmap Analysis Error Proportion in Renal Compartments
T T 1] . =I baseline | ‘
| £ g ITV condition | ‘
STEP 5 | % g baseline §
:, 1) v condllion‘ ‘
T T T §| baseline —
| B 21 ITV condition e —
| & g,l baseline |
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0% 20% 40% 60% 80% 100%
MAPE<5% = MAPE<10%  MAPE>10% B MAPE<5%  MAPE<10% = MAPE>10%

Figure 3: Workflow for assessment and parameter optimization for NNLS analysis of DWI-MRI of the kidney.
Numerical simulations were performed and analysed using the NNLS algorithm and the common non-linear least
square fit using Levenberg-Marquardt algorithm on different physiological conditions (baseline and challenge -
“increased tubular volume fraction”), range of b-values (small range limited to b-valuemax = 0 — 800 s/mm? and large
range covering b-values = 0 — 2500 s/mm?) and parameter fixation (free parameters and fixed Dsiood and Drissue). MAPE
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was calculated (average N=500) using the true-value as a reference. The results were displayed using a MAPE heat
map showing the difference between the ground truth and the data obtained from NNLS or LS for each condition.
From the MAPE heat map the percentage of combinations (SNR/number of b-values) with a difference between the
ground truth and the NNLS data or the LS data of less than 5% or less than 10% were quantified and plotted in an
error proportion plot. (MAPE: mean absolute percentage error, foiood: Volume fraction of blood, frubukes: volume
fraction of tubules, fiissve: volume fraction of tissue, fribrosis: volume fraction of fibrosis, Deiod: diffusion coefficient of
blood, D:butes: diffusion coefficient of tubules, Diissve: diffusion coefficient of tissue, Dfibrosis: diffusion coefficient of
fibrosis, b-value: diffusion weighting, SNR: signal-to-noise ratio)

2.3.4 Statistics

The Shapiro-Wilk test was used to assess for Gaussian distribution. MAPE values did not conform to a
Gaussian distribution, thus non-parametric statistical tests were used including the paired Wilcoxon
signed-rank test, the Kruskal-Wallis test and Dunn’s post-hoc procedure. Differences in MAPE obtained for
fixing vs. not-fixing the Dyiod and Dyissue diffusion parameters, for the b-value ranges used (0-800 mm?/s vs.
0-2180 mm?/s), and for the physiological state (baseline vs. increased tubular volume fraction) were tested
independently using the paired Wilcoxon signed-rank test. Differences in MAPE among the 23
permutations of the independent variables volume fraction, b-value and fixation state — with each variable
having two levels — were assessed with the Kruskal-Wallis non-parametric ANOVA test. The Kruskal-Wallis
test was used to compare the area under the curve (AUC) of the fibrotic compartment between the

simulated conditions of 30%, 10% and no fibrosis.
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3. Results

3.1 DW split-echo RARE measurements

To validate the diffusion weighting of the split-echo RARE, phantom experiments were conducted at room
temperature using a cylindrical phantom containing 3 tubes each loaded with water, vegetable oil and
acetone. For a quantitative comparison, the diffusion coefficients derived from these measurements are
shown in Figure 4, together with the literature values. | observed a good agreement between all three DW
approaches. However, the DW split-echo RARE method resulted in diffusion coefficients (for water and
acetone) that were closer to the literature values than those obtained with the DW ss-EPI and even

reference DW-SE method.

Diffusion Coefficients

5- i : :
Oil Water Acetone e Literature
4- " s SE
E + EPI
”E 3- P Lt . Rare
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o :
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Figure 4: Validation of measured diffusion coefficients for a phantom with known diffusion properties. The
diffusion coefficient for vegetable oil, water, and acetone were measured using three diffusion-weighted acquisition
techniques: spin-echo (SE; reference, 0.011 +0.019, 1.91 £0.07 and 3.15 #0.34 10-3 mm2/s), ss-EPI (0.041 +£0.10, 1.92
+0.05 and 2.97 +0.63 103 mm?/s), and split-echo RARE (0.035 +0.074, 2.01 #0.07 and 3.19 #0.29 103 mm?/s). Results
are compared against literature diffusion coefficients values of vegetable oil (0.010 10 mm?/s) water (2.13 103
mm?/s) and acetone (4.21 103 mm?/s). Diffusion coefficient are in units of 10> mm?/s (mean over ROIs + standard
deviation) for ROIs placed in the diffusion coefficient maps for each respective material (1).
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3.1.1 Geometric fidelity assessment of DWI in phantom experiments

To examine the geometric fidelity of the DWI approaches, the border displacement (BD) analysis was
applied to the phantom images of DW split-echo RARE and DW ss-EPI, without diffusion weighting (b =0
s/mm?) (Figure 5). Red contours derived from the DW-SE reference image were superimposed onto the
DW split-echo RARE and DW ss-EPI images (Figure 5). Difference (distortion) maps showed that DW split-
echo RARE vyields close to distortion-free images at 9.4 T with a border displacement of 0.50 [0.31; 0.73]
(median of 4 circles [minimum; maximum]. On the other hand, pronounced displacements 1.87 [1.37;

2.41] were observed for DW ss-EPI.

DW ss-EPI DW Split-RARE

b =0s/mm? Distortion Map b =0 s/mm? Distortion Map

: e C o

Figure 5: Assessment of geometric fidelity in the test phantom. Images obtained for a structured phantom consisting
of three small cylinders within one large one at 9.4T using DW ss-EPI (left panel) and DW split-echo RARE (right panel).
The overlaid red contour represents the geometry of the DW SE reference image, which was acquired with the same
spatial resolution and matrix size. The color-coded difference maps with respect to the DW SE reference visually
demonstrate the amount of distortion, a pseudo-color scale [-1 1] was used from blue (-1) via white to red (1). The
artifacts along the phase encoding direction obtained for split-echo RARE are due to the very sharp boundaries and
strong signal intensity changes in the phantom and the length of the echo train (192 x 3.2 ms) (1).

3.1.2 Anatomical integrity assessment on in vivo renal DWI

To access anatomical distortions in vivo, coronal slices of the rat kidney were acquired using ss-EPI and
split-echo RARE, as well as FLASH (as an anatomical reference). Similar to the phantom experiments, split-
echo RARE provided almost distortion-free images at 9.4 T as demonstrated by the distortion maps (Figure
6). Border displacement analysis yielded BD = 0.79 [0.63; 1.17] pixels for split-echo RARE. In contrast, the
border displacement for ss-EPI was significantly (p = 0.013) higher: 2.66 [1.31; 3.61] pixels (Figure 7).
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EPI

Distortion
map
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DW Split-
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Distortion
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Figure 6: Assessment of geometric distortions in vivo. Coronal images of rat kidneys obtained in four animals in vivo
at 9.4T using, DW ss-EPI (b=0mm/s?) (top row), FLASH (third row) and DW split-echo RARE (b=0 mm/s?) (fourth row).
The respective distortion map (compared to the FLASH reference) is shown below each MR image (third and fifth
row), a pseudo-color scale [-1 1] was used from blue (-1) via white to red (1). The red contour represents the border
of the kidney in the FLASH reference images, which have high geometric fidelity. Border displacement was markedly
smaller with split-echo RARE than with ss-EPI (1).
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Figure 7: Quantification of border displacement analysis and comparison between DW methods. The median of
the measured border displacement (arbitrary units) for ss-EPI was significantly larger (p<0.05) than that for the
proposed split-echo RARE approach, the error bars indicate minimum and maximum value (1).

3.1.3 Renal in vivo diffusion measurements

The in vivo MR images (with varying b values) and corresponding parameter maps obtained with the split-
echo RARE method were of markedly better quality and showed fewer artefacts (e.g. susceptibility
distortion) than those obtained with the ss-EPI (Figure 8). Renal IVIM analysis of the in vivo DW Split-echo
RARE data from seven animals yielded a diffusion coefficient of Dcor= 1.61 [1.34; 2.07] x 10 mm?/s for the
renal cortex, Dom= 1.78 [1.50; 2.01] x 10> mm?/s for the outer medulla and D= 1.88 [1.75; 2.27] x 1073
mm?/s for the inner medulla. The results obtained with DW ss-EP| were similar, but varied much more
between subjects, as is evident from the larger difference of [minimum, maximum]: Dcog=1.57 [1.05; 2.13]

x 103 mm?/s, Dow= 1.50 [1.17; 2.02] x 10* mm?/s and Div= 1.84 [1.72; 2.62] x 103 mm?/s.

The high resolution protocol provided excellent image quality (Figure 9), which revealed the more subtle

structures of the cortico-medullary transition with better contrast.
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Figure 8: Diffusion weighted images examples and corresponding apparent diffusion coefficient (ADC) maps.
Images of a rat kidney acquired at 9.4 T with diffusion weightings raging from (0 to 700 s/mm?) using the conventional
DW ss-EPI (top row) or the DW split-echo RARE (bottom row) method within a total acquisition time of 4.5 minutes.
Respective parameter maps of the diffusion coefficient are shown in the right column, a pseudo-color scale [0 3] was
used from black (0) via purple, red, orange, yellow to white (3). The quality of the MR images and parameter map
was markedly better with split-echo RARE compared with ss-EPl in all four animals (1).

b=0s/mm? b= 200 s/mm? b= 300 s/mm? b= 500 s/mm? b= 700 s/mm? D map [10° mm?/s]

DW Split-
RARE

Figure 9: High-spatial resolution diffusion weighted images and apparent diffusion coefficient map 10*mm?/s. DW
split-echo RARE images of a rat kidney acquired in vivo at 9.4 T using the high spatial resolution protocol and diffusion
weightings of b=0 to 700 s/mm?, together with the respective D map, a pseudo-color scale [0 3] was used from black
(0) via purple, red, orange, yellow to white (3). The excellent image/map quality obtained with this 18-minute scan
makes the diffusion sensitized split-echo RARE approach attractive for renal steady-state MRI experiments, such as
in CKD models (1).

3.2 Continuum modelling: IVIM-NNLS

Analysis of the simulated data with the NNLS continuum modelling resulted in a distribution of diffusion

coefficients covering the full range expected for the three components.

3.2.1 MAPE of tubular volume fraction, blood and renal tissue
MAPE was used as a metric to assess which combination of SNR/number of b-values provides less than 5%
and 10% error from the true value. Figure 10.A shows heat maps of the individual MAPE of the tubular

volume fraction for all simulations. As expected, the error decreases with increasing SNR. Increasing the
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number of b-values is also beneficial for volume fraction quantification, although this influence is less
pronounced than that of SNR. Furthermore, the benefit of additional b-values diminishes with each
addition. From 25 b-values onwards, the benefit becomes less apparent. A pronounced increase in the
precision is also discernible when using a larger range of b-values (limited versus non-limited). However,
in all cases the results are dramatically improved when reducing the number of determined parameters
from 6 to 4 by fixing the (pseudo)-diffusion coefficients of blood and tissue. Figure 10.B highlights the
combinations of SNR/number of b-values that provide a MAPE below 5% and 10% for the tubular volume
fraction. Counts of these successful combinations were used to express each of the MAPE heat maps as
the percent of combinations with MAPE below 5% and 10%. The number of combinations with an error
below 10% with no fixation used was 0% for baseline-small b-value range, 3% for baseline-large b-value
range, 10% for increased tubular fraction-small b-value range and 58% for increased tubular fraction-large
b-value range. In non-fixed cases, an error below 5% was only found for increased tubular fraction-large
b-value range (44% of combinations). The fraction of combinations below 10% error when fixation of Dpjod
and Dyissue Was used was 91% for baseline and 97% for increased tubular fraction (for both small and large
range). An error below 5% was observed in 68% of baseline-small b-value range, 75% of baseline-large b-
value range, 81% of increased tubular volume fraction-small b-value range and 86% of increased tubular

volume fraction-large b-value range combinations.

Figure 11 shows the percentages of excellent (MAPE<5%), good (MAPE<10%) and unsuitable (MAPE>10%)
simulation results for each of the 8 combination of parameters for the renal blood, tubules and tissue
compartments. Here | compare LS with NNLS continuum modelling with respect to different MAPE
stratifications for each simulated permutation. By fixing the value of blood diffusion coefficient Dpos and
tissue diffusion coefficient Dyissue, more than 60% of all combinations yielded an error below 10% for all
parameters and more than 40% provided an error below 5% for all parameters using NNLS continuum
modelling. For LS the use of fixation yielded for more than 70% of all combinations an error below 10% for

all parameters. More than 50% of the combinations showed an error below 5% for all parameters.
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Figure 10: MAPE heat maps for tubular volume fraction for all simulations. A) MAPE heat maps related to tubular
fraction for all NNLS simulations. Left column: no parameter fixation; right column: parameter fixation was used
(Dbiood and Drissue were fixed). B) Highlight of the MAPE heat maps related to tubular fraction for all NNLS simulations
showing MAPE <5%, <10% and >10%.
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Figure 11: Survey of the results obtained from error analysis. The error proportion plots show the percentage of
combinations with the MAPE below 5%/10% using the common non-linear LS fitting routine (left column) and the
NNLS method (right column) for all fractions: blood fraction, tubular fraction and tissue fraction.

3.2.2 MAPE of pathophysiological condition of increased tubular volume fraction

For the first pathophysiological condition, | studied the impact of an increase in the tubular volume

fraction. This condition does not alter the number of compartments. Increasing tubular volume fraction
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significantly reduced the MAPE in this compartment, compared to baseline (p=2.15x107%, Wilcoxon
signed-rank test). When considering differences among all permutations of the three simulation conditions
(i.e. baseline vs. increased tubular volume fraction, smallest vs. largest b-value range, fixation of Dy0d and
Duissue VS. NO fixation — three conditions with two levels each, 23=8), the error values differed significantly
(Kruskal-Wallis statistic=621.1, eta? effect size=0.662, which was independent of the number of

simulations, p=7.07x10%) (Figure 12).
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Figure 12: Statistical comparison of the effects of (i) fixation of Dsioos and Dtissue (not-fixed versus fixed), (ii) of the
(patho)physiological condition (baseline versus increased tubular volume) and (iii) of the b-value range (small
versus large b-value range). MAPE analysis of the tubular volume fraction from NNLS continuum modelling was
compared between all permutations of the simulation conditions: fixation of Dsioos and Diissue (fixed or not-fixed),
(patho)physiological condition (baseline vs. increase in tubular volume) and range of b-values (small b-value range
over large b-value range). Each of these three factors had significant effects on the error values when considered
independently. Comparing among the permutations showed significant differences in MAPE (p=7.07x107%3°, Kruskal-
Wallis non-parametric ANOVA, followed by Dunn’s procedure with Holm’s correction for multiple comparisons).

3.2.3 MAPE of pathophysiological condition of fibrosis

Next | simulated pathophysiological conditions that mimic grade | (mild, 10%) and low grade Il (moderate,
30%) interstitial renal fibrosis, thereby adding another component that may be considered as an additional
renal compartment (ffirosis). Using data with the maximum b-value range of 0-2180 s/mm? (50 b-values),
NNLS continuum modelling was able to detect the diffusion component of the fibrotic compartment, to
differentiate it from the other three diffusion components, and to distinguish 10% from 30% fibrosis

(Figure 13A). Furthermore, this was also the case when the medium b-value range of 0-1380 s/mm?(15 b-

values) was used (Figure 13B).
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Figure 13: NNLS detection of simulated fibrosis component. The simulations included baseline (no fibrosis) and a
pathophysiological condition to mimic fibrosis, thus adding a fourth renal compartment. (A) NNLS could readily
detect this additional compartment, when using a large b-value range of 0-2180 s/mm?2. (B) This result was also true
when a medium b-value range of 0-1380 s/mm? was used. For both the large and medium b-value ranges, the area
under the curve (signal intensity) of the fibrotic compartment was significantly greater under both the simulated
conditions of grade | (mild) and grade Il (moderate) fibrosis (affecting 10% and 30% of the renal area, respectively)
compared to the non-fibrosis condition. The signal intensities obtained for grade Il were significantly higher than for
grade |. This distinction improved with increasing SNR (p<2.2x1071¢, Kruskal-Wallis non-parametric ANOVA, followed
by Dunn’s procedure with Holm’s correction for multiple comparisons; whiskers denote *+ 1.5 x interquartile range).
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4. Discussion and Conclusion

Firstly, in this thesis | demonstrate the feasibility of DW Split-echo RARE for renal diffusion weighted
imaging (DWI) in small rodents at 9.4 T. | confirmed my hypothesis that DW Split-echo RARE outperforms
the conventional DW ss-EPI method in terms of geometrical/anatomical integrity and measurement

variability, especially in the in vivo experiments.

IVIM analysis of the DW Split-echo RARE data yielded mean diffusion coefficients of 1.65 x 103 mm?/s in
the cortex, 1.75 x 10> mm?/s in the outer medulla, and 1.96 x 10> mm?/s in the inner medulla. These values
are consistent with those reported in the literature when using DW-EPI (53-55). Results obtained from ss-
EPI images were similar to those derived from DW Split-echo RARE but showed a larger variability,
especially in the outer and inner medulla. This is probably due to the image artifacts that are observed
with ss-EPIl. The lower variability and variance in the diffusion coefficients increases the effect size
(standardized mean difference between two groups) and hence the statistical power to detect small
pathophysiological changes, e.g., in x-ray contrast medium-induced AKI, or during initial stages of diabetic

kidney disease.

Anatomical integrity was excellent for the Split-echo RARE technique, and far superior to the ss-EPI
approach, which resulted in 3.5-fold larger border displacements for ss-EPI. Severe geometric distortions
in the presence of magnet field inhomogeneities are expected with EPI, due to its low effective readout
bandwidth in phase encoding direction. Echo-planar imaging variants are commonly used for renal DWI
but are prone to magnetic susceptibility artifacts induced by the air-filled bowels, cavities and tissue
interfaces surrounding the kidneys. Susceptibility artifacts compromise the anatomical integrity of DWI
EPI kidney images and are even prevalent at lower magnetic field strengths (45). Typically, images with
severe distortions that cannot be corrected have to be eliminated from analyses. Due to complexity of
non-linear geometric distortions, it is conceivable that such distortions might introduce errors when using
(semi)automated analysis techniques that assume a certain kidney morphology (e.g. the morphology-
based placement of ROIs (33, 34) or the Twelve-Layer Concentric Objects (TLCO) technique (32)). Yet, these
detrimental effects may be reduced when large ROls are used. Taken together, anatomical distortions can
lead to increased variability and even unusable data, which in turn hamper intra- and inter-subject
comparisons, and may compromise the statistical power of group analyses. Hence, keeping a good
anatomical integrity in DWI is critical in order to achieve reliable results in the healthy as well as diseased

kidneys — this is the forte of spin-echo-based techniques such as RARE.
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Secondly, my results demonstrate the feasibility of the NNLS-IVIM continuum modelling for renal DWI as
a less constrained, data-driven alternative for separating the different renal water diffusion sources and
monitoring changes in the tubular volume fraction. The numerical simulations demonstrate the impact of
SNR, the number of b-values needed for characterization of the diffusion signal decay and the range of
diffusion sensitization on NNLS continuum modelling-based renal DWI applications. | show that while the
error inherent to the NNLS continuum modelling is not superior to conventional fitting approaches using
rigid multi-exponential models per se, it strongly depends on the specific parameter combinations applied
during renal DWI. The simulations present DWI-MRI parameters that ensure an error of less than 10% and
5%, respectively, for NNLS continuum modelling of the tubular volume fraction when compared to the

ground truth given by the tri-exponential model.

A cutoff of 10% error level in acquisition and/or processing methods is a mandatory precondition for
guaranteeing robust results in any MR experiment. Error levels below 5% are considered superior, further
enhancing robustness and reliability, thereby reducing misinterpretations. Increasing the tubular volume
results in greater signal for the tubule-related compartment than at baseline. Consequently, the error of
the tubular volume fraction is less for the (patho)physiological condition of increased tubular volume
fraction versus baseline. Measuring tubular volume fraction using common acquisition protocols (b=0-800
s/mm?), resulted in only a small proportion (11%) of the SNR/number of b-values combination having an
acceptable error (<10%) under the condition of increased tubular fraction. None of the parameter
combinations achieved an acceptable error level under baseline conditions. By extending the acquisition
protocols to include a range of b-values up to 2180 s/mm? was possible to increase the proportion of
parameter combinations with acceptable error levels under the condition of increased tubular fraction to
58%, and obtained a small fraction of 3% for baseline conditions. Nevertheless, a large proportion of
combinations still yielded an unacceptable error (97%) for the latter condition. Increasing the number of
b-values yielded only a modest improvement in the accuracy to discriminate between the baseline and
increased tubular volume fraction conditions based on the tubular volume fraction signal intensity.
Therefore, increasing the b-value range alone is not sufficient to ensure reliable measurements of the

tubular volume fraction.

In order to address this limitation, | fixed the blood diffusion coefficient Dpiwos and the tissue diffusion
coefficient Dyssue. With this approach | obtained superior results, compared to the non-fixed value
approach. Acceptable errors levels (<10%) were achieved in the majority of the combinations studied
(>89%). Data superiority (errors levels <5%) was achieved in more than 60% of the SNR/number of b-values

combinations, in both (patho)physiological conditions and when using small and large b-value ranges.
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This work also provides potential insights for translational research into MR-based diagnostic tools, as
changes in the tubular volume fraction are present in a multitude of kidney disorders. Such changes are
prominent in AKI as induced by disturbed systemic hemodynamics, by intravascular administration of x-
ray contrast media, and by obstructions of the urinary tract and diabetic nephropathy (4, 8, 56, 57). CKD
of most origins is marked by fibrosis in addition to reduced glomerular filtration, which contributes to a
decrease in the tubular volume fraction (58). In addition to pathological changes in the tubular volume,
our simulations revealed that NNLS continuum modelling for renal DWI may also be useful for detection
and treatment monitoring of renal fibrosis, which is an important biomarker of CKD and a powerful
predictor of renal outcome (59, 60). These same considerations likely apply to pathologies such as kidney

lesions, polycystic kidney disease, or tumors.

To conclude, this work demonstrates that Split-echo RARE has the capability to acquire distortion-free
diffusion-weighted images of the rat kidney at ultrahigh magnetic field strengths. Improving anatomical
integrity in DWI is a further step towards advancing the capabilities and robustness of parametric imaging

of the kidney.

Our results demonstrate the IVIM-NNLS is able to separate the different water diffusion sources and
monitor changes in tubular volume fraction with specific acquisition and data processing protocols to
warrant results with less than 5%. This work provides the methodological foundation for future

investigation into the assessment of renal diffusion properties.
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Diffusion-weighted Renal MRI at
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Anatomical Integrity
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Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive
to tissue water movement. By enabling a discrimination between tissue properties without the need of
contrast agent administration, DWIl is invaluable for probing tissue microstructure in kidney diseases.
DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone
to suffering from geometric distortion. The goal of the present study was to develop a robust DWI
technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion
and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less
susceptible to B, inhomogeneity related image distortions, we introduced a diffusion sensitization to

a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical
DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with
reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI
showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability
(cortex =74%, outer medulla =62% and inner medulla =44%). The anatomical integrity provided

by the split-echo RARE DWI technique is an essential component of parametricimaging on the way
towards robust renal tissue characterization, especially during kidney disease.

The prevalence of kidney diseases poses a major public health challenge. Acute kidney injury (AKI) is one
of the leading causes of death with an estimated two million deaths per year. Chronic kidney disease (CKD)
affects > 10% of the population and its incidence continues to grow' . There is still a critical need for translational
approaches that study renal disease and renoprotective strategies®>. The lack of these approaches underscores
the importance of developing biomedical imaging techniques that probe different stages of kidney disorders to
better understand the spatio-temporal changes of renal physiology in AKI or CKD and the underlying disease
mechanisms®™’. It is becoming increasingly evident that quantitative MRI methods can provide vital biomarkers
with respect to diagnosis, prognosis and disease prediction, as well as monitoring treatment response. Thereby
MRI could improve acute and chronic renal disease management'' - either alone or as a complement to blood-,
urine or tissue-based biomarkers'?.

Diffusion-weighted MRI (DWTI) allows quantitative measurements that reflect micro-morphological and
physiological changes in renal tissues. Renal DWI requires further investigation before application to routine
clinical use. Challenges that need to be overcome in order for research results of renal DWT to be translated to
clinical practice, include the harmonization of the acquisition protocols, data post-processing and image analy-
sis'!. To facilitate the standardization and validation of renal DWI, consensus-based technical recommendations
are currently being developed by an international, multidisciplinary group of renal imaging researchers as part
of the European Cooperation in Science and Technology (COST) action ‘PARENCHIMA’ (www.renalmri.org).
This is motivated by the relevance of renal DWT having been demonstrated in numerous preclinical and clinical
studies with applications such as AKI", characterization of renal masses'*, tumors'>'%, lesions'*%* and cysts?', as
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well as the assessment of renal fibrosis?>>°

changes in AKI and CKD**°.

The most commonly employed DWI technique is single-shot echo planar imaging (ss-EPI) because of its fast
imaging speed. It is currently the standard method on preclinical MR systems that is suitable for in vivo studies.
It offers excellent temporal resolution, insensitivity to bulk motion and provides reasonable spatial resolution.
Notwithstanding these advantages, ss-EPI is prone to magnetic susceptibility artifacts that present themselves as
T,* induced signal loss or even signal voids in areas with very high B, gradients, low-phase encoding bandwidth
related image distortion and off-resonance effects caused by AB, induced frequency dispersions®'. Hence, diffu-
sion weighted ss-EPI in kidney regions adjacent to bowels or in close proximity to skin/fat/muscle boundaries is
particularly challenging and prone to loss of anatomical integrity due to geometric distortions.

Geometric distortions caused by ss-EPI may have serious consequences for the quantitative analysis of renal
MRI data. Manual definition of regions-of-interest (ROI) can be extremely challenging when these image dis-
tortions are present, as it requires clear distinctions between the renal layers. Semi-automated ROI analysis
techniques, such as concentric object analysis*>*® or the morphology-based ROI-placement®* can be severely
compromised by geometric distortions.

Fast spin-echo imaging techniques are largely insensitive to By inhomogeneity related image distortions and
hence present a valuable alternative to EPI particularly at (ultra)high magnetic field strengths***. This makes
diffusion-sensitized fast spin-echo imaging a promising approach for improving anatomical integrity in renal
DWL. The suitability of single-shot Rapid Acquisition with Relaxation Enhancement (ss-RARE") for DWI has
been shown for the human kidney at typical clinical field strengths of 1.5T* and 3.0 T*°.

Motivated by the translational prospects of renal DWI along with the signal sensitivity gain at high magnetic
fields, this work demonstrates the performance and reliability of a variant of diffusion-sensitized ultrafast RARE***
for DWI of the rodent kidney at 9.4 T. To meet this goal we implemented and adapted a diffusion-sensitized
split-echo RARE (DW Split-echo RARE) technique®”. First, we validated the proposed technique thoroughly in
phantom studies. Then, we confirmed the hypothesis that DW Split-echo RARE outperforms the conventional
DW ss-EPI in terms of anatomical integrity and variability of measurements in an in vivo DWI study in rats.

, allograft pathophysiology”*, diabetic nephropathy®, and functional

Materials and Methods

Implementation and optimization of the Split-echo RARE DWI technique. A Stejskal-Tanner
preparation scheme was used to introduce diffusion sensitization to a RARE variant**: Diffusion gradients were
placed around the first refocusing pulse and Split-echo RARE acquisition was implemented to avoid destructive
interferences between even and odd echoes*. Further details on the pulse sequence (a pulse sequence diagram)
are provided as Supplementary Information. Dummy RF pulses (n = 4) were applied prior to data acquisition
to balance the signal amplitude between odd and even echo groups®. A central phase encoding scheme was
employed to reduce the time between the diffusion sensitization module and the acquisition of the central
k-space region. For comparison, the commonly used diffusion weighted spin-echo (SE) echo-planar imaging
(EPI) method was used. A single-shot set-up was chosen, because of the excellent temporal resolution it provides,
which is essential for in vivo studies of functional dynamics, such as those involving short and reversible physio-
logical stimuli*® or the characterization of early pathophysiological events in AKI*“.

Phantoms. A phantom containing different substances with known diffusion properties was prepared in
order to (i) validate the measured diffusion parameters and to (ii) examine the propensity of DW ss-EPI and DW
Split-echo RARE to geometric distortions. The custom-made phantom consisted of three tubes (outer diameter:
7.8 mm) filled with vegetable oil (sunflower oil), de-ionized water, and acetone, respectively. These tubes were
placed in a larger cylindrical tube (outer diameter: 30 mm) filled with a 5% solution of agarose to facilitate the
imaging, achieve a sensible loading of the RF coil, and reduce macroscopic distortions of the magnetic field B,.

Animals. All investigations were approved by the Animal Welfare Department of Berlin’s State Office of
Health and Social Affairs (LaGeSo) in accordance with the German Animal Protection Law. The procuration of
animals, husbandry and experiments conformed to the European Convention for the Protection of Vertebrate
Animals used for Experimental and other Scientific Purposes (Council of Europe No 123, Strasbourg 1985).
The animals had ad libitum access to food (standard diet) and water and were housed under standard condi-
tions with environmental enrichment. Female Wistar rats (aged 12-13 weeks, body weight 288-330g, n=7;
Harlan-Winkelmann, Borchen, Germany) underwent MRI under isoflurane anesthesia (2.0% in air). All animals
scanned were included in the data analysis. Core body temperature was monitored by means of a rectal fiber-optic
temperature probe (AccuSens, Opsens, Québec City, Canada). Body temperature was maintained at 37°C with a
pad containing circulating warm water connected to a water-bath. Respiration rate was monitored throughout the
experiment using a small balloon placed on the chest of the animal (Model 1025, SA Instruments, Stony Brook,
NJ, USA) and served for triggering the MRI data acquisition.

Magnetic resonance imaging. All MRI measurements were carried out on a 9.4 Tesla small animal MR
system (Bruker Biospec 94/20; Bruker Biospin, Ettlingen, Germany). For phantom experiments, a quadrature
transceiver birdcage radiofrequency (RF) volume resonator (inner diameter: 72 mm; Bruker Biospin, Ettlingen,
Germany) was employed. In vivo studies used a curved 4-channel surface RF coil array (rat heart RF coil, Bruker
Biospin, Ettlingen, Germany) for signal reception in conjunction with the above birdcage volume resonator for
signal transmission.

We compared the proposed DW Split-echo RARE approach against the DW spin-echo EPI method com-
monly used in rodents. Images obtained from a DW spin-echo (SE) sequence were used as reference for the phan-
tom assessments. In vivo, a gradient-echo sequence (FLASH) served as anatomical reference to assess geometric
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(3) i vivo (high-
Experimental set-up (1) phantom, (2) in vive resolution)
DWTI technique ss-EPI Split-echo RARE Split-echo RARE
Receiver Bandwidth 300kHz 131kHz 131kHz
Echo time (TE) 25ms 16 ms 20ms
Repetition time (TR) approx. 2.3 s (respiration triggered)
Field of view (45 x 45) mm’
Effective Acquisition matrix 96 x 192 128 x 256
Spatial resolution 0.47 x 0.23 0.35x0.18
Slice thickness 1.5mm 1.5mm
segments/Echo train length (ETL) 1/192 4/64
Averages 8 8
Acquisition time per b-value 18s 73s
Total acquisition time (5 x 3 b-values) 4min 30s 18 min 15s

Table 1. Summary of DWI acquisition parameters for the three set-ups used in the experiments.

distortions, since the very long acquisition time of DW SE imaging render this method unfeasible for in vivo MRL
These comparisons aimed to validate the measured diffusion parameters and also to examine the propensity of
DW ss-EPI and DW Split-echo RARE for geometric distortions.

DWI was performed on the phantom and on seven Wistar rats in vivo using the imaging parameters summa-
rized in Table 1. Acquisition parameters were chosen such that both DW ss-EPI and DW Split-echo RARE had
the same acquisition time. Apart from the fast single-shot protocols, a multi-shot protocol was also used for DW
Split-echo RARE to demonstrate the image quality achievable at higher spatial resolution. Such protocols for dif-
fusion sensitized Split-echo RARE kidney MRI would be of interest for experiments in which high temporal res-
olution is not essential, such as in chronic kidney disease (CKD) where pathological changes are rather sluggish.

Diffusion weighting was achieved using b-values of 0, 200, 300, 500 and 700s/mm?. In the homogenous phan-
tom one diffusion direction was used. To account for diffusion anisotropy effects in the kidney, each of these
acquisitions was performed in three orthogonal diffusion sensitization directions, yielding 15 (5 b-values x 3
directions) acquisitions in total. Respiratory motion artifacts were reduced by triggering the data acquisition
based on the respiratory signal trace.

Quantification of water diffusion. Phantom. Diffusion coefficient maps were generated for the diffu-
sion phantom by a pixel-wise linear fitting performed after taking the logarithm of the signal intensities obtained
at the 5 b-values.

S(b) = S,. e P (1)

where S is the signal intensity and S, is defined as the signal intensity at b=0s/mm? D is the diffusion coefficient
also referred to as the ‘apparent diffusion coefficient’ (ADC), recognizing that is depends on both, the nature of
the media studied and on experimental conditions. ROI analysis was performed to determine the mean diffusion
coefficient for the three compounds, which were benchmarked against literature values.

Rat kidney in vivo. The intra-voxel incoherent motion (IVIM) approach was used. This consists of a two
compartment bi-exponential model, in order to obtain pure diffusion values, without contamination from
pseudo-diffusion (i.e. incoherent movement of water by blood perfusion). According to the IVIM approach, the
relation between signal intensity and the b-values can be described as:

S(b) = Sy(fe™®P + (1 — He™P) (2)

where § is the signal intensity, D, is pseudo-diffusion coefficient, fis flow fraction and D is slow diffusion (pure
diffusion) coefficient. §; is defined as the signal intensity at b=0s/mm?. For b >200s/mm?” no contribution from
D, is assumed because the signal decay of D, is much faster than D (D, 3> D). Therefore, we calculated the pure
diffusion coefficient from a non-linear least square fit to the signal intensities at b > 200 s/mm?, which allowed us
to use the simplified Eq. 1. All three directions were averaged to account for diffusion anisotropy.

ROIs were defined according to the morphological features of the kidney using semi-automated kidney seg-
mentation®®. ROIs were defined on a coronal kidney image: 5 in the renal cortex (COR), 5 in the outer medulla
(OM) and 3 in the inner medulla (IM) as previously described®. The mean diffusion coefficient of each renal layer
(COR, OM, IM) was computed as the average of all ROIs within the layer.

Quantification of geometric distortion. Contours drawn around the cylindrical structures of the phan-
tom in the spin-echo (DW SE) images were defined as the distortion-free reference. For in vivo DWI, a contour
drawn around the kidney on a gradient-echo image was used instead. These contours were determined by two
experienced MR experts, under the supervision of a senior board certified radiologist. To illustrate the extent of
geometric distortions in DW ss-EPI and DW Split-echo RARE, we used color-coded difference-maps between the
contours drawn in these images and the reference contour.
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Figure 1. Assessing geometric distortion. The kidney outline (red contour - border of the kidney) was created
for the reference image and the DW image. Binary masks were generated for each image using the kidney
outline. The distortions maps were calculated by subtracting the binary mask of the DW image from the binary
mask of the reference image, a pseudo-colour scale [—1 1] was used from blue (—1) to red (+1). The red pixels
of the distortion map represent false negatives, and the blue pixels represent false positives, for the DW image
with respect to the reference mask. Border displacement was calculated by dividing the number of pixels of the
distortion map (A A B) by the perimeter (P(B)) of the kidney outline of the DW Image.

[ smal pisplacement (5px) | Large Displavement (10px) |

Object

Figure 2. The border displacement metric is fairly insensitive to the object’s size and shape. Horizontal, vertical
and diagonal displacements (5 or 10 pixels) were artificially applied to three objects of different shape and size:

a small circle (top row), a large circle (middle row) and a kidney shape (bottom row). The border displacement
(BD) is given below each object. While the simulated small and large displacements lead to similarly different
BD (compare left and right), the BD varied only little between the three different objects (compare along vertical
axes).

Geometric distortions were quantified using an in-house developed method of border displacement analy-
sis (Fig. 1; program written in MATLAB; The Mathworks, Natick, MA, USA). The metric border displacement
between two contours was based on their symmetric difference, an elementary mathematical operation of set
theory. The symmetric difference of two sets, A and B, includes all objects (here the pixels) in A and B (here the
two contours) that are outside their intersection: A A B:={x| (x€ AAx¢&B)V (x€ BAx & A)}. For the simple
case of two identical contours, there are no pixels outside their intersection, hence the symmetric difference is
zero. The greater the geometric difference between contours A and B, the larger the number of pixels outside their
intersection, i.e. the larger their symmetric difference. To permit meaningful comparisons of border displacements
calculated from images with different spatial resolution, and even from objects of different shape and size (e.g.
tubes, organs or other structures) we normalized the symmetric difference to the contour length, i.e. the object’s
perimeter P, and defined the border displacement (BD) as

BD = (A A B)/P(B) (3)

with A being the contour to be assessed, B the reference contour, and P(B) the perimeter of the reference
contour; or verbose: Border displacement = Symmetric difference(Contour, Reference-contour)/Perimete
r(Reference-contour). This metric yields comparable results for the same extent of distortion applied to objects of
different sizes and shapes, as demonstrated with the simulations shown in Fig. 2.

Statistical tests. A normal distribution of the calculated border displacements and diffusion coefficients
cannot be assumed, because the susceptibility-induced image distortions influence both in an unpredictable
manner. To this end, the results are given as the median together with the minimum to maximum value range
(rather than the commonly used mean =+ standard deviation). For testing statistical differences we used the
non-parametric Mann-Whitney U test with a significance level of 5%. This test does not make any assumptions
about the form of the distributions, requiring only that both groups have the same distributions under the null
hypothesis.
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Figure 3. Diffusion weighted images and derived diffusion maps of the test phantom. Selection of images with
b-values in the range b=0s/mm? to b= 700 s/mm? acquired with DW SE (top row), DW ss-EPI (middle row)
and DW Split-echo RARE (bottom row). The right column shows corresponding diffusion maps for each of

the three approaches calculated from the series of diffusion-weighted images, a pseudo-color scale [0 5] was
used from black (0) via purple, red, orange, yellow to white (5). The cylindrical phantom contains acetone (“a”),
water (“w”) and vegetable oil (“0”) in three tubes within a larger tube with agarose. As expected, one can observe
the inherent geometric distortions with DW ss-EPI (due to the low effective bandwidth in phase encoding
direction) and blurring with DW Split-echo RARE (due to the effect of the T,-decay on the point-spread-
function and inter-echo spacing). The artifacts along the phase encoding direction obtained for DW split-echo
RARE are due to the very sharp boundaries and strong signal intensity changes in the phantom and the length

of the echo train (192 x 3.2 ms).
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Figure 4. Validation of measured diffusion coeflicients for a phantom with known diffusion properties.

The diffusion coefficient for vegetable oil, water, and acetone were measured using three diffusion-weighted
acquisition techniques: spin-echo (SE; reference, 0.011 +0.019, 1.91 £0.07 and 3.1540.34 10~* mm?/s),

DW ss-EPI (0.041 £0.10, 1.92 4 0.05 and 2.97 +0.63 10-> mm?/s), and DW Split-echo RARE (0.035 +0.074,
2.01+0.07 and 3.19£0.29 10~ mm?/s). Results are compared against literature diffusion coefficients values
of vegetable oil (0.010 10~* mm?/s)*” water (2.13 1073 mm?/s)® and acetone (4.21 10~* mm?/s)**". Diffusion
coefficient are in units of 107> mm?/s (mean over ROIs + standard deviation) for ROIs placed in the diffusion
coefficient maps for each respective material.

Results

We acquired experimental data to validate that the diffusion parameters measured with the DW Split-echo RARE
are correct, to assess the geometric fidelity of the images, and to detail the diffusion parameters obtained in
healthy rat kidneys.

Diffusion measurements. To validate the diffusion weighting of the Split-echo RARE, phantom experi-
ments were conducted at room temperature using a cylindrical phantom containing 3 tubes each loaded with
water, vegetable oil and acetone. Figure 3 illustrates diffusion-weighted images for selected b-values and the cor-
responding parameter maps of the diffusion coefficient (D) calculated for DW SE reference acquisitions as well
as DW Split-echo RARE and DW ss-EPI measurements. For a quantitative comparison, the diffusion coefficients
derived from these measurements are shown in Fig. 4, together with the literature values. We observed a good
agreement between all three DW approaches. However, the DW Split-echo RARE method resulted in diffusion
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Figure 5. Assessment of geometric fidelity in the test phantom. Images obtained for a structured phantom
consisting of three small cylinders within one large one at 9.4 T using DW ss-EPI (left panel) and DW Split-echo
RARE (right panel). The overlaid red contour represents the geometry of the DW SE reference image, which
was acquired with the same spatial resolution and matrix size. The color-coded difference maps with respect to
the DW SE reference visually demonstrate the amount of distortion, a pseudo-color scale [—1 1] was used from
blue (—1) via white to red (1). The artifacts along the phase encoding direction obtained for DW Split-echo
RARE are due to the very sharp boundaries and strong signal intensity changes in the phantom and the length
of the echo train (192 x 3.2 ms).

coeflicients (for water and acetone) that were closer to the literature values than those obtained with the DW
ss-EPI and even reference DW SE method.

Geometric fidelity assessment of DWI in phantom experiments. To examine the geometric fidel-
ity of the DWI approaches, the border displacement (BD) analysis was applied to the phantom images of DW
Split-echo RARE and DW ss-EPI, without diffusion weighting (b=0s/mm?®) (Fig. 5). Red contours derived from
the DW SE reference image were superimposed onto the DW Split-echo RARE and DW ss-EPI images (Fig. 5).
Difference (distortion) maps showed that DW Split-echo RARE yields close to distortion-free images at 9.4 T
with a border displacement of 0.50 [0.31; 0.73] (median of 4 circles [minimum; maximum]. On the other hand,
pronounced displacements 1.87 [1.37; 2.41] were observed for DW ss-EPL

Anatomical integrity assessment of in vivorenal DWI.  To access anatomical distortions in vivo, coro-
nal slices of the rat kidney were acquired using ss-EPI and Split-echo RARE, as well as FLASH (as an anatomical
reference). Similar to the phantom experiments, Split-echo RARE provided almost distortion-free images at 9.4T
as demonstrated by the distortion maps (Fig. 6). Border displacement analysis yielded BD =0.75 [0.51; 1.30]
pixels for Split-echo RARE. In contrast, the border displacement for ss-EPI was significantly (p = 0.0006) higher:
2.60 [1.31; 3.61] pixels (Fig. 7).

Renal in vivo diffusion measurements. The in vivo MR images (with varying b values) and corresponding
parameter maps obtained with the Split-echo RARE method were of markedly better quality and showed fewer
artefacts (e.g. susceptibility distortion) than those obtained with the ss-EPI (Fig. 8). Renal IVIM analysis of the in
vivo DW Split-echo RARE data from seven animals yielded a diffusion coefficient of Do =1.61[1.34;2.07] x 1073
mm?/s for the renal cortex, Doy = 1.78 [1.50; 2.01] x 10~ mm?/s for the outer medulla and D;,;=1.88 [1.75;
2.27] x 10~* mm?/s for the inner medulla. The results obtained with DW ss-EPI were similar, but varied much
more between subjects (Fig. 9), as is evident from the larger difference of [minimum, maximum]|: D¢op = 1.57
[1.05; 2.13] x 10> mm?/s, Doy = 1.50 [1.17; 2.02] x 10~* mm?/s and Dy, = 1.84 [1.72; 2.62] x 10~* mm?/s.

Intra-renal variability and variance. The variability (calculated as SD/mean) and variance (SD?) of D within
each renal layer were calculated as surrogates of measurement quality, based on the assumption that in a healthy
kidney the water diffusion properties are similar within the tissue of a given renal layer. The plot of intra-renal
diffusion variability in Fig. 10 demonstrates a smaller variability for DW Split-echo RARE (cortex: 0.104 [0.045;
0.182], outer medulla: 0.068 [0.038; 0.118], inner medulla: 0.039 [0.026; 0.081] than for DW ss-EPI (cortex: 0.181
[0.079; 0.259], outer medulla: 0.110 [0.076; 0.149], inner medulla: 0.078 [0.019; 0.093]. This effect is based on the
also smaller variance for DW Split-echo RARE (cortex: 0.015, outer medulla: 0.016, inner medulla: 0.005 than for
DW ss-EPI (cortex: 0.050, outer medulla: 0.025, inner medulla: 0.020).

High spatial resolution DWI. The high resolution protocol supported an in-plane spatial resolution of
(0.35 x 0.18) mm? and provided excellent image quality (Fig. 11), which revealed the more subtle structures of
the cortico-medullary transition with better contrast.

Discussion
In this work we demonstrate the feasibility of DW Split-echo RARE for renal diffusion weighted imaging (DWT)
in small rodents at 9.4 T. We confirmed our hypothesis that DW Split-echo RARE outperforms the conventional
DW ss-EPI method in terms of geometrical/anatomical integrity and measurement variability, especially in the
in vivo experiments.

IVIM analysis of the DW Split-echo RARE data yielded mean diffusion coefficients of 1.65 x 107> mm?/s in
the cortex, 1.75 x 10~3 mm?/s in the outer medulla, and 1.96 x 10~* mm?/s in the inner medulla. These values are
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Figure 6. Assessment of geometric distortions in vivo. Coronal images of rat kidneys obtained in seven animals
in vivo at 9.4 T using, DW ss-EPI (b=0mm/s?) (top row), FLASH (third row) and DW Split-echo RARE
(b=0mm/s?) (fourth row). The respective distortion map (compared to the FLASH reference) is shown below
each MR image (third and fifth row), a pseudo-color scale [—1 1] was used from blue (—1) via white to red (1).
The red contour represents the border of the kidney in the FLASH reference images, which have high geometric
fidelity. Border displacement was markedly smaller with DW Split-echo RARE than with DW ss-EPI.

consistent with those reported in the literature when using DW-EPI*!-%*, Results obtained from ss-EPI images
were similar to those derived from DW Split-echo RARE but showed a larger variability, especially in the outer
and inner medulla. This is probably due to the image artifacts that are observed with ss-EPI. The lower varia-
bility and variance in the diffusion coefficients increases the effect size (standardized mean difference between
two groups) and hence the statistical power to detect small pathophysiological changes, e.g., in x-ray contrast
medium-induced AKI, or during initial stages of diabetic kidney disease.

Anatomical integrity was excellent for the Split-echo RARE technique, and far superior to the ss-EPI approach,
which resulted in 3.5-fold larger border displacements for ss-EPI. Severe geometric distortions in the presence of mag-
net field inhomogeneities are expected with EPI, due to its low effective readout bandwidth in phase encoding direc-
tion. Echo-planar imaging variants are commonly used for renal DWT but are prone to magnetic susceptibility artifacts
induced by the air-filled bowels, cavities and tissue interfaces surrounding the kidneys. Susceptibility artifacts compro-
mise the anatomical integrity of DWI EPI kidney images and are even prevalent at lower magnetic field strengths*®>**.
Typically, images with severe distortions that cannot be corrected have to be eliminated from analyses. Due to complex-
ity of non-linear geometric distortions, it is conceivable that such distortions might introduce errors when using (semi)
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Figure 7. Quantification of border displacement analysis and comparison between DW methods. The median
of the measured border displacement (arbitrary units) for DW ss-EPI was significantly larger (p < 0.05) than
that for the proposed DW Split-echo RARE approach, the error bars indicate minimum and maximum value.
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Figure 8. IVIM images examples and corresponding diffusion maps. Images of a rat kidney acquired at 9.4 T
with diffusion weightings raging from (0 to 700 s/mm?) using the conventional DW ss-EPI (top row) or the DW
Split-echo RARE (bottom row) method within a total acquisition time of 4.5 minutes. Respective parameter
maps of the diffusion coefficient are shown in the right column, a pseudo-color scale [0 3] was used from black
(0) via purple, red, orange, yellow to white (3). The quality of the MR images and parameter map was markedly
better with DW Split-echo RARE compared with DW ss-EPI in all seven animals.
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Figure 9. Comparison of D for the renal cortex (COR), outer medulla (OM) and inner medulla (IM) and
comparison between DW methods. Data were obtained from seven rats. D median (using DW ss-EPI (grey),
D median using DW Split-echo RARE (blue) for each different region on the kidney: COR, OM and IM. The
error bars indicate minimum and maximum value. DW Split-echo RARE yielded for all renal compartments a
smaller [minimum; maximum] range than the obtained with DW ss-EPL
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Figure 10. Diffusion variability within each renal layer. Variability [SD/Mean] within the different layers, i.e.
cortex (COR), outer medulla (OM), and inner medulla (IM) was calculated as a surrogate of measurement
quality. Variability median (using DW ss-EPI (grey), Variability median using DW Split-echo RARE (blue) for
each different region on the kidney: COR, OM and IM. The error bars indicate minimum and maximum value.
DW Split-echo RARE yielded for all renal compartments a smaller median and [minimum; maximum] range
than the obtained with DW ss-EPL
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Figure 11. High-spatial resolution IVIM images and diffusion map. DW Split-echo RARE images of a rat
kidney acquired in vivo at 9.4 T using the high spatial resolution protocol and diffusion weightings of b=0to
700s/mm?, together with the respective D map, a pseudo-color scale [0 3] was used from black (0) via purple,
red, orange, yellow to white (3). The excellent image/map quality obtained with this 18-minute scan makes the
DW Split-echo RARE approach attractive for renal steady-state MRI experiments, such as in CKD models.

automated analysis techniques that assume a certain kidney morphology (e.g. the morphology-based placement of
ROIs*3 or the Twelve-Layer Concentric Objects (TLCO) technique™). Yet, these detrimental effects may be reduced
when large ROIs are used. Taken together, anatomical distortions can lead to increased variability and even unusable
data, which in turn hamper intra- and inter-subject comparisons, and may compromise the statistical power of group
analyses. Hence, keeping a good anatomical integrity in DWT s critical in order to achieve reliable results in the healthy
as well as diseased kidneys - this is the forte of spin-echo-based techniques such as RARE.

Strategies for reducing geometric distortions resulting from predominantly gradient-echo-based EPI include
image registration/unwarping. However, their practical use is somewhat limited, as outlined in the following.
Registration of images containing geometric distortions is challenging, since it requires good image contrast and
high degrees of freedom. In principle, unwarping (correction of susceptibility-induced distortions) can be done
when additional field maps are acquired, however this is not trivial for strongly warped regions that lack a unique
solution. Furthermore, unwarping will not be accurate if the distortions change during the relatively long DWI scan.

Segmentation of data collection, i.e. multi-shot acquisition, is another approach to reduce geometric distor-
tions. Segmentation in phase-encoding direction can be applied in a common DW EPI protocol, but segmentation
in readout direction requires a dedicated sequence. Readout segmented EPI (rs-EPI) in association with parallel
imaging has been shown to reduce susceptibility artifacts in DWT*15** improve renal DWT quality®, and correlate
better with renal fibrosis®. One major drawback of segmented acquisitions is the associated longer acquisition times.
Dividing the acquisition into 2 (or 4) segments already doubles (or quadruples) the acquisition duration. Increasing
scan time for DWI — that already requires repeated acquisitions for different diffusion weightings and directions —
represents a limitation in preclinical studies of physiological dynamics and in clinical routine use. Motion between
the acquisitions of different segments in phase-encoding direction can create substantial artifacts. To diminish the
shot-dependent nonlinear phase differences that arise from non-rigid motion, navigator readout segments need to
be acquired repeatedly throughout the scan. Even though one could argue that the image quality of both, EPI and
RARE, benefits significantly from segmentation, and hence multi-shot RARE suffers from the same time-constraints
as rs-EPI, we have previously shown that even readout-segmented-EPI is less effective than ultrafast unsegmented
RARE approaches for DWT in terms of restoring anatomical integrity®’.
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The use of refocusing pulses in RARE comes with an increase in the inter-echo time resulting in an increase
in the echo train length versus EPL Therefore the echo-train length used in RARE should receive attention when
designing the imaging protocol and should not substantially exceed the T, relaxation time of the object under
investigation to avoid smearing artifacts along the phase encoding direction which may otherwise impair the
ADC assessment. Imaging speed and RF power deposition are also recognized limitations of RARE when com-
pared to EPL To offset these constraints, Combined Acquisition Techniques (CAT)® has been applied to boost
imaging speed and reduce RF power deposition by using a modular hybrid approach that integrates a minimum
of two imaging strategies. RARE-EPI CAT hybrids have been implemented for abdominal imaging® and could
hold the promise to further improve renal DWT at (ultra)high fields by combining of advantages of RARE (ana-
tomical integrity) with those of EPI (imaging speed and less RF power deposition). The proposed Split-echo
RARE approach is compatible with segmented acquisitions. To address potential motion induced phase changes,
Split-echo RARE can be combined with the navigator echo approach?®. To further enhance imaging speed, sin-
gle shot and segmented Split-echo RARE can be supported by multiband RF pulses facilitating simultaneous
multi-slice imaging. A recently developed multiplexed sensitivity encoding approach® is also compatible with
Split-echo RARE and affords reconstruction of multi-shot DWI data without the need of navigator echoes.

In our present study we made an experimental comparison between single-shot EPI and RARE protocols
using the same short acquisition times. A thorough comparison between both fast protocols is critical for
dynamic preclinical studies and when translating DWT into clinical situations that are highly dependent on imag-
ing speed. In scenarios where temporal resolution is less crucial, a segmented approach may be introduced to (i)
reduce the point spread function related blurring observed when using RARE with high echo-train-lengths (due
to the effect of the T,-decay on the point-spread-function and the inter-echo time), and (ii) reduce geometric
distortions in EPI but may also require additional navigator-based motion correction.

The current Split-echo RARE implementation uses a pair of unipolar Stejskal-Tanner gradients®, which helps
to balance diffusion sensitization time and diffusion sensitization strength. However, pairs of unipolar gradients are
not motion compensated and can be prone to eddy current related artifacts. Pairs of bipolar diffusion sensitizing
gradients or twice-refocused gradients offer those features but come with a less effective sensitization*¢*%5. Here,
we chose a Split-echo approach using an imbalance in the readout gradient in order to preserve signal-to-noise ratio
(SNR). With the Split-echo approach the spatial resolution along the read-out direction is only half of the displaced
echo approach, which presents an alternative for avoiding interferences between odd and even echo groups®**..

To conclude, this study demonstrates that Split-echo RARE has the capability to acquire distortion-free
diffusion-weighted images of the rat kidney at ultrahigh magnetic field strengths. Improving anatomical integrity
in DWT1 is a further step towards advancing the capabilities and robustness of parametric imaging of the kidney.
It facilitates the use of semi-automated analysis methods that place ROIs reproducibly at clearly defined locations
within the kidney based on kidney border information*~*. Identification of the kidney boundary is usually done
manually®, which inevitably adds inter-observer variability to the results. A very valuable refinement to renal
DWI would be the use of automated kidney segmentation methods such as the appearance-guided deformable
boundary technique, which was recently shown to perform better than several alternative methods®. All these
(semi-)automated approaches are important directions for further developments, as they help to eliminate any
bias introduced by subjective manual interaction.

Adding robust DWI protocols to other MRI-based methods of tissue characterization of the kidney will fur-
ther assist the non-invasive interrogation and phenotyping of small rodents during physiological interventions or
pathological scenarios. Ultimately, the translational approach of the proposed Split-echo RARE method may be
exploited for detecting and quantifying early renal disease in patients as well as studying disease mechanisms and
renoprotective strategies in the future.
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Background: T'he use of rigid multi-exponential models (with @ priori predefined numbers of components)
is common practice for diffusion-weighted MRT (DWT) analysis of the kidney. This approach may not
accurately reflect renal microstructure, as the data are forced to conform to the @ priori assumptions of
simplified models. This work examines the feasibility of less constrained, data-driven non-negative least
squares (NNLS) continuum modelling for DWT of the kidney tubule system in simulations that include
emulations of pathophysiological conditions.

Methods: Non-linear least squares (I.S) fitting was used as reference for the simulations. For performance
assessment, a threshold of 5% or 10% for the mean absolute percentage error (MAPE) of NNLS and LS
results was used. As ground truth, a tri-exponential model using defined volume fractions and diffusion
coefficients for each renal compartment (tubule system: D, fruuis Tenal tissue: Dy fuons renal blood: Dy,
fess) was applied. The impact of: (I) signal-to-noise ratio (SNR) =40-1,000, (II) number of b-values (n=10-50),
(I11) diffusion weighting (b-range,,,.,, =0-800 up to b-range,, . =0-2,180 s/mm’), and (IV) fixation of the
diffusion coefficients D, and D,,,, was examined. NNLS was evaluated for baseline and pathophysiological
conditions, namely increased tubular volume fraction (IT'V) and renal fibrosis (10%: grade I, mild) and 30%
(grade II, moderate).

Results: NNLS showed the same high degree of reliability as the non-linear LS. MAPE of the tubular
volume fraction (f,,;,..) decreased with increasing SNR. Increasing the number of b-values was beneficial
for f.... precision. Using the b-rangey,. led to a decrease in MAPE,,,, compared to b-range,, . The use
of a medium b-value range of b=0-1,380 s/mm’ improved £, precision, and further by, increases beyond
this range yielded diminishing improvements. Fixing Dy, and D, significantly reduced MAPE ;. and
provided near perfect distinction between baseline and ITV conditions. Without constraining the number of
renal compartments in advance, NNLS was able to detect the (fourth) fibrotic compartment, to differentiate
it from the other three diffusion components, and to distinguish between 10% vs. 30% fibrosis.
Conclusions: This work demonstrates the feasibility of NNLS modelling for DWT of the kidney tubule
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system and shows its potential for examining diffusion compartments associated with renal pathophysiology

including I'T'V fraction and different degrees of fibrosis.
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Introduction

Kidney diseases are a major health issue, with increasing
incidence and an estimated two million deaths per year
worldwide due to acute kidney injury (AKI) (1-7). While
scveral biomarkers are currently being investigated for
diagnosis of AKI, to date clinical point-of-care biomarkers
for AKI are still lacking (8-11). To address this urgent
unmet clinical need, MRI may provide quantitative
imaging markers to inform on the different stages of
pathophysiology, improve prediction and interception of
discase progression and evaluate treatment of AKI (6,12-20).

The renal tubules are a unique anatomical compartment
of the kidney, comprising a large fraction of the renal
volume. The tubular volume fraction can change due to
(T) changes in the glomerular filtration rate, (IT) alterations
in tubular outflow towards and beyond the renal pelvis,
(1II) modulation of the transmural pressure gradient and
(IV) changes in tubular fluid resorption (21). The tubular
volume fraction may develop into a novel marker for
clinical diagnostics of kidney diseases, for two reasons. First,
MR-based assessment of the tubular volume fraction could
serve as a diagnostic tool, for instance to detect glomerular
hyperfiltration—a hallmark of carly-stage diabetic
nephropathy (22). It may also help in the distinction
between AKI that is caused by obstructions of the urinary
tract and AKT of other origins (23). Tubular atrophy and
interstitial fibrosis play a major role in the microstructural
changes occurring during kidney pathology e.g., renal
allograft injury (24). Being able to assess renal fibrosis and
alterations in the tubular volume fraction with non-invasive
MRI would be clinically valuable (3,7,22,23,25-28). Second,
as the renal capsule is comparatively rigid, changes in the
tubular volume fraction will result in opposite changes
in the renal blood volume fraction, thereby confounding
the relationship between renal blood oxygenation level-
dependent (BOLD) T,*, oxygen saturation of hemoglobin,
and tissue partial pressure of oxygen (21,29). Concomitant
assessment of the tubular volume fraction will thus help to
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accurately interpret quantitative renal T,* data.

Diffusion-weighted MRI (DWI) probes self-diffusion
of water in tissue on a microscopic level and reflects
micro-morphological and (patho)physiological changes in
renal tissue and renal diseases (30,31). When performing
DWIT of the kidney, the incoherent blood flow in the
renal microvasculature contributes to pseudo-diffusion
(32-38) resulting in a fast signal decay component. The
displacement of water molecules in the renal tissue
contributes a slow water diffusion component, according
to the two-compartment model (32-38). Acknowledging
the morphological and physiological importance of renal
tubules, recent studies have shown that the intra-tubular
fluid compartment introduces a third component in the
renal DWI signal decay. To account for this tubular water
diffusion component, a rigid tri-exponential model was
proposed to better decipher diffusion MRI signals from the
kidney (39,40).

The performance of rigid multi-exponential models is
often highly dependent on initial values, and on the upper
and lower boundaries of the optimization parameters (41).
Fixing some coefficients of the rigid model is common
practice to increase fit stability and to improve the
sensitivity to physiological changes. This applies particularly
to tri-exponential models (with six variables to fit) but
runs the risk of introducing a bias (40). To address this
limitation, an unbiased data-driven analysis of the diffusion
signal decay is required. Non-negative least squares (NNLS)
continuum modelling provides an alternative to rigid
model fitting techniques, which does not require « priori
assumptions of the number of components of the signal
decay nor starting values (42-44). A predefined basis set
of more than 500 exponential components spanning the
entire range of feasible diffusion coefficients can be used
as input to the NNLS algorithm. As output, the NNLS
continuum modelling yields a spectrum of the contributions
of all exponential basis vectors to the signal decay. NNLS
continuum modelling can be a useful tool to determine the
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number of major diffusion compartments actually present in
the tissue, and offers a means for their quantification during
(patho)physiological changes (43). Tt has been successfully
employed for multicomponent diffusion analysis of
microstructural alterations in multicellular tumor spheroids,
bone marrow, the central nervous system, and liver as
well as in the parenchyma of healthy organs of the upper
abdomen (32,45-52).

Notwithstanding this pioneering work, the literature
does not include reports on a systematic examination of the
performance of NNLS-based multicomponent diffusion
analysis of microstructural alterations in the kidney.
Recognizing the opportunity and challenges of this task,
this work presents a simulation study focusing on NNLS
computation for DWT of the kidney tubule system. Such
simulations are a crucial precursor to in vive studies, in
order to establish the optimal selection of experimental
parameters, and to estimate effect sizes for power analysis
to ensure appropriate sample sizes of experimental animals.
Our numerical simulations center on three metrics including
() the signal-to-noise ratio (SNR), (II) the number of data
points needed for the characterization of the diffusion signal
decay, and (IIT) the range of diffusion sensitization (b-value
range), which are essential for renal DWI applications. To
meet this objective, detailed numerical simulations were
conducted with the goal to optimize renal DWT parameters
in order for the NNLS continuum modelling to provide
an error of less than 5% and 10%, for the assessment of
tubular fluid, intrarenal blood, and renal tissue volume
fractions. As ground truth, a tri-exponential and a four-
exponential function using defined volume fractions and
diffusion coefficients for each renal compartment were
applied for baseline renal tissue conditions. To approach a
pathophysiological scenario, NNLS continuum modelling
was evaluated for conditions that mimic an increase in
tubular volume fraction and different degrees of renal
fibrosis.

Methods
Multi-compartment model

Two-compartment (bi-exponential) models generally
used for representing DWT data of organs other than
the kidney were recently shown to be unsuitable for fully
representing renal DWI data, as they neglect the impact
of the tubular volume fraction (39,40). Therefore, a three-
compartment model of the kidney was used, implementing
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a tri-exponential decay function with defined parameters
according to the following equation:

—b D,

nddnies

e ~b Dy =5 Dijond
ST = fioue® + Jubutes€

+ Jrio0d® [1]

where ST is the normalized signal intensity as a function of
b (b-value), f;... the signal fraction of the tissue component,
D,... the diffusion coefficient of restricted water diffusion
in renal tissue, fi.. the signal fraction of the tubular
component, D, ., the pseudo-diffusion coefficient of the
tubular fluid component, f;,,; the signal fraction of the
blood component, and D, the pseudo-diffusion coefficient
of the blood component.

Since the number of compartments might change in
pathophysiological conditions of the kidney including the
development of fibrosis, a fourth compartment was applied.

bD,
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(2]

where f,.., is the signal fraction of the fibrotic component,
Dy, the diffusion coefficient of restricted water diffusion
in fibrotic tissue.

The sum of the fractions equals I in all multi-
compartment models used.

NNLS continuum modelling

A multi-exponential analysis based on the NNLS
algorithm of Lawson and Hanson (53) was used. The
NNLS MATLAB (The Mathworks Inc., Natick, USA)
implementation was adapted from the open-source software
AnalyzeNNLS from Bjarnason and Mitchell (43).

The diffusion signal decay y, can be expressed as a sum of
exponential functions:

n=Xihse " izl,2,N 3]

where s; is the relative amplitude for each partitioned

D-value D;, b; is the b-value that governs the diffusion

sensitization for each data point in the signal decay, M is the

number of logarithmically spaced D values (300 values were

used), and N represents the total number of data points.
The NNLS algorithm is used to minimize:

2
By N M ~bD
X _mm[z i=l ‘Z mse —y,.‘

2
M-1
+,LIZ]:2 |sm—25j+sj 1' }

Eq. [4] includes a regularization term with a weighting

4]
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factor p, found using generalized cross validation (54). The
regularization term acts as a smoothing constraint that
minimizes the curvature of the NNLS spectrum to provide
a robust fit in the presence of noise. Another equally valid
regularization paradigm used in the literature is L.1-norm
or sparsity regularization. The curvature regularization
approach was chosen because of its analytic solvability, its
justifiable assumption on the resulting spectrum and its
successful use in the literature (32,45-52).

The output of NNLS is a diffusion coefficient
distribution with distinct log-normal-like peaks. Fach peak
corresponds to a major (pscudo-)diffusion compartment.
These peaks can be characterized by (I) area under the
spectral curve fraction on the predefined logarithmic scale,
and (II) geometric mean D coefficient. The number of
peaks was not constrained « priori.

Numerical simulations

All numerical simulations were implemented in MATTLAB
using the open-source tool AnalyzeNNLS (43). The ground
truth signal was created assuming a three-compartment or
a four-compartment model {Eq. [1] and Eq. [2]} using three
scts of parameters:

% 'The first parameter set was used to represent baseline

conditions;

The second parameter set was used to represent

pathophysiological conditions of increased tubular
volume fraction (I'I'V) (/)

% The third parameter set was used to represent
pathophysiological conditions of two degrees of
renal fibrosis (f,..)-

Figure 1 describes the workflow from simulation of
these parameters to visualization and mean absolute
percentage crror (MAPE) assessment. All parameters used
for (1) baseline, (II) increased f,,;,.. and (1II) fibrosis (55-57)
conditions are presented in Table 1. These parameters
were obtained from the literature (39) and provide a fair
approximation. The volume fractions f3,,;, of 10% and 30%
represent grade 1 (mild) and a low grade 11 (moderate) of
renal fibrosis, respectively, according to grading schemes
used in human patients (grade I <25%, grade II >25-
50%, grade TIT >50% area) (56). Effects of experimental
parameters such as the echo time and the diffusion time
were not considered explicitly, but rather implicitly through
varying SNR and the b-value range.

For each b-value, Rician noise was added to the
signal. The signal ST was then fitted using the NNLS
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implementation and the common non-linear least squares
(LS) fitting routine using a trust region growing algorithm
[fastnnls routine, N-way toolbox for MATLAB (58)]. This
procedure was repeated n=500 times for each (patho)
physiological condition (baseline, increased f,,,.,, two
fibrotic conditions). Five hundred repetitions lead to
error estimates with an uncertainty below 5% of the error
magnitude. By using the same 500 realizations of noise
for all cases we were able to reduce the impact of random
fluctuation on our comparisons even further resulting in
robust and interpretable results.

Non-linear least square fitting

The created tri-exponential function was also fitted with
the common LS method using a trust region growing
algorithm. For this purpose, starting values and parameter
ranges were established (40) as summarized in Zable 2 with
the starting values for cach fraction being balanced between
the conditions at baseline and I'T'V.

SNR

Diffusion decays were simulated at different SNR conditions
to explore the impact of the noise for the NNLS and LS
approach. For this purpose, Rician noise was added to the
synthetic multi-exponential signal decay. SNR was defined
as the signal intensity of the first b-value (b=0 s/mm’),
divided by the standard deviation of the noise added. The
first b-value was used as an SNR reference, since acquiring
b=0 s/mm” scans is standard procedure in DWI studies and
therefore facilitates comparisons with other studies (30). Tn
order to keep the comparison between different SNR-levels
and simulated scenarios free from statistical fluctuations, the
same sct of noise realizations (n=500) was used for all SNR-
levels and scenarios. An SNR range from 40 to 1,000 (SNR
=40, 80, 120, 160, 200, 280, 360, 440, 520, 640, 760, 880,
1,000) was chosen to cover the SNR of typical raw images
as well as the SNR derived from restoration of DWI data
using noise filtering (59-61). The SNR range also covers
SNRs obtained from averaging over regions of interest
(ROI) where the averaged SNRgoris proportional to the
square root of the number of the pixels included.

Diffusion sensitization

‘To study the impact of the number of b-values, this
parameter was varied from 10 to 50 b-values in increments

Quant Imaging Med Surg 2021;11(7):3098-3 119 | heep://dx.doi.org/10.21037/qims-20-1360



3102 Periquito et al. Diffusion spectrum computation for DWI-MRI of kidney tubules

Definition of Simulation Parameters

(Patho)physiological Condition Baseline Increased Tubular Fraction
b-value Range o ssgzlllmmq o zli'gggsjmm,]
STEP 1 Fixationof D, D, .. Fixed Not-fixed
Number of b-values 10 15 20 25 30 35 40 45 50
SNR 40 80 120 160 200 280 360 440 520 640 760 830 1000

Diffusion Decay Simulations
(for each parameter combination + 3-compartment model)

n=500 curves
STEP 2 Sl “ground truth” S “with added noise”
(fhlnm{ ftuhules fnssue (fblaud fluhulqs flissue
Dhlwleubulqu!l;we) DbloudolubulesDﬁssue)
! b-value ! b-value
Fitting: Parameter Calculation
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{fifct s Tonin: Db s Dinmall (i Toin: Fin Do Dt Dl

Determination of Mean Absolute Percentage Error (MAPE)
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100 2
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STEP 4 g 50 X' calculated parameter
= 25 X true value
- o
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Heatmap and Statistical Analysis
(parameter combinations yielding MAPE<10% and <5% for both fitting methods)
Heatmap Analysis Error Proportion in Renal Compartments
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o

.
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= — T
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Figure 1 Workflow used for LS and NNLS computation for DWT of the kidney tubule. Numerical simulations were performed and
analysed using NNLS continuum modelling. For the ground truth a tri-exponential function using defined volume fractions and diffusion
coefficients for each renal compartment were applied. For NNLS and LS computations (patho)physiological conditions (baseline and ITV),
range of b-values (from small b-value range: b=0-800 s/mm’ to large value range: b=0-2,180 s/mm’) and parameter fixation (D, and D,
fixed vs. Dy, and D, not-fixed) were applied. MAPE was calculated (average n=500) using the ground truth as a reference. The results
were displayed using a MAPE heat map showing the difference between the ground truth and the data obtained from NNLS or LS for each
condition. From the MAPE heat map the percentage of combinations (SNR/number of b-values) with a difference between the ground
truth and the NNLS data or the LS data of less than 5% or less than 10% were quantified and plotted in an error proportion plot. LS,
least squares; NNLS, non-negative least squares; DWI, diffusion-weighted MRI; MAPE, mean absolute percentage error; SNR, signal-to-
noise ratio; fi,.,, volume fraction of blood; £,,,.., volume fraction of tubules; £, volume fraction of tissue; f,., volume fraction of fibrosis;
Dijir diffusion coefficient of blood; D, ., diffusion coefficient of tubules; D, diffusion coefficient of tissue; Dy, diffusion coefficient of

fibrosis; b-value, diffusion weighting.
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Table 1 Summary of multi-exponential parameters used for the generation of the synthetic diffusion decay data

Increase of tubular

Fibrotic conditions Fibrotic conditions

Parameters Baseline (39) Voluirie fraction 10% 30%
Fraction blood (fye) 0.10 0.05 0.10 0.10
Fraction tubules (f,,syes) 0.30 0.50 0.30 0.30
Fraction tissue (fse.) 0.60 0.45 0.50 0.30
Fraction fibrotic tissue (fios) 0.00 0.00 0.10 (56) 0.30 (56)
Diffusion blood (Dyos) 180.0x10™° mm®/s

Diffusion tubules (Dysues) 5.80x10™° mm?/s

Diffusion tissue (Dyss.e) 1.50x10° mm?/s

Diffusion fibrotic tissue (Djssi) 8x10™° mm?/s (55,57)

foooss VOlume fraction of blood; .., volume fraction of tubules; ..., volume fraction of tissue; f;,..., Volume fraction of fibrosis; Dy,
diffusion coefficient of blood; D,,.s, diffusion coefficient of tubules; Dy, diffusion coefficient of tissue; Dy, diffusion coefficient of

fibrosis.

Table 2 Summary of LS fitting parameters

Fraction (f) Diffusion (D)
Compartment
Starting values Range Starting values (mm?®/s) (40) Range (mm?/s) (40)
Blood (foiooa) 0.075 [0.001; 0.999] (Diioos) 551x107° [9; 1,000]x10™®
Tubules (Frupuies) 0.400 [0.001; 0.999] (Duupuies) 9-7x107° [2; 50]x10°
Tissue (Fissue) 0.525 [0.001; 0.999] (Dsiess) 1.9x10° [0.01; 7]x10™°

LS, least squares; fy,.4, volume fraction of blood; f,..., volume fraction of tubules; f,.,., volume fraction of tissue; Dy..q, diffusion
coefficient of blood; Dy,,.., diffusion coefficient of tubules; D,...., diffusion coefficient of tissue.

of 5. We hypothesized that a larger number of b-values
would result in a lower error for both fitting methods.
However, increasing the number of b-values prolongs
examination times and imaging protocols, which is not
always feasible for in vivo experiments.

To investigate the impact of the range of b-values, 10
scts of diffusion sensitization ranges were examined. For
the first set, a b-value range of b=0 to 800 s/mm’ (small
b-value range) was obtained from consensus-based technical
recommendations for clinical translation of renal DWT (30).
Figure 2/ describes the decomposition of the 1 derivative
of the diffusion decay together with the 1% derivative of the
decay of individual components of a tri-exponential model
including intrarenal blood, tubules and renal tissue. For the
tubule system the full width half maximum (FWTIM) of the 1%
derivative encompasses a b-value range of b=40 to 460 s/mm’.
The 1* derivative of the tissue signal component is dominant
for b>250 s/mm?. For quantification of D, and f,...
sampling of this b-range is important to obtain SI(b) and the
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1 derivative of SI(b). TTowever, if D, is known a priori the
focus remains on b<800 s/mm’ where most of the tubular
signal component is decayed. For comparison diffusion
sensitization was extended to b=0-1,110 s/mm® (10 b-values),
b=0-1,380 s/mm? (15 b-values, designated as medium b-value
range), b=0-1,570 s/mm’ (20 b-values), b=0-1,710 s/mm’
(25 b-values), b=0-1,840 s/mm” (30 b-valucs), b=0-1,940 (35
b-values), b=0-2,030 s/mm® (40 b-values), b=0-2,110 s/mm*
(45 b-values) and b=0-2,180 s/mm” (50 b-values, designated
as large b-value range). For each b-value range the largest
b-value was set so that the expected relative signal intensity
is equal to (I/number b-values) for the largest b-value
(Figure 2B). In order to create an unbiased b-scale that
does not favor any one component at the expense of any
other, each b-value was distributed over the b-value range
to yield a constant signal intensity decrement (1/number
of b-values) from one b-value to another as outlined in
Figure 2B, assuming the ground truth values outlined in
‘lable 1. Maintaining the signal intensity decay constant
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Figure 2 Diffusion sensitization considerations. (A) The 1* derivative of the diffusion decay (purple) together with the 1% derivative of the

individual components of a tri-exponential model: blood (red), tubules (orange) and tissue (green). For the tubules system the FWHM of the

1% derivative encompasses a b-value range of b=40-460 s/mm”. The cyan line marks b=800 s/mm’. (B) Diffusion decay using a logarithmic

scale. The number of b-values (n=20) was set so that the relative signal intensity is equal to (1/number of b-values) for the largest b-value.

This approach yields a constant signal intensity decrement (1/number of b-values) from one b-value to the next, to ensure that individual

measurements are independent of the signal decay. FWHM, full width half maximum; b-value, diffusion weighting.

from one b-value to the next ensures independence of
the individual measurements of the signal decay, and is
therefore a reasonable approach for quantification of the
individual exponential contributions. The equidistant
intensity drop from one b-value to the next was computed
by interpolating on a fine evaluation of the tri-exponential
decay with exponential weights in between the baseline and
the increased tubular fraction case (£, =0.075; fo =0.4;
Fime 0.525).

Under physiological conditions and upon changes in the
tubular volume fraction, the physicochemical properties
of renal tissue and intrarenal blood are recognized to be
essentially invariable (62). It is therefore reasonable to
study the effect of fixing the diffusion coefficients D, and
Dy,,q for these compartments. Fixing fitting parameters to
improve the robustness of the fit is common practice (40),
especially when dealing with multi-exponential functions,
where at least six parameters are needed. We tested the
cffect of fixing diffusion cocfficients on NNLS continuum
modelling by setting the diffusion parameter to a predefined
value for the slowest and fastest components. A similar
simplification was applied for the NNLS continuum
modelling by restricting the diffusion-cocfficient-basis to
the range of the intermediate component between 3x107™
and 33x10™ mm*/s, and two single exponentials with known
diffusion coefficients for the fast and slow components.
The two fixed NNLS-basis-vectors were excluded from
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curvature regularization. Areas under the continuous
diffusion spectrum were determined using the MATLAB
function SUM between two adjacent minima in the spectra.
Relative areas were obtained by dividing each peak by the
total area obtained for all peaks.

MATLAB Code Availability Statement: The MATLAB
code will be made openly available in GitHub at hetps://github.
com/JoaoPeriquito/NNLS_computation_of_renal_DWI.

Statistics

For the simulations the MAPE was used to show the
percentage difference between the calculated value and the
true value, for the 9x13 matrix of b-values and SNR values
(Figure I). MAPE is defined as:

x'—xl

X

MAPE = -100 [5]
where a” is the calculated parameter and a the true-value.
The Shapiro-Wilk test was used to assess for Gaussian
distribution. MAPE values did not conform to a Gaussian
distribution, thus non-parametric statistical tests were used
including the paired Wilcoxon signed-rank test, the Kruskal-
Wallis test and Dunn’s post-hoc procedure. Differences
in MAPE obtained for fixing vs. not-fixing the Dy, and
D, diffusion parameters, for the b-value ranges used
(Drange smat =0-800 mm?/s up to b =0-2,180 mm?/s),

range_large
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Figure 3 Example of an NNLS spectrum for baseline and for the (patho)physiological condition of an TTV. The spectra were obtained for

a signal intensity decay covering 25 b-values using a SNR =360 for b=0 s/mm’. The three peaks along the diffusion coefficient direction

represent three diffusion decay components: a slow-decay component for renal tissue (left peak), an intermediate-decay component for

tubules (middle peak) and a fast-decay component for intrarenal blood (right peak). The (patho)physiological condition of TV decreased

the areas under the left and right peaks and increased the area under the middle peak. NNLS, non-negative least squares; ITV, increased

tubular volume fraction; SNR, signal-to-noise ratio; b-value, diffusion weighting.

and for the physiological state (baseline vs. ITTV) were tested
independently using the paired Wilcoxon signed-rank test.
Differences in MAPE among the 2* permutations of the
independent variables volume fraction, b-value and fixation
state—with each variable having two levels—were assessed
with the Kruskal-Wallis non-parametric ANOVA test.
To determine which specific pair-wise comparisons were
different, Dunn’s post-hoc test was performed for selected
pairwise comparisons with Holm’s correction for multiple
comparisons. The accuracy to discriminate between baseline
and the pathophysiological conditions of an ITV or renal
fibrosis was evaluated using signal intensity-based receiver-
operating characteristic (ROC) curves. The arca under the
curve (AUC) was calculated and compared with DeLong’s
test (63), using the R packages pROC (64), plotROC (65) and
cutpointr (66). The Kruskal-Wallis test was used to compare
the AUC of the fibrotic compartment between the simulated
conditions of 30%, 10% and no fibrosis. Data analysis was
done using the statistical computing environment R (v.3.3.4)
(https://www.R-project.org).
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Results
NNLS continuum modelling

Analysis of the simulated data with the NNLS continuum
modelling resulted in a distribution of diffusion coefficients
covering the full range expected for the three components.
Figure 3 demonstrates that it is possible to ascribe each of
the three peaks along the diffusion coefficient spectrum to a
diffusion decay component. ‘The left peak can be attributed to
the slow-decay component of tissue (D, ~1.50x10 * mm’/s),
the middle peak to the intermediate-decay component from
tubules (D,,.: ~5.80x10”° mm’/s) and the right peak to
the fast-decaying component associated with blood (D,
~180.00x10"" mm?’/s). ‘The graph shows 1,000 NNLS
spectra produced from simulations of baseline conditions
(n=500) and of TTV conditions (n=500). The change of
the intensity ratio of the two slower component peaks is
clearly visible when transitioning from baseline conditions
to I'T'V conditions. Similar datasets were acquired for
all combinations of SNR, b-value number and b-value
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Figure 4 MAPE heat maps for tubular volume fraction for all simulations. (A) MAPE heat maps related to the tubular fraction for all

continuum modelling NNLS simulations. Left column: no fixation of D,,,; and D,,,, right column: fixation of Dy, and D, .. (B) Highlight
of the MAPE heat maps related to the tubular fraction for all NNLS continuum modelling simulations with MAPE <5%, <10% and >10%.
Left column: no fixation of Dy, and D,,, right column: fixation of Dy, and D,,.. MAPE, mean absolute percentage error; NNLS, non-

negative least squares; SNR, signal-to-noise ratio; D,,, diffusion coefficient of blood; D, diffusion coefficient of tissue; b-value, diffusion

weighting.

range. To process this large amount of data, peak areas and
geometric mean positions were first extracted from the
spectra and then compared to the ground truth by using the
MAPE.

MAPE of tubular volume fraction, blood and renal tissue

MAPE was used as a metric to assess which combination
of SNR/number of b-values provides less than 5% or 10%
error from the true value. Figure 44 shows heat maps
of the individual MAPE of the tubular volume fraction.
As expected, the error decreases with increasing SNR.
Increasing the number of b-values is also beneficial for
tubular volume fraction quantification. Correspondingly,
using 10 b-values at SNR =80 provides similar MAPE as
using 40 b-values at SNR =40 (Figure 4A). Furthermore,
the benefit of additional b-values diminishes with each
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subsequent addition. From 25 b-values onwards, the benefit
becomes less apparent. A pronounced increase in the
precision is also discernible when the range of b-values is
increased (small range, b=0-800 s/mm’ vs. large range, b=0-
2,180 s/mm?). In all cases MAPE is substantially improved
when reducing the number of determined parameters from
6 to 4 by fixing the (pscudo-)diffusion coeflicients of blood
and tissue.

Figure 4B highlights the combinations of SNR/number
of b-values that provide a MAPE below 5% (light gray)
or 10% (dark gray) for the tubular volume fraction. The
percentage of these successful combinations was extracted
from cach of the MAPE heat maps as the quantitative
description of the method’s precision for further
consideration. The number of combinations with an error
below 10% with no fixation used was 0% for baseline-small
b-value range, 3% for baseline-large b-value range, 10%

Quant Imaging Med Surg 2021;11(7):3098-3119 | herp://dx.doi.org/10.21037/qims-20-1360
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for increased tubular fraction-small b-value range, and 58%
for increased tubular fraction-large b-value range. In non-
fixed cases, an error below 5% was only found for increased
tubular fraction-large b-value range (44% of combinations).
The fraction of combinations below 10% error when
fixation of D,,,, and D,,,,. was used was 91% for baseline
and 97% for increased tubular fraction (for both small and
large range). An crror below 5% was observed in 68% of
baseline-small b-value range, 75% of baseline-large b-value
range, 81% of I'TV-small b-value range, and 86% of ITV-
large b-value range combinations.

Figure 5 shows the percentages of excellent (MAPE
<5%), good (MAPE <10%) and unsuitable (MAPE >10%)
simulation results for each of the eight combination
of parameters for the renal blood, tubules and tissue
compartments. ITere we compare LS with NNLS
continuum modelling with respect to different MAPE
stratifications for each simulated permutation. By fixing the
value of blood diffusion coefficient D, and tissue diffusion
coefficient D,,,,., more than 60% of all combinations yielded
an error below 10% for all parameters and more than 40%
provided an error below 5% for all parameters using NNLS
continuum modelling. For LS the use of fixation yielded for
more than 70% of all combinations an error below 10% for
all parameters. More than 50% of the combinations showed
an error below 5% for all parameters.

Tn addition to improving the proportion of combinations
with good and excellent error levels, fixing the blood
(Dy,,s) and tissue diffusion (D) coefficients significantly
reduced the absolute value of the MAPE of the tubular
volume fraction (P=2.13x10 7 fixed vs. not-fixed, Wilcoxon
signed-rank test). Similarly, using a large range of b-values
significantly reduced the MAPE in the tubular volume
fraction (P=2.78x107 smallest vs. largest b-value range,
Wilcoxon signed-rank test).

Pathophysiological condition of ITV

For the first pathophysiological condition, we studied the
impact of an increase in the tubular volume fraction. "This
condition does not alter the number of compartments.
Increasing tubular volume fraction significantly reduced
the MAPE in this compartment, compared to baseline
(P=2.15x107%, Wilcoxon signed-rank test). When
considering differences among all permutations of the
three simulation conditions (i.c., baseline »s. I'TV, smallest
vs. largest b-value range, fixation of Dy, and D,,. vs. no
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fixation—three conditions with two levels cach, 2°=8), the
error values differed significantly (Kruskal-Wallis statistic
=621.1, eta’ cffect size =0.662, which was independent
of the number of simulations, P=7.07x10™"") (Figure 6).
Pairwise post-hoc comparisons corrected for selected
multiple comparisons are shown in 7able 3.

We then proceeded to evaluate the accuracy to
discriminate between bascline and increased tubular volume
conditions based on the signal intensity. When diffusion
coefficients were not fixed, and the b-value range was kept
constant at a small value (b=0-800 s/mm’) increasing the
number of b-values significantly improved discrimination
accuracy, with the AUC increasing from 0.63 to 0.74 (10
vs. 50 b-values, P<2.2x10™, DeLong’ test, Figure 74). 'The
optimal cut-off values, sensitivity and specificity for all ROC
curves are listed in Table 4. Increasing to a larger range of
b-values had a greater impact on discrimination accuracy.
Maintaining 10 b-values while increasing the range to b=0—
1,100 s/mm’ improved the AUC to 0.83. Using a medium
b-value range of b=0-1,380 s/mm’ (with 15 b-values)
improved the AUC to >0.90, and further increases beyond
this range yielded diminishing improvements, although
these were statistically significant (AUC =0.91 vs. 0.96,
medium b-value range 0-1,380 vs. maximum b-value range
0-2,180 s/mm?, P<2.2x107"¢, DeLong’s test, Figure 7B,
Table 4). Based on our empirical testing illustrated in
Figure 74,B and Figure 44, we conclude that a minimum
number of 10 b-values is right at the limit of yiclding
an appropriate description of the tri-exponential decay.
When D,,,; and D, were not fixed, SNR had a more
profound impact on discrimination accuracy. At SNR
=40, the discrimination between baseline and ITV was
rather poor, with an AUC of 0.66 for the ROC curve.
This performance increased steadily with increasing SNR,
achicving a maximum discrimination accuracy of 0.94
at a maximum SNR of 1,000. However, the magnitude
of this improvement diminished at higher SNR values.
While the increase in discrimination accuracy from SNR
880 to SNR 1,000 was significant, the improvement was
nevertheless marginal (AUC =0.93 vs. 0.94, P=1.1x107,
DeLong’s test, Figure 7C, lable 4). Fixing the diffusion
coefficients for blood and renal tissue had a profound effect
on discrimination accuracy. Considering all numbers of
b-values, b-value ranges and SNR levels, the AUC was 0.83.
When D, and D, were fixed, the discrimination accuracy
was near perfect, with AUC of 0.99 (not fixed vs. fixed,
P<2.2x107", DeLong’s test, Figure 7D, ‘lible 4).
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Figure 5 Survey of the results obtained from error analysis. The error proportion plots show the percentage of combinations with the
MAPE below 5% or below 10% using non-linear LS fitting (left column) and NNLS continuum modelling (right column) for all kidney
fractions: intrarenal blood, tubule and renal tissue. MAPE, mean absolute percentage error; LS, least squares; NNLS, non-negative least
squares; I'TV, increased tubular volume fraction; Dy, diffusion coefficient of blood; D, diffusion coefficient of tissue; b-value, diffusion
weighting.
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Figure 6 Statistical comparison of the effects of (I) fixation of Dy, and D, (not-fixed vs. fixed), (II) of the (patho)physiological condition
(baseline vs. increased tubular volume) and (III) of the b-value range (small s. large b-value range). MAPE analysis of the tubular volume
fraction from NNLS continuum modelling was compared between all permutations of the simulation conditions: fixation of D,,,; and D,
(fixed or not-fixed), (patho)physiological condition (baseline vs. increase in tubular volume) and range of b-values (small b-value range over
large b-value range). Fach of these three factors had significant effects on the error values when considered independently. Comparing
among the permutations showed significant differences in MAPE (P=7.07x10 ", Kruskal-Wallis non-parametric ANOVA, followed by
Dunn’s procedure with Holm’s correction for multiple comparisons). Selected pairwise comparisons are summarized in Table 3. MAPE,
mean absolute percentage error; NNLS, non-negative least squares; I'T'V, increased tubular volume fraction; D, diffusion cocfficient of

blood; D, diffusion coefficient of tissue; b-value, diffusion weighting.

Pathophysiological condition of fibrosis compartment was significantly greater under both the

Wi o atnisied parhopbystolopingl sendianes far simulated conditions of grade T and grade TI fibrosis (affecting

mimic grade I (mild, 10%) and low grade II (moderate,
30%) interstitial renal fibrosis, thereby adding another
component that may be considered as an additional renal
compartment (fz,,,). Using data with the maximum b-value
range of 0-2,180 s/mm’ (50 b-values), NNLS continuum

10% and 30% of the renal area, respectively) compared to
the fibrosis-free condition. The signal intensities obtained
for grade II were significantly higher than for grade I. This
distinction improved with increasing SNR (Figure 84,8,
P<2.2x107"%, Kruskal-Wallis non-parametric ANOVA,

modelling was able to detect the diffusion component of the followed by Dunn’s procedure with Holm’s correction for
fibrotic compartment, to differentiate it from the other three multiple comparisons). Discrimination between either 30%
diffusion components, and to distinguish 10% from 30% or 10% fibrosis or non-fibrosis based on the signal intensity
fibrosis (Figure 84). Furthermore, this was also the case when of the fibrotic compartment was near perfect. The ROC
the medium b-value range of 0-1,380 s/mm’ (15 b-values) curves show AUC =0.98, 1.00 (medium b-value range), and

was used (Figure 8B). For both the large and the medium 0.99, 0.99 (large b-value range), for 30% and 10% fibrosis,
b-value ranges, the AUC (signal intensity) of the fibrotic respectively (Tuble 4).
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Table 3 Pairwise post-hoc comparisons of the MAPE

Periquito et al. Diffusion spectrum computation for DWI-MRI of kidney tubules

Effect of FixationDc:f Dioaand B-value range (Path:lif:j\,?:frllt:gical Adjusted P value® Significance
issue
Fixation of D,,,.,and Not-fixed Small Baseline 3.2x10™% G
Do Fixed
Not-fixed Small ITV condition® 4.9x10°°
Fixed
Not-fixed Large Baseline 4.5x10™ i
Fixed
Not-fixed Large ITV condition 1.4x107 R
Fixed
B-value range Not-fixed Small Baseline 5.8x107 NS
Large
Not-fixed Small ITV condition 8.7x107"® e
Large
Fixed Small Baseline 7.3x10™ NS
Large
Fixed Small ITV condition 7.3x107 NS
Large
(Patho)physio- Not-fixed Small Baseline 5.8x107 NS
logical condition 1TV condition
Not-fixed Large Baseline 3.1x107"° o
ITV condition
Fixed Small Baseline 1.3x10" NS
ITV condition
Fixed Large Baseline 1.3x10™ NS
ITV condition

2 ITV condition refers to an increase in the tubular volume fraction; ®, Dunn’s post-hoc test with Holm correction for multiple comparisons;
**** P<0.00001. MAPE, mean absolute percentage error; D, diffusion coefficient of blood; D,..,., diffusion coefficient of tissue; b-value,

diffusion weighting.

"This study is the first report on a systematic examination of
NNLS computation for DWI of the kidney tubule system.
Our results demonstrate the feasibility of NNLS continuum
modelling for renal DWT as a less constrained, data-driven
alternative for monitoring changes in the tubular volume
fraction and the degree of tissue fibrosis. Our numerical
simulations demonstrate the impact of SNR, the number of
b-values needed for characterization of the diffusion signal
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decay and the range of diffusion sensitization on NNLS
continuum modelling-based renal DWT applications. We
show that while the error inherent to the NNLS continuum
modelling is not superior to conventional fitting approaches
using rigid multi-exponential models per se, it strongly
depends on the specific parameter combinations applied
during renal DWI. Our simulations present DWI-MRI
parameters that ensure an error of less than 10% and 5%,
respectively, for NNLS continuum modelling of the tubular
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Figure 7 Effects of number of b-values, range of b-values, SNR and fixation of Dy, and D, (fixed vs. not-fixed) on accuracy to
discriminate bascline and I'TV. ROC curves show the accuracy of discriminating between baseline renal tubular volume conditions and
pathophysiological conditions that mimic an I'T'V, based on signal intensity. (A) When diffusion coefficients were not fixed, and the b-value
range was kept constant at a small value (b=0-800 s/mm’) increasing the number of b-values significantly improved discrimination accuracy,
with the AUC increasing from 0.63 to 0.74 (10 vs. 50 b-values, P<2.2x107"¢, DeLong test). (B) Increasing to a larger range of b-values had
a greater impact on discrimination accuracy. Maintaining 10 b-values while increasing the range to b=0-1,100 s/mm’ improved the AUC
to 0.83. Using a medium b-value range of b=0-1,380 s/mm’ improved the AUC to >0.90, and further increases beyond this range yielded
diminishing improvements (AUC =0.91 vs. 0.96, maximum b-value range 1,380 vs. 2,180 s/mm’, P<2.2x107'°, DeLong’s test). (C) When Dy,
and D, were not fixed, SNR had a pronounced impact of discrimination accuracy: At low SNR of 40 the AUC was 0.664, increasing to 0.942
at the highest SNR of 1,000 (P<2.2x107, DeLong test). (D) Fixing the diffusion coefficients for blood and renal tissue had a profound
cffect on discrimination accuracy. Considering all numbers of b-values, b-value ranges and SNR levels, the AUC was 0.83. When D,,,,; and
D, were fixed, the discrimination accuracy was near perfect, with AUC of 0.99 (not fixed vs. fixed, P<2.2x107%, Del.ong’s test). All values
for AUC, optimal cut-off, sensitivity and specificity are listed in Zable 4. SNR, signal-to-noise ratio; I'T'V, increased tubular volume fraction;
ROC, receiver-operating characteristic; AUC, area under the curve; b-value: diffusion weighting.

volume fraction when compared to the ground truth given priori assumptions in conjunction with rigid bi-exponential
by the tri-exponential model. models. The fitting routine forces the data to conform

Most renal DWT studies report two compartments: to a bi-exponential behavior, and consequently, linear
pscudo-diffusion related to incoherent water motion in the segmentation is frequently performed based on a given
microvasculature, and true diffusion attributed to restricted b-value threshold, assuming a bi-exponential behavior.
diffusion in the tissue. Analysis of DWI using this approach, Alternatively, parameters used for data acquisition may be
along with tracking of pathological changes, requires « customized by designing the diffusion sensitization with a
© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2021;11(7):3098-3119 | herp://dx.doi.org/10.21037/qims-20-1360

68



3112 Periquito et al. Diffusion spectrum computation for DWI-MRI of kidney tubules

Table 4 Summary of ROC curve comparisons

Condition type® Condition value Area under curve Optimal cut-off° Sensitivity Specificity
Small b-value range® 10/800° 0.63 0.33 0.40 0.84
{number'of b-valuss/ 15/800 0.68 0.33 053 0.84
Ll 20/800 0.70 0.34 0.54 0.86
25/800 0.70 0.34 0.58 0.86
30/800 0.71 0.34 0.58 0.87
35/800 0.73 0.35 0.60 0.90
40/800 0.72 0.33 0.62 0.86
45/800 0.73 0.34 0.63 0.87
50/800 0.74 0.34 0.65 0.88
Large b-value range® 10/800° 0.63 0.33 0.40 0.84
(number of b-values/ 10/1,110 0.83 0.32 0.77 0.89
maximum b-value)
15/1,380 0.91 0.34 0.88 0.93
20/1,570 0.93 0.34 0.91 0.93
25/1,710 0.94 0.34 0.92 0.94
30/1,840 0.95 0.35 0.92 0.95
35/1,940 0.96 0.36 0.94 0.96
40/2,030 0.96 0.34 0.95 0.95
45/2,110 0.96 0.35 0.95 0.96
50/2,180 0.96 0.36 0.95 0.96
SNR°® 40 0.66 0.34 0.88 0.38
80 0.72 0.37 0.91 0.52
120 0.78 0.40 0.92 0.64
160 0.81 0.40 0.94 0.72
200 0.84 0.41 0.96 0.77
280 0.86 0.42 0.97 0.82
360 0.88 0.42 0.99 0.86
440 0.90 0.43 0.99 0.88
520 0.90 0.43 0.99 0.90
640 0.92 0.41 1.00 0.91
760 0.93 0.40 1.00 0.92
880 0.94 0.38 1.00 0.93
1,000 0.94 0.38 1.00 0.94
Dyjoog@nd D;..,r NOt fixed - 0.83 0.40 0.96 0.79
D,jsgand Dy, fixed - 0.99 0.40 0.99 1.00
Fibrosis (%)"/maximum 10/2,180° 0.99 0.02 0.96 0.96
b-value range 30/2,180 0.99 0.08 1.00 0.94
10/1,380 0.98 0.01 0.96 0.93
30/1,380 1.00 0.11 1.00 1.00

¢ accuracy to discriminate baseline and ITV based on signal intensity; o optimum cut-off determined by maximize metric; °, ROC curves
calculated on data without parameter fixation; ¢, mm/s? °accuracy to discriminate fibrosis component vs. no fibrosis based on signal
intensity. ROC, receiver-operating characteristic; D,.q, diffusion coefficient of blood; D,.., diffusion coefficient of tissue; b-value, diffusion
weighting; SNR, signal-to-noise ratio; ITV, increased tubular volume fraction.
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Figure 8 NNLS detection of simulated fibrosis component. The simulations included baseline (no fibrosis) and a pathophysiological
condition to mimic fibrosis, thus adding a fourth renal compartment. (A) NNLS could readily detect this additional compartment, when
using a large b-value range of 0-2,180 s/mm’. (B) This result was also true when a medium b-value range of 0-1,380 s/mm’ was used. For
both the large and medium b-value ranges, the AUC (signal intensity) of the fibrotic compartment was significantly greater under both the
simulated conditions of grade T (mild) and grade IT (moderate) fibrosis (affecting 10% and 30% of the renal area, respectively) compared to
the non-fibrosis condition. The signal intensities obtained for grade IT were significantly higher than for grade I. This distinction improved
with increasing SNR (P<2.2x107", Kruskal-Wallis non-parametric ANOVA, followed by Dunn’s procedure with Holm’s correction for
multiple comparisons; whiskers denote +1.5x interquartile range). NNLS, non-negative least squares; AUC, area under the curve; AUC,
area under the curve; SNR, signal-to-noise ratio.
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specific number and magnitude of b-values (32-38).

Recently it was shown that a three-compartment model
is more appropriate for representation of the diffusion
properties of the kidney assuming that incoherent renal
water motion is linked to three sources: (I) tissue water
diffusion, (IT) incoherent blood motion, and (ITI) incoherent
tubular fluid motion (39,40). The rigid bi-exponential and
tri-exponential models share a common limitation: they
may not accurately reflect the complex nature of renal
water diffusion, because the data are forced to conform to
simplified models. This limitation could introduce a bias
that runs the risk of obscuring (patho)physiological changes
inherent to incoherent water motion probed with renal
DWI. NNLS continuum modelling does not suffer from
this limitation. Because NNLS continuum modelling does
not presume that only three compartments or sources are
associated with renal incoherent water motion, it allows for
the detection of additional sources such as lesions, tumors,
or fibrosis. This advantage is particularly relevant for DWI-
MRI of the kidney, as the number of compartments or
sources cannot necessarily be known in advance, and might
change during the progression, interception or therapeutic
treatment of renal disease. An alternative framework for
determining co-cxisting diffusion compartments without
prior assumptions on their number has been recently
demonstrated for DWI of the brain and is conceptually
appealing for renal DWT (67).

Our data indicate that increasing the b-value range alone
is not sufficient to ensure reliable measurements of the
tubular volume fraction. However, even modest increases
above the lowest b-value range of 0-800 s/mm’ resulted in
substantial improvements in discrimination accuracy. While
we simulated a series of b-value ranges extending up to
0-2,180 s/mm’, we observed that a medium b-value range of
0-1,380 s/mm’ yiclded the majority of the benefits, and that
further increases in b-value range had diminishing returns.
Using the large b-value range resulted in a clear distinction
between mild and moderate fibrosis. Furthermore, the
medium b-value range was also sufficient to discriminate
between mild and moderate fibrosis with a high degree
of accuracy. This medium b-value range is achievable
on clinical grade MRI systems, where the progress in
gradient coil technology has triggered the implementation
of high performance whole body gradients offering
Gox combined =100 m'1/m (68) or G,,,, =113 m'l/m (69). In
addition, the SNR had a pronounced effect. At low SNR,
the accuracy to discriminate between baseline and I'T'V
was poor but improved steadily with increasing SNR.
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Our data suggest that a minimum number of 10 b-values
is at the limit for reliable and robust diffusion coefficient
fitting with NNLS under baseline conditions and with
pathological changes. ‘The use of 15 b-values significantly
improved the fitting results and can be considered as an
appropriate minimum number of b-values for reliable and
robust diffusion coefficient fitding with NNLS. Increasing
the number of b-values further would prolong the scan
time, with diminishing benefits. Arguably, this extra scan
time burden can be compensated by using acceleration
techniques such as parallel imaging or compressed sensing
approaches (70,71). Our simulations used an SNR range of
40-1,000 for b=0 s/mm’ which meets the minimum SNR
levels suggested for advanced renal DWI (30). Using the
SNR obtained for higher b-values or for the largest b-value
presents a viable alternative.

Beyond the effects of SNR and b-value numbers and
ranges, we investigated the effects of fixing the blood
diffusion cocfficient Dy;,;and the tissue diffusion coefficient
D.,.... With this approach we obtained superior results,
compared to the non-fixed value approach. Acceptable
errors levels (<10%) were achieved in the majority of the
combinations studied (>89%). Data superiority (errors
levels <5%) was achieved in more than 60% of the
SNR/number of b-values combinations, in both (patho)
physiological conditions and when using small and
large b-value ranges. The fixation of the two diffusion
cocfficients did not prevent the appearance of multiple
peaks in the continuous region, where the curvature
regularization was kept active. Fixing these coefficients led
to near perfect sensitivity and specificity to discriminate
between the baseline and increased tubular volume
conditions based on signal intensity. The approach to fix
the diffusion coefficients of blood and tissue is advisable in
situations where one can presume that (patho)physiological
conditions or interventions do not dramatically change the
physicochemical properties of blood and tissue.

The common non-linear LS fitting method using the
trust region growing algorithm is considered the gold
standard for fitting the DWI decay. After fixing D,,,, and
D, NNLS continuum modelling showed a similar
degree of reliability as the non-linear LS with some
slight differences in the case of tubules and tissue. 89%
of combinations had acceptable error levels <10%, and
more than 50% of SNR/b-values had errors below 5% for
all parameters, compared to 40% on NNLS continuum
modelling. While both approaches showed a similar degree
of error, rigid models like LS can introduce a bias in the

Quant Imaging Med Surg 2021;11(7):3098-3 119 | heep://dx.doi.org/10.21037/qims-20-1360



Quantitative Imaging in Medicine and Surgery, Vol 11, No 7 July

analysis, since the number of compartments (number of
exponential decays), must be specified « priori. Furthermore,
starting values are crucial, and cach additional exponential
(additional compartment) included in the model requires
two additional variables. Multi-exponential models with too
many variables suffer from poor fit stability (40). NNLS
continuum modelling is less constrained than LS. NNLS
can delincate the complex nature of water diffusion and
possible (patho)physiological changes with far fewer «
priori assumptions. NNLS continuum modelling yields a
distribution of diffusion coefficients rather than a unique
value, which has the potential to better reflect the complex
characteristics of biological tissues. This potential is
underscored by the demonstration that the NNLS approach
could detect simulated renal fibrosis. By not constraining
the number of renal compartments in advance, NNLS
could detect a fourth fibrosis compartment when this was
introduced. Moreover, NNLS proved capable to distinguish
between simulated 10% vs. 30% fibrosis.

This work lays the foundation for preclinical studies
aimed at further elucidating the pathophysiology of various
kidney diseases, as well as studies that aim to establish MR
markers for diagnostics of those disorders. Renal tissue
hypoxia is generally regarded as an carly pivotal element
in the pathophysiology of AKI, the possible progression
of AKI to chronic kidney disease (CKD), and diabetic
nephropathy. In virtually all of these disorders, the
tubular volume fraction is altered, cither duc to changes
in glomerular filtration rate, the tubular outflow towards
the renal pelvis and beyond, in the transmural pressure
gradient, or in tubular fluid resorption (3,7,22,23,25).

Because changes in the tubular volume fraction likely
change the blood volume fraction, they result in changes
in renal I',* independent of changes in blood oxygenation.
Indeed, the tubular volume fraction is a confounding factor
influencing the relationship between renal ‘I',* mapping,
oxygen saturation of hemoglobin, and tissue oxygen tension
(21,29). TTence, DWI-based assessments of changes in the
tubular volume fraction are highly relevant for clucidating
the mechanisms of renal pathophysiology. Concomitant
DWI-based measurements of the tubular volume fraction
will help to accurately determine the pathophysiological role
of changes in renal oxygenation as assessed by renal T,*.

This work also provides potential insights for
translational research into MR-based diagnostic tools, as
changes in the tubular volume fraction are present in a
multitude of kidney disorders. Such changes are prominent
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in AKI as induced by disturbed systemic hemodynamics,
by intravascular administration of X-ray contrast media,
and by obstructions of the urinary tract and diabetic
nephropathy (3,7,22,23). CKD of most origins is marked by
fibrosis in addition to reduced glomerular filtration, which
contributes to a decrease in the tubular volume fraction (46).
In addition to pathological changes in the tubular
volume, our simulations revealed that NNLS continuum
modelling for renal DWI may also be useful for detection
and treatment monitoring of renal fibrosis, which is an
important biomarker of CKD and a powerful predictor of
renal outcome (26,28). These same considerations likely
apply to pathologies such as kidney lesions, polycystic
kidney disease, or tumors.

A relevant caveat of this study is that the effect of kurtosis
at high b-values (b>1,000 s/mm®) was not considered. At
high b-values, the probability distribution of the diffusion
displacement deviates from a Gaussian distribution. "T'his is
considered to be a consequence of the restrictions on water
molecule displacement imposed by microstructures (72).
However, the main focus of this work was to assess the
kidney tubule system, where the absence of organelles and
cell boundaries that might hinder diffusion renders the
kurtosis effect less relevant (73,74).

The use of deep learning neural networks could
potentially achieve the same or even better accuracy in
disentangling the different DWT decay components at
low SNR regimes with a low number of b-values. Neural
networks could be trained to extract the water diffusion-
related components of the tubules from the DWI decay
directly, without complex pre- and post-processing
methods. TTowever, neural networks depend heavily on
having a large body of ground truth training data, covering
the entire range of biological variability and potential
pathophysiological conditions.

The present study relies on numerical simulations, as a
prelude to the acquisition of iz vive data. In the interests
of time, resources, and adherence to the 3Rs principles
to minimize the use of experimental animals, we consider
that such in silico studies are a necessary precursor before
proceeding to iz vivo experiments, and that the results of
these simulations must be disseminated to the community.
The insights gained from the current study regarding
the appropriate selection of experimental parameters will
enhance the robustness and reproducibility of subsequent
in vivo studies, which are the logical next step for future
investigations of renal diffusion properties.
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Conclusions

In conclusion, our results demonstrate the implications
of using NNLS continuum modelling with specific DWI
acquisition and data processing protocols to provide
assessment of the kidney tubule volume fraction with less
than 5% or 10% error, and to offer the potential to detect
diffusion compartments associated with renal pathology.
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