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To interact with objects in our environments, the two arguably 
most basic questions that our brains must answer are what 
objects are present and where they are. To address the first 

question and identify an object, we must recognize objects indepen-
dently of the viewing conditions of a given scene, such as where the 
object is located. A large body of research has shown that the ven-
tral visual stream1–4, a hierarchically interconnected set of regions, 
achieves this by transforming retinal input in successive stages 
marked by increasing tolerance and complexity. At its high stages in 
high-level ventral visual cortex, object representations are tolerant 
to changes in retinotopic location5–7.

In contrast, we know considerably less about how the brain 
determines where an object is located. Current empirical data imply 
three different theoretical accounts.

One hypothesis (H1) is that object location representations are 
already present at the early stages of visual processing (H1, Fig. 1a) 
and thus no further computation is required. Given the idea that 
ventral stream representations become successively more tolerant 
to changes in viewing conditions such as location1, it seems plau-
sible that object location representations are to be found at the 
early stages of the processing hierarchy. Consistent with this view, 
human studies using multivariate analysis have shown that object 
location is often strongest in early visual cortex8,9, likely related to 
its small receptive field size which allows for spatial coding with  
high resolution10.

An alternative account (H2) is that location representations 
emerge in the dorsal visual stream (H2, Fig. 1a)11. This view is sup-
ported by findings from neuropsychology2,4,11 and by studies finding 
object location information along the dorsal pathway2,12.

A third possibility is that location representations emerge 
through extensive processing but in the ventral visual stream (H3, 
Fig. 1a). This view receives support from the observation that object 
location information was found across the entire ventral visual 
stream including high-level ventral visual cortex in human5,8,9,13 and 
non-human primates14. In line with these observations, high-level 

ventral visual cortex is known to be retinotopically organized15–17 
and exhibits an eccentricity bias18–20.

How can we adjudicate between these hypotheses given the 
mixed empirical support? We propose that it is key to acknowl-
edge the importance of assessing object location representations 
under conditions that increase the complexity of the visual scene 
to increase ecological validity. Previous research typically investi-
gated object location representations by presenting cut-out objects 
on blank backgrounds. This creates a direct mapping between the 
location of visual stimulation and the active portions of retino-
topically organized cortex (Fig. 1b, left). In contrast, in daily life, 
objects appear on backgrounds cluttered by other elements21,22. 
This activates a large swath of cortex, independently of where the 
object is (Fig. 1b, right). Whereas in the former case location infor-
mation can be directly accessible through retinotopic activation 
in early visual areas (supporting H1), in the latter case additional 
processing might be required to distil out location information  
(supporting H2 or H3).

Taking the importance of background into consideration, we 
used a combination of methods to distinguish between the pro-
posed theoretical hypotheses. We used functional MRI (fMRI), 
deep neural networks (DNNs) and electroencephalography (EEG) 
to assess where, how and when location representations emerge in 
the human brain. We quantified the presence of location representa-
tions by the performance of a multivariate pattern classifier to pre-
dict object location from brain measurements.

Assessed in this way, the predictions for the hypotheses are as 
follows: If H1 is correct, independent of the nature of the object’s 
background, object location information peaks in early visual cor-
tex (Fig. 1c, left), early in the DNN processing hierarchy (Fig. 1d, 
left) and early during visual processing (Fig. 1e, left). For H2 and 
H3, the prediction of peak location information depends on the 
background. For cut-out isolated objects, location information is 
high across the entire dorsal and ventral pathways, and the pro-
cessing hierarchy of the DNN (Fig. 1c,d, middle and right, grey). 
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In contrast, for objects appearing on cluttered backgrounds, object 
location information emerges late in the DNN hierarchy (Fig. 1d, 
right, blue) and late in time (Fig. 1e, middle and right, blue). H2 
and H3 differ in predicting location information to peak in dorsal 
(Fig. 1c, middle, blue) or ventral visual cortex (Fig. 1c, right, blue), 
respectively.

To anticipate, our results strongly support H3. When objects 
appear on cluttered backgrounds, object location representations 
emerge late in the hierarchy of the ventral visual stream and of the 
DNN, as well as late in time, indicating recurrent processing. A 
corresponding analysis of object category representations revealed 
an equivalent pattern of results with emergence along the ventral 
visual stream and temporal dynamics suggesting recurrence. Taken 
together, our results resolve where, when and how object represen-
tations emerge in the human brain when objects are viewed under 
more challenging viewing conditions.

Results
To investigate where, how and when representations of object loca-
tion emerge in the brain, we created a visual stimulus set (Fig. 2a) 
with the three orthogonal factors objects (three exemplars each in 
four object categories), locations (four quadrants) and backgrounds 
(three kinds: uniform grey, low- and high-cluttered natural scenes, 
referred to as ‘no’, ‘low’ and ‘high’ clutter). Collapsing across exem-
plars, we used a fully crossed design with four categories × four 
locations × three background conditions, resulting in 48 stimulus 
conditions. This design allowed us to also investigate representa-
tions of object category as a secondary question of the study.

To resolve human brain responses with high spatial and tem-
poral resolution, participants viewed images from the stimulus set 
while we recorded fMRI (N = 25) and EEG (N = 27) data in sepa-
rate sessions. Experimental parameters were optimized for each  

imaging modality (Fig. 2b). On each trial, participants viewed 
individual stimuli while fixating on a central fixation cross and 
performing a one-back (fMRI) or a detection task (EEG) to direct 
participants’ attention towards the images (Fig. 2b). Response trials 
were excluded from analysis.

We used multivariate pattern classification to track the emer-
gence of object location representations. We consider the peaks in 
information, that is, in classification, as indicators of where (fMRI) 
and when (EEG) location representations become most untangled 
and are thus explicitly represented1. In each case, we trained a sup-
port vector machine (SVM) to pairwise classify between activation 
patterns belonging to one object category shown at two different 
locations (Fig. 3a, faces at bottom left and right). We then tested the 
SVM on activation patterns of the same locations with a new object 
category (Fig. 3a, animals at bottom left and right). Repeated for all 
combinations of locations and categories, the averaged classification  
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Fig. 1 | Hypotheses and predictions about the pathway of object location 
representations in the human brain. a, H1: representations of object 
location emerge in early visual cortex and degrade along further processing 
stages. H2 and H3: object location representations emerge gradually 
along the dorsal (H2) or ventral (H3) visual stream. b, Left: when objects 
are presented on a blank background, object location in the visual field 
maps retinotopically onto early visual cortex, allowing for direct location 
read-out (grey). Right: when objects appear in a cluttered scene, large 
parts of early visual cortex are activated, hindering a direct read-out (blue). 
Representations are quantified as linearly classifiable object location 
information from brain or model activity patterns1. c, Predictions in space, 
colour-coded by background condition: no (grey), low (green) and high 
(blue) clutter. H1 predicts that independent of the object’s background, 
location information for the object is highest in early processing stages 
in space. H2 and H3 predict similar levels of location information with 
no clutter across the entire processing pathway in all assessments. 
For highly cluttered backgrounds, H2 and H3 predict the emergence of 
location representations in late processing stages of the dorsal (H2, c) and 
ventral (H3, c) stream. Location information in the low-clutter condition 
is expected to be in between the no- and the high-clutter condition. d, 
Computational model of the ventral visual stream. H1 (left) predicts highest 
location information in early layers of the model in all conditions. H3 
(right) predicts high location information across all layers with no clutter 
and highest location information in late layers with high clutter. Location 
information in the low-clutter condition is expected to be in between the 
other two conditions. Since this is a model of the ventral stream, it does not 
make predictions about the dorsal stream (H2). e, Location information 
in time. H1 predicts that location information peaks early in time in all 
conditions. Both H2 and H3 predict an early peak with no and a late peak 
with high clutter. The peak for low clutter is expected to be in between no 
and high clutter.
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accuracy quantifies object location information independent of 
object category. This procedure was performed in a space-resolved 
fashion for fMRI and in a time-resolved fashion for EEG (see 
Supplementary Fig. 1a for details).

The locus of object location representations. To determine the 
locus of object location representations, we used a regions of inter-
est (ROI) fMRI analysis, including early visual regions (V1, V2 
and V3) shared to the hierarchy of the ventral (V4 and LOC23) and 
the dorsal visual stream (intraparietal sulcus: IPS0, IPS1, IPS2 and 
superior parietal lobule (SPL)).

As expected, we found that most regions contained above-chance 
level location information in all background clutter conditions (Fig. 
3b; N = 25, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR 
corrected; see Supplementary Table 1 for P values). However, the 
amount of location information depended critically on the brain 
region and background condition.

Focusing on the ventral visual stream first, we observed similar 
amounts of location information across regions when objects were 
presented without clutter (Fig. 3b, grey bars). In contrast, when 

objects were presented on cluttered backgrounds, location informa-
tion emerged along the ventral visual processing hierarchy with less 
information in early visual areas than in LOC (Fig. 3b, green and 
blue bars; N = 25, 5 × 3 repeated-measures ANOVA, post hoc t tests 
Tukey corrected; see Supplementary Table 2 for P values). These 
results are at odds with H1, which predicts that location informa-
tion decreases along the ventral stream independent of background 
condition. Instead, the observed increase of location information 
along the ventral visual stream with cluttered backgrounds is con-
sistent with H3.

We ascertained these observations statistically with a 5 × 3 
repeated-measures ANOVA with factors ROI (V1, V2, V3, V4 and 
LOC) and background (no, low and high clutter). Besides both 
main effects (ROI: F(4,96) = 18.30, P < 0.001, partial η2 = 0.43; back-
ground: F(1.44,34.48) = 64.11, P < 0.001, partial η2 = 0.73), we crucially 
found the interaction to be significant (F(8,192) = 5.40, P < 0.001, par-
tial η2 = 0.18). As the interaction makes the main effects difficult 
to interpret, we conducted post hoc paired t tests (all reported in 
Supplementary Table 2, Tukey corrected). The statistical analysis 
confirmed all the qualitative observations: There were no significant  
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Fig. 2 | Experimental design and tasks. a, Experimental design. We used a fully crossed design with factors of object category, location and background. 
Note that, for copyright reasons, all example backgrounds shown are for illustrative purposes and were not used in the experiment. b, Tasks. The 
experimental design was adapted to the specifics of each modality by adjusting the interstimulus interval. On each trial, participants viewed images for 
500 ms followed by a blank interval (0.5–0.6 s in EEG, 2.5 s in fMRI). The task was to respond with button press to catch trials that were presented on 
every fourth trial on average. Catch trials were marked by the presence of a probe (glass) in the EEG experiment and by an image repetition (one-back) in 
the fMRI experiment. Image presentation was followed by blank screen (1 s in EEG, 2.5 s in fMRI).
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differences between ROIs in the no-clutter condition, except 
between V2 and V3 (P = 0.009) and between V2 and V4 (P = 0.001). 
There was more location information in LOC than in V1, V2 and 
V3 when background clutter (both low and high) was present than 
when it was not (Fig. 3b; all P < 0.03, see Supplementary Table 2 
for P values, Tukey corrected). This effect was robust for the com-
parison of locations across, but not within, visual hemifields (Fig. 
4a,b): post hoc tests comparing early visual areas versus LOC in the 
high-clutter condition were significant for the cross-hemifield clas-
sification (Fig. 4a; V1: P = 0.003; V2: P < 0.001; V3: P = 0.004, Tukey 
corrected), but not for the within-hemifield classification (Fig. 4b; 
V1: P = 0.697; V2: P = 0.281; V3: P = 1.00, Tukey corrected).

Focusing next on the dorsal visual stream, we observed low 
object location information independent of background condition 
(Fig. 3b; N = 25, 7 × 3 repeated-measures ANOVA). In the no- and 
low-clutter conditions, location information was higher in early 

visual cortex than in dorsal regions (N = 25, post hoc t tests, Tukey 
corrected; see Supplementary Table 3 for P values). This is inconsis-
tent with H2, which predicts an increase of object location informa-
tion along the dorsal stream.

Consistent with these qualitative observations, statistical testing 
by 7 × 3 repeated-measures ANOVA with factors ROI (V1, V2, V3, 
IPS0, IPS1, IPS2 and SPL) and background (no, low and high clut-
ter) did not provide statistical evidence for H2. We found significant 
main (ROI: F(3.16,75.93) = 36.2, P < 0.001, partial η2 = 0.60; background: 
F(2,48) = 35.8, P < 0.001, partial η2 = 0.60) and interaction effects 
(F(6.25,149.89) = 14.5, P < 0.001, partial η2 = 0.38). The post hoc tests 
showed that location information was higher in V1, V2 and V3 
compared with dorsal regions in the no- and low-clutter conditions 
(Fig. 3b, grey and green, except V1 and V2 versus IPS2 and SPL with 
low clutter, which were n.s.; see Supplementary Table 3 for P val-
ues). With high clutter, there was more location information in V3 
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Fig. 3 | fMRI results of location classification. a, Classification scheme for object location across category. We trained an SVM to distinguish between 
brain activation patterns evoked by objects of a particular category presented at two locations (here: faces bottom left and right) and tested the SVM 
on activation patterns evoked by objects of another category (here: animals) presented at the same locations. Objects are enlarged for visibility and did 
not extend into another quadrant in the original stimuli. b, Location classification in early visual cortex, ventral and dorsal visual ROIs (N = 25, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected). With no clutter, location information was high across early visual cortex and ventral ROIs. In the 
low- and high-clutter conditions, location representations emerged gradually along the ventral stream. In dorsal ROIs, location information was low, 
independent of background condition. Stars above bars indicate significance above chance (see Supplementary Tables 1, 2 and 3 for P values). Error bars 
represent s.e.m. Dots represent single subject data. c, fMRI searchlight result for classification of object location (N = 25, two-tailed Wilcoxon signed-rank 
test, P < 0.05, FDR corrected). Peak classification accuracy is indicated by colour-coded circles (no clutter: left V3 (grey, XYZ coordinates −19 mm, 
−97 mm, 13 mm); low clutter: left V1 (green, −5 mm, −86 mm, −3 mm); high clutter: left LOC (blue, −44 mm, −83 mm, 8 mm)). Millimetres (mm) 
indicate axial slice position along z axis in Montreal Neurological Institute space. d, Location classification in a DNN. In the high-clutter condition, location 
information emerged along the processing hierarchy, analogous to the ventral visual stream.
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than in IPS0, IPS1 and IPS2. Location classification in IPS3, IPS4 
and IPS5 did not reveal significant information above chance level 
(Fig. 4c; N = 25, two-tailed Wilcoxon signed-rank test, all P > 0.05 
FDR corrected, see Supplementary Table 1 for P values). Univariate 

responses were comparable across regions overall (Fig. 4d). Post 
hoc tests to a 9 × 3 repeated-measures ANOVA with factors ROI 
(V1, V2, V3, V4, LOC, IPS0, IPS1, IPS2 and SPL) and background 
(no, low and high clutter) revealed that responses were significantly 
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Fig. 4 | Location classification within and across hemifields, in IPS3–5 and univariate ROI results. a, Results of location classification across 
categories between visual hemifields (left up versus right up, left bottom versus right bottom). Similar to the classification across four locations, the 
repeated-measures ANOVA along the ventral stream (five ROIs × three clutter levels) yielded significant main (ROI: F(4,96) = 24.62, P < 0.001, partial 
η2 = 0.51; background: F(1.49,35.85) = 45.34, P < 0.001, partial η2 = 0.65) and interaction effects (F(8,192) = 2.95, P = 0.004, partial η2 = 0.11). Post hoc tests 
yielded results comparable to the main results (V1, V2 and V3 < LOC with high clutter). Stars above bars indicate significance above chance (N = 25, 
two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected). b, Location classification across categories within visual hemifields (left up versus 
left bottom, right up versus right bottom). As for the main analysis, the ANOVA yielded significant main (ROI: F(4,96) = 4.16, P = 0.004, partial η2 = 0.15; 
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significant difference between V3 and LOC in the noclutter condition (P = 0.030). Stars above bars indicate significance above chance (N = 25, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected). c, Classification accuracies in IPS3, IPS4 and IPS5 were not significantly higher than chance level 
in all background conditions (N = 25, two-sided Wilcoxon signed-rank test, P > 0.05, FDR corrected). Error bars represent s.e.m. Dots represent single/
subject data. d, Absolute t values in each background condition and ROI, averaged across locations and categories. A 9 × 3 repeated-measures ANOVA 
with factors ROI and clutter revealed a significant main effect of ROI (F(2.60,62.43) = 9.19, P < 0.001, partial η2 = 0.18) and a significant interaction effect 
(F(3.40,81.64) = 9.89, P < 0.001, partial η2 = 0.03). Significant post hoc tests are listed in Supplementary Table 4. Overall, post hoc tests showed no clear 
pattern of results between early, ventral and dorsal areas, except for higher activation in V1 than in dorsal areas and LOC with no clutter. Stars above bars 
indicate significance above chance (N = 25, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected).
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higher in V1 compared with the other ROIs in the no-clutter condi-
tion (all P < 0.03; all P values listed in Supplementary Table 4, Tukey 
corrected), but there was no significant difference in activation 
between LOC and dorsal areas (Fig. 4d, all P values in Supplementary  
Table 4, Tukey corrected).

To explore whether any other brain regions beyond the investi-
gated ROIs contain location information, we used a spatially unbi-
ased fMRI searchlight analysis24. We did not find statistical evidence 
for location information beyond the ventral and dorsal stream, 
and the pattern of results was consistent with the outcome of the 
ROI analysis (Supplementary Fig. 2). There was widespread loca-
tion information (N = 25, two-tailed Wilcoxon signed-rank test, 
P < 0.05, FDR corrected) from the occipital cortex up into the dorsal 
(precuneus, superior parietal lobule) and ventral (fusiform gyrus) 
visual stream. Depending on background condition, location infor-
mation peaked in different visual areas. In the no-clutter condition, 
the peak was in left V3, in the low-clutter condition in left V1 and 
in the high-clutter condition in left LOC (Fig. 3c, see caption for 
coordinates). Distances between peaks were significantly larger 
than chance (N = 25, bootstrapping of condition labels, 10,000 
bootstraps, P < 0.05 one-tailed bootstrap test against chance level, 
Bonferroni corrected) between the no- and the high-clutter condi-
tion (Euclidean distance 15.9, CI 1.0–3.6, P < 0.001) and between 
the low- and the high-clutter condition (Euclidean distance 22.0, CI 
2.0–16.3, P = 0.002), but not for the no- and low-clutter condition 
(Euclidean distance 13.6, CI 1.4–14.7, P = 0.275).

Together, these results provide consistent evidence for the 
hypothesis that representations of object location across visual 
hemifields emerge in the ventral visual stream (H3) when objects 
appear in cluttered scenes.

Computational modelling. DNNs trained on object categorization 
are currently the best predicting models of ventral visual stream 
representations25–27 and show a spatiotemporal correspondence in 
their processing hierarchy to the visual brain25,28–30. Therefore, they 
constitute feasible biologically inspired models for computing com-
plex visual representations28,31. If such DNNs are useful models of 
visual processing in human visual cortex, they should show a simi-
lar pattern of results as the ventral visual stream in the representa-
tion of object location, too.

To evaluate this prediction, we chose the recurrent CORnet-S 
model because it is among the best-performing models on a bench-
mark for predicting neural responses in monkey inferior temporal 
cortex (IT)26,27 and approximates explicitly the hierarchy of the ven-
tral visual system. Each region of the ventral stream is modelled as 
one processing block with a corresponding name (V1Cor, V2Cor, etc.). 
Analogous to the fMRI analysis, we extracted the unit activation pat-
terns to our stimulus set at the last layer of each block and classified 
object location across category to identify the processing stage of the 
DNN at which object location representations emerge (Fig. 3d).

We found that in the no- and low-clutter conditions, location 
information was at or close to ceiling in all layers. In the high-clutter 
condition however, location information was low in V1Cor and 
emerged along the processing hierarchy. Qualitatively equivalent 
results were obtained in three other DNNs (Alexnet, ResNet-50 and 
CORnet-Z; Supplementary Fig. 3a–c), demonstrating the generaliz-
ability of the results pattern. This result was still robust in all four 
DNNs when limiting the classification to either horizontal or verti-
cal location comparisons (Supplementary Fig. 3e,f).

In sum, we found that DNNs trained on object categorization 
show a similar pattern of location representations along their pro-
cessing hierarchy as the human brain. This demonstrates how object 
location representations might be computed in biological systems. 
This result lends independent evidence against H1 and yields plau-
sibility to H3 since CORnet-S was built to model the ventral stream. 
However, this result cannot disambiguate between H2 and H3, as 

models of this kind have been found to predict human brain activity 
in both the ventral and dorsal stream32,33.

Temporal dynamics of object location representations. We con-
ducted time-resolved multivariate EEG analysis to determine the 
time course with which object location representations emerge. 
The general analysis scheme was the same as for the fMRI analysis 
presented above (Fig. 3a) but applied to time-specific EEG channel 
activation patterns rather than fMRI activation patterns.

The analysis revealed location information for all background 
clutter levels (Fig. 5a, N = 27, two-tailed Wilcoxon signed-rank test, 
P < 0.05, FDR corrected), but with different dynamics (Fig. 5b, see 
Supplementary Table 5 for classification onsets and peak values). 
We report peak latencies with 95% confidence intervals (N = 27, 
10,000 bootstraps). Whereas the peak latency was similar for the 
no- (140 ms (133–147 ms)) and the low-clutter (133 ms (121–
233 ms)) condition, it was delayed in the high-clutter condition 
(317 ms (250–336 ms)). Statistical analysis (N = 27, bootstrap test, 
10,000 bootstraps, P < 0.05, one-tailed bootstrap test against zero, 
FDR corrected) ascertained that the peak latency difference was 
significant between the high-clutter and the no-clutter conditions 
(N = 27, 177 ms (94–190 ms), P < 0.001) and between the high- and 
the low-clutter conditions (184 ms (16–196 ms), P = 0.023), but not 
between the no- and the low-clutter conditions (7 ms (−11–156 ms), 
P = 0.620). These delays were also robust when classifying locations 
across or within visual hemifields (Supplementary Fig. 4). A search-
light in EEG sensor space showed that location information at the 
peaks of the three background conditions was highest at occipital, 
occipito-parietal and occpito-temporal electrodes (Fig. 5c; N = 27, 
two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected 
across electrodes and time points; see Supplementary Fig. 5a–c for 
time courses), suggesting sources in those areas, which is in line 
with the fMRI searchlight results (Supplementary Fig. 2) and with 
univariate EEG topographies (Supplementary Fig. 5d–f).

In sum, this result shows that object location representations 
emerge later when objects appear on cluttered backgrounds than 
when they appear on blank backgrounds. This provides further 
concurrent evidence against H1 and is consistent with H2 and 
H3, that is, that object location representations emerge at late 
stages of visual processing when objects are viewed under complex  
visual conditions.

How is the delay in the peak latencies of the no- and the 
high-clutter conditions to be interpreted? Assuming that in object 
processing the brain runs through a series of distinct stages, we see 
two possible explanations.

One explanation is that the peak latency delay indicates a change 
in the processing stage at which object location representations 
emerge. This would mean that in the no-clutter condition, location 
representations emerge in an early stage whereas with high clutter 
they emerge during a different, later processing stage (the ‘change’ 
hypothesis). An alternative explanation is that the processing stage 
at which object location representations emerge remains the same, 
but its emergence is delayed in time in the high-clutter condition 
(the ‘delay’ hypothesis).

To distinguish between these explanations, we used temporal 
generalization analysis34, comparing the representational dynamics 
with which object location representations emerge in the no- and 
the high-clutter conditions across time (Fig. 5d). Used in this way, 
the time generalization analysis yields a two-dimensional matrix 
indexed in time, indicating at which time points location repre-
sentations in the no- and the high-clutter conditions are similar. 
We implemented time generalization by classifying object location 
across category and background condition for all time point combi-
nations (Fig. 5d and Supplementary Fig. 1b). Overall, we observed 
a large significant cluster of above-chance classification accuracies 
across the time generalization matrix (N = 27, two-tailed Wilcoxon 
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signed-rank test, P < 0.05, FDR corrected). While the ‘change’ 
hypothesis predicts highest classification accuracies on the diago-
nal, the ‘delay’ hypothesis predicts highest classification accuracies 
below the diagonal. The results are reported in Fig. 5e. We found that 
peak latencies in location information as tested across subjects were 
significantly shifted below the diagonal (mean Euclidean distance 
56.31 ms; N = 27, two-tailed Wilcoxon signed-rank test, P < 0.001, 
r = 0.65, s.e.m. 1.55; see Supplementary Fig. 6a for single-subject 
peaks), indicating that location representations in the no-clutter 
condition generalized to the high-clutter condition at later time 
points (Fig. 5e, white dashed outline). This result was confirmed 

in a supplementary analysis on the group-averaged peak in Fig. 5e 
(Euclidean distance 49.50 ms; 10,000 bootstraps; one-tailed boot-
strap test against zero, P = 0.010; 95% CI 14.14–77.78). Classification 
accuracies were significantly higher below than above the diagonal 
between ~120 and 240 ms in the no-clutter condition and from 
~200 ms in the high-clutter condition (N = 27, two-tailed Wilcoxon 
signed-rank test, P < 0.05, FDR corrected; Supplementary Fig. 6b).

Together, these results provide evidence for the ‘delay’ hypothesis 
and demonstrate that object location representations in the no- and 
the high-clutter condition emerge at the same processing stage with 
a temporal delay.
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Fig. 5 | Temporal dynamics of object location representations. a, Results of time-resolved location classification across category from EEG data. Results 
are colour coded by background condition, with significant time points indicated by lines below curves (N = 27, two-tailed Wilcoxon signed-rank test, 
P < 0.05, FDR corrected), 95% CI of peak latencies indicated by lines above curves. Shaded areas around curves indicate s.e.m. Inset text at arrows 
indicates peak latency (140 ms, 133 ms and 317 ms in the no-, low- and high-clutter condition, respectively). b, Comparison of peak latencies of curves in 
a. Error bars represent 95% CI. Stars indicate significant peak latency differences (P < 0.05; N = 27, bootstrap test with 10,000 bootstraps). c, Results of 
location across category classification searchlight in EEG channel space at peak latencies in no-, low- and high-clutter condition, down-sampled to 10 ms 
steps. Significant electrodes are marked in grey (N = 27, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected across electrodes and time points). 
d, Time generalization analysis scheme for classifying object location across category and background condition. The classification scheme was the same 
as in a with the differences that (i) the training set conditions always came from the no-clutter while the testing set conditions came from the high-clutter 
condition and (ii) training and testing was repeated across all combinations of time points for a peri-stimulus time window between −100 and 600 ms 
(see Supplementary Fig. 1b for details). Objects are enlarged for visibility and did not extend into another quadrant in the original stimuli. e, Results of the 
time generalization analysis. Dashed black lines indicate stimulus onset; oblique black line highlights the diagonal. Solid white outlines indicate significant 
time points (N = 27, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected). Dashed white outline highlights delayed clusters. f, EEG–fMRI fusion. 
Results represent the correlations between single-subject fMRI RDVs of classification accuracies and group-averaged RDVs of the EEG peaks in a. Stars 
above bars indicate significance above chance (N = 27, two-tailed Wilcoxon signed-rank test, P < 0.05, FDR corrected). Error bars represent the s.e.m. Dots 
represent single-subject data points.
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Spatiotemporal similarity of location representations. Temporal 
delays for the same processing stage cannot be explained by a purely 
feedforward process, suggesting instead the involvement of recur-
rent processing. Recurrent processes could account for the observed 
delay with lateral connections within the same area35,36. The shared 
processing stage underlying early and late location representations 
in the no- and the high-clutter conditions should have a common 
origin in space, too. Based on the fMRI results, we hypothesized 
that this origin would be in LOC. To test this hypothesis directly, 
we used EEG–fMRI fusion based on representational similarity of 
object location representations37–39.

The processing stage at which location representations emerge 
corresponds to the peak latency of location classification in the EEG 
for the no- and the high-clutter condition. We thus determined 
whether location representations identified with EEG at these time 
points are representationally similar to those identified with fMRI 
in ventral stream regions for the no- and the high-clutter condition 
separately. Specifically, we averaged the representational dissimilar-
ity vectors (RDVs) of the time-resolved EEG classification accuracies 
in Fig. 5a across subjects and time points within the 95% confidence 
intervals over the peaks. This yielded one RDV per background 
condition that was then correlated with the single-subject RDV of 
an fMRI ROI in the same background condition. Results within 
background and ROI were averaged across fMRI participants.

We found a spatiotemporal correspondence with EEG peak 
latency for the no-clutter condition in V4 and LOC but for the 
high-clutter condition in LOC only (Fig. 5f; N = 25, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected). This estab-
lishes LOC as the cortical locus at which object location representa-
tions emerge independent of background condition, but involving 
additional recurrent processing when the background is cluttered. 
Post hoc tests to a 5 × 2 repeated-measures ANOVA with factors 
ROI (V1, V2, V3, V4 and LOC) and clutter (no and high) addition-
ally showed that correlations were higher in V4 and LOC than in 
V1, V2 and V3 with no clutter (see Supplementary Table 6 for P 
values; main effect of ROI: F(4,96) = 14.30, P < 0.001, partial η2 = 0.37; 
n.s. main effect of background: F(1,24) = 3.62, P = 0.069; interaction: 
F(4,96) = 8.17, P < 0.001, partial η2 = 0.25). The notion that loca-
tion representations emerge in LOC with recurrence when back-
ground is cluttered finds further support from a supplementary 
analysis showing that location representations with no and high 
clutter were significantly similar in LOC, but not in other regions 
(Supplementary Fig. 7; N = 25, two-tailed Wilcoxon signed-rank 
test, P < 0.05, FDR corrected). Furthermore, recurrent DNNs 
showed an advantage compared with shallow feedforward DNNs 
for the classification of location with high clutter and for the predic-
tion of location representations in LOC (Supplementary Fig. 3c,d; 
N = 25, 4 × 2 repeated-measures ANOVA). Together, these results 
suggest that location information of objects on highly cluttered 
scenes emerges in LOC with local recurrent processes.

Object category representations. The observation that representa-
tions of object location depend on the background on which the 
object appears immediately raises the question of whether represen-
tations of object category are affected by background, too. Previous 
research suggests opposite answers to this question. One line of 
research demonstrated that object representations in the ventral 
stream are modulated by the presence of other objects and the back-
ground on which they are viewed40–43. Another line of research has 
provided strong evidence that the ventral stream constructs object 
representations that are increasingly tolerant to changes in view-
ing conditions1,5,8, suggesting that object category representations 
should be unaffected by the background of the objects. Here we 
bring these two lines of research together by explicitly investigating 
how background impacts object category representations that are 
tolerant to location. To do this, we analysed EEG and fMRI data as 

described in previous sections but exchanging the role of experi-
mental factors location and category. In essence, we performed 
cross-classification analyses of category across location (Fig. 6a) to 
determine where and when location-tolerant object category repre-
sentations emerge in the human brain.

The locus of object category representations. We investigated object 
category representations tolerant to changes in location using an 
ROI-based fMRI analysis. We observed that location-tolerant object 
category could be classified in the ventral stream in V4 and LOC 
(Fig. 6b; N = 25, two-tailed Wilcoxon signed-rank test, P < 0.05, 
FDR corrected, all P values in Supplementary Table 1), but not at 
earlier stages and not in dorsal ROIs except IPS0 with high clutter 
(P = 0.005). This pattern was not influenced by the level of clutter, 
suggesting that object category representations that are tolerant to 
location variations are unaffected by the clutter level of the back-
ground on which the object appears.

These observations were statistically ascertained in a 5 × 3 
ANOVA along the ventral stream with factors ventral ROIs (V1, 
V2, V3, V4 and LOC) and background (no, low and high clutter), 
revealing a significant main effect of ROI (F(2.42,58.03)=21.97, P < 0.001, 
partial η2 = 0.48), but not of background (F(2,48) = 0.68, P = 0.510) 
and no interaction (F(8,192)=1.85, P = 0.070, see Supplementary 
Fig. 8 for searchlight results and Supplementary Table 7 for 
post hoc tests, Tukey corrected). In the 7 × 3 repeated-measures 
ANOVA along the dorsal stream with factors ROI (V1, V2, V3, 
IPS0, IPS1, IPS2 and SPL) and background (no, low and high 
clutter) we found no significant main effect (ROI: F(6,144)=1.38, 
P = 0.227; background: F(2,48) = 0.94, P = 0.396) or interaction effect  
(F(12,288) = 0.96, P = 0.463).

In sum, our results confirm that the ventral stream constructs 
object representations that are robust to changes in viewing condi-
tions and show in particular that location-tolerant category repre-
sentations emerge in the ventral stream unaffected by the clutter 
level in the object’s background.

Object category representations in time. Emergence of object cate-
gory representations can be delayed, for example when objects are 
occluded or are hard to categorize44–46. This suggests that object cat-
egory representations might emerge with a delay also when objects 
appear on cluttered backgrounds, for example because additional 
grouping and segmentation operations are necessary that depend 
on recurrence and hence require additional time47–49.

We therefore investigated whether background clutter influences 
the timing with which location-tolerant category representations 
emerge using time-resolved multivariate EEG analysis (Fig. 6c). We 
found that object category could be reliably classified for all back-
ground conditions from the EEG data (Fig. 6c, N = 27, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected), but with dis-
tinct temporal dynamics (see Supplementary Table 5 for classifica-
tion onsets and peak values). Classification peaks were 18 ms later 
in the high-clutter than in the no- and the low-clutter conditions 
(no clutter: 215 ms (213–219 ms); low clutter: 215 ms (203–236 ms); 
high clutter: 233 ms (214–303 ms)). The delay (95% difference CI 
no clutter: 16–173 ms; P < 0.001; low clutter: 13–171 ms; P = 0.029) 
was significant (N = 27, bootstrap test, 10,000 bootstraps, P < 0.05, 
one-tailed bootstrap test against zero, FDR corrected; Fig. 6d). 
Location-independent category information at the peaks of the 
three background conditions was most pronounced at occipital 
and temporal electrodes as revealed in the EEG searchlight in sen-
sor space (Fig. 6e and Supplementary Fig. 5g–i; N = 27, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected across elec-
trodes and time points). This is in line with the results from the 
fMRI searchlight analysis (Supplementary Fig. 8), together suggest-
ing neural sources of the peaks in Fig. 6c in occipital and temporal 
regions. Univariate EEG activity was strongest in occipital rather 

Nature Human Behaviour | VOL 6 | June 2022 | 796–811 | www.nature.com/nathumbehav 803

http://www.nature.com/nathumbehav


Articles NaTure Human BehaviOur

T
ra

in
in

g 
se

t
le

ft 
bo

tto
m

versus

versus

Faces Animals

T
es

tin
g 

se
t

rig
ht

 b
ot

to
m

a b

No clutter
Low clutter
High clutter

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 –

 c
ha

nc
e 

le
ve

l (
%

)

V1 V2 V3 V4 LOC IPS0 IPS1 IPS2 SPL

ROI

–5

0

5

10

15

20

*
* *

*
*

*

*

c

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 –

 c
ha

nc
e 

le
ve

l (
%

)

Time (ms)

–5

0

5

10

15

0 200 400 600 800 1,000

215 ms

233 ms

215 ms

No clutter
Low clutter
High clutter

d e

P
ea

k 
la

te
nc

y 
(m

s)

0

50

100

150

200

250

300
*
*

No clutter
Low clutter
High clutter

Classification accuracy –
chance level (%)

–10 10–6 –2 2 6

No clutter Low clutter High clutter

f

T
ra

in
in

g 
se

t
le

ft 
bo

tto
m

versus

versus

Faces Animals

T
es

tin
g 

se
t

rig
ht

 b
ot

to
m

T
ra

in
 ti

m
e 

(m
s)

, n
o 

cl
ut

te
r

Test time (ms), high clutter

C
lassification accuracy – chance level (%

)

0

200

400

600

2

0

–2

0 200 400 600

g

Train
time
t

t + 1
t + 2

t + n

Test
time
t

Fig. 6 | Spatial and temporal dynamics of object category representations. a, Classification scheme of category across location. b, Location-tolerant 
category representations in the ventral and dorsal streams. Stars indicate classification above chance level (two-tailed Wilcoxon signed-rank test, 
P < 0.05, FDR corrected). Conventions as in Fig. 3b. c, Results of the time-resolved category classification across locations from EEG activation patterns. 
Conventions and statistics as in Fig. 5a. d, Peak latencies of curves in c. Statistics and conventions as in Fig. 5b. e, Results of searchlight in EEG channel 
space at peak latencies in no-, low- and high-clutter condition, down-sampled to 10 ms steps. Significant electrodes are marked in grey (N = 27, two-tailed 
Wilcoxon signed-rank test, P < 0.05, FDR corrected across electrodes and time points). f, Time generalization analysis scheme for classifying object 
category across location and background condition. g, Results of the time generalization analysis (N = 27, two-tailed Wilcoxon signed-rank test, P < 0.05, 
FDR corrected). Conventions as in Fig. 5e.

Nature Human Behaviour | VOL 6 | June 2022 | 796–811 | www.nature.com/nathumbehav804

http://www.nature.com/nathumbehav


ArticlesNaTure Human BehaviOur

than in temporal electrodes (Supplementary Fig. 5,j,k,l). Together, 
this shows that cortical processing of object category requires more 
time when objects appear in cluttered scenes compared with artifi-
cial blank backgrounds.

Analogous to the delay in location processing (Fig. 5a,b,e), we 
asked whether this delay indicates a temporal shift in the processing 
cascade or reflects a change to a later processing stage. To disambigu-
ate, we classified object category across locations in a time generaliza-
tion analysis across the no- and the high-clutter conditions (Fig. 6f).

We identified three main clusters of high classification accuracy 
with timing corresponding roughly to the timing of the three peaks 
observed in the time courses of the no- and the high-clutter con-
ditions (Fig. 6g; see Supplementary Table 8 for timing details). To 
test whether category information in the no-clutter condition gen-
eralized to later time points in the high-clutter condition and thus 
was shifted below the diagonal, we computed the single-subject dis-
tances from the peak in the time generalization matrix to the diago-
nal. Category information peaks were significantly shifted below 
the diagonal as tested across subjects (mean Euclidean distance 
27.24 ms; N = 27, two-sided Wilcoxon signed-rank test, P = 0.025, 
r = 0.43, s.e.m. 2.50; single-subject peaks shown in Supplementary 
Fig. 6c), but not as tested for the group-averaged peak (Euclidean 
distance 28.28 ms; 10,000 bootstraps; one-tailed bootstrap test 
against zero, P = 0.230; 95% CI −7.07 to 35.35). Classification accu-
racies were significantly higher below than above the diagonal from 
~190 ms (no clutter) and ~240 ms (high clutter) until ~360 ms (no 
clutter) and ~400 ms (high clutter) (Supplementary Fig. 6d). This 
pattern of results suggests that object category representations of 
objects on blank and cluttered backgrounds emerge at a similar pro-
cessing stage. This stage emerges with a delay when objects are pre-
sented on cluttered backgrounds, indicating recurrent processing.

Discussion
Using multivariate analysis of fMRI and EEG data and computa-
tional model comparison, we resolved where, how and when object 
location representations emerge in the human brain. Our results 
are three fold and depend crucially on whether objects appeared on 
cluttered backgrounds or on blank backgrounds. First, location rep-
resentations emerged along the ventral visual pathway and peaked 
in region LOC when viewed on cluttered backgrounds. Second, this 
pattern of results was mirrored in DNNs trained on object categori-
zation. Third, location representations emerged later in time when 
objects were viewed on cluttered backgrounds than when viewed 
on blank backgrounds. In-depth analysis suggested that this delay 
indexed recurrent processing in LOC. Together, these results pro-
vide converging evidence against the hypothesis that object location 
is processed in early visual cortex (H1), and in addition the results 
in space provide evidence for the hypothesis that object location 
emerges along the ventral stream (H3, Fig. 1a). A corresponding 
analysis of object category representations revealed equivalently an 
emergence in the ventral visual stream, and a delay when objects 
appear on cluttered backgrounds due to a temporal shift in the pro-
cessing cascade, related to recurrent processing. Thus, the two argu-
ably most fundamental properties of objects, that is, what the object 
is and where it is, emerge in the ventral visual stream with a similar 
spatiotemporal processing pattern.

Our fMRI results single out the ventral stream with a peak in 
LOC (H3), rather than early visual areas (H1) or the dorsal stream 
(H2), as the processing hierarchy responsible for computing 
object location in the human brain when objects appear on clut-
tered backgrounds. This concurs with a primate study14 that found 
category-orthogonal object representations to emerge in IT (the 
putative homologue of human LOC50) rather than V4. Together, 
these results indicate that object location representations emerge 
along the ventral stream towards LOC when viewing conditions are 
realistic and challenging.

We observed that location representations with high clutter 
increased along the ventral stream for the classification of cross- 
but not within-hemifield locations. This pattern of results might be 
due to several factors. For one, statistical power is reduced when 
assessing results of cross- and within-hemifield location classifica-
tion separately rather than combined, the test for which our study 
was originally planned. Second, cross-hemifield location repre-
sentations might be more distinguishable as there is less integra-
tion of location information across than within hemispheres: 
cross-hemifield integration requires trans-callosal connections, 
whereas within-hemifield integration does not. Third, factors unre-
lated to location representations that however affect hemispheres 
differently, such as possible vascular changes, can contribute to the 
effect. Importantly, we do not see a difference between within- ver-
sus across-hemifield classification in the high-clutter condition in 
the EEG and DNN results, supporting our main conclusions and 
suggesting that the discrepancy in the fMRI results might be related 
to a decreased signal-to-noise ratio.

When objects are viewed on blank backgrounds rather than 
on cluttered backgrounds, location information can be read out 
from V1 because there is a direct mapping from stimulus loca-
tion to the retinotopic location in V1 that is activated. With clut-
ter, there is no such mapping (Fig. 1b) and therefore visual input 
is processed through the ventral visual stream cascade where LOC 
but not V1 reliably indicates object location representations. Under 
this assumption, location information in V1 might be an epiphe-
nomenon caused by artificial stimulation conditions, revealing 
information that can be measured by the experimenter but is not 
necessarily used by the brain51–53 and relevant for behaviour at this 
stage of processing. Our results thus further emphasize the impor-
tance of increasing image complexity to increase the ecological 
validity of experimental stimuli21. While our study was designed to 
establish the presence and nature of object location representations 
in the brain, it cannot establish the behavioural relevance of those 
representations. Future studies could investigate this, for example, 
by using speeded detection tasks for objects presented in different 
locations and relating detection speed and performance to location 
representations across the brain.

Our results are seemingly at odds with neuropsychological find-
ings showing that patients with ventral lesions performed well on 
localization tasks2. However, later studies showed that in fact just 
localization behaviour was intact in those patients54–56, but not loca-
tion perception. It is conceivable that these patients recruited sparse 
location information from spared early visual areas to accomplish 
the localization tasks (similar to blindsight) and that tasks involving 
more cluttered displays would have been more challenging for these 
patients. In line with this, other patients with occipito-temporal 
lesions had problems with tasks requiring figure–ground segmenta-
tion57 or perceptual grouping58, both of which are essential to dissect 
an object from its background in a cluttered scene. Thus, neuropsy-
chological studies taking background clutter into account are neces-
sary to resolve this issue.

While we do observe location information in dorsal and ven-
tral regions anterior and medial from LOC, the fMRI searchlight 
analysis (Supplementary Fig. 2) shows the peak in LOC. Why did 
location information not peak in other high-level ventral or dorsal 
areas? It is possible that IPS would represent object location more 
prominently if we optimized our stimulus selection for it by includ-
ing tools51. However, the univariate response profile of the dorsal 
and ventral ROIs in our study tentatively suggests comparable acti-
vations across ROIs (Fig. 4d and Supplementary Table 4), indicating 
that univariate activation was not the source of lower information 
in IPS. Likewise, it is possible that different stimuli (for example, 
faces) would have yielded stronger effects in other high-level, 
category-selective ventral regions (for example, fusiform face area 
or occiptal face area). Another possibility is that LOC has optimal 
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receptive field properties for the eccentricities used in this study59,60, 
which allows it to encode object location on clutter better than other 
high-level ventral ROIs. These questions need more investigation in 
future research.

Our empirical findings were reinforced by the observation that 
representations of object location emerge in DNNs in a similar way 
as they emerge in the human brain. Importantly, the DNNs used 
here were trained on object categorization and not localization. Our 
results thus show that representations of object properties for which 
the network is not optimized can emerge in such networks14. One 
limitation of our approach is that the models used here were specifi-
cally designed to model the ventral visual stream25–30, even though 
they have been shown to predict brain responses in the dorsal 
stream, too32,33. Therefore, the presented modelling results cannot 
distinguish between H2 and H3. Future studies could compare loca-
tion representations in DNNs that model the dorsal versus the ven-
tral stream and investigate how the model’s representations relate to 
brain representations in the two streams.

The time-resolved EEG analyses and the EEG–fMRI fusion 
analysis38 revealed together that location representations of objects 
with high clutter were delayed due to a temporal shift within the 
same processing stage in LOC. Since temporal delays at the same 
processing stage cannot be explained purely by a feedforward 
neural architecture, this indicates the involvement of recurrence. 
Physiologically, this might be implemented via lateral connections 
within LOC, resulting in slower information accumulation61,62. 
Furthermore, we found not only location but also object category 
representations to be delayed when objects were superimposed on 
natural scenes. Together with previous reports that object category 
processing can be delayed when objects are degraded, occluded or 
are hard to categorize44–46,48, our results add to the emergent view 
that recurrent computations are critically involved in the process-
ing of fundamental object properties such as what objects are62 and 
where they are in real world vision. Future studies could provide 
more direct evidence for recurrence by manipulating it experi-
mentally, for example, by adding a masking condition to the study 
design used here.

We find that both object category and object location representa-
tions emerged gradually along the ventral visual stream. This might 
seem counter-intuitive, given that transformations that lead to the 
emergence of category representations in LOC have been linked to 
building increasing tolerance to viewing conditions, in particular 
to changes in object location5–7. However, this apparent contradic-
tion is qualified by the observation that the observed tolerance to 
changes in viewing conditions is graded rather than absolute63, mir-
rored by the presence of cells in high-level ventral visual cortex with 
large overlapping receptive fields10,17. Such tuning properties provide 
the spatial resolution needed for localization64, while also providing 
robustness to location translation65, needed for object categorization.

In this study, we deliberately avoided congruence between objects 
and backgrounds, which is known to lead to interaction effects with 
category processing40. However, this deviation from normality in 
our stimulus set might have triggered mismatch responses that lead 
to additional recurrent processing for disambiguation or attentional 
responses triggered by atypical object appearance (for example, size 
and texture). Further, because objects and backgrounds did not 
form a coherent scene, objects and backgrounds might have been 
represented more independently. Another design limitation is that 
we constrain the number of locations to four to fully cross all stimu-
lus conditions while maintaining a feasible session duration. Future 
research will have to establish whether congruent versus incongru-
ent scene–object pairings yield different location representations 
on cluttered backgrounds and whether our results generalize to  
more locations.

What an object is and where an object is are arguably the two 
most fundamental properties that we need to know to be able to 

interact with objects in our environment. Our results reveal the 
basis of this knowledge by revealing representations of location and 
category in the human brain when viewing conditions are challeng-
ing, as encountered outside of the laboratory. Both object location 
and category representations emerge along the ventral visual stream 
towards LOC and depend on recurrent processing. Together, our 
results provide a spatiotemporally resolved account of object vision 
in the human brain when viewing conditions are cluttered.

Methods
Participants in EEG and fMRI experiments. The experiment was approved 
by the ethics committee of the Department of Education and Psychology of the 
Freie Universität Berlin (ethics reference number 104/2015) and was conducted 
in accordance with the Declaration of Helsinki. Twenty-nine participants 
participated in the EEG experiment, of whom two were excluded because 
of equipment failure (N = 27, mean age 26.8 years, s.d. 4.3 years, 22 female). 
Twenty-five participants (mean age 28.8 years , s.d. 4.0 years, 17 female) completed 
the fMRI experiment. The participant pools of the experiments did not overlap 
except for two participants. Sample size was chosen to exceed comparable 
magnetoencephalography, EEG and fMRI classification studies to enhance 
power8,9,43,66–68. All participants had normal or corrected-to-normal vision and  
no history of neurological disorders. All participants provided informed  
consent prior to the studies and received a monetary reward or course credit  
for their participation.

Experimental design. To enable us to investigate the representation of object 
location, category and background independently, we used a fully crossed design 
with factors of category (four values: animals, cars, faces and chairs; Fig. 2a, left, 
with three exemplars per category), location (four values: left up, left bottom, right 
up and right bottom; Fig. 2a left centre) and background clutter (three values: 
no, low and high clutter; Fig. 2a, right centre). This amounted to 144 individual 
condition combinations (12 object exemplars × 4 locations × 3 background clutter 
levels). We analysed the data at the level of category, effectively resulting in 48 
experimental conditions (4 categories × 4 locations × 3 background clutter levels).

Stimulus set generation. The stimulus material was created by superimposing 
three-dimensional (3D) rendered objects (Fig. 2a, left) with Gouraud shading 
in one of four image locations (Fig. 2a, left centre) onto images of real-world 
backgrounds (Fig. 2a, right centre).

In detail, in each category, one of the objects was rotated by 45°, one by  
22.5° and the third by −45° with respect to the frontal view to introduce equal 
variance in the viewing angle for each category. Locations were in the four 
quadrants of the screen (Fig. 2a, left centre). Expressing locations in degrees of 
visual angle, the object’s centre was 3° visual angle away from the vertical and 
horizontal central midlines (that is, 4.2° from image centre; Fig. 2a, right). The 
size of the objects was adjusted so that all of them fitted into one quadrant of the 
aperture, while maintaining a similar size (mean (s.d.) size: vertical, 2.4° (0.4°); 
horizontal, 2.2° (0.6°)).

We used backgrounds with three different clutter levels: no, low and high  
(Fig. 2a, right centre; note that example backgrounds shown here are for illustrative 
purposes and were not used in the experiment. The original stimulus material 
is available for download together with the data). We defined clutter as the 
organization and quantity of objects that fill up a visual scene69. In the no-clutter 
condition, the background was uniform grey. In the low- and the high-clutter 
condition, we selected a set of 60 natural scene images each from the Places365 
database (http://places2.csail.mit.edu/download.html) that had low or high 
clutter, respectively, and did not contain objects of the categories defined in our 
experimental design (that is, no animals, cars, faces or chairs). We converted the 
images to greyscale and superimposed a circular aperture of 15° visual angle. The 
visual angle was the same in the EEG and fMRI experiments.

We confirmed that our selection of low- and high-clutter images was 
appropriate by an independent behavioural rating experiment (N = 10) in 
which participants rated clutter level on a scale from 1 to 6 (mean (s.d.) clutter 
image rating: low clutter, 2.52 (0.85); high clutter, 5.04 (0.87); the difference was 
significant: N = 10, paired-sample t test, P < 0.0001, t = 14.96).

From the set of 60 low- and high-clutter images, we selected 48, one for 
each experimental condition of our experimental design. We then randomly 
paired objects to background images to avoid systematic congruencies between 
backgrounds and objects. This was done for each of the 20 runs of the EEG 
experiment and for the 10 runs of the fMRI experiment. This resulted in 144 
individual images per run, one for each condition (that is, 12 object exemplars 
× 4 locations × 3 background clutter levels). The remaining set of 12 low- 
and high-clutter images was used separately to create catch trials in the EEG 
experiment (see details below).

Experimental procedures. fMRI main experiment. Each participant completed 
one fMRI recording session consisting of ten runs (run duration 552 s), resulting 
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in 92 min of fMRI recording of the main experiment. During each run, each of the 
144 images of the stimulus set was shown once (denoted here as ‘regular’ trials) 
in random order. Image duration was 0.5 s, with a 2.5 s inter-stimulus interval 
(ISI). Images were presented at the centre of a black screen, overlaid with a red 
fixation cross in the centre. Participants were asked to fixate their eyes on the 
central cross at all times. Regular trials were interspersed every third to fifth trial 
(equally probable, in total 36 per run) with catch trials. Catch trials repeated the 
image shown on the previous trial (Fig. 2b, bottom). Participants were instructed 
to respond with a button press to these repetitions (that is, a one-back task). Catch 
trials were excluded from further analysis. Since this was a repeated-measures 
design, data collection and analysis were not performed blind to the conditions  
of the experiment.

fMRI localizer experiment. To define ROIs in early visual, dorsal and ventral visual 
stream areas, we performed a separate localizer experiment prior to the main 
fMRI experiment with images in three experimental conditions: faces, objects and 
scrambled objects. Each image shown in the localizer experiment consisted of four 
identical versions of an object presented at the four locations as defined in the 
main experiment (for example, one particular face shown in all four quadrants) to 
approximate the stimulation conditions of the main experiment.

The localizer experiment consisted of a single run lasting 384 s, comprising six 
blocks of presentation of faces, objects, scrambled objects and a blank background 
as baseline. Each stimulation block was 16 s long with presentations of 20 different 
objects (500 ms on, 300 ms off), including two one-back repetitions that participants 
were instructed to respond to with a button press. Stimulation block order was 
first order counterbalanced, with triplets of stimulation blocks being presented in 
random order and being interspersed regularly with blank background blocks.

EEG main experiment. The EEG experiment was a modified version of the fMRI 
main experiment with adjusted timing parameters and a different task (Fig. 2b, 
top). The EEG recording session consisted of 20 runs of 205 s each (that is, in total 
68 min). Twenty-three participants completed all 20 runs, while four participants 
completed fewer runs due to technical problems (12 runs, 17 runs and 2 × 13 
runs). Image duration was 0.5 s, with a 0.5 or 0.6 s ISI (equally probable) on regular 
trials. Participants were asked to fixate their eyes on the central cross at all times. 
Catch trials consisted of the presentation of the target object (a glass) at any of 
the four locations and on any type of background. Participants were instructed 
to respond with a button press to the glass (that is, a detection task), and to 
blink their eyes to minimize eye blink contamination on regular trials. To avoid 
contamination of movement and eye blink artefacts on subsequent trials, the ISI 
was 1 s on catch trials. Catch trials were excluded from further analysis. Since this 
was a repeated-measures design, data collection and analysis were not performed 
blind to the conditions of the experiment.

Pre-processing and univariate fMRI analysis. fMRI acquisition and pre-processing. 
We acquired MRI data on a 3-T Siemens Tim Trio scanner with a 12-channel 
head coil. We obtained a structural image using a T1-weighted sequence 
(magnetization-prepared rapid gradient-echo, 1 mm3 voxel size). For the main 
experiment and the localizer run, we obtained functional images covering the 
entire brain using a T2*-weighted gradient-echo planar sequence (repetition time 
2 ms, echo time 30 ms, 70° flip angle, 3 mm3 voxel size, 37 slices, 20% gap, 192 mm 
field of view, 64 × 64 matrix size, interleaved acquisition).

We pre-processed fMRI data using SPM8 (https://www.l.ion.ucl.ac.uk/spm/). 
This involved realignment, coregistration and normalization to the structural 
Montreal Neurological Institute template brain. fMRI data from the localizer was 
smoothed with an 8 mm full-width at half-maximum Gaussian kernel, but the 
main experiment data was left unsmoothed.

Univariate fMRI analysis. For the main experiment, we modelled the fMRI 
responses to the 48 experimental conditions for each run using a general linear 
model (GLM). The onsets and durations of each image presentation entered the 
GLM as regressors and were convolved with a haemodynamic response function. 
Movement parameters entered the GLM as nuisance regressors. For each of the 48 
conditions, we converted GLM parameter estimates into t values by contrasting 
each parameter estimate against the implicit baseline. This resulted in 48 
condition-specific t value maps per run and participant.

For the localizer experiment, we modelled the fMRI response to the three 
experimental conditions, entering block onsets and durations as regressors of 
interest and movement parameters as nuisance regressors before convolving 
with the haemodynamic response function. From the resulting three parameter 
estimates, we generated two contrasts. The first contrast served to localize 
activations in early, mid-level ventral and dorsal visual regions (V1, V2, 
V3, V4, IPS0, IPS1, IPS2 and SPL) and was defined as objects + scrambled 
objects > baseline. The second contrast served to localize activations in 
object-selective area LOC and was defined as objects > scrambled objects. In sum, 
this resulted in two t value maps for the localizer run per participant.

Definition of ROIs. To identify regions along the ventral and dorsal visual streams, 
we defined ROIs in a two-step procedure. We first defined ROIs using anatomical 

masks from a probabilistic atlas70 for both hemispheres combined (three early 
visual ROIs for regions shared between the ventral and dorsal stream (V1, V2 and 
V3), two ROIs in mid- and high-level ventral visual cortex (V4 and LOC) and 
four ROIs in dorsal visual cortex (IPS0, IPS1, IPS2 and SPL)). To avoid overlap 
between the ROI masks we removed all overlapping voxels. In a second step we 
selected the 325 most activated voxels of the participant-specific localizer results 
within the masks, using the objects > scrambled contrast for LOC and the objects 
& scrambled objects > baseline contrast for the remaining ROIs. This yielded 
participant-specific ROI definitions.

EEG acquisition and pre-processing. We recorded EEG data using an EASYCAP 
64-channel system and a Brainvision actiCHamp amplifier at a sampling rate of 
1,000 Hz. The electrodes were placed according to the standard 10–10 system. The 
data were filtered online between 0.03 and 100 Hz and re-referenced online to FCz.

Offline pre-processing was conducted using the EEGLAB toolbox (version 
14)71 and incorporated a low-pass filter with a cut-off at 50 Hz and epoching  
trials between −100 ms and 999 ms with respect to stimulus onset. Epochs  
were baseline corrected by subtracting the mean of the 100 ms prestimulus time 
window from the entire epoch. To clean the data from artefacts such as eye blinks, 
eye movements and muscular contractions, we used independent component 
analysis as implemented in the EEGLAB toolbox. SASICA72 was used to guide the 
visual inspection of components for removal. Components related to horizontal 
eye movements were identified using two lateral frontal electrodes (F7 and F8).  
In the last six participants, additional external electrodes were available that 
allowed for the direct recording of the horizontal electro-oculogram to identify 
and remove components related to horizontal eye movements. For blink artefact 
detection based on the vertical electro-oculogram, we used two frontal electrodes 
(Fp1 and Fp2). On average, 11 (s.d. 4) components were removed per participant. 
As a final step, we applied multivariate noise normalization to improve the 
signal-to-noise ratio and reliability of the data (following the recommendation  
of Guggenmos et al.73).

Object location classification from brain measurements. To determine the 
amount of location information independent of category present in multivariate 
brain measurements, we applied a common multivariate cross-classification 
scheme8,66–68. In essence, separately for each background condition, we classified 
location while assigning data from different object categories to the training and 
testing sets (Supplementary Fig. 1a). All classification analyses relied on binary 
c-support vector classification with a linear kernel as implemented in the libsvm 
toolbox74 (https://www.csie.ntu.edu.tw/cjlin/libsvm). Furthermore, all analyses 
were conducted in a participant-specific manner.

Spatially resolved multivariate fMRI analysis. We conducted an ROI-based and 
a spatially unbiased volumetric searchlight procedure24,75. For the ROI-based 
analysis, for each ROI separately, we extracted and arranged t values into pattern 
vectors for each of the 48 conditions and 10 runs. To increase the signal-to-noise 
ratio, we randomly binned run-wise pattern vectors into five bins of two runs, 
which were averaged, resulting in five pseudo-run pattern vectors. We then 
performed five-fold leave-one-pseudo-run-out cross-validation, training on four 
and testing on one pseudo-trial per classification iteration. In detail, we assigned 
four pseudo-trials per location condition of the same category to the training set 
(Supplementary Fig. 1a). We then tested the SVM on one pseudo-trial for each 
of the same two location conditions, but now from a different category, yielding 
per cent classification accuracy (50% chance level) as output. Equivalent SVM 
training and testing was repeated for all combinations of location and category 
pairs. With four locations that were all classified pairwise once, this resulted in six 
pairwise location classifications. In addition, each pairwise location classification 
was iterated across all possible training and testing combinations of the four 
categories. This yielded an additional 12 iterations per location classification across 
training and testing pairs of categories. Therefore, in total 72 (6 × 12) classification 
accuracies were averaged during each of the five-fold cross-validation iterations, 
resulting in 360 averaged accuracies in total. The result reflects how much 
category-tolerant location information was present for each ROI, participant and 
background condition separately.

The searchlight procedure was conceptually equivalent to the ROI-based 
analysis with the difference of the selection of voxel patterns entering the analysis. 
For each voxel vi in the 3D t value maps, we defined a sphere with a radius of 
four voxels centred around voxel vi. For each condition and run, we extracted 
and arranged the t values for each voxel of the sphere into pattern vectors. 
Classification of location across category proceeded as described above. This 
resulted in one average classification accuracy for voxel vi. Iterated across all voxels, 
this yielded a 3D volume of classification accuracies across the brain for each 
participant and background condition separately.

Time-resolved classification of location from EEG data. To determine the timing 
with which category-independent location information emerges in the brain, we 
conducted time-resolved EEG classification68,76. This procedure was conceptually 
equivalent to the fMRI location classification in that it classified location 
while assigning data from different categories to the training and testing sets 
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and was conducted separately for each background condition and participant 
(Supplementary Fig. 1a).

For each time point of the epoched EEG data, we extracted 63 EEG channel 
activations and arranged them into pattern vectors for each of the 48 conditions 
and 60 raw trials. To increase the signal-to-noise ratio, we randomly assigned raw 
trials into four bins of 15 trials each and averaged them into four pseudo-trials. 
The classification was conducted on those four pseudo-trials. We trained the SVM 
on three pseudo-trials and tested it on the remaining pseudo-trial, yielding per 
cent classification accuracy (50% chance level, binary classification) as output. 
This procedure was repeated 100 times with random assignment of trials to 
pseudo-trials, and across all combinations of location and all category pairs. As 
for the fMRI classification, in total 72 (6 location pairs × 12 category train–test 
pairs) classification accuracies were averaged. With 100 iterations to randomly 
assign trials to training and testing bins, this yielded a total of 7,200 classification 
accuracies, which were averaged per background condition and participant. The 
result reflects how much category-tolerant location information was present at 
each time point, participant and background condition separately.

Time-resolved EEG searchlight in sensor space. We conducted an EEG searchlight 
analysis resolved in time and sensor space (that is, across EEG channels)  
to gain insights into which EEG channels contained the highest amount of  
location information and therefore contributed most to the results of the 
time-resolved analysis described above. For the EEG searchlight, we conducted  
the time-resolved EEG classification as described above with the following 
difference: For each EEG channel c, we conducted the classification procedure  
on the five closest channels surrounding c. The classification accuracy was  
stored at the position of c. After iterating across all channels and down-sampling 
the time points to a 10 ms resolution, this yielded a classification accuracy map 
across all channels and down-sampled time points, for each participant and 
background condition separately.

Time generalization analysis of location from EEG data. To determine when object 
location representations are similar across background conditions and time, we 
used temporal generalization analysis34,38,68,76.

The procedure was equivalent to the multivariate time-resolved EEG 
location classification analysis but with two crucial differences. First, data from 
the no-clutter condition were assigned to the training set while data from the 
high-clutter condition were assigned to the testing set (Supplementary Fig. 1b). 
The second difference was that the SVM was not only tested on data from the same 
time point as that from which the testing data were derived, but additionally on 
data from each time point from the −100 to 600 ms peri-stimulus time window 
(in 10 ms steps). Like previously, training was conducted on three and testing on 
one pseudo-trial, resulting in 7,200 classification accuracies (6 location pairs × 12 
category train–test pairs × 100 randomization iterations), which were averaged 
per time point and participant. This resulted in a two-dimensional matrix of 
classification accuracies indicating the combination of time points in the no- and 
high-clutter conditions at which object location representations were similar in the 
no- and the high-clutter conditions.

Off-diagonal peak shift in time generalization matrix. To quantify whether 
classification accuracies were significantly higher below than on or above the 
diagonal, we computed the distance from the post-stimulus classification peak to 
the diagonal for single subjects. For this, we first determined the peak coordinates 
(px, py) along the x and y axes. We then computed the coordinates of the point on 
the diagonal that was closest to the peak using

bx =
(px + py)

2

since on the diagonal, bx = by. This allowed us to compute the shortest 
perpendicular Euclidean distance between the peak and the diagonal as

dEuclidean =
√

(px − bx)2 + (py − bx)2.

To be able to later test group distances against zero, we set

dEuclidean = dEuclidean × −1

for all cases where px < py, which is the case for all peaks above the diagonal.

Diagonal difference in temporal generalization matrix. To obtain a temporally 
resolved estimate of the time points at which the classification accuracy was  
higher below than above the diagonal, we subtracted the classification accuracies 
above the diagonal from the accuracies below the diagonal. Specifically, we 
subtracted each time point from the time point with the equivalent coordinates 
mirrored along the diagonal. For example, the time point with coordinates  
300 ms in the no-clutter (y axis) and 100 ms in the high-clutter (x axis) condition 
(above diagonal) was subtracted from the time point with coordinates 100 ms  
in the no-clutter (y axis) and 300 ms in the high-clutter (x axis) condition  
(below diagonal).

EEG–fMRI fusion. To determine the spatiotemporal correspondence between 
object location representations revealed at particular time points in the EEG signals 
and localized in particular cortical regions using fMRI, we used representational 
similarity analysis-based EEG–fMRI fusion37–39. We focused the analysis on 
representations emerging at peak latencies in the EEG and on ventral stream ROIs. 
The rationale for this approach is that time points and ROIs are linked if they 
represent object locations similarly, that is, if their representational geometries 
(dissimilarity relations between representations) are comparable.

As a measure of (dis-)similarity relations between location representations, 
we used the classification results from the multivariate analyses conducted. This 
choice assumes that representations for two locations will be classified more easily 
if they are more dissimilar. In detail, we considered the pairwise classification 
accuracies between all pairs of locations (six) and all training and testing pairs 
across categories (six) in both training and testing directions (two), resulting in 
a 72 × 1 RDV. For EEG, we extracted the RDVs for the time points within the 
confidence intervals around the EEG peak latency, averaged them across time 
points and, following the method employed previously32,77,78, averaged them across 
participants, resulting in one EEG RDV per background condition. For fMRI ROIs, 
we extracted the RDVs for each participant and background condition separately.

We compared fMRI and EEG RDVs for representational similarity by 
correlating (using Spearman’s R) the averaged EEG RDV with the subject-specific 
fMRI ROI RDVs, resulting in one correlation per subject, background condition 
and ROI.

Multivariate classification of category. We conducted a set of spatially resolved 
(fMRI: ROI and searchlight), time-resolved and temporally generalized analyses 
(EEG) of object category. The analyses were equivalent to the procedures described 
above with the crucial difference that the role of the experimental factors location 
and category was reversed (Fig. 6a,f).

Object location classification in DNNs. We investigated whether DNNs  
trained on object categorization display a similar pattern of gradually emerging 
location representations along their processing hierarchy as we observed in the 
human brain.

We selected the DNN CORnet-S for investigation, on the basis of its top 
performance in predictivity of neural responses in the ventral stream as quantified 
on the Brain-Score platform27. CORnet-S is a shallow recurrent DNN consisting of 
four computational blocks referred to as areas, analogous to ventral visual areas V1, 
V2, V4 and IT. Each block consists of four convolutional layers with self-recurrence 
and a skip connection followed by group normalization and a rectified linear unit. 
The response of the final IT block is averaged over the entire receptive field and 
mapped to categories using a fully connected linear decoder.

To investigate the representation of object location in CORnet-S, we performed 
multivariate pattern analysis analogous to the analysis performed on brain 
data, classifying object location across category separately for each background 
condition. For this, we extracted unit activations of the last layer in each block of 
the DNN after running a forward pass of the stimulus material from the 20 runs of 
the EEG experiment.

For the top layer of each block, we arranged the unit activations into  
pattern vectors for each of the 48 conditions and 60 trials. We then proceeded with 
the analysis as done with the EEG data (Supplementary Fig. 1a). We randomly 
assigned raw trials into four bins of 15 trials each and averaged them into four 
pseudo-trials. We trained the SVM on three pseudo-trials and tested it on the 
remaining pseudo-trial. This procedure was repeated 100 times with random 
assignment of trials to pseudo-trials, and across all combinations of location 
and all category pairs before results were averaged. This resulted in one averaged 
classification accuracy value per top layer of each CORnet-S block and per 
background condition. The result reflects how much category-tolerant location 
information was present in CORnet-S.

Statistical testing. Wilcoxon signed-rank test. We performed non-parametric 
two-tailed Wilcoxon signed-rank tests to test for above-chance classification 
accuracy at time points in the EEG time courses, in the EEG time generalization 
matrix, for Euclidean distances from peak to diagonal in the time generalization 
matrices, for above-chance classification in the ROI and fusion results and for 
significant voxels in the fMRI searchlight results. In each case, the null hypothesis 
was that the observed parameter (classification accuracy, correlation or Euclidean 
distance) came from a distribution with a median of chance-level performance 
(that is, 50% for pairwise classification and zero correlation or Euclidean distance). 
The resulting P values were corrected for multiple comparisons using false 
discovery rate (FDR) at 5% level if more than one test was conducted.

Bootstrap tests. We used bootstrapping to compute confidence intervals and 
to determine the significance of peak-to-peak differences in EEG latencies, 
peak-to-peak distances of fMRI searchlight classification peaks and for the distance 
from the group-averaged classification peak in the temporal generalization  
matrix to the diagonal in Figs. 5e and 6g. In each case, we sampled the participant 
pool 10,000 times with replacement and for each sample calculated the statistic  
of interest.

Nature Human Behaviour | VOL 6 | June 2022 | 796–811 | www.nature.com/nathumbehav808

http://www.nature.com/nathumbehav


ArticlesNaTure Human BehaviOur

For the fMRI searchlight peak distances, we first shuffled condition labels of 
two background conditions to then generate a distribution of peak distances under 
the null hypothesis.

To determine whether peak-to-peak Euclidean distances in searchlight 
classification maps were significantly longer than expected independent of 
background, we set P < 0.05. If the computed P value was smaller than this 
threshold with Bonferroni correction, we rejected the null hypothesis of no 
peak-to-peak distance.

For the EEG peak-to-peak latency differences, we bootstrapped the latency 
difference between two background conditions, yielding an empirical distribution 
that could be compared with zero.

To determine whether peak-to-peak latencies in the EEG time courses were 
significantly different from zero, we computed the proportion of values that were 
equal to or smaller than zero and corrected them for multiple comparisons using 
FDR at P = 0.05. To compute 95% confidence intervals for single peak latencies in 
the EEG time courses, we bootstrapped the peaks for each background condition 
and determined the 95% percentiles of this distribution.

ANOVAs. We ran sets of ANOVAs to test for main effects and the interaction 
between ROIs along the ventral and dorsal stream and background condition, 
which we detail below. For all reported ANOVAs, we tested whether the 
assumption of sphericity had been met using Mauchly’s test. Below, we report the 
effects for which the assumption of sphericity had been violated and for which the 
Greenhouse–Geisser estimates of sphericity were used to correct the degrees of 
freedom. For all remaining effects, the assumption of sphericity had been met.

To test for main effects and the interaction between ROIs along the ventral 
stream and background condition, we ran two 5 × 3 repeated-measures ANOVAs 
with within-subject factors of ROI (V1, V2, V3, V4 and LOC) and background (no, 
low and high clutter). The first ANOVA tested the results of location classification 
across categories. Mauchly’s test indicated that the assumption of sphericity had 
been violated for the main effect of background (P = 0.003). Therefore, the degrees 
of freedom were corrected using the Greenhouse–Geisser estimates of sphericity 
(ε = 0.72). The second ANOVA tested the results of category classification across 
locations. Mauchly’s test indicated that the assumption of sphericity had been 
violated for the main effect of ROI (P < 0.001). The degrees of freedom were 
corrected using the Greenhouse–Geisser estimates of sphericity (ε = 0.61).

To test for main effects and the interaction between ROIs along the dorsal 
stream and background condition, we ran two 7 × 3 repeated-measures ANOVAs 
with within-subject factors of ROI (V1, V2, V3, IPS0, IPS1, IPS2 and SPL) and 
background (no, low and high clutter). The first ANOVA tested the results 
of location classification across categories. Mauchly’s test indicated that the 
assumption of sphericity had been violated for the main effect of ROI (P < 0.001) 
and for the interaction (P = 0.028). Therefore, the degrees of freedom were 
corrected using the Greenhouse–Geisser estimates of sphericity (ε = 0.53 for the 
main effect of ROI, ε = 0.52 for the interaction). The second ANOVA tested the 
results of category classification across locations. Mauchly’s test indicated that the 
assumption of sphericity had been violated for the interaction (P < 0.001). The 
degrees of freedom were corrected using the Greenhouse–Geisser estimates of 
sphericity (ε = 0.59).

To test for main effects and the interaction in the results of the EEG–fMRI 
fusion, we ran a 5 × 2 repeated-measures ANOVA with factors of ROI (V1, V2, V3, 
V4 and LOC) and clutter (no, high). The assumption of sphericity had been met 
for all main and interaction effects.

All post hoc tests were conducted using pairwise t tests, and P values were 
corrected for multiple comparisons using Tukey correction.

Effect sizes. For the main and interaction effects of the ANOVAs, we computed the 
partial η2 using

Partial η
2
=

Sum of squares (SS)Effect
SSEffect + SSResidual

and the effect size estimate r (ref. 79) for the off-diagonal peak shifts across subjects, 
as tested with the Wilcoxon signed-rank test, using

r = Z
√

N
.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The experimental stimuli, fMRI data, EEG data and the neural network activations 
are publicly available via https://osf.io/7zswn/?view_only=21a714db58584ffeb283
7fc0548bf659.

Code availability
Analysis code is publicly available via https://github.com/graumannm/
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Data collection The data was collected using Matlab and  the experimental paradigms were presented using the Psychophysics Toolbox Version 3.0.12 
(PTB-3).

Data analysis For the data preprocessing and analysis we used the following software: MATLAB R2018b,  EEGLAB toolbox (version 14), SASICA plugin for 
EEGLAB, LIBSVM-3.11, SPM8 toolbox, CoSMoMVPA toolbox.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability
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Study description In this study we recorded quantitative data separately from two experiments. 1) 3 Tesla functional magnetic resonance imaging 
(fMRI) data to acquire human brain activity data with high spatial resolution. 2) Electroencephalography (EEG) data to acquire human 
brain activity data with high temporal resolution. In both experiments, participants were performing a visual task while we recorded 
data.

Research sample 29 participants participated in the EEG experiment of which two were excluded because of equipment failure (N=27, mean age 26.8 
years, SD=4.3, 22 female). 25 participants (mean age 28.8, SD=4.0, 17 female) completed the fMRI experiment. The participant pools 
of the experiments did not overlap except for two participants. All participants provided informed consent prior to the studies and 
received a monetary reward or course credit for their participation. 

Sampling strategy Participants were selected according to the following requirements: 18-40 years old, with normal or corrected-to-normal vision, 
fulfillment of the MR security criteria (no implants or metal parts, tattoos, non-removable piercing, claustrophobia, pregnancy, 
neurological disorders, etc.). 
Sample size was chosen to exceed comparable M/EEG and fMRI classification studies to enhance power.

Data collection During both experiments, participants' responses were recorded with a computer, while the ongoing brain activity during the task 
was recorded using the 3T fMRI scanner (experiment 1) and the EEG (experiment 2). No one was present in the room together with 
the participants during the experiments. Blinding to the experimental conditions or the study hypothesis was not possible, but data 
was analyzed using a single pipeline for all subjects.

Timing 1) fMRI experiment: the data collection started February 2019 and ended in March 2019. 2) EEG experiment: the data collection 
started in May 2017 and ended in November 2017, with a short gap from July to September 2017 for data analysis.

Data exclusions 1) No participants were excluded in the fMRI experiment. 2) Two participants were excluded in the EEG experiment because of 
equipment failure.

Non-participation No participants declined participation or dropped out.

Randomization Participants were not allocated into experimental groups. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants were recruited using the mailing lists for study participation of the psychology program, of the cognitive 
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Recruitment neuroscience program and of the medical studies program from the following Berlin universities: Freie Universität Berlin, 
Humboldt Universität zu Berlin, Charite.

Ethics oversight The study was approved by the ethics committee of the Department of Education and Psychology of the Freie Universität 
Berlin, Germany.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Event-related fMRI design.

Design specifications Each participant completed one fMRI recording session consisting of 10 runs (run duration: 552 s), resulting in 92 
minutes of fMRI recording of the main experiment. During each run, each of the 144 images of the stimulus set was 
shown once (regular trials). Image duration was 0.5 s, with a 2.5 s inter-stimulus-interval (ISI). Regular trials were 
interspersed every 3rd to 5th trial (equally probable, in total 36 per run) with catch trials. Catch trials repeated the 
image shown on the previous trial. Participants were instructed to respond with a button press to these repetitions (i.e. 
a one-back task). 

Behavioral performance measures Button presses and response times were recorded for each subject during the experiment. Responses were recorded to 
ensure that participants were directing their attention towards the stimuli. Response trials were excluded from analysis.

Acquisition

Imaging type(s) functional and structural MRI

Field strength 3 Tesla

Sequence & imaging parameters We acquired functional images covering the entire brain using a T2*-weighted gradient-echo planar sequence (TR=2, 
TE=30 ms, 70° flip angle, 3-mm3 voxel size, 37 slices, 20% gap, 192-mm field of view, 64 × 64 matrix size, interleaved 
acquisition).

Area of acquisition Whole brain.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We preprocessed fMRI data using SPM8. This involved realignment, coregistration and normalization to the structural MNI 
template brain. FMRI data from the localizer was smoothed with an 8 mm FWHM Gaussian kernel, but the main experiment 
data was left unsmoothed.

Normalization The normalization method applied on all functional brain data was non-linear. We entered the subject specific T1 structural 
image as source image and the MNI standard T1 provided in the SPM8 toolbox as template image.

Normalization template We used the T1 template in MNI space provided in the SPM8 toolbox.

Noise and artifact removal To remove movement artifacts from the fMRI time-series, we realigned the functional brain images in SPM8 using default 
parameters. In the GLM, movement parameters were entered as nuisance regressors. We applied no artifact removal for 
heart rate and respiration.

Volume censoring Was not applied.

Statistical modeling & inference

Model type and settings We performed multivariate pattern analysis on the brain activity data. Specifically, we trained and tested support-vector 
machines on the individual participants' data and performed a statistical analysis on classification results. 

Effect(s) tested Whole-brain: for all voxels, we tested whether classification accuracies significantly exceeded chance level. This was done 
separately for three background conditions (no, low and high background clutter).  
ROI: using a repeated-measures ANOVA with a 5×3 design, we tested for the interaction between 5 regions-of-interest in the 
ventral stream (V1, V2, V3, V4, LOC) and 3 background conditions (no, low and high cluttered backgrounds).  
Another repeated measures ANOVA with 7 ×3 design tested the interaction between 7 regions-of-interest in the dorsal 
stream (V1,V2,V3,IPS0,IPS1,IPS2,SPL) and 3 background conditions (no, low and high cluttered backgrounds).  
When the assumption of sphericity was violated, the degrees of freedom were corrected using the Greenhouse-Geisser 
estimates of sphericity. 

Specify type of analysis: Whole brain ROI-based Both
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Anatomical location(s)

We first defined ROIs in early visual cortex (V1, V2, V3), in the ventral stream (V4, LOC) and in the dorsal 
stream (IPS0,IPS1,IPS2,SPL) using anatomical masks from a probabilistic atlas (Wang et al., 2015) for both 
hemispheres combined. To avoid overlap between the ROI masks we removed all overlapping voxels. In a 
second step we selected the 325 most activated voxels in the participant-specific localizer results, using 
the objects > scrambled contrast for LOC and the objects & scrambled objects > baseline contrast for the 
remaining ROIs. This yielded participant-specific ROI definitions.

Statistic type for inference
(See Eklund et al. 2016)

We tested whether classification accuracies significantly exceeded chance-level. This was done per ROI and in the the whole-
brain searchlight it was done voxel-wise. In both cases we tested this with non-parametric, two-tailed Wilcoxon signed rank 
tests. In each case the null hypothesis was that the observed classification accuracies came from a distribution with a median 
of chance level performance (i.e., 50% for pairwise classification).

Correction The P-values resulting from the Wilcoxon signed rank tests were corrected for multiple comparisons using false discovery 
rate at 5% level under the assumption of independent or positively correlated tests. 

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis For the ROI-based analysis, for each ROI separately we extracted and arranged t-values into pattern vectors 
for each of the 48 conditions and 10 runs. To increase the SNR, we randomly binned run-wise pattern 
vectors into five bins of two runs which were averaged, resulting in five pseudo-run pattern vectors. We then 
performed 5-fold leave-one-pseudo-run-out-cross validation. In detail, we assigned four pseudo-trials per 
location condition of the same category to the training set. We then tested the SVM on one pseudo-trial for 
each of the same two location conditions, but now from a different category yielding percent classification 
accuracy (50% chance level) as output. Equivalent SVM training and testing was repeated for all 
combinations of location and category pairs before results were averaged. The result reflects how much 
category-tolerant location information was present for each ROI, participant and background condition 
separately. 
 
The searchlight procedure was conceptually equivalent to the ROI-based analysis with the difference of the 
selection of voxel patterns entering the analysis. 
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