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Abstract

These days, information technology does not only demand fast and secure transport
of the information but also energy efficiency in the process of doing so. The un-
intentional generation of waste heat in electrically driven computers is an ongoing
challenge. With the discovery of the spin Seebeck effect, a very potent candidate
was found for reusing waste heat to drive spin currents that can be used for reliable
long-range information transport.

The foundation for this effect was set at the beginning of the 19th century with
the discovery of the Seebeck and Peltier effects. The Seebeck effect is referred to
as a charge current flowing through the metal in response to a local temperature
gradient whereas the Peltier effect describes the inverse phenomenon. Together these
thermoelectric effects describe the mutual conversion of heat and charge currents and
are widely used in technical applications for electrical cooling and reusing waste heat
that is produced in large power supply machines.

Electrons do not only carry a charge but also a magnetic moment called spin.
It opens up an additional degree of freedom for the interaction with heat currents.
The corresponding very active research area is called spin caloritronics. The spin
Seebeck effect is the magnetic analogon to the Seebeck effect in a ferromagnetic
sample. It was shown that this effect even exists in insulating ferromagnets where
no itinerant electrons are present, thus leading to very low damping of the excited
magnetic spin waves and interesting applications.

The goal of this thesis is to set up a theoretical foundation for a description of
the mutual interaction of lattice and spin waves based on the Boltzmann transport
equation. It is crucial to understand spin-caloric effects as the spin Seebeck effect
in ferromagnetic insulators on a microscopic level. In the first part, we explain how
a phenomenological model of weakly interacting spin and lattice waves can be used
to explain the magnetic-field dependence of the spin Seebeck effect at high tem-
peratures when inelastic scattering dominates the relaxation of the lattice and spin
waves. In the second part, we examine the influence of strong spin-orbit coupling
that leads to hybridized spin-lattice transport, predominantly at low temperatures.
Finally, we bridge the gap between coherent and incoherent regimes.





Kurzfassung

Heutzutage fordert die Informationstechnologie nicht nur einen schnellen und sicheren
Transport von Informationen, sondern auch Energieeffizienz. Die ungewollte Erzeu-
gung von Abwärme in elektrisch betriebenen Computern ist eine anhaltende Heraus-
forderung. Mit der Entdeckung des Spin-Seebeck-Effekts wurde ein potentieller Kan-
didat für die Wiederverwendung von Abwärme gefunden um Spinströme anzutreiben,
die für einen zuverlässigen Informationstransport über makroskopische Entfernun-
gen verwendet werden können.

Der Grundstein für diesen Effekt wurde vor 200 Jahren mit der Entdeckung
des Seebeck- und Peltier-Effekts gelegt. Als Seebeck-Effekt bezeichnet man den
Ladungsstrom, der als Reaktion auf einen Temperaturgradienten durch ein Metall
fließt. Der Peltier-Effekt ist das inverse Phänomen. Gemeinsam beschreiben diese
thermoelektrischen Effekte die bilaterale Umwandlung von Wärme- und Ladungs-
strömen. Sie werden zur elektrischen Kühlung von Metallen und Wiederverwendung
von Abwärme verwendet, die in großen Stromversorgungsmaschinen entsteht.

Elektronen tragen neben einer Ladung auch ein magnetisches Moment welches
Spin genannt wird. Es eröffnet einen zusätzlichen Freiheitsgrad für die Wechsel-
wirkung mit Wärmeströmen. Das Forschungsgebiet, welches sich damit befasst
heißt Spin-Kaloritronik. Der Spin-Seebeck-Effekt ist das magnetische Analogon zum
Seebeck-Effekt in einem Ferromagneten. Dieser Effekt tritt sogar in isolierenden Fer-
romagneten, bei denen keine freien Elektronen vorhanden sind, auf. Dadurch haben
die angeregten magnetischen Wellen eine sehr geringe Dämpfung.

Ziel dieser Arbeit ist es eine theoretische Grundlage für eine Beschreibung der
gegenseitigen Wechselwirkung von Gitter- und Spinwellen auf Basis der Boltzmann-
Transportgleichung zu schaffen, da sie wichtig ist um Spin-Kalorische-Effekte wie
den Spin-Seebeck-Effekt auf mikroskopischer Ebene zu verstehen. Im ersten Teil der
Arbeit erklären wir, wie ein phänomenologisches Modell schwach wechselwirkender
Gitter- und Spinwellen verwendet werden kann, um die Magnetfeldabhängigkeit des
Spin-Seebeck-Effekts in ferromagnetischen Isolatoren bei hohen Temperaturen zu
erklären, wenn inelastische Streuung die Relaxation der Gitter- und Spinwellen do-
miniert. Im zweiten Teil untersuchen wir bei niedrigen Temperaturen den Einfluss
einer starken Spin-Bahn-Kopplung, die zu hybridisiertem Spin-Gitter-Transport führt.
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1
Introduction

Almost two hundred years after the discovery of the thermoelectric Seebeck and
Peltier effects [1], the observation of the spin Seebeck effect [2] in 2008 has created
excitement and stimulating research in the emerging field of spin caloritronics which
describes the interaction of spin and heat currents. The spin Seebeck effect was
observed in a variety of materials such as metals [2], semiconductors [3], and even
ferromagnetic insulators [4]. It is distinguished between “local” or also called “lon-
gitudinal” spin Seebeck effect [5, 6, 7], and “non-local” or “transverse” spin Seebeck
configurations [4, 8, 9, 10, 11, 12, 13], and it shows interesting features in broad
temperature and magnetic-field ranges [14, 15]. Besides the classical steady-state
configurations, time-resolved measurements [16, 17, 18] gain increasing attention.
Already in the early days of the experimental observations, it was pointed out that
magnon-phonon interaction [19, 20] and strong phonon drag [21] are important for
the understanding of the spin Seebeck effect. The importance of magnon-phonon
coupling to spin-caloric effects was also indicated in other phenomena as the spin
Peltier effect [22, 23, 24] which is the inverse of the spin Seebeck effect, acoustic
spin pumping experiments [25, 26, 27] where spin currents in ferromagnets are gen-
erated by injecting acoustic sound waves, the Einstein–de Haas effect [28, 29] where
spin angular momentum transfer to the lattice leads to mechanical rotation of the
system, and long-range spin transport [30, 31] in ferromagnet–insulator heterostruc-
tures where the inter-conversion of spin currents to phonon angular momentum
currents is a potent candidate for spin transport over long distances.

Surprisingly, despite its importance, most existing theories of the spin Seebeck
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CHAPTER 1. INTRODUCTION

effect and of the general role of spin-lattice interaction in spin-caloric phenomena
treat the magnon-phonon coupling only on a phenomenological level either in terms
of stochastic random fields [19, 32, 33, 34] or in simplified relaxation time approx-
imations [35, 36, 37] which are mostly represented by single numbers and give no
insight into the microscopic origin of the interaction. Mostly, these models do not
differentiate between magnon-phonon processes that conserve the spin angular mo-
mentum but only exchange energy between the two sub-systems and those based on
relativistic effects that do not conserve the magnetization and lead to direct creation
of spin currents due to phonon-to-magnon conversion. An already better investiga-
tion of magnon-phonon interaction is possible with phenomenological models based
on the magneto-elastic energy [38, 20] that is derived from macroscopic symmetry
considerations of the sample geometry, similarly to the phenomenological theory of
“elastic strains” [39] that is used to describe phonon dynamics.

In this thesis, we go beyond these phenomenological approaches and extend the
present theory by a systematic investigation of a microscopic spin-lattice model that
reproduces the phenomenological state-of-the-art theory and can be used to describe
coherent [20, 40] and incoherent [41] magnon-phonon transport in ferromagnetic
insulators. We apply our theory to quantitatively explain the longitudinal spin
Seebeck effect in YIG–Pt bilayers at low and intermediate temperatures.

The outline of the thesis is as follows:

Chapter 1 summarizes the phenomenology of the field of spin caloric transport
and reviews the effects that are important to run spin Seebeck devices. Existing the-
ories of spin-lattice transport and the spin Seebeck effect in ferromagnetic insulators
are briefly summarized. We show how quasiparticle excitations of spin and lattice
waves, known as magnons and phonons, are derived from Heisenberg exchange in-
teraction and harmonic lattice Hamiltonians. The basic theory of the Boltzmann
transport equation, its applications and limitations, and common techniques to re-
duce the complexity of the system are presented.

In Chapter 2, we evaluate the coupled spin and heat transport for a weakly
coupled system of magnons and phonons in ferromagnetic insulators. We imply
a hierarchy of scattering mechanisms to derive a set of “hydrodynamic” equations
within a continuum model that goes beyond the relaxation time approximation.
Magnon-number conserving and nonconserving magnon-phonon couplings are ex-
plicitly included in the collision integrals. We use our theory to calculate the spin
Seebeck effect with a focus on the magnetic-field dependence and find that the di-
rect conversion of phonons to magnons causes significant peaks in the spin Seebeck
voltage at two critical magnetic fields [20] .

In Chapter 3, we derive a set of microscopic Boltzmann equations for strongly cor-
related magnon and phonon systems from a minimalistic – yet effective – spin-lattice
model including spin-conserving exchange interaction as well as spin-nonconserving
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1.1. THERMOELECTRICITY

spin-orbit coupling as resources for magnon-phonon coupling. We extend the most
recent theory [37, 20, 41] that relies on strong inelastic magnon-magnon and phonon-
phonon background scattering which instantaneously relaxes the polaron distribu-
tion functions to Planck-like distributions. We explicitly account for those processes
in the collision integral. Thus, we can separate between the contributions from elas-
tic and inelastic scattering and quantify the role of strong magnon-phonon coupling
that leads to the formation of coherent magnon polaron mixed-modes. We apply
our theory to longitudinal spin Seebeck setups in ferromagnetic insulators where we
separate between acoustic and magnetic clean systems.

Chapter 4 concludes our findings. We present an outlook on how the steady-
state theory can be extended to evaluate time-dependent spin-lattice transport. We
illustrate how even in a single sublattice ferromagnetic insulator with only spin-
conserving scattering a transient spin Seebeck effect can occur.

1.1 Thermoelectricity

In 1821 Thomas Johann Seebeck discovered that a steady temperature bias between
the ends of a metal leads to an electrostatic potential which results in an electrical
current j flowing through the system in the direction of the thermal gradient,

j = −S∇T, (1.1)

where S is the material-specific Seebeck coefficient and ∇T is the applied tempera-
ture gradient. The (group) velocity of the electrons is linked to their energy ~ω via
v = ∂ω/∂q, q being the wavevector, and thus the velocity increases with energy. As
a result, hot electrons move faster to the cold end than vice versa. In the progress
of this energy-equilibrating process, a heat current flows through the metal which is
accompanied by a charge current as each electron also carries a charge. The hotter
the one end of the sample gets, the larger the temperature gradient and therefore
also the charge current.

The effect can be measured in a thermocouple, which consists of two different
metals that are connected to a common heat reservoir at one end and to a voltmeter
at the other (cold) end of the sample, see Figure 1.1. The cold end is kept at
a constant temperature. The Peltier effect describes the inverse phenomenon of
controlling the heat current in metals by applying an electrical current to it. By
inverting the sign of the voltage the metal can be heated up or cooled down, which
makes the Peltier effect a powerful tool to electrically cool down metals [42]. The
two processes are invertible and can be linked by an Onsager relation [43],

Π = TS, (1.2)

where T is the system temperature and Π is the Peltier coefficient.
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CHAPTER 1. INTRODUCTION

j1 = − S1∇T

T + ΔT V

Tj2 = − S2 ∇T

= (S1 − S2)ΔT

Figure 1.1: Seebeck effect in a thermocouple. Two metals with different Seebeck
coefficients S1,2 are connected to a common heat reservoir, held at temperature
T + ∆T , to the one end and to a voltmeter at a temperature T to the other end.
The resulting charge currents j1,2 in the metals is proportional to the temperature
gradient ∇T = ∆T/L and leads to a Seebeck voltage V = (S1 − S2)∆T .

In ferromagnets the electron scattering rates for spin-up and spin-down electrons
differ, which leads to spin-dependent conductivities σ↑,↓ and Seebeck coefficients S↑,↓
[44]. The spin-dependent electron current densities can be written in linear response
[45],

j↑,↓ = −σ↑,↓
(

1

e
∇µ↑,↓ + S↑,↓∇T

)
, (1.3)

where e is the electron charge, and µ↑,↓ are spin-chemical potentials. When a tem-
perature gradient is applied across a magnet, different currents are generated for
majority and minority spins which leads, in addition to a conventional charge cur-
rent density j = j↑ + j↓, to a spin accumulation across the sample that drives a
non-vanishing spin current density js = j↑ − j↓. This spin current generation in
response to a temperature gradient was observed in ferromagnetic metals in local
[2] and nonlocal geometries [46].

1.2 Spin transfer torque and spin pumping

Spin transfer torque and spin pumping describe reciprocal phenomena of the inter-
action of (electron) spin accumulation with the magnetization dynamics M(r, t) of a
ferromagnet. To show the interplay of spin-dependent electron dynamics in a mag-
netic metal and the collective magnetization dynamics in an insulating ferromagnet,
we review the occurrence of a spin transfer torque τ that electron spins exert on
the magnetization of an adjacent ferromagnet. Therefore, we use a simplified model
of a metal, which is situated at the half-space x < 0, containing unpolarized (free)
electrons in a mixed state which are characterized by two-component spinors. The
ferromagnetic insulator at x > 0 is modeled within a macrospin approximation
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1.2. SPIN TRANSFER TORQUE AND SPIN PUMPING

magnetized along the direction of m = M/Ms, where Ms is the saturation mag-
netization of the ferromagnet. The band offset of the ferromagnet is much larger
than the Fermi energy and it is assumed to be infinitely long such that the elec-
trons are totally reflected at the interface x = 0. During this reflection process, the
spinors can pick up a (spin-selective) phase and thereby change their spin angular
momentum. Two-component spinor column-vectors ai(ε) and ar(ε) are used to de-
note the annihilation operators for electrons with energy ε moving in the positive
and negative x-directions, respectively. Thus, ai(ε) describes electrons incident on
the interface whereas ar(ε) refers to electrons which are reflected from the interface.
The relation between the operators ai(ε) and ar(ε) is given by the reflection matrix,

ar(ε) = r̂ai(ε), (1.4)

where

r̂ = rc1 + rsm · σ. (1.5)

Here, rc,s = (r↑ ± r↓)/2 with |r↑,↓|2 = 1 are reflection coefficients for spin-up/spin-
down electrons that account for the phase picked by the spinor with the reflection
at the FN interface, and σ = (σx, σy, σz) is a vector of Pauli spin-matrices. These
reflection coefficients can be linked to the spin-mixing conductance

g↑↓ = 1− r↑r∗↓. (1.6)

which plays a central role in the exchange of magnetic moment between electron
spins and the magnetization dynamics of a ferromagnet. The expectation value
of the incoming electron operators is 〈a†i (ε)ai(ε)〉 = f(ε) where a†i (ε) denotes the
two-component row-vector spinor which describes the creation of an electron and
f(ε) is the electron distribution function. Electrons in the metal incident on the
FN interface have a Fermi-Dirac like distribution with a chemical potential µ and a
non-zero spin accumulation µs. In linear response, the electron distribution is given
by

f(ε) = f 0(ε) +

(
−∂f

0

∂ε

)
1

2
µs · σ (1.7)

where

f 0(ε) =
1

e(ε−µ)/kBT + 1
(1.8)

is the Fermi-Dirac distribution. From DC circuit theory [47], the spin current
through the FN interface then is

jsx =
1

4π

∫
dε 〈a†r(ε)σar(ε)− a†i (ε)σai(ε)〉 . (1.9)
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CHAPTER 1. INTRODUCTION

Inserting the definitions for the spinor operators (1.4) and the reflection coefficients
(1.5) into the spin current definition (1.9), with a bit of algebra the final result,

jsx =
1

4π
[g′↑↓m× (m× µs) + g′′↑↓m× µs], (1.10)

is obtained, where g′↑↓ and g′′↑↓ are the real and imaginary parts of the spin-mixing
conductance g↑↓ = g′↑↓+ ig′′↑↓, respectively. Due to angular momentum conservation,
the spin transfer torque per unit area τ on the magnetization is determined by
the component normal to the interface of the electron spin current hitting on the
interface area [48, 49], τ = −jsx. The spin transfer torque which results from Eq.
(1.10) vanishes for spins that are aligned collinear with the magnetization µs ‖m of
the ferromagnet. Without spin filtering by the ferromagnet r↑ = r↓, the spin-mixing
conductance (1.6) and consequentually also the spin-transfer torque vanish.

Spin pumping describes the generation of a spin current in N which is driven
by the magnetization dynamics in F and is the inverse process to an electron spin
transfer torque on the magnetization. A precessing magnetization M(r, t) of the
ferromagnet pumps a spin current into an adjacent metal layer [50]. In the literature
[47, 51, 52], an expression for the spin current density is derived in the adiabatic
pumping limit of a slowly varying magnetization which involves a time-dependent
scattering matrix. Here, we present an alternative approach. We consider a reference
system for the spin degree of freedom that rotates with angular frequency ω and
show how the spin accumulation µs and the magnetization vector m transform in
the rotating frame. The transformation for the electron annihilation operator can
be described by a rotation matrix [53] via,

a(t) = e
−
iω · σt

2 a(t)′, (1.11)

where a(t)′ refers to the operator in the rotating frame. Fourier transforming Eq.
(1.11) leads to

a(ε) = a(ε− ~
2
σ · ω)′. (1.12)

The electron distribution function f(ε) which is the expectation value of a†(ε)a(ε)
therefore transforms identically, f(ε) = f(ε − ~σ · ω/2)′. In linear response, this
leas to a shift of the spin chemical potential in Eq. (1.7),

µs = µ′s + ~ω. (1.13)

For a classical magnetization vector m the general transformation to a frame which
rotates with ω changes the frequency of the classical Larmor precession by a fre-
quency ω,

ṁ = ṁ′ + ω ×m. (1.14)
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1.3. SPIN HALL EFFECT

xjc

js
i

(a) (b)

ei

ei

jc

js
i

y
z

Figure 1.2: Schematic depiction of the spin Hall effect (a) and the inverse spin Hall
effect (b).

The spin pumping current density does not depend on the choice of the coordinate
system for the spin jsx = j′sx . In a frame where the rotating magnetization vector
is at rest ṁ′ = 0, the spin current is given by the time-independent Eq. (1.10).
Transforming the system back to the rotating system with the application of the
shifts (1.13) and (1.14) and assuming a perfect spin-sink such that µs = 0, we arrive
at the final equation for the spin pumping [50, 19]

jsx =
~
4π

(
g′↑↓m× ṁ− g′′↑↓ṁ

)
. (1.15)

As for the spin transfer torque, the spin-mixing conductance plays a central role in
the spin pumping.

1.3 Spin Hall effect

The spin Hall effect (SHE) describes the generation of a spin current density js

transverse to a charge current density jc due to spin-orbit coupling [54, 55, 56]. It
was observed in a variety of metals [57, 58, 59] and semiconductors [60, 61]. It is
caused either by asymmetric scattering for majority and minority spins off impurities
[55, 62], referred to as “extrinsic spin Hall effect” or by a spin-dependent band-
structure [63, 64], named “intrinsic spin Hall effect”. Both mechanisms cause a spin
accumulation perpendicular to the direction of the charge current. In general, the
spin current density jsij is a tensor with a polarization direction i in spin space and a
flow direction j in real space. The spin Hall effect then refers to the general relation
between electron charge and spin current densities jsij = −(~θSH/2e)

∑
k εijkj

c
k. The

(phenomenological) relation between the charge current density jc and the vector of
the spin current density jsj which flows in the spatial direction j, i.e jsij = jsj ·ei reads
[65, 66], see Figure 1.2(a),

jsj = − ~
2e
θSH ej × jc. (1.16)

Here θSH is the “spin Hall angle” which measures the efficiency of the current con-
version [67].
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CHAPTER 1. INTRODUCTION

The inverse effect, referred to as inverse spin Hall effect (ISHE), describes the
conversion of a spin current into a charge current via jci = (2eθSH/~)

∑
jk εijkj

s
jk. As

schematically shown in Figure 1.2(b), the contribution from spins which point along
ej and a spin current density jsj along the spatial j-direction induce a charge current
density jc. The relation between electron spin current density and the charge current
density is

jc =
2e

~
θSH jsj × ej. (1.17)

The ISHE provides a powerful tool to detect spin currents [59, 2, 4].

1.4 Spin Seebeck effect

In the narrow sense, the spin Seebeck effect (SSE) describes the generation of a spin
current in a magnetic material, that is driven by collective spin waves in response to
a temperature gradient applied across the material. The spin Seebeck effect was first
observed in Permalloy [2], which is a metallic magnet consisting of nickel and iron.
In quick succession, it then has also been reported in the magnetic semiconductor
gallium manganese arsenide (GaMnAs) [3] and the ferrimagnetic insulator yttrium
iron garnet (YIG) [4] which is remarkable as YIG is an electrical insulator.

A spin current in a metallic ferromagnet can be carried by conduction electrons,
which refers to the spin-dependent Seebeck effect discussed above, and by collective
spin waves also called “magnons”. Thus, the measured spin current is always a sum
of both processes. In contrast, in a ferromagnetic insulator (F) the spin current is
carried exclusively by spin waves as the electron degrees of freedom are frozen out.
This allows for the detection of the pure magnonic contribution to the spin Seebeck
effect. The direct detection of the generated spin current inside the ferromagnetic
insulator is not possible. The detection relies on transferring the spin current to a
paramagnetic metal (N) layer attached to the magnet by the spin pumping mech-
anism discussed in Sec. 1.2 and the detection of the spin current in that metal via
the inverse spin Hall effect. For that reason in the broader sense often the combi-
nation of these three effects: 1. The generation of a spin current in response to a
temperature gradient, 2. Pumping the spin current into a metal, and 3. Converting
the spin current in the metal to a charge current, is referred to as the spin Seebeck
effect.

The spin Seebeck effect was originally proposed in two distinct configurations:
the “longitudinal” or “local” spin Seebeck effect and the “transverse” spin Seebeck
effect, see Figure 1.3(a) and (b). The effect in the transverse configuration in which
the directions of the generated spin current and temperature gradient are perpen-
dicular, remains controversial. The originally reported results [2, 3, 4, 69] could
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1.5. PHONONS, MAGNONS, AND MAGNON POLARONS
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turns out to depend on the amplitude of the applied I. In a linear
regime (V2ω ∝ I2), substantial B-induced suppression of the nlSSE
was observed below 10 K, which is consistent with the previous LSSE
results in Pt/YIG.8,22 In a nonlinear regime (V2ω �∝ I2), however,
the nlSSE signal remains almost unchanged under high B at low Ts.
By measuring the d dependence, we estimate the magnon diffusion
length λ as functions of T and B.

II. EXPERIMENTAL

We prepared a series of nonlocal Pt/YIG/Pt devices, schemat-
ically shown in Fig. 1(a). A 2.5-�m-thick YIG film was grown by
liquid phase epitaxy on a Gd3Ga5O12 (111) substrate.23 On top of
the YIG film, we fabricated two Pt wires using e-beam lithography
and the lift-off process.16,20 The dimensions of the Pt wires are 200
�m length, 100 nm width, and 10 nm thickness. The Pt wires were
deposited by magnetron sputtering in Ar+ atmosphere. We investi-
gated four batches of samples (S1–S4) cut from the same YIG wafer.
The d dependence was studied in S1 (d = 5, 6, 8, 13, 15, and 20 �m)
and S2 (d = 9 �m), while the I dependence at low Ts in S3 (d = 2 �m)
and S4 (d = 8 �m). We measured a nonlocal voltage using a lock-in
detection technique; we applied an ac charge current, I, of 13.423 Hz
in frequency to the injector Pt wire andmeasured a second harmonic
nonlocal voltage V2ω across the detector Pt wire.11

III. RESULTS

First, we confirmed that the obtained nonlocal voltage satisfies
the features of the nlSSE at room temperature. Figure 1(b) shows
typical V2ω as a function of in-plane B (θ = 90○) at 300 K in the d = 9
�m sample. A clear V2ω appears, whose sign changes with respect to
the B direction. V2ω disappears when B is applied perpendicular to
the plane (θ = 0). This symmetry is consistent with that of the SSE.3

We define the low-field amplitude of the voltage signal as VnlSSE
= [V2ω(0.18 T) − V2ω(−0.18 T)]/2, at which the magnetization of
YIG is fully saturated along B. As shown in Fig. 1(c),VnlSSE is propor-
tional to I2, indicating that VnlSSE appears due to Joule heating. With
increasing B, V2ω gradually decreases, and at around ±2.2 T, sharp
dip structures show up, which are induced by magnon polarons due
to magnon–TA-phonon hybridization.16,24,25

By changing the injector-detector separation distance d, we
estimate the length scale of the magnon spin current.26 As shown
in Fig. 1(d), VnlSSE decreases with increasing d. A one-dimensional
spin diffusion model11,27 describes the decay, which reads

VnlSSE = C exp�−dλ�, (1)

where λ is the magnon spin diffusion length and C is the d-
independent constant. We fit Eq. (1) to the d dependence of VnlSSE
and obtain λ = 6.76 ± 0.16 �m at 300 K. Similar values are reported
in previous studies in both thin (200 nm)11 and thick (50 �m)28 YIG
films.

Next, we measured the T dependence of V2ω with I = 100 �A.
As shown in Fig. 2(a), at 300 K, negative voltages are observed for
the d = 0.5 and 1.5 �m samples, while the positive ones show up for
the d = 8 and 15 �m samples. With decreasing T, the d = 8 and 15 �m
samples exhibit a monotonic increase in VnlSSE. On the other hand,
with decreasing T, the negative voltages observed for the d = 0.5 and
1.5 �m samples at 300 K change their sign at several tens of kelvin.
The sign change of VnlSSE with changing d and T has been observed
in previous nlSSE experiments and explained as a result of a spatial
profile of the magnon chemical potential �m that governs the sign
and amplitude of VnlSSE; a negative �m created beneath the Pt injec-
tor exponentially decays apart from the injector and above a certain
distance a positive one manifests due to the presence of YIG/GGG
interface. The overall �m profile varies withT.14–17,26–28 Furthermore,

FIG. 1. (a) A schematic illustration of the nlSSE measure-
ment in a lateral Pt/YIG/Pt system. B, θ, I, and Js denote the
external magnetic field, angle between B and sample sur-
face normal, charge current through the Pt injector, and spin
current at the Pt/YIG detector interface, respectively. An ac
charge current is applied to the Pt injector, and the second
harmonic voltage V2ω is measured across the Pt detector.
(b) The B dependence of the nonlocal voltage V2ω in the
d = 9 �m sample. V2ω at θ = 90○ (θ = 0) is measured with
I = 200 �A (100 �A). VnlSSE = [V2ω(0.18 T) − V2ω(−0.18
T)]/2 represents the amplitude of the nlSSE. (c) VnlSSE(I) in
the d = 9 �m sample. The solid red line shows a I2 fitting
to data. (d) Semilogarithmic plot of VnlSSE(d). The red line is
fit with VnlSSE = C exp(−d/λ). The error bars represent the
68% confidence level (±s.d.).
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Figure 1.3: Schematic depiction of the spin Seebeck effect (a) in the longitudinal
configuration, (b) in the transverse configuration, and in a nonlocal geometry (c).
Figures (a) and (b) are adopted from Uchida et al. [68]. Figure (c) is adopted from
Oyanagi et al. [13].

not be reproduced by other groups [70, 33]. The originally reported results were
addressed to possible effects from out-of-plane temperature gradients [70]. The lon-
gitudinal spin Seebeck effect in which the temperature gradient and the spin current
are collinear was reproduced by many groups [71, 25, 26, 68, 33, 72, 6, 7]. In more
recent experiments alternative spin Seebeck configurations were realized. In the
“nonlocal” spin Seebeck setup a heating wire induces a magnon spin current into a
ferromagnet (insulator) that is re-converted into a charge current in a second (de-
tection) wire, attached a distance d apart from the injector [8, 10, 13], see Figure
1.3(c). It was also shown that in the longitudinal configuration a spin Seebeck effect
can be created by using the same normal metal layer, which is used to detect the
spin current as a joule heater to create a temperature bias between electrons in N
and spin waves in F [73, 74]. The spin Seebeck effect was also observed in antifer-
romagnets [75, 76, 77]. Theories of the spin Seebeck effect are reviewed separately
in Section 1.7.

1.5 Phonons, magnons, and magnon polarons

Phonons

In a simple picture, a solid is referred to as an arrangement of atoms in a regular pe-
riodic lattice which is characterized by a periodic lattice potential U(rj), connecting
the atoms at positions rj. When the lattice atoms are not on their rest positions r0j
but displaced by an amount uj = rj − r0j where rj is the actual position of the j-th
atom in the lattice, the atoms start oscillating around their equilibrium positions.
Because the atoms are coupled via the periodic lattice potential, the displacement of
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CHAPTER 1. INTRODUCTION

atoms causes propagating “lattice waves” in the solid. The elementary excitations
of these lattice waves are called “phonons”.

In Chapter 3 we give a detailed derivation of phonon modes in a microscopic
lattice model. A simple description of phonons can also be derived in an elastic
continuum model. The Hamiltonian of this system is [78],

Hp =

∫
dV
∑
α,β

[
p2α(r)

2ρ
δα,β + (c2l − c2t )

ρ

2

∂uα(r)

∂xα

∂uβ(r)

∂xβ
+ c2t

ρ

2

∂uα(r)

∂xβ

∂uα(r)

∂xβ

]
,

(1.18)

with p(r) and u(r) being the momentum and displacement vectors. ρ is the mass
density of the body, cl,t denotes the longitudinal and transverse sound velocities,
and α, β = x, y, z are spatial coordinates.

To find the elementary excitations, the Hamiltonian (1.18) is quantized and
diagonalized. Therefore, the momentum and displacement vectors are quantized
in terms of bosonic creation b†q,λ and annihilation bq,λ operators with commutation

relation [bq,λ, b
†
q′,λ′ ] = δq,q′δλ,λ′ via [43, 78, 79],

u(rj) =
1√
N

∑
q,λ

eq,λ

√
~

2mωq,λ

(bq,λ + b†−q,λ)e
iq·rj ,

p(rj) = − i√
N

∑
q,λ

eq,λ

√
~mωq,λ

2
(bq,λ − b†−q,λ)eiq·rj , (1.19)

where q, ωq,λ, and eq,λ are the wavevector, frequency, and polarization vector with
λ = 1, 2, 3 being the polarization. With a bit of algebra the well known diagonalized
Hamiltonian

Hp =
∑
q,λ

~ωq,λb
†
q,λbq,λ (1.20)

is derived. The shape of the Hamiltonian equals the one of an uncoupled harmonic
oscillator [53]. Its eigenfunctions are harmonic waves with dispersion relation ωq,λ,

ωq,λ = cλ|q|, (1.21)

with polarization-dependent group velocity cλ = cl for the longitudinal mode (λ = 1)
and cλ = ct for the two degenerate transverse modes (λ = 2, 3) which are also com-
monly referred to as sound velocities [1]. These type of phonons are called “acous-
tic” phonons. Anharmonicities of the inter-ionic lattice potential U(rj) give rise
to phonon-phonon interaction. The leading contribution to these anharmonicities
are three-phonon interactions. In the continuum theory they can be described by a
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1.5. PHONONS, MAGNONS, AND MAGNON POLARONS

Hamiltonian of the shape [43],

H =

∫∫∫
d3r
∑
α,δ

∑
β,ε

∑
γ,σ

∂uα
∂rδ

∂uβ
∂rε

∂uγ
∂rσ

Aδεσαβγ, (1.22)

where Aδεσαβγ is a strain tensor. As three-phonon interactions do not conserve the

number of phonons, the thermal equilibrium phonon distribution nq,λ = 〈b†q,λbq,λ〉 is
a Planck-distribution

nq,λ =
1

e~ωq,λ/kBT − 1
. (1.23)

Magnons

Ferromagnets are materials that have a magnetic order even when they are not
exposed to an external magnetic field. This spontaneous magnetization breaks down
above a critical temperature TC called Curie temperature. In a microscopic model,
a ferromagnet can be described by localized magnetic moments or “spins” Sj sitting
on the lattice ions at positions rj of a periodic lattice. The interaction between the
respective spins can be described to a good approximation, due to Heisenberg [39],
by the interaction Hamiltonian

Hm = −J
∑
〈i,j〉

Si · Sj −
∑
j

µB · Sj, (1.24)

where J is the exchange coupling, µ = gµB is the magnetic moment of a spin, with
g and µB being the Landé factor and Bohr magneton, µB is the magnetic Zeeman
field, and i, j ∈ {0, . . . , N} are indices that in general run over the lattice positions of
the whole solid where i 6= j. Typically [80] the exchange constant drops off quickly
as a function of the inter-atomic distance. As a consequence the sum is restricted
to pairs of neighboring spins 〈i, j〉 with nearest-neighbor coupling J where each pair
in the sum is counted only once. The ground state of the system is the state with
minimal energy with respect to the Hamiltonian (1.24). Taking a deeper look at the
two terms, for ferromagnets which are characterized by a positive coupling constant
J > 0, the energy is minimized by the choice Si ‖ Sj leading to parallel alignment
of the spins whereas J < 0 leads to anti-parallel alignment of respective neighboring
spins. Thus the second class of materials is called “antiferromagnets” and for |Si| 6=
|Sj| one refers to “ferrimagnets”. For the remainder of this work, we focus on the
ferromagnetic case i.e. J > 0. Considering only Heisenberg exchange coupling
between the spins, the direction of the respective parallel aligned spins is arbitrary.
This is where the Zeeman term in the Hamiltonian (1.24) comes into play. It pins
the spins to a parallel alignment with the applied magnetic field B leading to the
ground state where all spins Sj ‖ B are aligned collinear with the external magnetic
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(a) (b)

a

Figure 1.4: Simple depiction of a chain of spins Sj sitting on a lattice with spacing
a between neighboring sites for ferromagnetic order (a). The low lying excitations
can be described by a small tilting of the spins (b).

field, see Figure 1.4(a). Another (intrinsic) mechanism that aligns the spins in a
certain direction is magnetocrystalline anisotropy [80]. It can be caused by spin-orbit
coupling, dipole-dipole interactions, and anisotropy of the exchange interaction. In
a phenomenological model, the leading order to the magnetic anisotropy in a cubic
lattice can be written,

H = −
∑
j,α

Kα(Sαj )2, (1.25)

where Kα is an anisotropy constant, and α = x, y, z are cartesian coordinates. For
example Kx,y = 0, Kz > 0 would lead to an easy-axis anisotropy in the z-direction
which pins the spins to the z-axis. [80].

The energy cost of the intuitive first excited state that could be reached by en-
tirely flipping a single spin is 4JS2. For a typical exchange constant, this refers to a
magnetic field of several Tesla [39]. Lower energy gains can be achieved by instead
tilting all spins slightly away from their equilibrium axis as shown in Figure 1.4(c).
The elementary excitations of the resulting spin waves, called “magnons” are the
magnetic analogon to the lattice vibrations which were discussed above. A direct
derivation of magnons for a discrete lattice model like Eq.(1.24) is explained in detail
in Chapter 3. Here, we introduce magnons in the framework of a phenomenological
Landau-Lifshitz-Gilbert equation [51, 19] for the unit vector m(r, t) = M(r, t)/Ms

of the continuous magnetization density M(r, t) where Ms is the saturation magne-
tization.

The Landau-Lifshitz-Gilbert equation can be derived from the spin Hamiltonian
(1.24), treating the spins as classical angular momentum vectors, which Larmor
precess around the magnetic field vector. Their (classical) equation of motion is
derived from

Ṡj = −Sj ×
∂H

∂Sj
. (1.26)

The continuum limit is reached by assuming that the spins slowly vary in space
Sj = Se(rj), where S is the magnitude of the spin angular momentum and e(rj) is
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1.5. PHONONS, MAGNONS, AND MAGNON POLARONS

a unit vector that points in the direction of Sj. Recalling that the directions of the
magnetic moment m and the spin e are opposite i.e. m = −e, the LLG equation
reads

ṁ(r, t) = m× (γB + ι∇2m), (1.27)

where γ is the gyromagnetic ratio. In the continuum theory the exchange stiffness
constant ι = JSa2/~ is commonly used, a being the lattice constant.

To obtain the elementary excitations of a disturbance in the magnetic system,
the magnetic moment m in the LLG equation (1.27) is quantized by a set of creation
and annihilation operators a†q, aq with commutation relation [aq, a

†
q′ ] = δq,q′ ,

mx(r, t) =

√
µ

2MsV

∑
q

(aq + a†−q)ei(q·r−ωt),

my(r, t) = − i
√

µ

2MsV

∑
q

(aq − a†−q)ei(q·r−ωt),

mz(r, t) = 1− µ

MsV

∑
q

a†qaq. (1.28)

These transformations – expanding the spin angular momentum in terms of Bosonic
creating and annihilation operators and Fourier transforming them to momentum
space – are commonly referred to as Holstein-Primakoff transformations in the lit-
erature [81, 82, 80]. They yield a solution to the equation of motion (1.27) with the
dispersion relation

~ωq = JSa2|q|2 + µB. (1.29)

The same Holstein-Primakoff transformations (1.28) also diagonalize the magnon
Hamiltonian [83, 80],

Hm =
∑
q

~ωqa
†
qaq. (1.30)

The structure of Eq. (1.30) is yet another harmonic oscillator. Thus, the magnons
can be treated as quasiparticles. In a pure Heisenberg ferromagnet (1.24) without
relativistic effects e.g. due to spin-orbit coupling or long-range dipole-dipole inter-
action the spin and therefore also the magnon number is conserved. These magnon-
number conserving processes can lead to energy redistribution and consequentually
equilibrate the magnon temperature without changing the total number of magnons.
This calls for a non-vanishing chemical potential in the Planck-distribution (1.23)
For this reason the thermal equilibrium magnon distribution nq = 〈a∗qaq〉 obeys
Bose-Einstein statistics with a finite chemical potential [37],

nq =
1

e(~ωq−µ)/kBT − 1
. (1.31)
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A finite magnon chemical potential also leads to the possibility of forming a magnon
Bose-Einstein condensate which was also realized experimentally [84, 85].

Magnon polarons

The interaction between the spin and the lattice systems can be modeled within a
phenomenological continuum theory like the well studied magneto-elastic coupling
[86, 87, 80, 38, 88] where all processes allowed by symmetry in a cubic crystal are
taken into account,

Hme =

∫
d3r

a3

∑
α,β

[Bαβeαβmα(r)mβ(r) + (Aαβeαβ∂αm · ∂βm + A′αβeαα|∂βm|2].

(1.32)

Here, eαβ = (1/2) (∂βuα + ∂αuβ) the symmetrized strain tensor, the coupling tensors
are Bαβ = B1δαβ + B2(1 − δαβ), Aαβ = A1δαβ + A2(1 − δαβ), and A′αβ = A′(1 −
δαβ), where B1,2, A1,2, and A′ are magneto-elastic constants [80]. The magneto-
elastic Hamiltonian can also be recovered from a microscopic spin-lattice interaction
Hamiltonian on a discrete lattice in the long-wavelength limit which is explained in
great detail in Chapter 3. The leading order contribution to the magneto-elastic
coupling is a one-magnon-one-phonon Hamiltonian,

Hmp = 2
∑
q,λ

(a†q∆q,λ + a−q∆∗−q,λ)(bq,λ + b†−q,λ), (1.33)

which couples the phonon and magnon Hamiltonians (1.18) and (1.24) by off-
diagonal terms ∆q,λ. In another iteration, the coupled magnon-phonon Hamiltonian
can be diagonalized with respect to new bosonic eigenmodes,

aq =
4∑

ν=1

(
Vq,4,ναq,ν − Vq,4,ν+4a

†
−q,ν

)
, (1.34)

bq,λ =
4∑

ν=1

(
Vq,λ,ναq,ν − Vq,λ,ν+4a

†
−q,ν

)
, (1.35)

that obey the commutation relation [αq,ν , α
†
q′,ν′ ] = δq,q′δν,ν′ . The details of this

symplectic diagonalization as well as expressions for the magnon-phonon coupling
∆q,λ and the transformation matrix Vq are presented in Chapter 3. The hybridiza-
tion with respect to these “magnon polaron” modes leads to a shift of the magnon
and phonon dispersions. This shift is strongest at the “resonance points” where the
crossings of the dispersions move to avoided crossings, see Figure 1.5. The forma-
tion of magnon polarons was not only observed in spin Seebeck measurements but
manifest in a variety of phenomena in the vicinity of strong magneto-elastic coupling
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Figure 1.5: Dispersions for magnons and phonons (a) without magnon-phonon cou-
pling from Eqs. (1.29) and (1.21) and dispersions for magnon polarons with magnon-
phonon coupling (b) that transform the crossings of the dispersions to avoided cross-
ings.

[89, 90]. The direct probing of magnons e.g. is restricted to the low-frequency part
of the spectrum in the GHz regime [91]. The spin Seebeck effect thus is a good
candidate for experimentally proving features that are in the THz regime.

1.6 Boltzmann transport theory

To study the transport associated with the spins and lattice ions equations of mo-
tion can be set up from the Hamiltonians (1.18) and (1.24) together with possible
additional Hamiltonians, which describe interactions among them (see the following
chapters for details). From classical Hamilton mechanics the equations of motion
for the variables Sj, uj, and pj are

u̇j =
∂H

∂pj
, ṗj = −∂H

∂uj
, Ṡj = −e× ∂H

∂Sj
. (1.36)

Describing the coupled motion of each of the magnonic and phononic oscillators in
the lattice is practically impossible for macroscopic systems. Originally formulated
to describe the transport of particles in low concentration gases and fluids in response
to thermal gradients, the Boltzmann transport theory is a powerful tool to reduce
the complexity of large systems by aggregating the quasiparticles within a volume
element dr and representing them by a (continuous) average distribution function
nq = 〈a∗qaq〉.

This transition is applicable if position r and momentum ~q are well-defined
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quantities at the same time i.e. their uncertainties ∆r and ∆q are small [92]. For
the momentum this is fulfilled if ∆q � q. The wavevectors of thermally excited
magnons and phonons are of the order qm ∼

√
kBT/JSa2 and qp ∼ kBT/~cp where

cp is the average phonon sound velocity. For the position, the resolution ∆r must be
much better than the mean free path l of the particles before undergoing interactions
i.e. ∆r � l. From Heisenberg uncertainty

∆q ·∆r & 1 ⇔ ∆q &
1

∆r
(1.37)

we conclude that the condition

q � ∆q &
1

∆r
� 1

l
⇔ l� 1

q
(1.38)

must hold. So the aggregation of the particles into a classical distribution function is
valid if the average length between scattering events l is much larger than the inverse
thermal wavevector 1/q. For the ferromagnetic insulator YIG which we describe in
Chapters 2 and 3, the wavevectors for temperatures down to T = 1 K are of the
order 1/qm ≈ 8 nm and 1/qp ≈ 60 nm. The mean free paths are l & µm (see Figure
3.3) and thus fulfill the condition well for the temperature range T ' 1− 50 K that
we investigate in our work.

The Boltzmann transport equation for an out-of-equilibrium distribution func-
tion nq(r(t)) is [1, 39],

vq ·
∂nq

∂r
+
∂nq

∂t
= Iq (1.39)

where Iq is the collision integral which relaxes the non-equilibrium distribution func-
tion back towards a local equilibrium and vq = ∂ωq/∂q is the group velocity of the
particles. The collision integral on the right hand side of Eq. (1.39) describes the
relaxation of the distribution back to a local equilibrium n0

q and is the difference
between particles entering the state q and particles leaving it,

Iq = I inq − Ioutq (1.40)

In a simple “relaxation-time approximation” the collision integral is approximated
by an average relaxation time τq that determines the timescale on which the equi-
libration of the out-of-equilibrium distribution nq towards a “local equilibrium” n0

q

in which the temperature, momentum density, and if applicable, chemical potential,
deviate from the global equilibrium takes place,

Iq = −nq − n0
q

τq
. (1.41)

This approximation, despite its simplicity, lacks microscopic insight into the under-
lying scattering mechanisms. In a more detailed treatment the collision integrals
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q
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Figure 1.6: Schematic magnon-impurity collision diagram.

are evaluated from the (small) sub-leading contributions to the phonon and magnon
Hamiltonians (1.18) and (1.24) with the use of Fermi’s golden rule [93, 94]. The
procedure is explained in great detail in Chapters 2 and 3. We demonstrate the
construction of collision integrals and possible conservation laws for elastic magnon-
impurity interaction, depicted in Figure 1.6. From the q-magnon’s point of view the
contributions to the collision integral read

I inq =
2π

~
∑
q′

|Uq;q′|2δ(ωq − ωq′)(1 + nq)nq′ , (1.42)

Ioutq =
2π

~
∑
q′

|Uq;q′|2δ(ωq − ωq′)nq(1 + nq′), (1.43)

where Uq;q′ is the matrix element of the interaction. The nq′ and (1 + nq) factors
can be understood analogously to the processes of absorption, stimulated emission,
and spontaneous emission of photons in a two-level system. In I inq the probability
to scatter from q′ → q is proportional to the number of particles in q′ as they are
obligatory for the scattering process. By the process of stimulated emission bosons
that are already in the state q can stimulate the creation of even more bosons with
frequency ωq, thus the process is proportional to nq. In addition, regardless of the
boson density nq bosons in the state q can be created by spontaneous emission.
This yields the total factor (1 + nq).

In the present thesis, within the description of the spin Seebeck effect, we mainly
investigate the response of the distribution function to an applied temperature bias
between two reservoirs that are attached to the ends of the system. In linear re-
sponse, for weak distortions the distribution function can be expanded around its
local equilibrium via

nq(r) = n0
q +

(
−∂n

0

∂ω

)
ψq(r) (1.44)

where ψq(r) is a small correction to the local equilibrium n0
q. This expansion is also

used in Chapter 2 and 3. In Chapter 3 a slightly different notation is used, however,
in which ψq in Eq. (1.44) is replaced by ωψq(r). The linearized collision integral
I lin.q for this expansion is

I lin.q =
2π

~

(
−∂n

0

∂ω

)∑
q′

|Uq;q′ |2δ(ωq − ωq′)(ψq′ − ψq). (1.45)
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(b)
(a)

Figure 1.7: Spin Seebeck voltage V as a function of the applied magnetic field B.
The lower panels of (a) show the spin Seebeck voltage from a longitudinal spin
Seebeck setup, adopted from Kikkawa et al. [15]. In (b) the spin Seebeck voltage
in a nonlocal configuration is shown, adopted from Oyanagi et al. [13]. The signal
shows distinct features at B = 2.6 T where the magnon and the transverse phonon
dispersions have a touching point as shown in the top panel of (a).

The collisions in Fig. 1.6 conserve energy ~ωq = ~ωq′ which is encoded in the
delta function of Eq. (1.45) and particle number. Consequentially, a test function
that is equilibrated with respect to these processes i.e. enforces I lin.q = 0 reads

ψq(r) = µm(r) +
ω

T
∆Tm(r). (1.46)

The corresponding physical quantities that enter the distribution function are the
constants of the expansion. They are identified as a chemical potential of the
magnons µm(r) [37] and a temperature deviation ∆Tm(r) = Tm(r) − T from the
equilibrium temperature T . A similar procedure will be employed in Chapter 2
to further reduce the complexity of the Boltzmann equation to a very small set of
“hydrodynamic equations”.

1.7 Theories of the spin Seebeck effect

Already in the pioneering theoretical works by Xiao et al. [19] and Adachi et al. [34]
the role of magnon-phonon interaction for the microscopic origin of the effect was
pointed out. One piece of evidence was that the temperature dependence of the spin
Seebeck effect closely follows the temperature dependence of the phonon thermal
conductivity [34]. Another milestone was the observation of significant peaks/dips
at two “critical” magnetic fields in magnetic-field dependence measurements of the
spin Seebeck effect by Kikkawa et al. [15], see Figure 1.7. These features are
present in a broad temperature range and coincide with the magnetic fields where
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1.7. THEORIES OF THE SPIN SEEBECK EFFECT

the magnon and phonon dispersions have touching points [20], see Figure 1.7 (a) top
panel. They were also observed by other groups and other setups as the nonlocal
spin Seebeck effect [10, 13], and the spin Peltier effect [95] which is the inverse to
the spin Seebeck effect.

Existing theories of the spin Seebeck effect can be separated into three groups.
First, theories which are based on the Landau-Lifshitz-Gilbert equation where the
spin-lattice interaction enters via a dissipative contribution to the spin current from a
random magnetic field [19, 34, 32, 33]. The second class [35, 96, 36] uses a Boltzmann
transport equation to evaluate the coupled magnon and phonon temperatures that
drive the magnon spin and heat currents. For the case of strong spin-conserving
scattering a magnon chemical potential, as explained in Section 1.5, is added to the
Planck distribution of the magnons [37]. The phonon drag onto the magnons enters
via a thermal magnon-phonon lifetime, derived in the relaxation time approximation.
The third class of theories [20] includes the strong one-magnon-one-phonon coupling
from relativistic effects into the dispersion relation which leads to the formation
of strongly hybridized “magnon-polaron” mixed-modes. These hybridized modes
then relax via magnon-impurity and phonon-impurity interactions. The Boltzmann
theories have in common that a hidden background interaction ensures that at any
time the magnon, phonon, and magnon-polaron distributions have Bose-Einstein-
like and Planck- like distributions.

The first theoretical descriptions of the spin Seebeck were given by Xiao et al. [19]
and Hoffman et al. [32] based on the Landau-Lifshitz-Gilbert phenomenology. The
spin pumping at the FN interface is described in terms of a classical, continuous,
time-dependent magnetization unit vector m(r, t) = M(r, t)/Ms as introduced in
Section 1.5. This is valid if the ferromagnet is large and the spatial deviation of the
magnetization density is slowly varying. The motion of the magnetization vector
m(r, t) in the ferromagnet is described by the Landau-Lifshitz-Gilbert equation,

ṁ = −m× (γB + ι∇2m + γh) + αm× ṁ, (1.47)

where α is the Gilbert damping [50] that relaxes deviations of m from equilibrium,
and h is a random stochastic field with the correlator,

〈hi(r, t), hj(r′, t′)〉 =
2α

γMs

kBTp(r)δi,jδ(r− r′)δ(t− t′), (1.48)

where Tp is the local phonon temperature. The random magnetic field encapsulates
the dissipation of spin current into the phonon system. In addition to the Landau-
Lifshitz-Gilbert equation (1.27), terms proportional to the random magnetic field
h and Gilbert damping α were taken into account. They govern the dissipation of
magnetic moment from the spin system into the phonon system. The coupling to
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the interfaces is modeled by boundary conditions [32],

∂m

∂x
= 0 , x = 0, (1.49)

A
∂m

∂x
+

~g′↑↓
4π

∂m

∂t
− h′ = 0 , x = L, (1.50)

where A = ~ιMs/µ. The boundary conditions describe the coupling to an insulator
at x = 0 and to a metal contact at x = L with a finite spin pumping that causes
dissipation of magnetic moment into the metal where h′ is another stochastic field,
defined as in Eq. (1.48) with Tp → Te, where Te is the electron temperature in the
metal. It describes the dissipation of magnetic moment into electron spins due to
spin pumping.

Their final result for the spin current at the ferromagnet–normal metal interface
that drives the spin Seebeck effect in response a the temperature gradient in the
phonon system in linear response is 1 [19, 32],

jsx =
~g′↑↓
πSA

1

N

∑
q

ω2
q

(
−∂n

0

∂ω

)
∆Tme

T
(1.51)

where n0
q = 1/(e~ωq/kBT − 1) is the equilibrium magnon Planck distribution with

energy ~ωq. Equation (1.51) states that the spin Seebeck current at the FN inter-
face is proportional to the temperature difference ∆Tme of the magnons Tm at the
ferromagnetic side of the interface and the electrons Te at the normal metal side of
the interface with the assumption that the electrons and phonons are at the same
temperature. The spin-mixing conductance, reviewed in Section 1.2 plays a crucial
role in the spin Seebeck current. The general structure of the pumped spin current
at the FN interface, see also Eq. (3.85) in Chapter 3 for a detailed derivation, is
approximately given by js ∼ Pvδn where P is the spin pumping probability of a
magnon at the FN interface, v is the magnon velocity, and δn the non-equilibrium
part of the magnon distribution. In linear response, for a small spin-mixing conduc-
tance the spin pumping probability is (see Eq. (B.59) in Appendix B) P ∼ √ωg′↑↓
and the magnon velocity is v ∼ √ω. For a non-equilibrium magnon temperature,
according to Eq. (1.46), the non-equilibrium part of the magnon distribution is
δn ∼ ω(−∂n0/∂ω)∆Tm/T . This is also the structure of the spin Seebeck current in
Eq. (1.51).

To determine the magnon electron temperature difference ∆Tme at the FN in-
terface, the magnon temperature in the ferromagnet was derived in linear response
in a two-temperature model [33], which was first introduced by Sanders and Walton

1In the final expression (42) of Hoffman et al. [32], the sum 1/N
∑

q →
∫
dων(ω), where ν(ω) is

the magnon density of states, was converted to a continuous integral over the magnon frequencies.
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(a) (b)

Figure 1.8: Schematic magnon and phonon temperature profiles (a) for perfectly
coupled phonons Rp

th = 0 and isolated magnons (Rm
th)−1 = qme = 0 (top panel)

and with finite Kapitza resistances (bottom panel). Figure (a) is adopted from
Schreier et al. [33]. Spin Seebeck currents as a function of temperature T from Eq.
(1.54) (red) and from Eq. (1.56) and τq = const. (brown), and from Eq. (1.56)
with different T -dependence models for τq including magnon-magnon interaction as
explained in Ref. [35] (blue). Figure (b) is adopted from Rezende et al. [35].

[97],

∂2Tm
∂x2

=
CmCp

Cm + Cp

1

κmτmp

(Tm − Tp),

∂2Tp
∂x2

=
CmCp

Cm + Cp

1

κpτmp

(Tp − Tm), (1.52)

where Cm,p and κm,p are the magnon/phonon heat capacities and thermal conductiv-
ities, respectively, and τmp is the thermal magnon-phonon lifetime. The connection
of the magnon and phonon systems to the heat baths, held at temperatures TI,N,
are modeled using thermal Kapitza resistances [98, 99]. The boundary conditions
for the temperatures are

κm,p
∂Tm,p
∂x

∣∣∣∣
x=0

=
1

Rm,p
th

[TI − Tm,p(0)],

κm,p
∂Tm,p
∂x

∣∣∣∣
x=L

=
1

Rm,p
th

[Tm,p(L)− TN], (1.53)

where Rm,p
th are the interfacial thermal Kapitza resistances of the magnons and

phonons. Schematic plots of coupled magnon and phonon temperature profiles are
shown in Figure 1.8(a). Combining Eqs. (1.52) and (1.53), they find for the temper-
ature difference between magnons and electrons at the ferromagnet–normal metal
interface, in case of perfect phonon coupling to the heat reservoirs Rp

th = 0, and a
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phonon dominated thermal bulk transport κp � κm,

∆Tme =
∆T

L

(
1

λ
coth

(
L

2λ

)
+

1

Rm
thκm

)−1
, (1.54)

where λ ∼
√
T
√
τmτmp is the thermal magnon-phonon mean free path, and τm is an

average magnon relaxation-time.

The weakness of this phenomenological treatment of the magnon-phonon cou-
pling in a single relaxation time τmp is that no predictions of how τmp depends on
temperature and magnetic field are possible. There is no differentiation between
spin-conserving and spin-nonconserving processes and the energy averaged lifetimes
lack insight into the relative importance of the respective magnon modes with fre-
quency ω to the total spin current.

In a more microscopic approach, Rezende et al. [35, 96, 36] set up a theory to
the spin Seebeck effect based on a Boltzmann theory of the magnon distribution
nq to describe the bulk transport in the ferromagnet, using the relaxation time
approximation (which was introduced in Section 1.6),

vq ·
∂nq

∂r
= −nq − n0

q

τq
, (1.55)

where vq is the magnon group velocity and τq is a relaxation time. They separated
the magnon distribution into two isotropic moments, a magnon accumulation δnm

(that can be linked to a magnon chemical potential), and a magnon temperature
Tm, as well as two corresponding anisotropic moments js,δnx , and js,Tx that contribute
to the total spin current density jsx. The anisotropic moments can be identified
in terms of spin and energy current densities, as explained in Chapter 2. For the
boundaries they implied the connection to an insulator at x = 0 where jsx = 0 and
to a metallic magnet at x = L with a finite spin pumping (1.15). They also find
Eq. (1.51) for the spin current at the ferromagnet–normal metal interface with the
wavevector-dependent magnon electron temperature difference

∆Tme =
∆T

L

τqv
2
q

2ωq

tanh(L/2λ)

c1 + c2g′↑↓ coth(L/λ)

∑
q′ ωq′

(
−∂n0

∂ω′

)
∑

q′

(
−∂n0

∂ω′

) , (1.56)

where c1,2 are constants, that depend on the bulk magnon properties in the fer-
romagnet. The general structure of the spin current arising from the temperature
difference in Eq. (1.56) is similar to the one derived by Xiao et al. in Eq. (1.51).
The two results (1.51) and (1.56) for the spin Seebeck current are shown in Figure
1.8(b).

We set up a similar Boltzmann theory for the magnon and phonon temperatures
in Chapter 2. In addition to the theories of Xiao et al. and Rezende et al., we go be-
yond the Gilbert damping phenomenology and relaxation-time-approximation and
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we explicitly account for magnon-phonon interaction in the collision integrals (1.39).
We individually treat spin-conserving magnon-phonon collisions, that predominantly
originate from exchange coupling and number-nonconserving collisions from rela-
tivistic effects in the magneto-elastic coupling (1.32). Being able to study the scat-
tering rates in a microscopic model, we find that the magnon number-nonconserving
magnon-phonon interaction is drastically enhanced near two resonance points in the
frequency domain where the magnon and phonon dispersions have crossing points
(see Figure 1.5). This enhancement of the magnon-phonon interaction leads to sharp
features in the spin current and explains the experimentally observed peaks in the
longitudinal spin Seebeck effect measurements by Kikkawa et al. [15].

In the two classes of spin Seebeck theories reviewed so far, the coupling between
magnons and phonons was only treated on a phenomenological level encoded in a
Gibert damping and random stochastic field by Xiao et al. and Hoffman et al.,
and by a single magnon-phonon relaxation time as in Rezende et al.. A big step
towards a microscopic theory was done in the coherent theory by Flebus et al. [20].
They use a continuum model magneto-elastic theory [38] to describe strong magnon-
phonon coupling on a microscopic level, which manifests in off-diagonal elements
in the second quantization magnon and phonon Hamiltonians, and leads to the
formation of strongly correlated magnon polaron modes, as introduced in Section
1.5. To evaluate the bulk magnon heat and spin currents, they use a relaxation-time
approximation Boltzmann transport equation for the polarons with Bose-Einstein-
like distributions nq,ν where ν = 1, 2, 3, 4 counts the one magnon and three phonon-
like polaron branches,

vq,ν ·
∂nq,ν

∂r
= −nq,ν − n0

q,ν

τq,ν
, (1.57)

where vq,ν is the group velocity of the ν-th polaron branch and τq,ν is the relaxation
time. For small temperature gradients, in linear response they find for the bulk
magnon spin current

jsx = −Sxx
∂T

∂x
, (1.58)

with the bulk spin Seebeck coefficient,

Sxx =
1

V

∑
q,ν

(|Vq,4,ν |2 + |Vq,8,ν |2)~ωq,ν

(
−∂n

0

∂ω

)
v2q,νxτq,ν , (1.59)

where |Vq,4,ν |2, and |Vq,8,ν |2 are the amplitude of the magnonic contribution to the
polaron branch ν as in Eq. (1.35). These matrix elements describe the relation
between the magnon and phonon modes and the magnon-polaron modes. Based on
experiments by Kikkawa et al. [15], they predict that depending on the magnetic
and acoustic qualities of the sample, that manifest in the ratio between magnon and
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impurity scattering, peaks or dips in the spin Seebeck coefficient appear at “critical”
magnetic fields where the magnon and phonon dispersions have touching points and
the magnon-phonon interaction is drastically enhanced. In general, YIG is known
for both its low acoustic and magnetic damping, which results in long magnon and
phonon mean free paths [100]. For differences in the magnon and phonon mean free
paths (or equally lifetimes), for magnetic cleaner samples, τmag

q > τphoq , the magnon
lifetime is reduced due to strong magnon-phonon coupling which leads, according to
Flebus et al., to a reduction of the spin Seebeck coefficient (1.59) and the occurrence
of dips near the critical magnetic fields. Vice versa for acoustic cleaner samples,
τmag
q < τphoq , the magnon lifetime is enhanced by the phonons. Consequentially,

Flebus et al. predict peaks in the spin Seebeck coefficient.

The theory of Flebus et al. relies on strong inelastic background interaction
that relaxes the polaron distributions nq,ν to Bose-Einstein-like distributions. This
condition is likely to perform well at elevated temperatures, as for low tempera-
tures transport is dominated by scattering off impurities [101, 100] which cannot
redistribute energy. In addition, they do only account for the bulk contribution
to the spin Seebeck effect. In our theory, presented in Chapter 3, we also include
the coupling of magnon polarons to the insulator and normal metal reservoirs. We
predict that for the experimentally relevant system sizes there always occur peaks,
independent of the type of sample quality.

26



2
Weakly Coupled Magnons and

Phonons

In this Chapter we develop a Boltzmann transport theory of the coupled magnon-
phonon transport in ferromagnetic insulators. The explicit treatment of the magnon-
phonon coupling within the Boltzmann approach allows us to calculate the low-
temperature magnetic-field dependence of the spin Seebeck voltage. Within the
Boltzmann theory we find that this magnetic field dependence shows similar fea-
tures as found by Flebus et al. [Phys. Rev. B 95, 144420 (2017)] for a strongly
coupled magnon phonon system that forms magnon polarons, and consistent with
experimental findings in yttrium iron garnet by Kikkawa et al. [Phys. Rev. Lett.
117, 207203 (2016)]. In addition to the anomalous magnetic-field dependence of the
spin Seebeck effect, we also predict a dependence on the system size.

This chapter is based on the publication:
Boltzmann approach to the longitudinal spin Seebeck effect,
R. Schmidt, F. Wilken, T. S. Nunner, and P. W. Brouwer,
Phys. Rev. B 98, 134421 (2018).
https://doi.org/10.1103/PhysRevB.98.134421
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CHAPTER 2. WEAKLY COUPLED MAGNONS AND PHONONS

2.1 Introduction

The spin Seebeck effect (SSE) describes the generation of a spin current in a magnetic
material in response to a temperature gradient applied across the sample [2, 3, 4, 45].
The spin current can be transferred to a paramagnetic metal (NM) layer attached
to the magnet and is then typically detected via the inverse spin Hall effect (ISHE)
[102, 57, 58, 59]. Although the spin Seebeck effect was first observed in metals [2], it
has also been reported for magnetic semiconductors [3] and magnetic insulators [4].
While the SSE remains controversial in the transverse configuration, in which spin
current and temperature gradient are perpendicular, due to possible effects from
out-of-plane temperature gradients, the longitudinal SSE, in which the temperature
gradient and the spin current are collinear, has been reproduced by many groups
[71, 69, 25, 26, 68, 33, 72, 6, 7]. Recently, the spin Seebeck effect has also been
observed in antiferromagnets [75, 76].

Whereas a spin current in a metallic ferromagnet can be carried by both conduc-
tion electrons and spin waves, in a ferromagnetic insulator (FMI) the spin current
of the SSE is carried exclusively by spin waves or, using a quantum-mechanical lan-
guage, “magnons”. At the same time, in an FMI the applied temperature gradient
primarily affects the lattice vibrations, i.e., the phonons. The initial theoretical
works by Xiao et al. [19] and Hoffman et al. [32], which treat the spin dynamics in
the FMI in a Landau-Lifshitz-Gilbert approach, describe the effect of phonons on
the magnetization dynamics by means of an effective temperature-dependent noise
term.

A second class of theoretical calculations by Rezende and co-workers [35, 96, 36] is
based on a Boltzmann approach. Whereas this approach tackles the role of magnon-
magnon interaction to the SSE inside the FMI in great detail, it attributes the
(phonon-related) thermal relaxation processes of the magnons in terms of a phe-
nomenological thermal lifetime τmp. In both theories, the magnon-phonon interac-
tion plays a key role in the determination of the magnon mean free path and, thus,
of the system-size and the magnetic field dependence of the magnon-driven SSE.
A purely phenomenological treatment of the phonon-magnon interaction, however,
is not sufficient for a microscopic understanding of these parameter dependences of
the SSE.

The importance of a microscopic understanding of the magnonic properties
inside ferromagnetic insulators was also illustrated in a first series of magnetic-
field dependence and length-scale probing measurements at ambient temperature
[100, 103, 14, 104, 105, 37, 106]. Again, as the attached heat baths couple to the
phonons inside the FMI only, the magnonic transport properties are exclusively
driven by magnon-phonon coupling, so that it is crucial to study the magnon-
phonon interaction processes inside the ferromagnet to understand the microscopic
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2.1. INTRODUCTION

origin of the SSE transport properties. Evidence of a “phonon drag” in the SSE
was pointed out earlier in temperature-dependent measurements of the SSE, when
the shape of the magnon conductivity showed the same temperature dependence as
the corresponding phonon conductivity [21, 69]. Recently, very direct evidence of
the importance of the phonon-magnon interaction for the SSE was found in low-
temperature measurements [15] of the SSE in YIG, which showed sharp peaks in
the spin Seebeck signal at the two specific magnetic fields where the magnon and
phonon dispersions have touching points. This phenomenon was explained by the
existence of “magnon-polarons” that describe mixed states which are neither purely
magnonic nor phononic [20].

In this chapter we present a Boltzmann transport theory to describe the coupled
magnon-phonon scattering mechanism in a simple model ferromagnetic insulator.
In contrast to Ref. [20] we employ separate, incoherent magnon and phonon distri-
butions, which, in the diffusive regime, may be described using an isotropic moment
— corresponding to a local phonon or magnon temperature — and an anisotropic
moment — corresponding to a phonon or magnon (momentum) current density.
We assume that the relaxation due to magnon-number non-conserving scattering
processes, such as magnon dipole-dipole interaction, is faster than magnon-phonon
scattering processes, so that no magnon chemical potential needs to be introduced
[37]. Despite the absence of coherence between magnon and phonon excitations, our
findings qualitatively explain the experimental observation of peaks in the longitu-
dinal spin Seebeck effect at low temperatures [15].

The remainder of this chapter is organized as follows: In Sec. 2.2 we present the
Boltzmann equations for the magnons and phonons. We find microscopic expres-
sions for the corresponding lifetimes from quantum-mechanically derived collision
integrals. Upon imposing a hierarchy of “fast” and “slow” relaxation processes, the
theory is reformulated in terms of a set of coupled hydrodynamic equations for the
magnon and phonon distribution functions. The conversion of magnonic to elec-
tronic spin current at the ferromagnet–normal-metal interface is described using the
spin-mixing conductance of the interface [50]. In Sec. 2.7 we apply our theory to the
ferrimagnetic insulator Y3Fe5O12 (YIG), choosing model parameters such that the
properties of a YIG|Pt heterostructure at low temperatures are well approximated
[83, 80]. We also present quantitative results for the relaxation rates, and transport
coefficients of the magnon and phonon currents based on analytical evaluations, and
compare our findings to the coherent magnon-polaron theory [20]. In Sec. 2.8 we
summarize our findings.
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V
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M
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Figure 2.1: Illustration of the model setup for the longitudinal spin Seebeck effect.
A ferromagnetic insulator of thickness LF (bottom, blue) is coupled to a normal
metal of thickness LN (top, green). The coordinate axes are chosen such that the
x axis is perpendicular to the ferromagnet–normal metal interface plane. A tem-
perature difference ∆T applied across the entire system results in the flow of a spin
current js across the ferromagnet–normal metal interface, which can be measured
by means of the inverse spin Hall effect.

2.2 Model Setup

We consider a system consisting of a ferromagnetic insulator of thickness LF attached
to a normal metal of thickness LN as illustrated in Fig. 2.1. We choose coordinates
such that the x axis is perpendicular to the ferromagnet–normal metal interface,
the ferromagnet and the normal metal occupying the space −LF < x < 0 and 0 <
x < LN, respectively. The system is coupled to heat baths on the bottom and top,
which are held at temperatures T ±∆T/2, see Fig. 2.1. The magnetization direction
and the applied magnetic field B are in the z-direction. We restrict ourselves to a
low temperature regime, where umklapp scattering of magnons and phonons can be
neglected, and optical magnons and phonons are frozen out. In YIG this corresponds
to temperatures of a few K [82, 80].

The magnon and phonon distributions in the ferromagnetic insulator are de-
scribed using their distribution functions bq(r, t) and nq,λ(r, t), where q are the
magnon and phonon wavevectors, and λ denotes the phonon polarization. The dis-
tribution functions bq(r, t) and nqλ(r, t) satisfy coupled Boltzmann equations, which
are the starting point of our analysis.
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2.3. MAGNON BOLTZMANN EQUATION

2.3 Magnon Boltzmann equation

The Boltzmann equation for the magnon distribution bq(r, t) has the general form

∂bq(r, t)

∂t
+ vq ·

∂bq(r, t)

∂r
=
dbq(r, t)

dt

∣∣∣∣
coll.

, (2.1)

where vq = ∂ωq/∂q is the group velocity of magnons with wavevector q. The
collision term is separated into contributions from impurity/boundary scattering
(i), magnon-magnon scattering (m), and magnon-phonon scattering (p),

dbq
dt

∣∣∣∣
coll.

=
dbq
dt

∣∣∣∣
i

+
dbq
dt

∣∣∣∣
m

+
dbq
dt

∣∣∣∣
p

. (2.2)

For the impurity or boundary scattering contribution we use the relaxation-time
form,

dbq(r, t)

dt

∣∣∣∣
i

= −bq(r, t)− b0q(r, t)

τ imq
. (2.3)

Here b0q(r, t) is the equilibrium magnon distribution at temperature T (r, t) and τ imq
is the relaxation time.

The magnon-magnon collision integral contains three-magnon processes which
originate from dipole-dipole interaction as well as four-magnon processes which rep-
resent exchange scattering (see Tab. 2.1),

dbq
dt

∣∣∣∣
m

=
2π

V 2

∑
q2,q′1,q

′
2

|V ex
q′1,q

′
2;q,q2
|2δ(ωq + ωk2 − ωq′1

− ωq′2
)δq+q2,q′1+q′2

×
[
(1 + bq)(1 + bq2)bq′1bq′2 − bqbq2(1 + bq′1)(1 + bq′2)

]
+

2π

V

∑
q2,q′

|V dip
q,q2;q′

|2δ(ωq + ωq2 − ωq′)δq′,q+q2

× [(1 + bq)(1 + bq2)bq′ − bqbq2(1 + bq′)]

+
π

V

∑
q′2,q

′
1

|V dip
q′2,q

′
1;q
|2δ(ωq − ωq′2

− ωq′1
)δq,q′2+q′1

×
[
(1 + bq)bq′2bq′1 − bq(1 + bq′2)(1 + bq′1)

]
. (2.4)

The first term on the right hand side of this expression represents the four-magnon
processes, which are predominantly mediated by exchange processes. The corre-
sponding symmetrized squared matrix element is [107, 80]

|V ex
q′1,q

′
2;q,q2
|2 = 2

(µι
M

)2
(q · q2)

2, (2.5)
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CHAPTER 2. WEAKLY COUPLED MAGNONS AND PHONONS

where ι is the magnon exchange stiffness, µ = gµB is the magnetic moment of a
magnon with µB the Bohr magneton, g = 2 the Landé g-factor, M is the saturation
magnetization, and V is the volume of the FMI. The second and third terms on the
right hand side of Eq. (2.4) account for magnon confluence processes and magnon
splitting processes [108, 80]. The factor 1/2 in the collision integral of the splitting
processes was inserted to avoid double counting. These processes arise from dipole-
dipole interactions or from relativistic effects and after symmetrization one has [80]

|V dip
q,q′;q+q′|2 =

(µ0

4π

)2 π2µ3M

8~2

∣∣∣∣qzq+q2 +
q′zq
′
+

q′2

∣∣∣∣2 , (2.6)

where µ0 is the vacuum permeability and q+ = qx + iqy.

The third contribution to the magnon collision integral is from magnon-phonon
collisions. The collision integral can be derived from the magneto-elastic Hamilto-
nian of Kaganov et al. [108, 87] and reads

dbq
dt

∣∣∣∣
p

=
2π

V

∑
q2,λ

∑
q′

|Uq,q2,λ;q′|2δ(ωq + ωq2,λ − ωq′)δq+q2−q′

× [(1 + bq)(1 + nq2,λ)bq′ − bqnq2,λ(1 + bq′)]

+
2π

V

∑
q′2,λ

′

∑
q′

|Uq′,q′2,λ
′;q|2δ(ωq − ωq′2,λ

′ − ωq′)δq−q′2−q′

×
[
(1 + bq)nq′2,λ

′bq′ − bq(1 + nq′2,λ
′)(1 + bq′)

]
+

2π

V

∑
q′,λ′

∑
q2

|W (2)
q′,λ′ |2δ(ωq − ωq′,λ′ + ωq2)δq+q2−q′

× [(1 + bq)(1 + bq2)nq′,λ′ − bqbq2(1 + nq′,λ′)]

+
2π

V

∑
q′,λ′

|W (1)
q′,λ′ |2δ(ωq − ωq′,λ′)δq−q′ [(1 + bq)nq′λ′ − bq(1 + nq′λ′)] , (2.7)

The squares |U |2 and |W |2 are expressed in terms of the magnon exchange stiffness
ι and two magneto-elastic constants Bl and Bt that represent dipole-dipole as well
as spin-orbit interaction [108, 86]. The first two terms on the right hand side of this
expression represent “normal” collision processes, in which the magnon number is
conserved. The corresponding squared matrix element reads [38]

|Uq,q2,λ;q′|2 =
~

2%ωq,λ

[
ι

2
((q · q2)q

′ + (q′ · q2)q) · êλ +
Bl

S
(q− 3qz êz) · êλ

]2
, (2.8)

where êλ is the unit vector indicating the polarization direction of the phonon mode
(q, λ) and S = MVa/µ is the macrospin of a unit cell of volume Va. The first term
in this expression can also be derived from a Heisenberg model, by expanding the
exchange couplings to lowest order in small displacements of the atomic positions,
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2.4. PHONON BOLTZMANN EQUATION

Magnon processes

process in (+) out (-) process in (+) out (-)

magnon
impurity

q
q′� q q′�

phonon to
magnon

qq′�λ′� q
q′�λ′�

4-magnon
exchange

q′�2
q′�

q2
q q′�q

q′�2q2 phonon to
2 magnon

qq′�λ′�
q2 q2

q
q′�λ′�

3-magnon
confluence

q
q′�

q′�2 q q′�
q′�2

phonon
emission

qq′� q2λ q2λ
q

q′�

3-magnon
splitting

qq′�
q2 q2

q
q′�

phonon
absorption

qq′�λ′�
q′�2 q

q′�λ′�
q′�2

Table 2.1: Schematic overview of the relevant magnon-magnon and magnon-phonon
scattering processes.

see Refs. [109, 86]. The third term describes the pairwise creation or annihilation of
magnons,

|W (2)
q,λ|2 =

~
2%ωq,λ

[(
Bl

2S
(qxêx − qyêy) · êλ

)2

+

(
Bt

2S
(qyêx + qxêy) · êλ

)2
]
. (2.9)

Finally, the fourth term on the right hand side of Eq. (2.7) describes the conversion
of a magnon into a single phonon and vice versa, with [87, 38]

|W (1)
q,λ|2 =

~
2%ωq,λ

B2
t

2S

[
((qz êx + qxêz) · êλ)2 + ((qz êy + qyêz) · êλ)2

]
. (2.10)

In principle, the latter process gives rise to the existence of “magnon polarons”
[110, 111], a coherent superposition of a magnon and phonon excitation. Suffi-
ciently strong phonon-phonon and magnon-magnon scattering processes destroy the
magnon-phonon coherence, however, validating our incoherent description in terms
of the distribution function only. (Note that Ref. [15, 20] uses a fully coherent de-
scription, finding results that do not differ qualitatively from ours.) The three types
of magnon-phonon scattering processes are illustrated schematically in Table 2.1.

2.4 Phonon Boltzmann equation

The Boltzmann equation for the phonon distribution function nq,λ(r, t) reads

∂nq,λ(r, t)

∂t
+ cq,λ ·

∂nq,λ(r, t)

∂r
=
dnq,λ(r, t)

dt

∣∣∣∣
coll.

, (2.11)
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where cq,λ = ∂ωq,λ/∂q is the group velocity of phonons with wavevector q and polar-
ization λ. The collision term is separated into contributions from impurity/boundary
scattering (i), phonon-phonon scattering (p), and phonon-magnon scattering (m).
As in the case of the magnons, we will describe phonon-impurity scattering using
the relaxation-time approximation,

dnq,λ(r, t)

dt

∣∣∣∣
i

= −
nq,λ(r, t)− n0

q,λ(r, t)

τ ipq,λ
(2.12)

where τ ipq,λ is the corresponding phonon-impurity scattering time. The expression
for the phonon-magnon collision term reads

dnq,λ

dt

∣∣∣∣
m

=
2π

V

∑
q2,q′

|Uq2,q,λ;q′|2δ(ωq,λ + ωq2 − ωq′)δq+q2,q′

× [(1 + bq2)(1 + nq,λ)bq′ − bq2nq,λ(1 + bq′)]

+
2π

V

∑
q′

|W (1)
q,λ|2δ(ωq,λ − ωq′)δq−q′ [bq′(1 + nq,λ)− (1 + bq′)nq,λ]

+
π

V

∑
q′1,q

′
2

|W (2)
q,λ|2δ(ωq,λ − ωq′1

− ωq′2
)δq,q′1−q′2

×
[
bq′1bq′2(1 + nq,λ)− (1 + bq′1)(1 + bq′2)nq,λ

]
. (2.13)

We will not give an explicit expression for the phonon-phonon collision integral,
since the corresponding collision rates do not enter in our final expressions (see the
discussion below).

2.5 Ansatz for the distribution function

To simplify the analysis of the coupled Boltzmann equations for the magnon and
phonon distribution functions, we consider small deviations from equilibrium only
and linearize the distribution functions bq(r, t) and nq,λ(r, t) around the equilibrium
distributions b0q = 1/(e~ωq/kBT − 1) and n0

q,λ = 1/(e~ωq,λ/kBT − 1),

bq(r, t) = b0q +

(
−∂b

0

∂ω

)
φq(r, t), (2.14)

nq,λ(r, t) =n0
q,λ +

(
−∂n

0

∂ω

)
ψq,λ(r, t). (2.15)

We further assume that the magnon-magnon and phonon-phonon interactions are
strong enough, when compared to the magnon-phonon interactions, that the magnon
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2.5. ANSATZ FOR THE DISTRIBUTION FUNCTION

and phonon distributions everywhere are in a local equilibrium, characterized by en-
ergy and momentum densities ρm,pE and ρm,pq . This corresponds to the parameteri-
zation [43]

φq(r, t) =
ωq

T
∆Tm + q · vm,

ψq,λ(r, t) =
ωq,λ

T
∆T p + q · vp, (2.16)

where ∆Tm,p is the difference local magnon/phonon temperature and the (global)
equilibrium temperature T and vm,p parameterizes the magnon/phonon momentum
density. The temperature differences ∆Tm,p and the velocities vm,p are related to
the corresponding energy and momentum densities as

∆ρm,pE = Cm,p∆Tm,p,

ρm,pqα =
∑
β

Cm,pαβ v
m,p
β , (2.17)

which defines the specific heat capacities

Cm =
1

V

∑
q

∂b0

∂T
~ωq,

Cp =
1

V

∑
q,λ

∂n0

∂T
~ωq,λ, (2.18)

and the tensor coefficients

Cmαβ =
1

V

∑
q

(
−∂b

0

∂ω

)
qαqβ,

Cpαβ =
1

V

∑
q,λ

(
−∂n

0

∂ω

)
qαqβ. (2.19)

One verifies that the magnon-magnon and phonon-phonon collision integrals are
zero for a distribution function of this form, since magnon-magnon and phonon-
phonon collisions conserve energy and momentum. (Recall that we neglect umklapp
processes.)

The velocities vm,p are related to the magnon spin current density js and heat
current densities jm,pQ ,

js =
~
V

∑
q

vqbq, (2.20)

jmQ =
1

V

∑
q

~ωqvqbq, (2.21)

jpQ =
1

V

∑
q,λ

~ωq,λcq,λnq,λ. (2.22)
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Upon substitution of the Ansatz (2.14) one finds

jsα =
∑
β

Jαβvmβ , (2.23)

jm,pQα =
∑
β

Im,pαβ v
m,p
β (2.24)

with

Jαβ =
~
V

∑
q

(
−∂b

0

∂ω

)
vqβqα,

Imαβ =
1

V

∑
q

(
−∂b

0

∂ω

)
~ωqvqβqα,

Ipαβ =
1

V

∑
q,λ

(
−∂n

0

∂ω

)
~ωq,λcq,λβqα. (2.25)

Impurity scattering and magnon-phonon scattering cause a further relaxation of the
distribution functions. Impurity scattering tends to suppress any finite values of vm

and vp but leaves ∆Tm and ∆T p unaffected; magnon-phonon scattering suppresses
differences ∆Tm −∆T p and vm − vp. To derive the continuity equations for ∆Tm,p

and vm,p we substitute the Ansatz (2.16) into the Boltzmann equations for the
magnon and phonon distribution functions and calculate the rate of change of the
energy and momentum densities. This gives

Cm∂∆Tm

∂t
+
∑
α,β

Imαβ
∂vmα
∂xβ

= −G(∆Tm −∆T p), (2.26)

Cp∂∆T p

∂t
+
∑
α,β

Ipαβ
∂vpα
∂xβ

= −G(∆T p −∆Tm), (2.27)

∑
α

(Imβα
T

∂∆Tm

∂xα
+ Cmαβ

∂vmα
∂t

)
= −

∑
α

[
G imαβvmα + Gαβ(vmα − vpα)

]
, (2.28)

∑
α

(Ipβα
T

∂∆T p

∂xα
+ Cpαβ

∂vpα
∂t

)
= −

∑
α

[
G ipαβvpα + Gαβ(vpα − vmα )

]
, (2.29)

where the tensor coefficients Im,pαβ = ∂jm,pQα /∂v
m,p
α = ∂jm,pkαβ

/∂∆Tm,p, with jm,pQ and jq
the energy and momentum current densities, respectively. The right hand side of
Eqs. (2.26)–(2.29) describes energy and momentum exchange between magnons and
phonons and momentum exchange between magnons or phonons and impurities.
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The rates for these processes are

G imαβ =
1

V

∑
q

(
−∂b

0

∂ω

)
qαqβ
τ imq

, G ipαβ =
1

V

∑
q,λ

(
−∂n

0

∂ω

)
qαqβ

τ ipqλ
,

G =
1

V

∑
q,λ

~ω2
q,λ

kBT 2
γq,λ, Gαβ =

1

V

∑
q,λ

qαqβ
kBT

γq,λ, (2.30)

where we abbreviated

γq,λ =
2π

V

∑
q′

n0
q,λ

[
|Uq′,q,λ;q+q′|2b0q′(1 + b0q+q′)δ(ωq,λ + ωq′ − ωq+q′)

+
1

2
|W (2)

q,λ|2(1 + b0q−q′)(1 + b0q′)δ(ωq,λ − ωq′ − ωq−q′)

+|W (1)
q,λ|2(1 + b0q′)δq−q′δ(ωq,λ − ωq′)

]
. (2.31)

Equations (2.26)–(2.29) fully describe the coupled energy and momentum transport
of the magnon and phonon systems. In the steady state, Eqs. (2.28) and (2.29)
describe “phonon drag” and “magnon drag”, the appearance of an anisotropic com-
ponent of the magnon and phonon distributions in response to a gradient of the
temperatures. The isotropic moment in Eqs. (2.26) and (2.27) describes the relax-
ation of the magnon temperature towards the phonon temperature.

2.6 Boundary conditions and spin Seebeck volt-

age

At the ferromagnetic insulator—insulator boundary at x = −LF the magnon spin
current (2.20) is zero, which implies vm(−LF) = 0, whereas the phonon temperature
∆T p(−LF) = ∆T/2 is determined by the temperature of the bottom heat bath, see
Fig. 2.1. Similarly, at the normal-metal interface x = 0 the phonon temperature
T p satisfies the boundary condition ∆T p(0) = −∆T/2. The boundary condition for
the magnon current at the normal-metal interface x = 0 takes the form

jsx(0) = S ′m(∆Tm(0)−∆T e(0)), (2.32)

where ∆T e(0) = −∆T/2 is the (deviation of the) electron temperature at the inter-
face at x = 0 and S ′m is the interface spin Seebeck coefficient [112], which can be
expressed in terms of the real part gr of the spin mixing conductance [19],

S ′m =
gr
πAS

1

N

∑
q

~ωq
∂b0

∂T
, (2.33)
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where S is the spin of the unit cell. A derivation of the boundary condition (2.32)
and a microscopic model leading to the expression for (2.33) for the interface spin
Seebeck coefficient S ′m are given in appendix A.2.

The relation between the spin current jsx(0) at the ferromagnet–normal metal
interface and the transverse spin Seebeck voltage follows the theory of the inverse
spin Hall effect. A nonzero spin current density implies a finite gradient of the spin
accumulation µs = µ↑ − µ↓ [113]

js = −σs∂rµs, (2.34)

where σs is the spin conductivity. The spin accumulation satisfies the equation [113]

λ2sf∂
2
rµs = µs, (2.35)

where λsf is the spin-flip length. Together with the boundary condition jsx(LN) = 0
at the interface between the normal metal and the top heat bath, this gives the
solution

jsx(x) = jsx(0)
sinh((LN − x)/λsf)

sinh(LN/λsf)
. (2.36)

The spin Seebeck voltage equals [19]

VSSE(x) =
2e

~
θSHLWρj

s
x(x), (2.37)

where LW is the sample width, ρ the electric resistivity, and θSH is the spin Hall
angle of the normal metal. Averaging over x gives

VSSE =
1

LN

∫ LN

0

dxVSSE(x)

= θSHρ
2e

~
LW

LN

λsfj
s
x(0) tanh

(
LN

2λsf

)
. (2.38)

2.7 Longitudinal spin Seebeck effect

We use our theory to describe the longitudinal spin Seebeck effect in YIG|Pt het-
erostructures, where we put our focus on the magnetic field dependence measure-
ments at low temperatures as performed by Kikkawa et al. [14, 15]. Since the
longitudinal spin Seebeck effect is a steady-state phenomenon, driven by a time-
independent temperature difference ∆T applied across the ferromagnet–normal-
metal bilayer, we may neglect the time derivatives in the continuity equations (2.26)–
(2.29) and restrict our attention to time-independent solutions. Also, for the one-
dimensional geometry of Fig. 2.1, all spatial dependences will be as a function of
the coordinate x only.
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At low temperatures we may take a parabolic band for the magnon dispersion,

ωq = ι|q|2 +
µ

~
(B + µ0M), (2.39)

with an offset due to the intrinsic exchange splitting and the Zeeman shift. Here B
denotes the applied magnetic field and µ0M is the exchange gap. For the phonons
we restrict ourselves to the acoustic branches,

ωq,λ = cλ|q|, (2.40)

where cλ is the sound velocity and q the phonon wave vector. For a YIG crystal
oriented along the 〈100〉 axis there are one longitudinal as well as two transverse
polarized acoustic phonon branches. The values of the corresponding material prop-
erties which are used for our numerical calculation are summarized in Table 2.2.
For this simple model description the system is isotropic, so that the tensors Im,p,
G im,ip, and G are proportional to the diagonal tensor.

Substituting the explicit expressions we find, for temperatures low enough that
the dispersions (2.39) and (2.40) are valid for all thermally excited magnons and
phonons, that

Im =
5

16

(kBT/~)5/2

(πι)3/2
e−~ω0/(kBT ), (2.41)

with ω0 = µ(B + µ0M)/~, and

Ip =
∑
λ

2π2(kBT )4

45c3λ~4
. (2.42)

In the steady-state limit the velocities vm and vp can be obtained from Eqs. (2.28)
and (2.29),

vm = − 1

T

(G ip + G)Im∂r∆Tm + GIp∂r∆T p

G imG ip + GG im + GG ip , (2.43)

vp = − 1

T

(G im + G)Ip∂r∆T p + GIm∂r∆Tm

G imG ip + GG im + GG ip , (2.44)

They imply a relation between the magnon spin current js, and between the magnon
and phonon heat currents jm,pQ and the gradients of the magnon and phonon tem-
peratures,

js = − Sm∂r∆T
m − Sd∂r∆T

p, (2.45)

jm,pQ = − κm,p∂r∆Tm,p − κd∂r∆T p,m, (2.46)

39



CHAPTER 2. WEAKLY COUPLED MAGNONS AND PHONONS

YIG continuum theory parameters

Quantity Value Reference
lattice constant a (YIG) 1.24 nm [80]
exchange stiffness ι 8.06×10−6 m2/s [114]
saturation magnetization µ0M 0.18 T [115]
long. sound velocity cl 7209 m/s [38]
trans. sound velocity ct 3843 m/s [38]
mass density % 21450 kg/m3 [83]
long. magneto-elastic constant Bl 1 THz [38]
trans. magneto-elastic constant Bt 2 THz [38]

Pt and YIG/Pt interface parameters

Quantity Value Reference
lattice constant a (Pt) 0.39 nm [1]
spin mixing conductance gr/A 1016 1/m2 [115]
spin Hall angle θSH 0.0037 [59]
spin diffusion length λsf 7.3 nm [116]
electrical resistivity ρ 0.91×10−6 Ω/m [5]
sample dimensions LN × LW 5 nm × 2 mm

Table 2.2: Parameter values used for the numerical calculations. The last column
lists the relevant references where these values were obtained.

with the (bulk) spin Seebeck coefficients

Sm =
1

T

J (G ip + G)Im
G imG ip + GG im + GG ip ,

Sd =
1

T

JGIp
G imG ip + GG im + GG ip , (2.47)

and thermal conductivities

κm =
1

T

(G ip + G)(Im)2

G imG ip + GG im + GG ip ,

κp =
1

T

(G im + G)(Ip)2

G imG ip + GG im + GG ip ,

κd =
1

T

GIpIm
G imG ip + GG im + GG ip . (2.48)

The coefficients Sd and κd describe the “phonon drag”, the anisotropic component
of the magnon distribution in response to a gradient of the phonon temperature.
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To obtain a numerical estimate of the relevant relaxation rates, we use the values
given in Table 2.2. For impurity scattering we assume that the phonon-impurity
and magnon-impurity scattering times τ ipqλ = τip and τ imq = τim are independent of
q and λ, respectively, and extract these times from the low-temperature thermal
conductivity and its magnetic field dependence as in Boona et al. [100]. This gives
the values τim = 3.4×10−8 s and τip = 5.6×10−8 s. Figure 2.2 shows the temperature
and magnetic-field dependences of the three contributions to the magnon-phonon
relaxation rates G and of the impurity rates G im and G ip.

The phonon-to-magnon conversion and phonon-to-two-magnons conversion cease
to contribute to the relaxation rate G above a “critical” magnetic field, because of
energy and momentum conservation considerations. Since the phonon and magnon
dispersions are tangential at the critical magnetic field, see Fig. 2.2c and d, the
magnon-to-phonon conversion rates diverges upon approaching the critical field
from below 1. There are two such divergences, because longitudinal and transversal
phonons have different velocities and, hence, different critical fields. In our approach
the divergences should be broadened by the (maximum of the) phonon-phonon and
magnon-magnon scattering rates. These rates do not appear explicitly in the con-
tinuity equations (2.26)–(2.29). Instead, they are only considered implicitly in our
theory, because they enforce the local equilibrium form (2.16) of the magnon and
phonon distribution functions. For that reason, the broadening of the divergences in
Figs. 2.2 and 2.3 has to take place a posteriori. We have broadened the divergence
of the results shown in Figs. 2.2 and 2.3 by an average magnon-magnon lifetime
τm = 10−10 s [35] due to magnon number conserving scattering which corresponds
to an energy broadening ε = ~/2τm = 10−6 eV. For comparison, in the coherent
theory of Refs. [15, 20] the magnon-magnon and phonon-phonon relaxation rates
are assumed to be much smaller than the coherent magnon-phonon coupling and
the broadening of the sharp magnetic-field dependent features is determined by the
magnon-phonon coupling energy. The (relativistic) phonon-to-two-magnons conver-
sion shows a monotonous decay upon increasing the magnetic field.

The isotropic moment in Eqs. (2.26) and (2.27) describes the relaxation of the
magnon temperature towards the phonon temperature. Of special interest for the
calculation of the spin Seebeck current is the so-called thermal decay length λ,
which describes the length scale over which a difference between magnon and phonon
temperatures at the interface relaxes towards the center of the ferromagnet. Upon
substituting the velocities (2.43) and (2.44) into the continuity equations (2.26) and
(2.27) we obtain two second order differential equation for the magnon and phonon

1The divergence is partially suppressed once deviations from the fully isotropic dispersions
(2.39) and (2.40) are taken into account.
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temperatures,

κm∂
2
x∆T

m + κd∂
2
x∆T

p = G(∆Tm −∆T p)

κp∂
2
x∆T

p + κd∂
2
x∆T

m = G(∆T p −∆Tm). (2.49)

The general solution of these equations is of the form

∆Tm(x) = ∆T0 + αx+ (κp + κd)
∑
±

δ±e
±x/λ

∆T p(x) = ∆T0 + αx− (κm + κd)
∑
±

δ±e
±x/λ, (2.50)

with the decay length

λ2 =
κmκp − κ2d

G(κp + κm + 2κd)
(2.51)

and with coefficients ∆T0, α, and δ± that are determined by the boundary conditions.

Taking the parameter values for YIG, see Table 2.2, we find that find that κp �
κm,d. In the limit κp � κm,d, Eq. (2.50) gives a strictly linear spatial profile for
the phonon temperature, so that ∆T0 = 0 and α = −∆T/LF. The remaining
parameters δ± can then be obtained from the boundary conditions for the magnon
spin current at x = −LF and x = 0. The result for the (magnon) spin current jsx(0)
at the ferromagnet–normal metal interface is

jsx(0) =
∆T

L

(Sm + Sd) tanh(L/2λ)

Sm/(λS ′m) + coth(L/λ)
. (2.52)

Substitution of Eq. (2.52) into the expression (2.38) gives the corresponding spin
Seebeck voltage. An analytic solution of the equations is possible without the simpli-
fications associated with the limit κp � κm,d, too, although the resulting expression
for jsx(0) is not as concise as Eq. (2.52).

Figure 2.3 shows the resulting spin Seebeck voltage VSSE for two different tem-
peratures, as a function of the applied magnetic field. Although VSSE generally
decreases upon increasing the magnetic field, sharp features exist near the “criti-
cal” magnetic fields at which the magnon-to-phonon conversion rate diverges. The
magnitude of those features depends on the impurity lifetimes τim,p, and the length
of the FMI. These results are similar to those obtained by Kikkawa et al. and Fle-
bus et al. [15, 20], where the magnon-to-phonon conversion processes were treated
coherently. The incoherent approach taken here should be valid if the incoherent
processes dominate over the coherent ones, i.e., if the magnon-to-phonon conversion
matrix elements are small in comparison to the phonon-phonon and/or magnon-
magnon scattering lifetimes. At a fixed applied magnetic field the dependence of
the longitudinal spin Seebeck effect on the thickness LF of the ferromagnetic layer is
governed by the combination λS ′m/Sm, which controls the experimentally observed
saturation of the LSSE signal towards bulk ferromagnetic samples [103].
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Figure 2.2: (a) Three contributions to the magnon-phonon relaxation rate G,
the magnon-impurity rate G im, and the phonon-impurity rate G im, as a function of
the applied magnetic field B. The three contributions to the magnon-phonon rate
are from magnon-phonon-scattering (solid), phonon-to-magnon conversion (dashed),
and phonon-to-two-magnon conversion (dotted). The magnon and phonon energy
dispersions for the “critical” applied magnetic fields Bt = 2.4 T and Bl = 9 T are
shown in panels (b) and (c), respectively.
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Figure 2.3: Spin Seebeck voltage as a function of the applied magnetic field for
different temperatures. (a) Three magnon/phonon impurity rates τim,p at fixed
length LF = 100µm. (b) Three different lengths for fixed τim,p as in Tab. 2.2.

2.8 Summary

In this chapter we constructed a Boltzmann description for the coupled magnon-
phonon transport in a simple model ferromagnetic insulator. In our description the
magnon-phonon coupling is accounted for explicitly through its appearance in the
collision integrals. Phonon-phonon and magnon-magnon relaxation processes, on
the other hand, are taken into account implicitly, as they impose a local-equilibrium
form of the magnon and phonon distribution functions. The magnon-phonon cou-
pling leads to a “phonon drag” contribution to the magnon spin current in the
ferromagnetic insulator.

At low temperatures, of the three types of magnon-phonon coupling terms that
we consider — phonon-to-magnon conversion, phonon-to-two-magnon conversion,
and magnon-phonon interaction — the first process causes sharp peaks or dips in
the magnon-phonon scattering rate at a critical magnetic field strength, where the
magnon and phonon dispersions have touching points. In general there are two
such critical magnetic field strengths, corresponding to longitudinal and transverse
phonon branches. Whether a peak or dip is observed depends on the relative magni-
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tudes of the other scattering rates involved, such as magnon-impurity and phonon-
impurity rates, and the size of the ferromagnetic sample. These findings agree
qualitatively with the experimental observations of Kikkawa et al. [15]. In particu-
lar, our incoherent Boltzmann approach yields similar features for the resulting spin
Seebeck voltage as the theory of Refs. [15, 20], which used a fully coherent coupling
of magnon and phonon systems, leading to the formation of “magnon-polarons”.

In particular in the limit of thick ferromagnetic layers, the strength of the spin
Seebeck effect may depend strongly on the properties of the ferromagnet–normal-
metal interface. We expanded the spin-pumping interface model of Xiao et al., which
uses the spin-mixing conductance to characterize the interface properties, beyond the
classical high temperature limit, to describe the low temperature regime. In addition
we showed the consistency of the spin mixing conductance model to the alternatively
used description of the interface coupling in terms of an sd-like exchange coupling
between magnons in the ferromagnet and spin-polarized electrons in the normal
metal as in Ref. [112].

Our quantitative calculations rely on a few simplifying approximations, such
as the absence of Umklapp processes, the local-equilibrium assumption, and the
use of low-energy approximations for the magnon and phonon dispersions, see Eqs.
(2.39) and (2.40). Going beyond the simplifying assumptions made in our calcula-
tion is necessary for a quantitative description of the magnetic-field dependence of
the spin Seebeck effect near room temperature, where Umklapp processes become
important and the low-energy approximations of the magnon and phonon disper-
sions are no longer sufficient. Such an improved theoretical description could be
formulated along the lines of Ref. [117], which used a description featuring different
temperatures for different magnon modes. Whereas some of our approximations are
expected to break down at higher temperatures, we expect that the existence of the
sharp magnetic-field dependent features in the spin-Seebeck voltage does not de-
pend on these approximations and that these features will (in principle) continue to
exist — albeit that their broading will quickly increase with increasing temperature,
consistent with the observation of Ref. [15].

Possible further extensions of our theory include a more microscopic treatment
of the magnon-magnon interactions or the inclusion of time-dependent effects. In
particular, we can use our approach to investigate the temporal evolution of spatially
inhomogeneous magnon and phonon temperatures and investigate the relevant time
scales, that govern the evolution of the spin Seebeck effect on short time scales [17].
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3
Hybridized Magnon Polarons

Using a simplified microscopic model of coupled spin and lattice excitations in a
ferromagnetic insulator we evaluate the magnetic-field dependence of the spin See-
beck effect at low temperatures. The model includes Heisenberg exchange coupling,
a harmonic lattice potential, and a pseudo-dipolar exchange interaction. Our ap-
proach goes beyond previous work [Phys. Rev. B 98, 134421 (2018)] in that it does
not rely on the a priori assumption of a fast equilibration of the magnon and phonon
distributions. Our theory shows that singular features in the magnetic-field depen-
dence of the spin Seebeck effect at low temperatures observed by Kikkawa et al.
[Phys. Rev. Lett. 117, 207203 (2016)] are independent of the relative strength of
magnon-impurity and phonon-impurity scattering.

This chapter is based on the publication:
Theory of the low-temperature longitudinal spin Seebeck effect,
R. Schmidt and P. W. Brouwer,
arXiv:2010.09571 (submitted to Physical Review B).
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3.1 Introduction

The spin Seebeck effect refers to the phenomenon that an applied temperature gra-
dient causes the flow of a spin current [2, 3, 4, 45]. This effect takes a central
position in the field of “spin caloritronics”, the study of the interplay of spin degrees
of freedom and heat. A particularly pure form of the spin Seebeck effect exists in
magnetic insulators, because in this case spin transport takes place exclusively via
spin waves or “magnons”, whereas the electronic degrees of freedom are frozen out.
Since phonons are the dominant carriers of heat in an insulator, spin caloritronic
effects in magnetic insulators depend strongly on the magnon-phonon interaction.
Because of its low magnetic damping and high acoustic quality, most experimental
studies of the magnon-driven spin Seebeck effect focus on the synthetic ferromag-
netic insulator Yttrium Iron Garnet Y3Fe5O12 (YIG) [118, 119].

The important role of magnon-phonon coupling for the spin Seebeck effect was
already pointed out in the initial theoretical works [19, 21, 33], where it was sug-
gested that a so-called “phonon-drag” is the cause of the significant enhancement
of the spin Seebeck voltage at low temperatures, which follows the temperature
dependence of the phonon thermal conductivity [21]. The experimental demon-
stration of “acoustic spin pumping”, the generation of a spin current by injection
of acoustic waves, instead of the application of a temperature gradient, is another
indicator of the importance of magnon-phonon coupling in the spin Seebeck effect
[25, 26, 27]. Specific evidence of the strong coupling between the two subsystems
was the discovery of distinct peaks in the magnetic field dependence of the spin
Seebeck voltage at two “critical” magnetic fields, at which the acoustic magnon and
phonon dispersions have touching points [15]. These features were associated with
the formation of “magnon polarons” [15, 20, 10], coherent superpositions of magnon
and phonon excitations formed near the “resonant” frequencies at which their dis-
persions cross [120, 121, 122]. (Strictly speaking, magnon polarons are formed at
all frequencies, but at generic frequencies the magnon polaron modes are either
“magnon-like” or “phonon-like”, i.e., their weight exists mainly in either the spin
or the lattice sector, with a small admixture of the other subsystem.) Magnon po-
larons were also observed outside the context of the spin Seebeck effect. References
[123] and [124] report an accumulation of magnon polarons and anomalies in the
spin pumping efficiency in the spectral region near the magnon-phonon resonance
following parametric magnon excitation, respectively. Reference [125] reported the
direct observation of wave-like excitations in the lattice subsystem after excitation
of the spin subsystem.

In a recent work together with Wilken and Nunner [41], we have shown that
the observed peak structure of the spin Seebeck voltage as a function of the mag-
netic field can also be explained using an incoherent picture, arising from a critical
enhancement of the magnon-phonon scattering rate when their dispersions have a
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touching point. Both the incoherent theory of Ref. [41] and the magnon-polaron
theory of Refs. [15, 20, 10] make the assumption that magnon-magnon and phonon-
phonon relaxation processes are strong enough that the distribution functions of
magnons and phonons or magnon polarons are given by Planck- or Bose-Einstein-
type local equilibrium distributions at all times. A Planck-type local equilibrium
distribution for magnons is justified if the relaxation processes are dominated by
number-non-conserving three-magnon confluence or splitting processes [35, 41]; A
Bose-Einstein-type distribution function is applicable if number-conserving four-
magnon processes dominate [37]. At low temperatures and for magnetic fields in
the vicinity of the critical values, inelastic magnon-magnon and phonon-phonon
scattering are suppressed and relaxation is dominated by the interaction with impu-
rities [126, 101, 100, 38]. Impurity scattering is elastic and cannot relax distribution
functions to the Planck- or Bose-Einstein form. Instead, at low temperatures, one
expects that the distribution function of magnon polarons has a singular frequency
dependence near the magnon-phonon resonance frequencies and that it cannot be
approximated by a Planck-type or Bose-Einstein-type distribution function.

In this chapter, we present a theory of the longitudinal spin Seebeck effect in
a ferromagnetic insulator and for close-to-critical magnetic fields that is tailored
to temperatures low enough and/or system lengths small enough that no a priori
assumption of strong relaxation to a Planck-type or Bose-Einstein-type magnon-
polaron distribution function can be made. This includes the range of temperatures
and system sizes that were considered in the experiment of Ref. [15]. We consider
elastic scattering from impurities as well as inelastic processes and describe the full
crossover between the extreme low-temperature regime, in which elastic scatter-
ing dominates the spin Seebeck effect, and the intermediate-temperature regime,
in which relaxation by inelastic processes imposes a local-equilibrium form of the
distribution functions, so that the distribution can be characterized by a “magnon
temperature” or a “magnon chemical potential” [15, 20, 10, 127, 41, 128, 129]. Our
theory is based on the solution of the Boltzmann equation for the distribution func-
tion of magnon-polaron modes. Whereas the dominance of impurity scattering at
low and intermediate temperatures allows us to use a simplified ansatz for the an-
gle dependence of the distribution functions, the full frequency dependence of the
distribution functions is kept at all stages of the calculation.

A central role in the Boltzmann theory is played by transition rates for elas-
tic scattering from impurities as well as for inelastic interactions of magnons and
phonons. Although they are often treated as phenomenological parameters, to cap-
ture parameter dependences, such as the dependence on an external magnetic field or
on temperature, it is necessary to obtain transition rates from a microscopic picture.
For YIG, which is a synthetic ferrimagnetic insulator of complex structure, elabo-
rate effective spin Hamiltonians have been developed [80, 82, 83, 130, 131, 132],
which have been found to predict the experimentally observed magnon spectrum
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well. At low temperatures, however, only a single magnon band is relevant, and an
effective model of spins on a cubic lattice already provides an accurate description
of the magnon spectrum, consistent with experiments [133, 83]. Building on the
success of this simplified description of YIG, we here link the magnonic transition
rates in the Boltzmann theory as well as the magnon-polaron dispersion to a simple
model of spins on a cubic lattice and with nearest-neighbor interactions only. The
phonon system is included by a simple harmonic potential between nearest and next-
nearest-neighboring atoms. The magnon-phonon coupling is included by accounting
for the dependence of these interactions on the displacement of lattice sites [86, 87].
Although the spin-spin interactions are predominantly of the isotropic Heisenberg
exchange type, an additional weak anisotropic interaction, such as a pseudodipolar
anisotropic exchange interaction or the relativistic Dzyaloshinskii-Moryia interac-
tion [134, 135], must be included to generate the magnon number-non-conserving
processes required to obtain magnon-polaron modes and to reproduce the observed
low-temperature phenomenology of the magnetic field-dependent spin Seebeck ef-
fect. The same phenomenology can also be derived upon replacing the microscopic
model by a phenomenological “magneto-elastic” Hamiltonian [136, 86, 87, 38, 88]
and we compare the two approaches in the appendix.

Adjusting the parameters in the microscopic model to reproduce low-temperature
magnetic and acoustic (transport) properties of YIG, we find that for system sizes up
to L = 10µm the magnon-polaron distribution is well approximated by completely
neglecting inelastic processes for all temperatures at which our model description is
valid, T . 30 K. Even for larger system sizes L . 100µm — which is far beyond the
range of system sizes investigated experimentally —, we find that a theory based
on elastic impurity scattering only remains an excellent approximation for T .
10 K. For these system sizes and temperatures, a theory with elastic scattering only
gives a strongly frequency dependent distribution function, in which the population
of magnon-like magnon-polaron modes has a sharp singularity in the immediate
vicinity of the magnon-phonon resonance. Such distribution functions are not at all
well approximated by a Planck-like or Bose-Einstein-like form. Indeed, our theory
leads to a number of predictions that differ qualitatively from previous theories of
the magnon-polaron-mediated spin Seebeck effect. Most notably, we find that the
spin current always shows a peak at the critical magnetic fields at which magnon
and phonon dispersions touch. In contrast, Refs. [15, 20] predict a peak only if
the sample is of a better acoustic quality than magnetic quality (mean free path lpi
for phonon-impurity scattering larger than mean free path lmi for magnon-impurity
scattering). This implies that the experimental observation of peaks in the magnetic-
field dependence of the spin Seebeck coefficient in Ref. [15] can not be used to
determine the relative magnitude of lmi and lpi.

The ferromagnetic insulator–normal metal (FN) interface is a crucial ingredient
to the magnonic spin Seebeck effect. In a theory based on magnon polarons, the
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key processes at the FN interface are the conversion of magnon polarons in the fer-
romagnetic insulator (F) into phonons in the normal metal (N) [110, 137] and “spin
pumping” [50], the excitation of spin current in the normal metal by a precessing
magnetization. It is the spin pumping process that facilitates the conversion of a
non-equilibrium accumulation of magnon polarons at the FN interface into a spin
current in N. However, spin pumping also has an important inverse effect on the
magnon-polaron distribution: It equilibrates the population of magnon-like magnon
polarons in F to the equilibrium distribution of the conduction electrons in N. This
inverse effect is absent in a perturbative treatment of the FN interface, in which the
distribution of magnon-like magnon polarons is calculated with reflecting boundary
conditions at the FN interface [19, 37, 41].

The remainder of this chapter is organized as follows. In Sec. 3.2 we present a
microscopic model of a ferromagnetic insulator based on a simple cubic lattice and
show that the model has magnon-polaron modes as its elementary excitations. In
Sec. 3.3 we then review the Boltzmann transport theory of magnon-polaron modes,
discuss the relevant relaxation processes, and address the boundary conditions at the
interface between the ferromagnetic insulator and a non-magnetic insulator (which
serves as the heat source that causes the thermal gradient) and a non-magnetic
metal. In Sec. 3.4 we apply our theory to a spin Seebeck heterostructure, using
typical material parameters for the ferrimagnetic insulator YIG attached to a thin
Platinum (Pt) film. We conclude in Sec. 3.5.

3.2 Model

We consider the conventional setup for the longitudinal spin Seebeck effect, which
consists of a ferromagnetic insulator–normal metal heterostructure as illustrated
in Fig. 3.1. The system is coupled to heat baths to the top and bottom, which
are held at a temperature difference ∆T . We assume that the system is isotropic
and choose coordinate axes such that the temperature gradient and the resulting
spin currents are in the x-direction, see Fig. 3.1. We focus on the low-temperature
regime in which Umklapp scattering and excitation of optical magnons and phonons
is strongly suppressed. Spin and heat transport in the ferromagnetic insulator is
governed by the interaction of acoustic magnons and phonons as well as by scattering
from impurities.

3.2.1 Lattice model and continuum limit

We first present a minimal lattice model of classical spins, which serves as a micro-
scopic starting point for the derivation of the continuum theory of coupled magnon
and phonon modes. The subsequent continuum theory may also be derived from
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Figure 3.1: Geometry for the longitudinal spin Seebeck effect: A ferromagnetic
insulator F of length L (center, gray) is placed between an insulator I (bottom, red)
and a normal metal N of thickness l (top, blue), which also act as heat reservoirs
held at a temperature difference ∆T . Via magnon-phonon coupling, the applied
temperature gradient leads to a nonequilibrium magnon distribution, which causes
the flow of a spin current js into the normal metal. The spin current can be measured
in the normal metal by means of the inverse spin Hall effect.

phenomenological considerations, such as the magneto-elastic theory of Refs. [136,
86, 87, 38].

Lattice model.— The guiding principle for the construction of the minimal model
is the accepted wisdom that at low temperatures YIG may be well described as a
ferromagnetic insulator with effective spins Sj of magnitude S, located at the sites
rj of a simple cubic lattice with lattice constant a [83]. The lattice ions have mass
m, displacement uj, and momentum pj. We consider the classical Hamiltonian

H = Hpho +Hmag +Hmag−pho, (3.1)

in which the three terms Hmag, Hpho, and Hmag−pho describe classical “magnons”
and “phonons”, collective small excursions from the equilibrium state of the spins
and the lattice, respectively, and the interaction between these.

For term Hpho, which describes lattice vibrations, we impose a harmonic lat-
tice potential [79] with coupling constants K1 and K2, involving couplings between
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nearest-neighbor lattice atoms 〈i, j〉 and between next-nearest neighbors 〈〈i, j〉〉,

Hpho =
∑
j

|pj|2
2m

+
K1

2

∑
〈i,j〉

|uij · eij|2 +
K2

2

∑
〈i,j〉

|uij|2 +
K1

2

∑
〈〈i,j〉〉

|uij · eij|2, (3.2)

where eij = (ri − rj)/|ri − rj| is the unit vector pointing from ri to rj, and we
abbreviated uij = ui − uj. In the summations over nearest neighbors and next-
nearest neighbors every pair is summed over only once. The use of two coupling
constants K1 and K2 is necessary to obtain different velocities for longitudinal and
transverse phonon modes; the next-nearest-neighbor coupling term is required to
reproduce an isotropic phonon dispersion in the long-wavelength limit [78].

The term Hmag, which describes the collective excitations of the spin system,
derives from the Zeeman coupling to an external magnetic field B and the Heisenberg
exchange interaction,

Hmag = −J
∑
〈i,j〉

Si · Sj − µB ·
∑
j

Sj, (3.3)

where µ = gµB is the magnetic moment of the spins, with µB and g the Bohr
magneton and Landé factor, respectively. To derive the magnon Hamiltonian we
take e to be the unit vector pointing in the direction of the external magnetic field
B = Be, and parameterize (similar to the Holstein-Primakoff transformation for
quantum spins [81])

Sj = e
√
S2 − Sn2

j + nj
√
S, (3.4)

where nj ⊥ e is the (suitably renormalized) transverse magnetization amplitude
and nj = |nj|. Expanding Hmag to quadratic order in the amplitudes nj gives the
magnon Hamiltonian

Hmag =
JS

2

∑
〈i,j〉

|ni − nj|2 +
µB

2

∑
j

n2
j . (3.5)

Taking the exchange constant J in the Heisenberg Hamiltonian (3.5) to depend
on the displacements uj of the lattice ions one obtains a magnon-phonon interac-
tion. This interaction, however, conserves the magnon number, so that it alone
does not allow for a steady-state spin Seebeck effect. Moreover, since its leading
contribution is of (combined) cubic order in the small amplitudes nj and uj, the
effect of the exchange-based magnon-phonon coupling is strongly suppressed at low
temperatures. Instead, at low temperatures the magnon-phonon coupling is domi-
nated by relativistic corrections to the Hamiltonian, which give corrections to the
Hamiltonian of (combined) quadratic order in ni and ui. As an example of such a
relativistic correction we here consider the Van Vleck pseudo-dipolar exchange inter-
action [138]. It results from the combination of Heisenberg exchange and spin-orbit
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coupling [135, 139] and can be written as

Hpd =
∑
〈i,j〉

Dij(Si · eij)(Sj · eij). (3.6)

Again, we consider nearest-neighbor interactions only. To leading order in S the con-
tribution of Hpd to the magnon Hamiltonian in Eq. (3.5) causes a weakly anisotropic
shift of the magnon frequency, which we neglect because typically Dij � J for
neighboring spins. To obtain the magnon-phonon coupling Hamiltonian Hmag−pho,
we take the dipolar exchange constant Dij to depend on the relative displacement
uij = ui − uj of nearest-neighbor atoms and expand to linear order uij,

Dij → D +D′uij · eij. (3.7)

We also expand the unit vectors eij to linear order in uij,

eij → eij +
uij − (uij · eij) eij

a
. (3.8)

Expanding Hpd to linear order in both ui and ni then gives the magnon-phonon
Hamiltonian

Hmag−pho =
∑
〈i,j〉

(ni + nj) · Dij(ui − uj), (3.9)

where the 3× 3 matrix Dij reads (with dyadic products eije
T and eije

T
ij)

Dij = S3/2(e · eij)
[
D′eije

T
ij +

D

a
(1− 2eije

T
ij)

]
+ S3/2D

a
eije

T. (3.10)

The equations of motion for the displacements uj and the magnetization ampli-
tudes nj take the familiar Hamilton form

u̇j =
∂H

∂pj
, ṗj = −∂H

∂uj
, ṅj = −e× ∂H

∂nj
. (3.11)

The property that nj ⊥ e is conserved under these equations of motion.

Fourier transform and continuum limit.— To obtain a formulation in terms of
classical phonons and magnons we introduce the Fourier transforms

uj =
1√
N

∑
q

uqe
iq·rj ,

pj =
1√
N

∑
q

pqe
iq·rj ,

nj =
1√
N

∑
q

nqe
iq·rj , (3.12)
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where we assume a lattice with N = V/a3 lattice sites and periodic boundary
conditions. In terms of the Fourier-transformed amplitudes, the Hamiltonian reads

H =
1

2

∑
q

{ |pq|2
m

+ B(q)|nq|2 + u∗q · K(q)uq + 2Re n∗q · D(q)uq

}
. (3.13)

In the long-wavelength limit q → 0, which is the relevant limit at low temperatures,
one has

K(q) =
m

a3
[
c2tq

2
1 + (c2l − c2t )qqT

]
, (3.14)

where cl and ct are the velocities of the longitudinal and transverse phonon modes
in the lattice model (3.1),

c2l =
a2

m
(K1 +K2), c2t =

a2

m
(3K1 +K2). (3.15)

In the limit q → 0, the energy of the magnon modes is

B(q) = µB + JSa2q2 (3.16)

and the magnon-phonon coupling is described by the 3× 3 matrix

D(q) = 2i

(
S

a

)3/2∑
α

qα
[
Deαe

T

+(e · eα)(aD′eαe
T
α +D(1− 2eαe

T
α))
]
, (3.17)

where eα denotes the unit vector in the spatial directions α = x, y, z, and eαe
T
α is

the dyadic product. A real-space formulation in the long-wavelength limit q → 0
can be obtained by inverse Fourier transform of Eq. (3.13). This amounts to the
replacement of the lattice amplitudes uj, pj, and nj by smooth functions p(r), u(r),
and n(r) of the position r and the substitution q→ −i∇ in the Hamiltonian (3.13).
Expressions for K(q), B(q), and D(q) for the full lattice model (3.1), without the
approximation q → 0, can be found in Appendix B.1.

Boundary conditions.— In the lattice model, the magnetic medium F exists for
0 < x < L with L = Nxa, Nx being the number of lattice sites in the x-direction, see
Fig. 3.1. At x = L there is a boundary to a non-magnetic metal N; at x = 0 there is
a boundary to a non-magnetic insulator I. In both the non-magnetic insulator I and
the normal metal N we consider phonon degrees of freedom only, described by the
Hamiltonian Hpho of Eq. (3.2). At the boundaries at x = 0 and x = L the magnon
Hamiltonian Hmag and the magnon-phonon coupling Hmag−pho are truncated by
omitting any on-site terms or nearest-neighbor contributions involving lattice sites
in the non-magnetic metal N or the non-magnetic insulator I. In the long-wavelength
limit q → 0, one can show that this amounts to the boundary conditions [140, 110]

u(0−) = u(0+), 0 =
∂n(0+)

∂x
, (3.18)
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and
∂K(q)

∂qx
u(0−) =

∂K(q)

∂qx
u(0+) + 2

∂D(q)†

∂qx
n(0+), (3.19)

for the IF interface at x = 0, with qx replaced by −i∂/∂x. For the FN boundary at
x = L, the boundary conditions for the displacement field u(r),

u(L−) = u(L+), (3.20)

∂K(q)

∂qx
u(L−) =

∂K(q)

∂qx
u(L+) + 2

∂D(q)†

∂qx
n(L+), (3.21)

are the same as at the interface between the ferromagnetic insulator and the normal
metal. The boundary condition for the spin wave amplitude at x = L is different for
the FN interface, because magnons can excite conduction electrons in the normal
metal [50, 32],

−a2JS e× n(L−)

∂x
=

µ

4πMs

[
σ′↑↓e× ṅ(L−)− σ′′↑↓ṅ(L−)

]
. (3.22)

Here Ms = µS/a3 is the magnetic moment per unit volume and σ↑↓ = σ′↑↓ + iσ′′↑↓ is
the spin-mixing conductance per unit area.

3.2.2 Phonons, magnons, and magnon polarons

Classical phonons and magnons.— A formulation in terms of classical phonons and
magnons is obtained upon switching to complex phasor variables bq,λ with λ =
1, 2, 3, 4,

uq =
3∑

λ=1

√
~

2mω0
q,λ

(bq,λ + b∗−q,λ)eq,λ,

pq = − i
3∑

λ=1

√
~mω0

q,λ

2
(bq,λ − b∗−q,λ)eq,λ,

nq =
√
~
(
bq,4e− + b∗−q,4e+

)
, (3.23)

where we introduced Planck’s constant ~ to obtain a formal analogy with a quantum-
mechanical treatment of the same problem. The phasor variables bq,λ with λ = 1
and λ = 2, 3 describe the longitudinal and transverse phonon modes, respectively.
In the long-wavelength limit, the phonon frequencies are

ω0
q,1 = clq, ω0

q,2 = ω0
q,3 = ctq. (3.24)

The polarization vectors eq,λ = e∗−q,λ are the corresponding eigenvectors of K(q). In
the limit q → 0, the unit vector eq,1 is collinear with q; eq,2 and eq,3 are orthogonal
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to q. Since the transverse phonon modes ω0
q,2 and ω0

q,3 are degenerate, the polariza-
tion vectors eq,2 and eq,3 are not uniquely determined at this stage. The magnon
frequency is

ω0
q,4 = B(q). (3.25)

The magnon polarization vectors e+ = e∗− are complex unit vectors satisfying the
property e± × e = ±ie±.

After this variable transformation, the Hamiltonian (3.1) and the equations of
motion (3.11) can be written in the compact form [15, 20]

H =
1

2

∑
q

b†q ·Hqbq, ḃq,λ = − i
~
∂H

∂b∗q,λ
, (3.26)

where bq is the eight-component column vector

bq =

(
bq,λ
b∗−q,λ

)
λ=1,2,3,4

(3.27)

and Hq the 8× 8 hermitian matrix

Hq =


~ω0

q,λδλλ′ ∆∗q,λ 0 ∆−q,λ
∆q,λ′ ~ω0

q,4 ∆q,λ′ 0
0 ∆∗q,λ ~ω0

q,λδλλ′ ∆−q,λ
∆∗−q,λ′ 0 ∆∗−q,λ′ ~ω0

q,4


λ,λ′=1,2,3

. (3.28)

The diagonal elements of Hq contain the frequencies of the phonon and magnon
modes; the off-diagonal elements ∆q,λ, λ = 1, 2, 3, describe the magnon-phonon
coupling,

∆q,λ =

√
~a3

2mω0
q,λ

e+ · D(q)eq,λ, (3.29)

where the 3× 3 matrix D(q) was defined in Eq. (3.17).

Magnon-polaron modes.— The magnon-polaron modes are the eigenmodes of
the full magnon-phonon Hamiltonian (3.26). To find their dispersion we perform a
canonical transformation that diagonalizes the matrix Hq of Eq. (3.26),

Hq = Vq ~Ωq V
†
q , (3.30)

where the entries of the diagonal matrix

Ωq =

(
ωq,ν 0

0 ω−q,ν

)
ν=1,2,3,4

(3.31)

are the frequencies of the magnon-polaron modes and the symplectic transformation
matrix Vq satisfies the condition Σ3V

†
qΣ3 = V −1q with Σ3 = diag(14,−14). The
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phasor variables bq,λ of the phonon and magnon modes are related to the phasor
variables aq,ν of the magnon-polaron modes via

aq = V †qbq, aq =

(
aq,ν
a∗−q,ν

)
ν=1,2,3,4

. (3.32)

This transformation brings H to diagonal form

H =
∑
q,ν

~ωq,νa
∗
q,νaq,ν . (3.33)

The equations of motion for the phasor variables aq,ν read

ȧq,ν = − i
~
∂H

∂a∗q,ν
, ν = 1, 2, 3, 4. (3.34)

To construct a quantum theory, one simply replaces the complex amplitudes aq,ν
and a∗q,ν by operators âq,ν and â†q,ν with commutation relations [âq,ν , â

†
q,ν ] = 1.

The magnon-polaron modes are linear superpositions of wave-like excitations of
the spins and of the lattice, i.e. of magnons and phonons. The precise form of the
superposition is described by the matrix Vq that transforms between the formulation
(3.26) in terms of phonon and magnon modes and the formulation (3.33) in terms
of magnon-polaron modes, see Eq. (3.32). At generic frequencies, the mixing of
spin and lattice degrees of freedom is small. One of the magnon-polaron modes is
magnon-like, with a small admixture of longitudinal and transverse phonon modes,
whereas three of the magnon-polaron modes are phonon-like. Two of the phonon-
like modes have a small magnon admixture; the third mode is a pure transverse
phonon mode. (This follows because the perturbation proportional to ∆ in Eq.
(3.28) does not have maximal rank.) At the resonant frequencies at which magnon
and phonon dispersions cross, two of the magnon-polaron modes have significant spin
and lattice components, one mode is phonon-like with a small magnon component,
and one mode is a pure transverse phonon mode.

The magnon-polaron frequencies ωq,ν and the matrices Vq that diagonalize the
magnon-polaron Hamiltonian satisfy the symmetry constraints

ωq,ν = ω−q,ν (3.35)

and
V−q = IVq, I = diag (13,−1,13,−1). (3.36)

For a more elaborate discussion of the symmetry properties of the 8 × 8 matrices
appearing in this discussion we refer to App. B.2.

Numerical values.— To obtain numerical values for YIG, we take the material
parameters from Table 3.1. Since the pseudo-dipolar exchange interaction (3.6)
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YIG continuum theory parameters

Quantity Value Ref.
lattice constant a 1.24 nm [80]
exchange stiffness JSa2 8.5 × 10−40 J m2 [83]
exchange coupling J ′ J/a
mass density m/a3 5170 kg/m3 [83]
pseudo-dipolar exchange D/J 8.3× 10−3 [141]
pseudo-dipolar exchange D′ D/a
saturation magnetization Ms 1.4 × 105 A/m [80]
long. sound velocity cl 7209 m/s [38]
trans. sound velocity ct 3843 m/s [38]
anharmonicity K ′ 2 × 1010 J/m3 [43]

Pt and YIG/Pt interface parameters

Quantity Value Ref.
spin mixing conductivity σ↑↓ 1.3× 1018 1/m2 [142]
spin Hall angle θsh 0.0037 [59]
spin diffusion length λsf 7.3 nm [116]
electrical resistivity % 0.91×10−6 Ω/m [5]
sample dimensions l × w 5 nm × 2 mm

Table 3.1: Parameter values used for the numerical evaluation for the spin Seebeck
effect in a YIG—Pt bilayer, together with the relevant references where these values
were obtained.

describes an anisotropic spin-spin interaction, we must specify the polarization di-
rection e of the ferromagnetic ground state. Following Ref. [131] we choose the polar-
ization direction to be the (111) direction. To determine the strength of the pseudo-
dipolar anisotropic exchange coupling D and its derivative D′ ∼ D/a we compare
the amplitudes of the magnon-phonon processes with the results of the phenomeno-
logical magneto-elastic energy, see appendix B.3, which gives D/J ≈ 8.3 × 10−2.
This confirms that the pseudo-dipolar contribution to the magnon dispersion is in-
deed small compared to the Heisenberg exchange coupling for these parameters.

Figure 3.2 shows the magnon-polaron dispersions ωq,ν as a function of the wavevec-
tor q. The magnon and longitudinal phonon dispersions cross at wavevectors

q±l,t =
1

2

(
q0l,t ±

√
(q0l,t)

2 − 4µB/JSa2
)

(3.37)

where q0l,t = ~cl,t/JSa2 is the crossing of the magnon and longitudinal/transverse
phonon dispersion without an applied magnetic field. The hybridization of magnons
and phonons is strongest at these intersection points. Without magnon-phonon in-
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Figure 3.2: (a) Magnon-polaron frequency dispersions: ω1 (blue), ω2 (green), trans-
verse phonon dispersion ω3 (orange, dashed), and ω4 (red). In panel (b) the polaron
dispersions for the “critical” applied magnetic fields Bt = 2.6 T and Bl = 9.2 T are
shown. Magnifications of the dispersions: (c) around the crossing of the magnon-
polaron mode with the transverse phonon mode and (d) longitudinal phonon mode
for different angles θ defined by qx = q cos θ.

teraction the transverse phonon branches ω0
q,2 and ω0

q,3 are degenerate. This degen-
eracy is lifted by the magnon-phonon interaction. Note, that only one of the two
transverse phonon modes interacts with the magnons to form a magnon-polaron
mode. The range of wavevectors q with strong magnon-phonon interaction is sig-
nificantly enhanced when reaching “critical” magnetic fields Bl,t = JSa2(q0l,t)

2/4µ
[15, 20].

3.3 Boltzmann theory

We describe the four propagating magnon-polaron modes in the magnetic insula-
tor in terms of a distribution function nq,ν(x), which counts the occupation of the
(quantized) magnon-polaron mode (q, ν), ν = 1, 2, 3, 4. The distribution function is
related to the energy current carried by the magnon-polaron modes as

jx =
∑
q,ν

~ωq,νvq,νxnq,ν(x), (3.38)
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where vq,νx = ∂ωq,ν/∂qx is the group velocity of the magnon-polaron mode. (The x
direction is the direction along the applied temperature gradient.) In equilibrium,
i.e., without applying a temperature gradient across the magnetic insulator, the
distribution function nq,ν = n0(ωq,ν) is given by the Planck distribution

n0(ω) =
1

e~ω/kBT − 1
. (3.39)

Because of the symmetry condition (3.35), the frequency ωq,ν and the velocity vq,νx
are even and odd functions of q, respectively, ensuring that jx = 0 in equilibrium.

The out-of-equilibrium distribution function nq,ν(x) can be solved from the
steady-state Boltzmann equation, which has the general form

vq,νx
∂nq,ν(x)

∂x
= Iq,ν , (3.40)

where Iq,ν is the collision integral. The role of the collision integral Iq,ν is to regulate
the relaxation of the distribution function towards a local equilibrium. We discuss
a simplified ansatz of the distribution function nq,ν in the linear-response regime in
Sec. 3.3.2 and the specific form of the collision integral in Sec. 3.3.3. The boundary
conditions at interfaces of the ferromagnetic insulator F with the non-magnetic
insulator I and the normal metal N are considered in Sec. 3.3.4, together with the
spin current that is emitted into N.

3.3.1 Qualitative considerations

Before we enter into a quantitative description of the formalism, we discuss the
relevant relaxation processes and length scales qualitatively. In Fig. 3.3 we show
relaxation lengths for magnons and phonons — i.e., without taking into account
magnon-polaron formation — at two different temperatures and magnetic fields.
The relaxation lengths shown in the figure are based on the material parameters of
Table 3.1 and the collision integrals that will be discussed in Sec. 3.3.3. The relevant
elastic and inelastic scattering processes are shown schematically in Table 3.2.

The key observation underlying our theoretical analysis is that at low temper-
atures, elastic impurity scattering dominates over the inelastic processes. Elastic
scattering not only causes a quick relaxation of the propagation direction, but it also
causes scattering between different magnon-polaron modes. The length scale λimp for
such impurity-mediated inter-mode scattering of magnon polarons is shown by the
dashed curve in Fig. 3.3. The impurity-mediated inter-mode scattering is strongest
close to the “resonance frequencies”, because there magnon-polaron modes have sig-
nificant magnon and phonon content. The relaxation length λimp remains shorter
than the inelastic scattering lengths for a small but finite window around the reso-
nance frequencies. Moreover, it remains shorter than the length scale for relativistic

60



3.3. BOLTZMANN THEORY

100

102

104

R
el

ax
at

io
n
 l
en

g
th

s 
(µ

m
)

(a) (b) (c) (d)

rel. pm

pho-mag

3-pho

pho-imp

0 2 4 6
ω (THz)

100

102

104

B= 0.1T

µB 2 4 6
ω (THz)

B= 7T

2 4 6
ω (THz)

B= 0.1T

µB 2 4 6
ω (THz)

B= 7T
λimp

 

rel. mp

mag-pho

3-mag

4-mag

mag-imp

Figure 3.3: Relaxation lengths for various scattering mechanisms in a magnetic
insulator for temperatures T = 10 K (a and b) and T = 30 K (c and d). Panels (a)
and (c) are for a magnetic field B = 0.1 T; panels (b) and (d) are for B = 7 T. Top
and bottom panels show relaxation lengths for phonons and magnons, respectively.
Material parameters for YIG are taken from Table 3.1. The microscopic model
for impurity scattering and for the inelastic scattering processes is discussed in Sec.
3.3.3; values for the impurity potential are taken from Table 3.3, center column. The
relaxation lengths for phonon modes are averaged over polarization. The scattering
processes shown in the figure are: magnon-impurity and phonon-impurity scattering,
three-magnon, four-magnon, three-phonon, exchange-based magnon-phonon scat-
tering, and relativistic or dipole-dipole-based inelastic magnon-phonon scattering.
These processes are shown schematically in Table 3.2. The dashed curve shows the
length scale λimp for impurity-mediated inter-mode scattering of magnon polarons.

or dipole-dipole-based inelastic phonon-to-two-magnon conversion at all frequencies
for temperatures T . 30 K. Although it is significantly weaker than intra-mode
impurity scattering at generic frequencies, impurity-mediated inter-mode scattering
will be found to be the dominant source of the spin Seebeck effect at low tempera-
tures.

The strong frequency dependence of the degree of mixing of magnon and phonon
modes implies a strong frequency dependence of the distribution function nq,ν , es-
pecially at temperatures low enough that the system size L is not much larger
than the inelastic relaxation lengths. As a consequence, a frequency-averaged de-
scription in terms of a (mode-dependent) “temperature” or “chemical potential”
[15, 20, 10, 127, 41, 128, 129] is unlikely to be an accurate characterization of the
magnon-polaron distribution at low temperatures. Instead, the full frequency de-
pendence of the distribution must be retained in a theoretical description. At the
same time, the dominance of intra-mode impurity scattering justifies a simplified
description of the distribution function in which the full angle dependence is re-
placed by one isotropic and one anisotropic moment only. These considerations are
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magnon-impurity

phonon-impurity

phonon-phonon

three-phonon

magnon-magnon

four-magnon

three-magnon

magnon-phonon

phonon emission/absorption
(mainly exchange-based)

2-magnon conversion
(relativistic or dipole-dipole)

Table 3.2: Schematic representation of the relevant microscopic scattering pro-
cesses for magnon polarons: magnon-impurity, phonon-impurity, three-magnon,
three-phonon, four-magnon, and magnon-phonon scattering. Solid arrows repre-
sent magnons; wavy arrows represent phonons.
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the basis for the approach we outline in Secs. 3.3.2 and 3.3.3.

The insignificance of inelastic relaxation processes at low temperatures means
that coherent superpositions of magnon-polaron modes could in principle be long
lived. Such coherent positions occur naturally, e.g. when a magnon polaron scat-
ters from a magnetic impurity, which couples to its spin content only. In that
case, the excitation that exists immediately after the scattering event is a coher-
ent superposition of magnon polarons at the same frequency, with amplitudes that
are such that excitation is (initially, in this case) of pure magnon type. For such
a coherent superposition of magnon polarons, the phonon and magnon content of
the excitation undergo Rabi-like oscillations upon propagation. The length scale for
these oscillations is lcoh(ω) ∼ 1/minλ(∆qλ(ω)), where ∆qλ(ω) is the difference of the
wavenumbers of magnon-like and phonon-like magnon-polaron modes at the same
frequency ω. Only after a propagation length much larger than lcoh the excitation
can be described as a “classical” mixture of different magnon-polaron modes. Like
any theory that describes excitations in terms of their distribution function, the
Boltzmann theory of this Section does not include coherence effects. This means
that the Boltzmann approach is valid only on length scales larger than lcoh(ω). For
generic frequencies ω, lcoh(ω) is of the order of the wavelength, so that this condition
is not a serious limitation on the applicability of the Boltzmann approach. However,
close to the resonance frequencies, lcoh(ω) may become appreciable and the Boltz-
mann theory could possibly overestimate the rate of impurity-mediated scattering
between different magnon-polaron modes. Indeed, taking numerical values from Ta-
ble 3.1, we estimate that close to the resonance frequencies, lcoh(ω) may be several
µm, which is only slightly below typical system sizes or impurity scattering lengths.

3.3.2 Linear response

Distribution function.— To simplify the analysis of the coupled Boltzmann equa-
tions for the magnon-polaron distribution functions we consider small deviations
from equilibrium only and linearize the distribution functions nq,ν(x) around their
equilibrium distributions,

nq,ν = n0(ωq,ν) + ωq,ν

(
−∂n

0

∂ω

)
ψq,ν , (3.41)

where n0(ωq,ν) = 1/(e~ωq,ν/kBT − 1) is the Planck distribution. In local thermal
equilibrium at temperature T + ∆T (x), one has ψq,ν(x) = ∆T (x)/T . Similarly, the
distribution functions nI(ω) and nN(ω) in the non-magnetic regions to the left and
right of the magnetic insulator are written

nI,N(ω) = n0(ωq,ν) + ωq,ν

(
−∂n

0

∂ω

)
ψI,N, (3.42)
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where ψI,N = ∆TI,N/T . The Boltzmann equation (3.40) for the linearized distribu-
tion function reads

vq,νx
∂ψq,ν

∂x
= Jq,ν , (3.43)

where Jq,ν is a linearized version of the collision integral, see Sec. 3.3.3.

Simplified angular dependence.— Anticipating that impurity scattering suppresses
most variations of ψq,ν with the propagation direction vq,ν of the magnon-polaron
mode, for ψq,ν we assume a simplified dependence on the wavevector q such that
at each frequency ω there is one isotropic moment (even in q) and one anisotropic
moment (odd in q),

ψq,ν = ψ0,ν(ωq,ν) + vq,νxψ1,ν(ωq,ν). (3.44)

The isotropic moment and the anisotropic moment are obtained from the full dis-
tribution function ψq,ν as

ψ0,ν(ω) =
1

V E2,ν(ω)

∑
q

ψq,νv
2
q,νxδ(ωq,ν − ω),

ψ1,ν(ω) =
1

V E2,ν(ω)

∑
q

ψq,νvq,νxδ(ωq,ν − ω), (3.45)

where the normalization factor En,ν(ω) is defined as

En,ν(ω) =
1

V

∑
q

|vq,νx|nδ(ωq,ν − ω), n = 0, 1, 2, . . . . (3.46)

For an isotropic dispersion one has

En,ν(ω) = E0,ν(ω)
vν(ω)n

n+ 1
, (3.47)

where vν(ω) = |∂ωq,ν/∂q| is the group velocity of the magnon-polaron mode ν at
frequency ω.

3.3.3 Collision integral

The collision integral Jq,ν in the linearized Boltzmann equation (3.43) has the general
form

Jq,ν =
1

V

∑
q′,ν′

Γq,ν;q′,ν′(ψq′,ν′ − ψq,ν), (3.48)

with an effective linearized collision rate Γq,ν;q′,ν′ that describes both elastic and
inelastic scattering processes,

Γq,ν;q′,ν′ = Γel
q,ν;q′,ν′δ(ωq,ν − ωq′,ν′) + Γinel

q,ν;q′,ν′ . (3.49)
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Magnon-impurity and phonon-impurity scattering contribute to the elastic term in
the collision integral. The dominant microscopic inelastic scattering processes are
“three-magnon” and “three-phonon” scattering — splitting or confluence processes
in which one phonon or magnon scatters into two or vice versa —, “four-magnon”
processes, exchange-based magnon-phonon interaction, and relativistic or dipole-
dipole-based inelastic magnon-phonon scattering, which includes processes in which
one phonon creates a pair of magnons and vice versa. These processes are illus-
trated schematically in Table 3.2. In this Section we describe representative model
Hamiltonians for the dominant scattering mechanisms and give an overview of the
structure of the corresponding linearized collision rates for the magnon-polaron sys-
tem.

Magnon-impurity scattering— As a simple model for impurity scattering of mag-
netic modes, we consider the Heisenberg interaction Hamiltonian (3.3) with a ran-
dom fluctuating magnetic field Bj = B+δBj and a random value Sj = S+δSj of the
magnitude of the spin at each lattice site, δBj and δSj being randomly distributed
with zero mean and with variance 〈δB2〉 ≡ 〈δB2

j 〉 � B2 and 〈δS2〉 ≡ 〈δS2
j 〉 � S2.

In terms of the magnon polarons, the magnon-impurity Hamiltonian reads

Hmi =
~√
V

∑
q,q′

∑
ν,ν′

Umi
qν;q′ν′a

∗
q,νaq′,ν′ , (3.50)

plus terms that create or annihilate two magnon polarons. Since such processes do
not conserve energy they do not contribute to the collision integral. The matrix
element for magnon-impurity scattering is

Umi
qν;q′ν′ = Umi,0

q;q′

(
V ∗q,4,νVq′,4,ν′ + V ∗q,8,νVq′,8,ν′

)
. (3.51)

with Umi,0
q;q′ the corresponding matrix element in the absence of magnon-phonon cou-

pling. The matrix Vq is the symplectic 8× 8 matrix that diagonalizes the magnon-
phonon Hamiltonian Hq of Eq. (3.28), see Eq. (3.30). Statistically, the mean 〈Umi,0

q;q′ 〉
vanishes, whereas the fluctuations of Umi,0

q;q′ are given by

〈|Umi,0
q;q′ |2〉 =

a7J2

4
〈δS2〉(q2 + q′2)2 + µ2a3〈δB2〉. (3.52)

Phonon-impurity scattering— As a simple model for impurity scattering of lattice
vibrations, we consider the phonon Hamiltonian (3.2) with a random value mj =
m+ δmj of the masses of the lattice ions. Again, we take δmj randomly distributed
with zero mean and with variance 〈δm2〉 ≡ 〈δm2

j〉 � m2. In terms of the magnon-
polaron modes we find the phonon-impurity Hamiltonian

Hpi =
~√
V

∑
q,q′

∑
ν,ν′

Upi
qν;q′ν′a

∗
q,νaq′,ν′ (3.53)
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where

Upi
qν;q′ν′ =

∑
λ,λ′

(V ∗q,λ,ν + V ∗q,λ+4,ν)(Vq′,λ′,ν′ + Vq′,λ′+4,ν′)U
pi,0
qλ;q′λ′ . (3.54)

We have again left out contributions that create or annihilate two magnon polarons,
because these do not contribute to the collision integrals. The statistical average of
the phonon-impurity matrix element vanishes, 〈Uqλ;q′λ′〉 = 0. The variance is 1

〈|Upi,0
q,λ;q′,λ′ |2〉 =

a3〈δm2〉
4m2

|e∗q,λ · eq′,λ′ |2ω0
qλω

0
q′λ′ . (3.55)

The linearized collision rate that is derived from the magnon-impurity interaction
(3.50) and phonon interaction (3.53) reads

Γel
q,ν;q′,ν′ = 2π

(
〈|Umi

qν;q′ν′|2〉+ 〈|Upi
qν;q′ν′ |2〉

)
. (3.56)

Numerical values.— To obtain numerical values for the variances 〈δB2〉 and
〈δS2〉, we relate these to the corresponding magnon mean free path lmi, which de-
termines low-temperature measurements of the respective magnon thermal conduc-
tivities,

l−1mi (ω) =
1

4πJ2S2a

[
µ2〈δB2〉+

〈δS2〉
S2

(ω − µB)2
]
. (3.57)

Similarly, we relate the variance 〈δm2〉 to the phonon mean free paths lpi,λ, which is
related to the phonon thermal conductivity,

l−1pi,λ(ω) = τpi(ω)−1c−1λ , (3.58)

with

τpi(ω)−1 =
a3

12π~4
〈δm2〉
m2

∑
λ′

1

c3λ′
ω4, (3.59)

where c1 = cl is the longitudinal phonon velocity and c2 = c3 = ct the transverse
phonon velocity. Our microscopic model coincides with the shape of the best fit
to the impurity rates in Ref. [101]. Comparison of Eqs. (3.57) and (3.58) with
the mean free paths reported in Ref. [101] yields the variances 〈δS2〉, 〈δB2〉, and

1The phonon-impurity Hamiltonian of Ref. [20] has a statistically independent mode-diagonal

matrix elements Upi,0
qλ;q′λ′ ∝ δλλ′ for the three phonon modes that do not scatter between the two

degenerate transverse phonon modes. This is unphysical, since the assignment of the polarization
vectors for the degenerate transverse phonon modes is arbitrary. Moreover, in spite of its simplicity,
the microscopic model (3.55) clearly shows that impurity scattering approximately equally connects
phonon modes of all polarizations, longitudinal as well as transverse.
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Quantity Value Alternative value with lmi < lpi√
〈δm2〉/m 0.09 0.009√
〈δS2〉/S 0.05 0.16√
〈δB2〉 0.07 T 0.22 T

umi/
√
a3 65 GHz 650 GHz

upi/
√
a3 332 GHz 33.2 GHz

Table 3.3: Numerical values for the model parameters for impurity scattering.

〈δm2〉 given in the center column Table 3.3. The corresponding mean free paths
lmi and lpi are shown in Fig. 3.3. The phonon mean free path lpi obtained from
this procedure is about two orders of magnitude smaller than the mean free path
lmi for magnon-impurity scattering. To allow for a comparison with the theory of
Refs. [15, 20], which infers a smaller magnon-impurity mean free path from the low-
temperature spin Seebeck effect measurements, we also consider parameter values in
which the orders of magnitude for phonon-impurity and magnon-impurity scattering
are interchanged, which corresponds to a sample that is of higher acoustic than
magnetic quality. These values are shown in the rightmost column of Table 3.3.

To make is easier to separate different contributions to the spin Seebeck effect, in
some of our calculations we also use a phenomenological white-noise model for the
impurity scattering rates, for which the mean free paths lpi and lmi have a weaker
frequency dependence than for the microscopic model of Eqs. (3.52) and (3.55). The
phenomenological white-noise model is defined by setting

〈|Umi,0
q;q′ |2〉 = u2mi/V, 〈|Upi,0

q,λ;q′,λ′|2〉 = u2pi/3V. (3.60)

The variances u2mi and u2pi, which determine the mean free paths

l−1mi (ω) =
u2mi

4πa4J2S2
, l−1pi,λ(ω) =

u2pi
3πcλ

∑
λ′

1

c3λ′
ω2, (3.61)

are adjusted to low temperature measurements of the magnon and phonon thermal
mean free paths in Ref. [100]. Numerical values for the case of a sample with higher
magnetic than acoustic quality and alternative values for the case of a higher acoustic
than magnetic quality are shown in Table 3.3.

Inelastic scattering— At low temperatures the elastic scattering with impurities
dominates the relaxation of the magnon polarons. With increasing temperature
or decreasing impurity concentration the relative importance of inelastic scatter-
ing increases. Here we supply the leading-order contributions to the corresponding
magnon-polaron Hamiltonians and collision integrals. Except for the three-phonon
interaction, the underlying magnon-magnon and magnon-phonon Hamiltonians can
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be derived from the microscopic model presented in Section 3.2.1, by expanding the
Heisenberg and pseudo-dipolar interactions to higher orders in the magnon ampli-
tudes nj and the displacement vectors uj. The leading inelastic interaction involving
phonons only is the three-phonon interaction. It arises from anharmonicities of the
lattice potential and can effectively be derived within a continuum elastic strain
model [43], see appendix B.5.

In terms of magnon polarons the three-polaron interaction Hamiltonian may be
written as

H in,3 =
1√
V

∑
q,ν

∑
q′,ν′

∑
q′′,ν′′

(U in,3
qν;q′ν′,q′′ν′′a

∗
q,νaq′,ν′aq′′,ν′′

+ U in,3
qν,q′ν′;q′′ν′′a

∗
q,νa

∗
q′,ν′aq′′,ν′′) (3.62)

where we left out contributions that create or annihilate three magnon polarons,
because these do not contribute to the collision integral. The matrix element
U in,3
qν;q′ν′,q′′ν′′ = U in,3

qν;q′′ν′′,q′ν′ of this general three-polaron interaction is assumed to
be symmetric. It has contributions from three-phonon scattering (with matrix ele-
ment U3p,0

qλ;q′λ′,q′′λ′′ in the absence of magnon-phonon coupling), three-magnon scatter-

ing (with matrix element U3m,0
q;q′,q′′ in the absence of magnon-phonon coupling), one-

phonon-two-magnon scattering (with matrix element Ump,0
q;q′λ,q′′ in the basis of phonon

and magnon states), and relativistic one-phonon-two-magnon scattering (with ma-
trix element U rel,0

qλ;q′,q′′ in the basis of phonon and magnon states),

U in,3
qν;q′ν′,q′′ν′′ =

{∑
λ

∑
λ′

∑
λ′′

U3p,0
qλ;q′λ′,q′′λ′′

× (V ∗q,λ,ν − V ∗q,λ+4,ν)(Vq′,λ′,ν′ − Vq′,λ′+4,ν′)(Vq′′,λ′′,ν′′ − Vq′′,λ′′+4,ν′′)

+
∑
λ

Ump,0
q;q′λ,q′′

[
1

2
(V ∗q,4,νVq′′,4,ν′′ + V ∗q,8,νVq′′,8,ν′′)(Vq′,λ,ν′ − Vq′,λ+4,ν′)

+
1

2
(V ∗q,4,νVq′,4,ν′ + V ∗q,8,νVq′,8,ν′)(Vq′′,λ,ν′′ − Vq′′,λ+4,ν′′)

]
+
∑
λ

U rel,0
qλ;q′,q′′(V

∗
q,λ,ν − V ∗q,λ+4,ν)(Vq′,4,ν′Vq′′,4,ν′′ + Vq′,8,ν′Vq′′,8,ν′′)

+ U3m,0
q;q′,q′′(V

∗
q,4,νVq′,4,ν′Vq′′,4,ν′′ − V ∗q,8,νVq′,8,ν′Vq′′,8,ν′′)

}
δq,q′+q′′ .

(3.63)

Here the indices λ, λ′, and λ′′ label the polarization state of phonons and, hence,
take the values 1, 2, 3. The corresponding linearized three-polaron transition rate
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is

Γin,3
q,ν;q′,ν′ =

2π

~2
ωq′,ν′

ωq,ν(1 + n0
q,ν)

∑
q′′,ν′′

{
|U in,3

q′ν′;qν,q′′ν′′ |2δ(ωq,ν − ωq′,ν′ + ωq′′,ν′′)(1 + n0
q′,ν′)n

0
q′′,ν′′

− |U in,3
q′′ν′′;qν,q′ν′ |2δ(ωq,ν + ωq′,ν′ − ωq′′,ν′′)n

0
q′,ν′(1 + n0

q′′,ν′′)

+ |U in,3
qν;q′ν′,q′′ν′′|2δ(ωq,ν − ωq′,ν′ − ωq′′,ν′′)(1 + n0

q′,ν′)(1 + n0
q′′,ν′′)

}
.

(3.64)

The main contribution to the four-polaron Hamiltonian results from the Heisen-
berg exchange interaction (3.3). As the underlying four-magnon Hamiltonian con-
serves the magnon number, see Eq. (B.38), the four-polaron scattering is also domi-
nated by processes that conserve the polaron number. These processes are described
by the Hamiltonian

H in,4 =
1

V

∑
q,ν

∑
q2,ν2

∑
q′,ν′

∑
q′2,ν

′
2

U in,4
qν,q2ν2,q′ν′,q′2ν

′
2
a∗q,νa

∗
q2,ν2

aq′,ν′aq′2,ν′2 + H.c., (3.65)

where the matrix element U in,4
qν,q2ν2,q′ν′,q′2ν

′
2

is expressed in terms of the matrix element

U4m,0
qν,q2ν2,q′ν′,q′2ν

′
2

of the four-magnon Hamiltonian in the absence of magnon-phonon

coupling as

U in,4
qν,q2ν2,q′ν′,q′2ν

′
2

=U4m,0
qν,q2ν2,q′ν′,q′2ν

′
2
(V ∗q,4,νV

∗
q2,4,ν2

Vq′,4,ν′Vq′2,4,ν′2

+ V ∗q,8,νV
∗
q2,8,ν2

Vq′,8,ν′Vq′2,8,ν′2)δq+q2,q′+q′2
. (3.66)

The contribution of four-polaron processes to the inelastic collision rate reads

Γin,4
q,ν;q′,ν′ =

2π

~2
ωq′,ν′

ωq,ν(1 + n0
q,ν)

∑
q2,ν2

∑
q′2,ν

′
2

n0
q′2,ν

′
2

×
{

(1 + n0
q′,ν′)n

0
q2,ν2
|U in,4

qν,q2ν2;q′ν′,q′2ν
′
2
|2δ(ωq,ν + ωq2,ν2 − ωq′,ν′ − ωq′2,ν

′
2
)

−1

2
n0
q′,ν′(1 + n0

q2,ν2
)|U in,4

qν,q′ν′;q2ν2,q′2ν
′
2
|2δ(ωq,ν + ωq′,ν′ − ωq2,ν2 − ωq′2,ν

′
2
)

}
.

(3.67)

Explicit expressions for the matrix elements U3p,0, Ump,0, U3m,0, and U4m,0 in
the framework of the microscopic model of Sec. 3.2 are given in App. B.5. The
inelastic rates Γq,ν;q′,ν′ can then be calculated using the numerical values given in
Table 3.1. To obtain the inelastic magnon and phonon relaxation lengths λm,p of Fig.
3.3, we first calculate the frequency-resolved scattering rate τ−1m,p(ω) of magnons and
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phonons using Fermi’s Golden rule and then determine the corresponding relaxation
lengths λm,p(ω) as

λm,p(ω) = lmi,pi(ω)

√
τm,p(ω)

τmi,pi(ω)
, (3.68)

where lmi and lpi are the mean free paths for magnon-impurity and phonon-impurity
scattering, see Eqs. (3.57) and (3.58), and τmi and τpi are the corresponding lifetimes.

Simplified angular dependence.— In Eq. (3.45) a simplified ansatz for the lin-
earized distribution function, with one isotropic moment ψ0,ν(ω) and one anisotropic
moment ψ1,ν(ω) per mode ν and frequency ω was introduced. Because of the sym-
metry property (3.36) of the matrix elements Vq,λ,ν , the linearized transition rates
Γq,ν;q′,ν′ for the magnon polarons satisfy the symmetry property

Γq,ν;q′,ν′ = Γ−q,ν;−q′,ν′ (3.69)

if the microscopic rates in the absence of magnon-phonon coupling also satisfy
this symmetry. Combining this symmetry property with the antisymmetry of the
magnon-polaron velocity vq,νx, one finds that the general form (3.48) of the linearized
collision integral results in two coupled equations for the isotropic and anisotropic
moments ψ0,ν(ω) and ψ1,ν(ω),

∂ψ1,ν(ω)

∂x
= −

∫
dω′
∑
ν′

G0ν,ν′(ω, ω′)ψ0,ν′(ω
′),

∂ψ0,ν(ω)

∂x
= −

∫
dω′
∑
ν′

G1ν,ν′(ω, ω′)ψ1,ν′(ω
′). (3.70)

Here the 4× 4 matrices G0 and G1 are defined as

G0ν,ν′(ω, ω′) =
1

V 2E2,ν(ω)

∑
q,q′′

∑
ν′′

Γq,ν;q′,ν′′δ(ω − ωq,ν)

× [δν,ν′δ(ω
′ − ω)− δν′,ν′′δ(ω′ − ωq′′,ν′′)],

G1ν,ν′(ω, ω′) =
1

V 2E2,ν(ω)

∑
q,q′′

∑
ν′′

Γq,ν;q′,ν′′δ(ω − ωq,ν)

× [δν,ν′δ(ω
′ − ω)v2q,νx − δν′,ν′′δ(ω′ − ωq′′,ν′′)vq,νxvq′′,ν′′x]. (3.71)

The normalization coefficients E2,ν(ω) are defined in Eq. (3.46). For elastic scattering
from impurities the transition rate Γq,ν;q′,ν′ contains an additional delta function
δ(ωq,ν − ωq′,ν′), which nullifies the frequency integration in Eq. (3.70), so that one
arrives at a set of eight coupled differential equations, which can be solved for each
frequency separately.

The matrix G0ν,ν′ in the isotropic Boltzmann moment obeys the condition∫
dω′
∑
ν′

G0ν,ν′(ω, ω′) = 0. (3.72)
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This ensures that the uniform isotropic solution ψ0,ν = ψ and ψ1,ν = 0, with ψ
a constant, is a solution of the equations. In the case of elastic scattering only,
ψ0,ν(ω) = ψ(ω) is a solution of the equations, with ψ(ω) an arbitrary function of ω.

3.3.4 Reflection coefficients at interfaces

To describe the boundary conditions at the IF and FN interfaces at x = 0 and x = L,
we note that the frequency ω and the transverse wavevector q⊥ = qyey + qzez are
conserved at the interface. Hence, instead of using the wavevector q to label the
magnon-polaron modes, we use the triple (ω,q⊥, σq), where the sign σq = sign (vq,νx)
is the sign of the propagation direction. The range of the transverse wavevector q⊥ is
restricted to those values of q⊥ for which the magnon-polaron mode ν is propagating
at frequency ω, i.e., for which qx is real.

The boundary condition at the IF interface at x = 0 relates the distribution func-
tion of magnon-polaron modes moving away from the interface to the distribution
of magnon-polaron modes and phonon modes moving towards the interface,

nν(ω,q⊥,+) =
∑
ν′

Rνν′(ω,q⊥)nν′(ω,q⊥,−) +
∑
λ′′

Tνλ′′(ω,q⊥)nI(ω). (3.73)

Here Rνν′(ω,q⊥) is the probability that a magnon polaron ν ′ incident on the IF
interface reflects as a magnon-polaron mode ν, see Fig. 3.4(a). Similarly, Tνλ′′(ω,q⊥)
is the probability that a phonon mode λ′′ incident on the IF interface from I is
transmitted as a magnon-polaron mode ν. Only modes that are propagating at
frequency ω and transverse wavevector q⊥ enter the summations over ν ′ and λ′′.
The distribution function of phonons approaching the interface from I is nI(ω), see
Eq. (3.42). Energy conservation at the IF interface at x = 0 implies the unitarity
condition [140, 110]

1 =
∑
ν′

Rνν′(ω,q⊥) +
∑
λ′′

Tνλ′′(ω,q⊥)

=
∑
ν′

Rν′ν(ω,q⊥) +
∑
λ′′

Tλ′′ν(ω,q⊥) (3.74)

With the help of the unitarity condition (3.74), the boundary condition (3.73) is
written in terms of the reflection coefficients Rνν′(ω,q⊥) for magnon-polaron modes
only,

nν(ω,q⊥,+) =
∑
ν′

Rνν′(ω,q⊥)nν′(ω,q⊥,−) +
∑
ν′

[δνν′ −Rνν′(ω,q⊥)]nI(ω). (3.75)

Similarly, for the FN interface at x = L the boundary condition relates the dis-
tribution function of magnon-polaron modes moving away from the interface to the
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distribution of magnon-polaron modes and phonon modes moving towards the inter-
face. In addition to considering reflection coefficients Rνν′(ω,q⊥) and transmission
coefficients Tνλ′′(ω,q⊥) at the FN interface, one also has to account for the possibil-
ity that a magnon polaron incident on the FN interface excites a spinful excitation
of the conduction electrons in the normal metal, and for the inverse process. Since
the total energy current at the FN interface is conserved, we find the probability
PνN(ω,q⊥) that a magnon polaron in mode ν emerging from the FN interface was
excited there by an incident a spinful excitation of the conduction electrons as∑

ν′

Rνν′(ω,q⊥) +
∑
λ′′

Tνλ′′(ω,q⊥) = 1− PνN(ω,q⊥). (3.76)

Similarly, the probability PNν(ω,q⊥) that a magnon polaron in mode ν incidents on
the FN interface excites a spinful excitation of the conduction electrons is∑

ν′

Rν′ν(ω,q⊥) +
∑
λ′′

Tλ′′ν(ω,q⊥) = 1− PNν(ω,q⊥). (3.77)

Using Eq. (3.76), the boundary condition at the FN interface then reads

nν(ω,q⊥,−) =
∑
ν′

Rνν′(ω,q⊥)nν′(ω,q⊥,+) +
∑
ν′

[δνν′ −Rνν′(ω,q⊥)]nN(ω),

(3.78)

where nN(ω) is the equilibrium distribution function for the non-magnetic normal
metal, see Eq. (3.42).

The reflection and transmission coefficients Rνν′ and Tνλ′′ can be computed from
the equations of motion for the magnon-polaron modes and the boundary conditions
at the interfaces at x = 0 and x = L, see Eqs. (3.18)–(3.22). Details of this
calculation, which follows the ideas of the Landauer-Büttiker formalism [143], can
be found in App. B.4.

Simplified angular dependence.— Boundary conditions for the isotropic moment
ψ0,ν(ω) and the anisotropic moment ψ1,ν(ω) of the linearized distribution function
are obtained from Eqs. (3.75) and (3.78) by enforcing consistency for the frequency-
resolved energy current density jνx(ω) at the interface carried by the magnon-polaron
mode ν, which is uniquely linked to the anisotropic moment via

jνx(ω) = E2,ν(ω)~ω2

(
−∂n

0

∂ω

)
ψ1,ν(ω). (3.79)

The consistency condition for the anisotropic moment at the IF interface reads

E2,ν(ω)

E1,ν(ω)

∑
ν′

[δνν′ +R1,νν′(ω)]ψ1,ν′(ω) =∑
ν′

[δνν′ −R0,νν′(ω)][ψI(ω)− ψ0,ν′(ω)], (3.80)
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Figure 3.4: (a) Schematic picture of the interface reflection of a magnon polaron from
branch ν ′, and transmission of a phonon from branch λ′′, into a magnon polaron of
branch ν with the respective reflection and transmission coefficients Rνν′ and Tνλ′′ .
(b) Angle-averaged reflection and transmission coefficients R0,νν′ and T0,νλ′′ at the
IF interface for scattering into magnon-polaron mode ν = 4 as a function of the
frequency. (c) Coefficients R0,νν′ and T0,νλ′′ at the FN interface for magnon-polaron
modes ν = 1, 4, as well as the probability P0,νN that the magnon-polaron mode ν
at the FN interface is excited by a spinful excitation of the conduction electrons in
the normal metal. Panels (d) and (e) show magnifications of the resonant regions in
(b). The coefficients shown in panels (b)–(e) are for incident longitudinal-phonon-
like or magnon-like modes ν ′ = 1, 4 (in F) and λ′′ = 1 (in I or N). Coefficients for
the transverse-phonon-like incident modes ν ′ = 2, 3 or λ′ = 2, 3 are approximately
zero (not shown). Within the accuracy of the figure, the probability P0,Nν that the
magnon-polaron mode ν ′ incident on the FN interface excites a spinful excitation of
the conduction electrons in N is equal to P0,νN. In (f) the transmission amplitude
T11 is shown as a function of the polar angle θ and azimuthal angles φ for different
frequencies ω in the vicinity of the resonance frequency. Panels (b)-(f) are evaluated
for an applied magnetic field B = 7 T. The non-zero reflection and transmission
coefficients at the critical magnetic fields Bl ≈ 9.2 T and Bt ≈ 2.6T are shown as
a function of the frequency in panels (g) and (h), respectively. In panels (b)–(h)
material parameters for YIG are taken from Table 3.1.
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where

R0,νν′(ω) =
2

(2π)3

∫
dq⊥
E1,ν(ω)

Rνν′(ω,q⊥), (3.81)

R1,νν′(ω) =
2

(2π)3

∫
dq⊥
E2,ν(ω)

Rνν′(ω,q⊥)|vν′x(ω,q⊥,−)|.

The boundary condition at the interface at x = L is derived in the same way and
reads

E2,ν(ω)

E1,ν(ω)

∑
ν′

[δνν′ +R1,νν′(ω)]ψ1,ν′(ω) =∑
ν′

[δνν′ −R0,νν′(ω)][ψ0,ν′(ω)− ψN(ω)]. (3.82)

Although the boundary conditions (3.80) and (3.82) are not quantitatively exact
implementations of the microscopic boundary conditions (3.75) and (3.78) — an ex-
act implementation of these boundary conditions is not compatible with the ansatz
(3.44) — they are good quantitative approximations. For example, for an interface
with perfect transparency and a single mode, they correctly take into account in-
terface effects in the ballistic and diffusive limits, and deviate less than 2.5% from
the exact result in the ballistic-to-diffusive crossover [144]. In App. B.7 we com-
pare distribution functions for a ballistic system of length L � lmi, lpi and find
that the difference between an exact calculation and a calculation based on the
angle-averaged boundary conditions (3.80) and (3.82) differs less than 5%.

Numerical values.— The angle-averaged reflection and transmission coefficients
(3.81) at the IF and FN interfaces are shown in Figure 3.4(b)–(e) for B = 7 T.
Material parameters are as listed in Table 3.1. At this value of the magnetic field,
the magnon dispersion crosses that of longitudinal phonons, but not the disperson
of transverse phonons, as shown in the inset of Fig. 3.4(b). The resonant frequen-
cies at which the dispersions cross are at ω ≈ 1.65 THz and ω ≈ 4.8 THz. The
magnon-polaron modes are labeled such that ν = 1 refers to a magnon-like mode
for 1.65 THz < ω < 4.8 THz and to a longitudinal-phonon-like mode otherwise. The
mode ν = 4 is longitudinal-phonon-like for 1.65 THz < ω < 4.8 THz and magnon-like
otherwise. The modes ν = 2 and ν = 3 are transverse-phonon-like for all frequen-
cies. The label λ′′ = 1 refers to the longitudinal phonon mode in the non-magnetic
insulator I or the normal metal N. Figure 3.4(b) shows the angle-averaged reflection
and transmission probabilities R0,νν′ and T0,νλ′′ into the magnon-polaron mode ν = 4
at the IF interface, with close-ups near the resonance frequencies in panels (d) and
(e). Figure 3.4(c) shows R0,νν′ , T0,νλ′′ at the FN interface for outgoing modes ν = 1
and ν = 4, as well as the probability P0,νN that the magnon polaron mode ν was
excited by a spinful excitation of the conduction electrons in N. The incident modes
in panels (b)–(e) are ν ′ = 1 and 4 (corresponding to longitudinal-phonon-like and
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magnon-like magnon polaron modes in F) and λ′′ = 1 (longitudinal phonon mode
in I or N); Reflection and transmission coefficients R0,νν′ and T0,νλ′′ with ν = 1 or 4
and ν ′ and λ′′ equal to 2 or 3 (which corresponds to transverse-phonon-like incident
modes in F and I or N, respectively) are approximately zero (not shown). In con-
trast to the IF interface, where the reflection and transmission probabilities obey a
unitary condition, see Fig. 3.4(b), the spin pumping into the normal metal at the
FN interface at x = L significantly influences the reflection of magnon-like magnon
polarons, see Fig. 3.4(c). Figure 3.4(f) shows the angle-dependence of the trans-
mission coefficient T11, as a function of the polar angle θ and the azimuthal angle
φ of the wavevector q of the outgoing mode. A significant angle dependence exists
only in the immediate vicinity of the crossing points of the magnon and phonon
dispersions.

Significant mixing between different magnon-polaron modes takes place only for
frequencies near the crossings of the magnon and phonon dispersions at the resonant
frequencies ω ≈ 1.65 THz and ω ≈ 4.8 THz [140, 110]. The frequency range for which
the interfaces mix different modes is strongly enhanced near the critical magnetic
fields at which the magnon and phonon dispersions touch. This is illustrated in
Figs. 3.4(g) and (h), which show reflection and transmission coefficients into mode
ν = 4 at the two critical magnetic fields B ≈ 9.2 T and B ≈ 2.6 T. The magnon
and phonon dispersions are shown schematically in the insets. For the critical field
B ≈ 2.6 T, at which the magnon dispersion touches that of the transverse phonons
mode, the interface mixes magnon-like, longitudinal-phonon-like and transverse-
phonon-like modes at the resonance frequency.

Spin current and spin Seebeck voltage.— The spin current jsx into the normal
metal is calculated as the difference between the current of magnon polarons that
excite a spin-1 excitation of the conduction electrons in the normal metal and the
backflow of magnon polarons into the insulator that were excited by an incident
spinful excitation of the conduction electrons (which are assumed to be at the same
temperature as the phonons in N),

jsx =
~
V

∑
q+,ν

vq,νx(nq,ν − nN(ω))PνN(ω,q⊥). (3.83)

Substituting the linear-response form (3.41) of the distribution function and the
simplified angular dependence, the spin current can be expressed in terms of the
isotropic and anisotropic moments ψ0,ν(ω) and ψ1,ν(ω) of the distribution function,

jsx =

∫
dωjsx(ω) (3.84)

with

jsx(ω) = ~ω
(
−∂n

0

∂ω

)∑
ν

1∑
n=0

Pn,ν(ω)ψn,ν(ω) (3.85)
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where

Pn,ν(ω) =

∫
dq⊥
(2π)3

PNν(ω,q⊥)|vν,x(ω,q⊥,+)|n. (3.86)

The spin current at the interface is related to the spin Seebeck voltage in the normal
metal via the inverse spin Hall effect [19] and equals, averaged over the width of the
normal metal [41],

Vsse = θsh%
2e

~
λsf
w

l
tanh

(
l

2λsf

)
jsx(L). (3.87)

Here w, l, %, θsh, and λsf are the width, length, electrical resistivity, the spin Hall
angle, and the spin-flip diffusion length of the metal contact. Numerical values for
these parameters of Pt can be found in Table 3.1.

3.4 Results

We use the theoretical formalism outlined in the previous two Sections to describe
the steady-state longitudinal spin Seebeck effect of ferromagnetic insulator–normal
metal structures. We consider the geometry of Fig. 3.1 and solve the linearized
Boltzmann equation with the boundary conditions

ψI = ∆T/T, ψN = 0, (3.88)

corresponding to a temperature difference ∆T applied across the magnetic insulator
F. Numerical values for the material parameters are taken from Table 3.1.

The long-wavelength approximation is used throughout. We found that for the
range of temperatures T . 30 K considered by us all frequency integrals converge
for ω ∼ 6 clq

0
l , where cq0l is the frequency at which the magnon and longitudinal

phonon dispersions cross at zero magnetic field, see Eq. (3.37). Comparing with
realistic parameters for YIG, this corresponds to a convergence for wavenumbers
q . 1/a, which a posteriori justifies the use of the long-wavelength approximation.

To evaluate the reflection and transmission probabilities at the IF and FN inter-
faces and the angular averages entering in the transition rates for the isotropic and
anisotropic moments of the distribution function ψ0,ν(ω) and ψ1,ν(ω) we use a grid
of 30 × 30 reference points for the polar angles (φ, θ) parameterizing the direction
of q. If necessary, reflection and transmission coefficients are interpolated linearly
between grid points.

We first describe our results for the case of elastic impurity scattering only. We
then discuss how these results are changed upon inclusion of inelastic scattering.
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3.4.1 Elastic scattering only

Distribution functions.— After restriction of the distribution function to the sim-
plified angular dependence with one isotropic moment ψ0,ν(ω) and one anisotropic
moment ψ1,ν(ω), the steady-state Boltzmann equation reduces to a set of 2× 4 cou-
pled linear equations for these moments, see Eq. (3.70). For impurity scattering,
different frequencies decouple, which makes an efficient solution of the equations
possible. For convenience of notation, we here introduce a matrix notation in which
ψ0,ν → ψ0 and ψ1,ν → ψ1 are four-component column vectors. Then the linearized
Boltzmann equation (3.70) takes the simple form

∂ψ1

∂x
= −G0ψ0,

∂ψ0

∂x
= −G1ψ1, (3.89)

where the 4 × 4 matrices G0 and G1 were defined in Eq. (3.71) (a delta function
for frequencies is factored out and we switch notation from superscripts 0 and 1
to subscripts). The condition (3.72) ensures that the uniform isotropic solution
ψ0,ν = ψ and ψ1,ν = 0, with ψ an arbitrary function of ω, is a solution of the
equations.

The matrix product G1G0, which describes the relaxation towards local equilib-
rium, is non-negative. We diagonalize the matrix G =

√G1G0 as

G = U diag (0, λ−11 , λ−12 , λ−13 )U−1, (3.90)

with U a 4× 4 matrix, λ0 = 0 and 0 < λ1 < λ2 < λ3. The three non-zero relaxation
lengths λi, i = 1, 2, 3, are shown in Fig. 3.5 for the parameter values of Table 3.1 and
the impurity scattering parameters of Table 3.3, center column. We also show the
relaxation lengths lmi and lpi,λ for the white-noise impurity model of Eqs. (3.60), for
which the relaxation lengths have a weaker systematic dependence on the frequency
ω.

The longest relaxation length λ3, which is the length scale for full equilibration
of all four magnon-polaron modes, is the impurity-mediated inter-mode scattering
length for magnon polarons,

λimp(ω) = λ3(ω). (3.91)

For generic frequencies, magnon-phonon hybridization is weak, so that impurity
scattering has a very small inter-mode component. This explains why λimp is much
larger than the mean free paths lmi and lpi for magnon-impurity and phonon-impurity
scattering, see the dotted lines in Fig. 3.5. For the parameter values of Table 3.3,
for which phonon-impurity scattering is stronger than magnon-impurity scatter-
ing, the two shorter relaxation lengths λ1,2 ≈ lpi describe the equilibration of the
three phonon modes among each other. The frequency dependence of the relaxation
lengths λ1,2 reflects the frequency dependence of the phonon-impurity scattering.
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Figure 3.5: Relaxation lengths λi(ω), i = 1, 2, 3, of Eq. (3.90) for the material
parameters given in Table 3.1 and impurity scattering parameters from Table 3.3
(center column) for the white-noise impurity model (3.60) with the mean free paths
(3.61) (a) and for the microscopic model (3.52), (3.55) with mean free paths from
Eqs. (3.57) and (3.58) (b). The dots indicate the magnon-impurity (blue) and
phonon-impurity scattering lengths (green and red).

To obtain a formal solution of the coupled equations (3.89), we use ui to denote
the i-th column of U . Condition (3.72) implies that we may set the first column
u0 = (1, 1, 1, 1)T. The general solution of the isotropic distribution moment then
reads

ψ0(x) =
3∑
i=0

1∑
j=0

βij(x)cijui, (3.92)

where cij are constants that are determined by the boundary conditions, and

βi0(x) =

{
x/L, i = 0,
e(x−L)/λi , i = 1, 2, 3,

βi1(x) =

{
1− x/L, i = 0,
e−x/λi , i = 1, 2, 3.

(3.93)

The anisotropic moment is obtained via Eq. (3.89) by taking the matrix inverse,

ψ1 = −G−11

∂ψ0

∂x
. (3.94)

In matrix notation, the boundary conditions (3.80) and (3.82) at the IF interface at
x = 0 and the FN interface at x = L read

ψ1(0) =SI[ψI −ψ0(0)],

ψ1(L) =SN[ψ0(L)−ψN], (3.95)

where ψI,N = ψI,Nu0 are four-component vectors describing the equilibrium distri-
butions in the reservoirs I and N, see Eq. (3.88). The matrices SI,N are defined
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as

SI,N =
E1
E2

(14 +R1I,N)−1(14 −R0I,N), (3.96)

where the angle-averaged reflection coefficient matrices R0,νν′ and R1,νν′ are defined
in Eq. (3.81).

These equations have a formal solution near the FN interface at x = L if L �
λimp. The vicinity of the FN interface is what is relevant for the calculation of the
spin Seebeck effect, see Eq. (3.85). Using the vector notation, one has

ψ0(x) =
(L− x)∆T

LT
u0 + e(x−L)Gψ0(L), (3.97)

ψ1(x) =
∆T

LT
G−11 u0 − G−11 Ge(x−L)Gψ0(L),

where

ψ0(L) =
∆T

LT
(G + G1RN)−1u0. (3.98)

A solution near the IF interface at x = 0 can be obtained in a similar way. If the
condition L � λimp is not satisfied, the boundary conditions at the two interfaces
at x = 0 and x = L have to be implemented simultaneously, which is easily carried
out numerically.

In Fig. 3.6 we show the frequency dependence of the isotropic moment ψ0,ν(ω)
at the FN interface, i.e., for x = L, as well as the spatial dependence of ψ0,ν(ω)
for a generic frequency away from the crossing points of longitudinal phonon and
magnon dispersions and at a crossing point. To keep the discussion simple, we
have chosen the magnetic field B = 7 T. At this value of the magnetic field the
dispersions of magnons and longitudinal phonons cross, but not of magnons and
transverse phonons, see Fig. 3.2, so that there are only two “resonance frequencies”
ω ≈ 1.65 THz and ω ≈ 4.8 THz. To avoid artifacts from the strong frequency
dependence of the impurity scattering lengths in the microscopic model, we use
the white-noise model (3.60) for the impurity potential. We consider three system
sizes L: a length L much larger than the impurity-mediated inter-mode scattering
length λimp (top panels), an intermediate length L smaller than λimp, but still much
larger than the individual elastic magnon and phonon mean free paths lmi and lpi
(center panels), and a very short system size L � λ1 ≈ lpi, in which the only
source of equilibration between magnon-like and phonon-like magnon-polaron modes
is at the interfaces (bottom panels). In the intermediate regime the three phonon
modes equilibrate among each other, but magnon-like and phonon-like modes remain
out of equilibrium, except for the immediate vicinity of the resonance frequencies.
The three system sizes considered are indicated by horizontal lines in Fig. 3.6(b)
(reproduced from Fig. 3.5). Taking material parameters from Tables 3.1 and the
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Figure 3.6: Isotropic moment for impurity scattering only. We take material
parameters from Table 3.1 and set the magnetic field equal to B = 7 T, so that the
magnon dispersion crosses that of the longitudinal phonons, but not the transverse
phonons, see panel (a). To keep the presentation of the frequency dependence of the
isotropic moment (3.44) as simple as possible we use white-noise impurity scattering
rates (3.60) with potentials according to Table 3.3, center column. Panels (c)–(e)
show the isotropic moment ψ0(ω) of the distribution function for three choices of the
system length L as compared to the relaxation lengths λi, as schematically indicated
in (b). Panel (c) shows the frequency dependence of the isotropic moment ψ0(ω) at
the FN interface at x = L. Panels (d) and (e) show the dependence on position x
for a generic frequency (ω = 6 THz, panel (d)) and a frequency at the crossing point
of the magnon and phonon dispersions (ω = 4.8 THz, panel (e)). Panel (f) shows
a close-up of the spatial dependences near the FN interface for the longest system
length considered.

center column of 3.3, only the intermediate range of length scales lmi, lpi . L . λimp

is of experimental relevance.

We first discuss the isotropic moment ψ0,ν(ω) for the case without magnon-
phonon coupling, shown by the dots in Fig. 3.6(c)–(e). Without magnon-phonon
coupling, the isotropic moment ψ0,m(ω) of the magnon distribution is at the equilib-
rium value corresponding to the temperature of the conduction electrons in N. This
is the case, because the magnons are coupled to the conduction electrons in N via
the spin mixing conductance at the FN interface, see Sec. 3.3.4. In the top and cen-
ter panels of Fig. 3.6 (c)–(e), which describe system lengths L large in comparison
to the phonon-impurity mean free path lpi, the distribution function ψ0,p(ω) of the
phonon linearly interpolates between its values at the warm and cold reservoirs I and
N and x = 0 and x = L. In the bottom panels, which are for a length L� lpi, the
isotropic moment ψ0,p(ω) of phonon distribution is at a characteristic temperature
T + ∆T/2 precisely between the temperatures of the hot and cold reservoirs. A full
discussion of the case of zero magnon-phonon coupling using our formalism can be
found in App. B.6.
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To interpret the curves in Fig. 3.6(c)–(e) that show the isotropic moment ψ0,ν(ω)
in the presence of magnon-phonon coupling (solid curves), one should take into
account that the label ν of the “magnon-like” magnon-polaron mode is “4” (blue
curves) for frequencies ω between the crossing points at 1.65 THz and 4.8 THz, and
“1” otherwise, see Fig. 3.6(a). The character of the magnon-polaron mode changes
at the crossing points of the dispersion.

For the largest system size L� λimp (top panels in Fig. 3.6(c)–(e)), all magnon-
polaron modes are in local equilibrium in the bulk of the sample, as shown in Fig.
3.6(d) and (e). At the FN interface, the magnon-like mode has a weakly elevated
population, when compared to the temperature of the N reservoir, whereas the tem-
perature of the phonon-like modes is very close to that of the N reservoir, as shown in
detail in Fig. 3.6(f). This difference occurs, because magnon-like modes are mostly
reflected at the FN interface, whereas the phonon-like modes are almost perfectly
transmitted. At the resonance frequencies there is a sharp “dip” in the population
of magnon-like magnon-polaron modes at the FN interface, reflecting the increased
equilibration between different magnon-polaron modes at those frequencies. As a
result, close to the resonance frequencies the thickness of the layer near the FN inter-
face in which different magnon-polaron modes have different distribution functions
is much thinner than for generic frequencies, see Fig. 3.6(f).

For the intermediate system size (center panels in Fig. 3.6(c)–(e)), the magnon-
like magnon-polaron modes are no longer in equilibrium with the phonon modes for
generic frequencies ω and, hence, have an occupation consistent with that of the
cold reservoir N, to which they are coupled via the spin mixing conductance. For
frequencies in the close vicinity of the crossing points, they still equilibrate with
the phonons, and their occupation is essentially the same as in the case L � λimp

discussed above.

At the shortest system length L� λ1 ≈ lpi, the isotropic moments are constants
as a function of position. From the boundary conditions (3.95) at the IF and FN
interfaces one finds

ψ0 = (SI + SN)−1(SIψI + SNψN). (3.99)

At generic frequencies, magnon-like modes have an occupation corresponding to the
temperature of the cold reservoir, whereas the isotropic moment of the distribution
of phonon-like modes corresponds to a temperature T + ∆T/2 precisely interme-
diate between the temperatures of cold and warm reservoirs. For frequencies close
to the crossing points, reflection at the IF and FN interfaces still leads to an equi-
libration of magnons and phonons. Since the magnon-like modes are coupled to
the cold reservoir, but not to the warm reservoir, the occupation corresponds to a
temperature slightly below ∆T/2, see Fig. 3.6(e).

Spin current.— Results for the spin current are shown in Fig. 3.7, using the white-
noise model (3.60) with parameter values from the center column of Table 3.3 for the
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impurity scattering rates. The relaxation lengths λi(ω) for this set of parameters are
shown in Fig. 3.5(a). Figure 3.7 shows the frequency-resolved spin current jsx(ω) for
system lengths L = 0.1µm, L = 0.5 mm, L = 10 mm, and L = 1 m. At the shortest
length L = 0.1µm, magnon and phonon dynamics are ballistic and no equilibration
between magnon-like and phonon-like magnon-polaron modes takes place, except in
the immediate vicinity of the resonance frequencies. Consequentially, the frequency-
resolved spin current differs appreciably from zero only near these frequencies. At the
intermediate sample length L = 0.5 mm magnon and phonon transport is diffusive,
whereas for generic frequencies the sample size is still larger than λimp. Here, the
spin current is still carried at frequencies close to the crossing points, although
the frequency-resolved spin current shows a narrow dip precisely at the crossing
point because the strong mixing of magnons and phonons, combined with the large
transparency of the FN interface for phonons, suppresses an accumulation of magnon
polarons at the FN interface at that frequency. To illustrate what happens upon
further increasing the system length L, Fig. 3.7 also shows the case L = 10 mm and
the unrealistically large length L = 1 m, at which all frequencies contribute to the
spin current, except for narrow dips at the frequencies at which magnon and phonon
dispersions cross. Figure 3.7 also contains a comparison with the asymptotic large-L
result (3.97), showing that the comparison becomes quantitatively accurate only for
lengths L far outside the experimentally relevant range.

Magnon and phonon dynamics are ballistic for the shortest system length con-
sidered in Fig. 3.7, L� λ1 ≈ lpi. With ballistic dynamics, the validity of the param-
eterization (3.45) breaks down. To estimate the error, in App. B.7 we compare the
spin current obtained using the parameterization (3.45) with an exact calculation
for the ballistic short-L limit.

Spin Seebeck coefficient.— The spin Seebeck voltage VSSE and the spin Seebeck
coefficient

S =
Vsse
∆T

(3.100)

can be obtained from Eq. (3.87). Figure 3.8 shows the spin Seebeck coefficient S as
a function of the applied magnetic field B. We use the microscopic model of Eqs.
(3.52) and (3.55), with parameter values taken from Table 3.3 (center column), to
describe magnon-impurity and phonon-impurity scattering. The spin Seebeck coef-
ficient shows sharp features near the critical magnetic fields at which the magnon
and phonon dispersions touch, reflecting the drastic enhancement of the frequency
window of strong magnon-phonon coupling at those magnetic fields. For short and
intermediate lengths L . λimp, the magnitude of the spin Seebeck effect, including
the singular features at the critical magnetic field, increases with the temperature,
see Fig. 3.8(a). The spin Seebeck coefficient and the singular features at the critical
magnetic fields depend non-monotonically on the length L or the impurity concen-
tration, as shown in Fig. 3.8(b). Whereas S shows peaks at the critical magnetic
fields if the system size is . λimp, the spin Seebeck coefficient exhibits a dip at the
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Figure 3.7: Frequency-resolved spin current jsx(ω) = ~J s
x(ω)∆T/T at T = 10 K

at the FN interface (blue, solid) for B = 7 T at sample length L = 0.1µm (a),
L = 0.5 mm (b), L = 10 mm (c), and L = 1 m (d). System parameters are taken
from Table 3.1. Impurity scattering of magnon and phonons is described by the
white-noise model (3.60), with parameter values taken from the center column of
Table 3.3. For comparison, panels (a) and (d) also show the frequency-resolved spin
current calculated from the short-length approximation of Eq. (3.99) and the long-
length approximation (3.97), respectively (red, dashed).

critical magnetic fields if L & λimp. This dip originates from the narrow dip in the
frequency-resolved spin current for frequencies close to the resonance frequencies,
see Fig. 3.7, and reflects the increase of the resonant frequency range at the critical
magnetic fields. The non-monotonous length dependence of the spin Seebeck coef-
ficient is also shown in panel (c). For short lengths, the spin Seebeck coefficient is
small, because magnons are excited only in a very narrow frequency window around
the resonance frequencies. Upon increasing L, the width of this frequency window
is increased, which is what leads to an increase of S with L. The spin Seebeck
coefficient reaches a maximum as a function of L, when all frequencies contribute
to the spin current. A further increasing of L leads to a suppression of S because
of the increase of the thermal resistance with L. The maximum occurs at smaller
lengths (but higher spin Seebeck coefficient) for magnetic fields close to the critical
field, because there the widths of the peaks of the frequency-resolved spin current
at the resonant frequency is largest.

Figure 3.8 also addresses the dependence of the spin Seebeck coefficient on the
spin mixing conductivity σ↑↓ and on the strength of the magnon-phonon coupling. A
decrease of the spin mixing conductivity — a lower transparency of the FN interface
— leads to a smaller spin Seebeck voltage and less pronounced features as a function
of magnetic field, see Fig. 3.8(d) and (e) for a system short and long in comparison to
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Figure 3.8: Spin Seebeck coefficient for elastic scattering only. Material parameters
are taken from Table 3.1 and impurity scattering of magnon and phonons is described
by the microscopic model of Eqs. (3.52) and (3.55) with parameter values taken from
the center column of Table 3.3, unless noted otherwise. Panel (a) shows the spin
Seebeck coefficient at L = 10µm for temperatures T = 2 K, 5 K, 10 K, and 20 K
(bottom to top). Panel (b) shows the spin Seebeck coefficient for T = 10 K at
different system lengths L = 10µm (green), 5 cm (red), and 10 cm (blue). Panel (c)
shows S for B = 7 T and B = 9.2 T as a function of the system length L. Panels
(d) and (e), which are evaluated at T = 10 K and at L = 10µm and L = 1 cm,
respectively, show the spin Seebeck coefficient S vs. magnetic field B for spin mixing
conductivity σ↑↓ equal to 1, 10−1, and 10−2 times the value listed in Table 3.1,
from top to bottom, respectively. Panel (f) shows the spin Seebeck coefficient for
L = 10µm, T = 10 K, and magnon-phonon coupling parameters D and D′ a factor
1, 0.5, and 0.1 times the values listed in Table 3.1, from top to bottom.

λimp, respectively. A decrease of the magnon-phonon coupling below the value listed
in Table 3.1 leads to a smaller spin Seebeck coefficient only if the system is short
enough, see Fig. 3.8(f). If L� λimp, a decrease of the magnon-phonon coupling has
no significant effect on the spin Seebeck coefficient (data not shown).

Relative strength of magnon-impurity and phonon-impurity scattering.— The
numerical values used for Figs. 3.6–3.8 have a magnon-impurity scattering length
that is a factor ∼ 10–100 larger than the phonon-impurity length. For comparison,
Fig. 3.9 shows the relaxation lengths λi, the distribution function at the FN interface,
the frequency-resolved spin current, and the spin Seebeck coefficient for a system
that is of higher acoustic quality than of magnetic quality. The parameters for
the impurity model are such that the orders of magnitude of the corresponding
scattering rates are interchanged (see Table 3.3, right column). This interchange
leads to a significant increase in the two smallest relaxation lengths λ1,2 ≈ lpi,

84



3.4. RESULTS

101

103

105

λ
 (
µ
m

)

(a)

2 4 6
ω (THz)

101

103

λ
 (
µ
m

)

0

0.02 ∆T
T

(b)

ψ0, 4

ψ0, 1

2 4 6
ω (THz)

0

0.2 ∆T
T

0

2

J
s x
((

1
0
−

1
µ
m
−

2
)

(c)

2 4 6
ω (THz)

0

20

40

0

2

S
 (

1
0
−

1
µ
V

/
K

)

L= 1cm

(d)

5 10
B (T)

0

1

S
(µ

V
/K

) L= 500µm

1.62 1.69
0

2

4.7 4.9
0

20

Figure 3.9: Relaxation lengths (a), isotropic distribution function ψ0(ω) at the
FN interface (b), frequency-resolved spin current jsx(ω) = ~J s

x(ω)∆T/T at T = 10
(c), and spin Seebeck coefficient S vs. magnetic field B (d) for a system in which
magnon-impurity scattering is stronger than phonon-impurity scattering. Material
parameters are taken from Table 3.1. Impurity scattering is described by the mi-
croscopic model of Eqs. (3.52) and (3.55) (a, top panel, and d) and the white-noise
model of Eq. (3.60) (a, bottom panel, and b, c) with parameters taken from the
right column in Table 3.3. Dots in panel (a) indicate the magnon-impurity mean
free path (blue) and the phonon-impurity mean free paths (green and red) in the
absence of magnon-phonon coupling. The system length L for panels (b)–(d) is
indicated by the horizontal lines in panel (a). The spin Seebeck coefficient in panel
(d) is evaluated for temperatures T = 2 K, 5 K, 10 K, and 20 K (bottom to top).

which describe the relaxation between the three phonon-like polaron modes, but
hardly affects the longest relaxation length λ3 = λimp, which describes the impurity-
mediated inter-mode scattering of magnon polarons. For short system lengths L .
λimp (but L larger than the phonon and magnon mean free paths lpi and lmi), the
distribution function at the FN interface has the same singular frequency dependence
near the resonant frequencies as in the phonon-impurity-dominated case discussed
above. As a result, the frequency-resolved spin current jsx(ω) is strongly peaked
near the resonance frequencies, and the spin Seebeck coefficient S has a peak at the
“critical” values of the magnetic field for which the magnon and phonon dispersions
are tangential to each other. For large lengths L & λimp, the frequency-resolved
spin current shows sharp peaks at the resonant frequencies (as opposed to sharp
dips in the case of stronger phonon-impurity scattering). Correspondingly, the spin
Seebeck coefficient continues to exhibit peaks as a function of B for the critical
magnetic fields in the limit of large sample length L.
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3.4.2 With inelastic scattering

For temperatures T . 30 K, inelastic relaxation lengths remain well above the mean
free paths lmi and lpi for magnon-impurity and phonon-impurity scattering for all
frequencies of interest. In the vicinity of the resonance frequencies, the impurity-
mediated inter-mode scattering length λimp is comparable to the mean free path
for impurity scattering. Hence, near the resonance frequencies impurity-mediated
inter-mode scattering remains the dominant scattering mechanism coupling phonon
and magnon degrees of freedom. For generic frequencies, however, depending on
the temperature and the magnetic field, λimp may well be larger than the inelastic
relaxation length. If this is the case, the inclusion of inelastic scattering may lead to
a modification of the elastic-scattering-only results that were derived in the previous
Subsection, as we now discuss.

To describe inelastic processes in the Boltzmann equation (3.70), the collision
integrals (3.64) and (3.67) are included in the transition matrices G0(ω, ω′) and
G1(ω, ω′). Whereas these transition matrices were proportional to δ(ω − ω′) for the
elastic-scattering-only case, they acquire contributions off-diagonal in frequency if
inelastic processes are included. Apart from this, the general structure of the Boltz-
mann equations for the isotropic and anisotropic moments (3.70) stays untouched.

The transition matrix G0(ω, ω′) governs the relaxation of the isotropic moment
ψ0(ω). Without inelastic scattering, G0(ω, ω′) = G0(ω)δ(ω−ω′). As discussed in the
previous Subsection, the 4×4 matrix G0 has three nonzero eigenvalues and one zero
eigenvalue. The smallest nonzero eigenvalue is typically several orders of magnitude
smaller than the two larger eigenvalues, because it contains the magnon-phonon
coupling. (Without magnon-phonon coupling, G0 has two zero eigenvalues, see App.
B.6.) Inclusion of inelastic processes is a significant perturbation to G0, because
their strength has to be compared to the two smallest eigenvalues of G0. In contrast,
for the elastic-scattering-only case the transition matrix G1(ω, ω′) = G1(ω)δ(ω − ω′)
has four nonzero eigenvalues at each frequency, of the order of the rates τpi and
τmi for phonon-impurity and magnon-impurity scattering length, see App. B.6. For
T . 30 K, these are much larger than the inverse inelastic scattering lengths, so that
inelastic processes do not significantly affect G1. Motivated by these observations,
we calculate G1(ω, ω′) without inclusion of inelastic processes, whereas to simplify
the calculation of G0(ω, ω′) we replace the microscopic models for the various sources
of inelastic scattering, see Sec. 3.3.3 and App. B.5, by an effective model in which
the matrix elements depend on the frequencies of the magnon and phonon modes
involved, but not on the polarization and (directions of the) wavevectors. The
magnitude of the matrix elements in the effective models is chosen such that the
angle average is the same as in the original microscopic model, so that the inelastic
contribution to G0(ω, ω′) is still exact without the elastic magnon-phonon coupling.
We keep the full wavevector dependence of the transformation matrix Vq between
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Figure 3.10: (a) Frequency-dependent relaxation lengths λi(ω), i = 1, 2, 3, for the
case of elastic scattering only. (b) and (c) Relaxation lengths λj, j = 1, . . . , 4(N +
1) − 1 in the presence of inelastic scattering, calculated for a frequency grid with
N = 200 frequencies. For clarity, only every 20th relaxation length is shown. In
(b) the relaxation lengths are shown vs. the strength of the inelastic scattering
processes, normalized to the inelastic processes at 10 K. In (c) the relaxation lengths
are shown vs. temperature. The black curves represent those relaxation lengths that
are divergent in absence of inelastic scattering.

magnon and phonon modes and magnon-polaron modes.

Once inelastic processes are included, the Boltzmann equation for the isotropic
and anisotropic moments (3.70) couples distribution functions at different frequen-
cies. To solve these resulting integro-differential equations, we choose a frequency
grid with (N + 1) frequencies ωn with 0 ≡ ω0 < ω1 < · · · < ωN and approximate
the distribution functions ψ0,ν(ωn) and ψ1,ν(ωn) by linear interpolation between the
grid frequencies. The density of reference frequencies is chosen to be high in regions
in which ψ0,ν(ωn) and ψ1,ν(ωn) are strongly frequency dependent, such as in the
vicinity of the crossing points of magnon and phonon branches. Frequency integrals
over a function f(ω) can be discretized by a trapezoidal rule,∫

dωf(ω)→
N∑
n=1

[f(ωn) + f(ωn−1)]
ωn − ωn−1

2
. (3.101)

The resulting discretized equations then have the same structure as the equations
for elastic scattering (3.89) — but with matrices G0 and G1 of dimension 4(N + 1)
instead of 4 — and they can be efficiently solved with the same methods as discussed
in the previous Subsection. The boundary conditions at the IF and FN interfaces
do not mix frequencies and can be implemented in the same way as for the elastic-
scattering-only case, see Eq. (3.95).

The eigenvalues of the matrix G2 = G1G0, which are the inverse square relaxation

87



CHAPTER 3. HYBRIDIZED MAGNON POLARONS

lengths λ−2j , compare with Eq. (3.90), again play an important role in the construc-
tion of the solution of the Boltzmann equation, which is given by Eqs. (3.92)–(3.94),
with the summations over i and j running from 0 to 4(N + 1) − 1 instead of 0
to 3. In contrast to elastic impurity scattering, which relaxes only differences be-
tween polaron branches ν at the same frequency, the matrix condition (3.72) for
inelastic three and four-polaron interaction ensures that only the globally uniform
solution ψ0,ν(ω) = ψ, ψ1,ν(ω) = 0 is an equilibrium solution. As a consequence the
matrix G has only one zero eigenvalue. The nonzero eigenvalues give the inverse
relaxation lengths. As an illustration, Fig. 3.10 shows the relaxation lengths λj,
j = 1, . . . , 4(N + 1) − 1 for the case of material parameters listed in Table 3.1 as
a function of the inelastic scattering strength. Panel (b) shows how the relaxation
lengths at temperature 10 K are connected with the frequency-dependent equilibra-
tion lengths for the case without inelastic processes if one smoothly “switches on”
the inelastic processes; panel (c) shows the relaxation length as a function of tem-
perature T . Without inelastic scattering, one of the four inverse square relaxation
lengths λ−2j for each frequency ωn is zero, n = 0, . . . , N , so that there are N + 1
divergent relaxation lengths in that limit. Upon switching on inelastic scattering,
all but one of these relaxation lengths become finite (black curves in Fig. 3.10b).

The dominant inelastic processes are inelastic magnon-magnon and phonon-
phonon scattering and exchange-based magnon-phonon scattering. Their main ef-
fect is to equilibrate the distributions of magnon-like and phonon-like magnon po-
larons between different frequencies. Except in the vicinity of the resonance fre-
quencies, the exchange-based magnon-phonon interaction allows for the exchange of
energy between the lattice and spin subsystems, but it cannot change the number of
magnons. In the same way, at generic frequencies the phonon-phonon and magnon-
magnon interactions cannot exchange energy between the subsystems, although the
three-magnon interaction can change the number of magnons. The relativistic and
dipole-dipole contributions to the inelastic magnon-phonon interaction, which can
exchange energy between subsystems and change the magnon number, are weaker
than the impurity-mediated inter-mode scattering processes for T . 30 K, see Fig.
3.3, so that these do not play a role in the spin Seebeck effect. We verified that
all results shown in this Section are the same with or without inclusion of the rela-
tivistic and dipole-dipole contributions to the inelastic magnon-phonon interaction
(data not shown).

Distribution functions and frequency-resolved spin current.— For system lengths
L below the shortest inelastic length, an effect of inelastic processes on the dis-
tribution functions is trivially absent and the elastic-scattering-only theory of the
previous Subsection applies. Taking the parameters listed in Tables 3.1 and 3.3, for
T . 30 K this includes the experimentally relevant range L ∼ 10µm. To illustrate
the effect of inelastic processes on the distribution functions, in Fig. 3.11 we show
the distribution function ψ0(ω) at the FN interface and the frequency-resolved spin
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Figure 3.11: Relaxation lengths (a), (d) as in Fig. 3.5 with material parameters
taken from Table 3.1. Frequency-resolved isotropic moment ψ0(ω) and frequency-
resolved spin currents jsx(ω) = ~J s

x(ω)∆T/T at the FN interface for T = 10 K (b),
(e) and T = 30 K (c), (f) together with the values obtained from a theory with
elastic scattering only (dotted lines). Impurity scattering is modeled by the white-
noise model (3.60) with parameters taken from the center column (panels (a)–(c))
and rightmost column (panels (d)–(e)) in Table 3.3, corresponding to the cases of
higher magnetic and acoustic quality, respectively.
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current for two larger system sizes L = 200µm and L = 100 mm.

The smaller system length L = 200µm is below the impurity-mediated inter-
mode scattering length λimp, so that ψ0(ω) is sharply peaked at the resonance
frequencies in the absence of inelastic processes. In this case, the main effect of
inelastic processes is to change the occupation of magnon-like modes at generic
frequencies, which, for L = 200µm, outweighs the effect of impurity-mediated pro-
cesses for temperatures T & 10 K. At the same time the weight of the peaks at
the resonance frequencies is decreased upon inclusion of inelastic processes. The
exchange-based magnon-phonon interaction transfers energy from the phonon sys-
tem into the magnon system without changing the magnon number. This leads to a
population shift of the magnon-like modes from low to high frequencies, which can
be seen in Fig. 3.11(b). Although via this mechanism inelastic processes can cause
a small decrease of the frequency-resolved spin current jsx(ω) for low frequencies, for
system lengths L . λimp their over-all effect after integration over all frequencies is
to increase the spin current above the value previously evaluated for elastic scatter-
ing. This increase may be quite substantial at the highest temperatures we consider
(panel (c) in Fig. 3.11).

The larger system length L = 100 mm is well above λimp. In this case impurity-
mediated inter-mode scattering processes already fully equilibrate phonon-like and
magnon-like modes at all frequencies. Inclusion of inelastic processes leads to a
quantitative, but not to a qualitative change of the distribution functions compared
to the elastic-scattering-only case. For this large system length, inclusion of inelastic
processes leads to a small decrease of the spin current. These conclusions apply to the
impurity scattering parameters taken from Table 3.3 (Fig. 3.11(a)–(c)), for which the
phonon-impurity length lpi is much shorter than the magnon-impurity length lmi, as
well as to the case in which the strengths of phonon-impurity and magnon-impurity
scattering are interchanged such that lpi � lmi (Fig. 3.11d–f).

Spin Seebeck coefficient.— The spin Seebeck coefficient in the presence of inelas-
tic scattering is shown in Fig. 3.12. As can be anticipated from the above results,
inclusion of inelastic scattering leads to a small decrease of the spin Seebeck coef-
ficient for ultralong system lengths L � λimp (panel (a), L = 100 mm) and to an
increase of the spin Seebeck coefficient for L = 200µm, which is below λimp, provided
the temperature is sufficiently high that inelastic processes become relevant at this
system length. In both cases, inelastic processes reduce the visibility of the singular
features at the critical values of the magnetic field. Because of the strong enhance-
ment of the spin Seebeck coefficient for lengths L . λimp, the non-monotonicity
of the length dependence of S is more pronounced with inelastic processes than
without, see Fig. 3.12(c).

In our previous work [41], as well as in Ref. [20], inelastic magnon-magnon and
phonon-phonon collisions were only accounted for indirectly as a “background in-
teraction” that ensures the fast relaxation of the magnon and phonon distributions
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Figure 3.12: Spin Seebeck coefficient S for systems of higher magnetic quality
(upper panels) and higher acoustic quality (lower panels), as a function of magnetic
field for L = 10 cm and temperatures T = 2 K, 5 K, and 10 K from bottom to top (a)
and for L = 200µm and T = 5 K and 10 K from bottom to top (b). Panel (c) shows
S as a function of length T = 10 K (red) and T = 5 K (blue). Panels (d) and (e)
show a comparison to the incoherent theory of Ref. [41] (red, dashed) for L = 10µm
(d) and L = 10 cm (e) and T = 10 K. In all panels solid curves show results of
the full theory, including inelastic scattering, whereas dotted curves include elastic
scattering only. Material parameters are taken from Table 3.1. Impurity scattering
of magnons and phonons is described by the microscopic model of Eqs. (3.52) and
(3.55), with parameter values taken from Table 3.3.

(in Ref. [41]) or magnon-polaron distributions (in Ref. [20]) towards Planck and
Bose-Einstein distributions, respectively, characterized by a temperature and chem-
ical potential. In Fig. 3.12(d) and (e) we compare the predictions of the present
theory with that of the Boltzmann theory of Ref. [41]. For an experimentally rele-
vant system length L = 10µm, which is well below the inelastic scattering lengths
at T . 30 K, the two theories nevertheless give very similar predictions for the
magnetic-field dependence of the spin Seebeck coefficient, see Fig. 3.12(d). This
is remarkable, because the two theories have vastly different predictions for the
frequency-resolved spin current. That the agreement is not always as good can be
seen from Fig. 3.12(f), which compares the two theories for a much larger system
length, showing that while both theories predict the same order of magnitude for
the spin Seebeck coefficient, the singular features at the critical magnetic field are
qualitatively different.

Anatomy of the spin Seebeck effect.— Given the multitude of physical processes
contributing to the spin Seebeck effect, it is instructive to determine, which process
or which combination of processes is responsible for the observed spin current. This
is addressed in Fig. 3.13, in which we compare the spin currents at L = 200µm (i.e.,
for a length below λimp, but much larger than the length L ≈ 10µm relevant for ex-
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Figure 3.13: Spin current jsx, normalized to the spin current for elastic scattering
only at T = 5 K and T = 20 K, L = 200µm, and B = 7 T, with or without physical
processes as indicated on the left. The physical processes are: Impurity-mediated
inter-mode scattering (λimp), inelastic three-phonon scattering (3-pho), inelastic
three-magnon scattering (3-mag), inelastic four-magnon scattering (4-mag), inelastic
exchange-based magnon-phonon scattering (mag-pho), and relativistic/dipole-based
inelastic magnon-phonon scattering (rel). Phonon-impurity and magnon-impurity
scattering are included in all cases, using the microscopic model of Eqs. (3.52) and
(3.55) with values taken from the center and right column of Table 3.3 (panels (a)
and (b), respectively).

periments) at T = 5 K and T = 20 K with each of the contributing physical processes
switched on or off. While we see that at the lowest temperatures impurity-mediated
inter-mode scattering is the dominant cause of the spin Seebeck effect, at T = 20 K
it is the combination of impurity-mediated inter-mode scattering, exchange-based
magnon-phonon scattering, and inelastic four-magnon scattering. Removing each
one of these processes leads to a decrease of the spin Seebeck coefficient by an order
of magnitude.

At the experimentally relevant length L = 10µm, impurity-mediated inter-mode
scattering is the sole cause of the spin Seebeck effect at all temperatures we consid-
ered (T up to 30 K) (data not shown).
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3.5 Summary

In this Chapter, we constructed a Boltzmann theory of the spin Seebeck effect at
low temperatures. Our theory treats quadratic terms in the magnon-phonon Hamil-
tonian exactly, including terms that couple spin and lattice degrees of freedom.
Such terms lead to the formation of magnon polarons, coherent superpositions of
collective excitations of the spin and lattice subsystems [120, 121, 122]. Elastic
scattering from impurities and inelastic relaxation processes are included via a col-
lision integral. To accommodate the strong frequency dependence of the degree of
magnon-phonon mixing, which predominantly takes place near the resonant frequen-
cies at which the magnon and phonon dispersions cross, we keep the full frequency
dependence of the distribution function at all stages of the calculation. In this re-
spect, our calculation goes beyond previous theories of the spin Seebeck effect, which
approximate the magnon and phonon distribution functions using a Planck-type or
Bose-Einstein-type ansatz [15, 20, 10, 127, 41, 128, 145, 31]. Our theory treats the
boundary between the magnetic insulator and the normal metal (into which the spin
current is emitted) non-perturbatively, which allows us to treat bulk effects and the
accumulation of magnon polarons at the interface to the normal metal on equal
footing.

The magnon-polaron dispersion and the collision integrals are obtained from a
simplified microscopic model of a ferromagnetic insulator. This model consists of
spins placed on a simple cubic lattice, with isotropic Heisenberg exchange interaction
and Zeeman coupling to an external magnetic field, a harmonic lattice potential,
and a pseudo-dipolar anisotropic exchange interaction that couples the spin and
lattice sub-systems. Although the model is highly simplified in comparison to the
complexity of the synthetic ferrimagnetic insulator Yttrium Iron Garnet Y3Fe5O12

(YIG) used in most experiments, having a true model at hand offers the possibility
to have a faithful description of dependences on external parameters, such as the
magnetic field or the temperature. This is an essential requirement for a description
of the singular magnetic-field dependent features of the spin Seebeck coefficient
observed at the critical magnetic fields at which magnon and phonon dispersions
touch [15]. The characteristic momentum dependence of matrix elements of the
magnon-phonon coupling from the anisotropic pseudodipolar interaction also sheds
light on the relative importance of relativistic processes as a function of temperature.

The use of collision integrals obtained from a microscopic model (with param-
eters adjusted to reproduce known properties of YIG) has the advantage that no
phenomenological relaxation terms are needed, such as a stochastic magnetic field
[19, 32, 34, 146] or a relaxation-approximation-type exponential relaxation to the
equilibrium form [35, 20]. This is important, because the use of such phenomeno-
logical relaxation terms may violate conservation laws that apply to the underlying
microscopic processes. To see that such conservation laws can be a true barrier for
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an efficient coupling between the lattice and spin systems, we note that only the
weakest of all elastic and inelastic interactions of the spin and lattice system, the
relativistic and dipole-dipole-based conversion of a phonon into a pair of magnons or
vice versa, is by itself capable of sustaining a spin Seebeck effect with contributions
from all frequencies. Taken separately, none of the other (stronger) interactions,
such as the exchange-based magnon-phonon coupling (which conserves spin), elastic
impurity scattering (which conserves energy), or inelastic three-magnon scattering
(which does not couple to the lattice subsystem) can fully equilibrate lattice and
spin subsystems. It is the interplay of these elastic and inelastic processes that
eventually allows lattice excitations to create an excitation of the spin system that
carries a steady-state spin current. A simple microscopic modeling that obeys the
relevant conservation laws is better suited to describe the magnetic-field and tem-
perature dependences characteristic of this combined effect than a phenomenological
approach.

The predictions of our theory differ in an essential way from previous studies of
the magnetic-field dependence of the spin Seebeck effect at low temperatures. We
find that at experimentally relevant length scales, which are larger than the mean
free paths for magnon-impurity and phonon-impurity scattering, but smaller than
the inelastic relaxation lengths at low temperatures, the dominant mechanism cou-
pling lattice and spin degrees of freedom is impurity-mediated scattering between
different magnon-polaron modes. This impurity-mediated inter-mode scattering is
strongest near the resonance frequencies at which magnon and phonon dispersions
cross. Consequentially, the spin current is carried almost entirely by magnon po-
larons at those frequencies. Previous theories of the spin Seebeck effect explicitly or
implicitly assumed a strong equilibration by inelastic magnon-magnon and phonon-
phonon scattering processes [15, 20, 10, 127, 41, 128, 145, 31], which implies that the
spin current carried by excitations at all frequencies, insofar as they are accessible
for thermal excitation. Such assumption of strong relaxation is valid for high tem-
peratures and large system sizes, but the equilibration length exceeds the system
size at the low temperatures at which the singular features in the magnetic-field de-
pendence of the spin Seebeck effect are observed [15]. In this parameter regime, our
theory predicts a robust peak at the critical magnetic fields at which magnon and
phonon dispersions cross, irrespective of the type of the underlying elastic relaxation
mechanism. The peak arises, because at these magnetic fields the frequency window
that contributes to the spin Seebeck effect is maximized. Our prediction differs from
that of Refs. [15, 20], which predict a peak or a dip, depending on whether magnon-
impurity scattering or phonon-impurity scattering dominates at low temperatures.
Our predictions also differ from our own previous theory for the fully equilibrated
regime [41], although the differences are more subtle.

Whereas the theory presented here treats the frequency dependence of the distri-
bution function exactly, it does make approximations in other respects. The use of
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the Boltzmann equation misses coherences between different magnon-polaron modes,
which can lead to an overestimate of impurity-mediated inter-mode scattering near
the resonance frequencies. This could be a relevant issue at very low temperatures,
at which magnons and phonons are coherent over long distances. If elastic scattering
dominates, such coherence effects can be treated theoretically within a calculation
of the spin Seebeck effect using, e.g., diagrammatic perturbation theory [147] or the
Lindblad approach [148]. At system lengths shorter than the elastic mean free path
or at temperatures high enough that the inelastic relaxation length become shorter
than the elastic mean free paths, the approximation that we only take one isotropic
moment and one anisotropic moment of the distribution function may no longer be
strictly valid. In this case, a systematic quantitative improvement of the theory
can be obtained by keeping higher moments in an expansion in spherical harmonics.
However, as our comparison for the ballistic regime has shown, see App. B.7, the
quantitative error associated with the use of a simplified angular dependence with
one isotropic and one anisotropic moment is numerically small.

In the implementation of our formalism, we assumed that the magnon and
phonon dispersions are isotropic. This is consistent with known properties of YIG
in the long-wavelength limit [83, 149]. Inclusion of magnon-phonon coupling gives a
small anisotropy, which our calculations do account for. When going to higher fre-
quencies and temperatures, in principle, there can also be anisotropy of the magnon
and phonon dispersions in the absence of magnon phonon coupling. If that is the
case, the frequency region in which magnon and phonon dispersions cross will be
enhanced. As a result, the impurity-mediated inter-mode scattering will be strong
over a larger range of frequencies, leading to an enhancement of the spin Seebeck
effect at short system sizes. At high temperatures, excitation of zone-boundary
phonons or optical phonons (and, eventually, excitation of zone-boundary magnons
and optical magnons and the appearance of Umklapp processes) will become impor-
tant. Our lattice-based formulation of the Boltzmann theory should in principle be
able to deal with this regime, although the simplified microscopic lattice model of
Sec. 3.2 will need to be refined [131, 150, 151, 145].

Our formalism can also be used to study the spin Seebeck effect in the “nonlo-
cal” geometry [30, 9, 10, 12], in which the driving source is the injection of magnons
from a second normal metal, instead of the injection of phonons from an insulating
non-magnetic heat bath. Low-temperature measurements of the nonlocal spin See-
beck effect, showing anomalous features at the critical magnetic fields, were recently
reported [13]. The frequency-resolved theory can further be applied to model other
manifestations of magnon-polaron formation, such as the accumulation of magnon
polarons in the spectral region near the resonant frequencies after parametric ex-
citation of magnons [123], anomalies in the spin pumping efficiency at resonance
frequencies [124], or the direct observation of wave-like excitation in the lattice
subsystem after excitation of the spin subsystem [125], where a frequency-resolved
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description is natural and essential.
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4
Conclusions and Outlook

This thesis dealt with the coupled transport of spin waves and lattice vibrations
in ferromagnetic insulators. We found that the Boltzmann approach is suitable
to analyze both the weak-coupling regime as well as the strong coupling between
magnons and phonons which leads to the formation of hybridized magnon polaron
modes.

In Chapter 2 we constructed a Boltzmann theory for weakly coupled magnons
and phonons. We explicitly accounted for magnon-phonon interaction in the collision
integrals and separated between spin-conserving and spin-nonconserving collisions.
The interaction amplitudes of the collisions are based on a set of phenomenologi-
cal models that derive from the magneto-elastic theory [86, 80, 38] and Heisenberg
exchange interaction. The inelastic magnon-magnon and phonon-phonon interac-
tions were treated implicitly. We assumed that these interactions are strong enough
to enforce a local equilibrium with respect to the corresponding collision integrals
at any time. This greatly reduced the complexity of the magnon and phonon dis-
tribution functions. The Boltzmann equation simplified to a set of four coupled
“hydrodynamic” equations – two for the isotropic nonvanishing moments, identified
as the magnon and phonon temperature deviations from the equilibrium tempera-
ture ∆Tm,p and two for the nonvanishing anisotropic moments, identified as (aver-
aged) momentum densities vm,p. Impurity interaction and magnon-phonon collisions
cause further relaxation of the distributions. Together with a set of boundary con-
ditions for the insulator–ferromagnet and the ferromagnet–normal metal interfaces,
we evaluated the spin pumping to the normal metal perturbatively, using insulating
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boundaries for the spin system at both interfaces.

We found that the direct conversion process of phonons to magnons causes sharp
features in the magnon-phonon collision rate around two magnetic fields where the
magnon and (longitudinal/transverse) phonon dispersion have touching points, see
Figure 2.2. These features also translated into the final expression for the spin
Seebeck effect and agreed qualitatively with the experimental findings of Kikkawa
et al. [15].

In contrast to the coherent theory by Flebus et al. [20], in our model the dis-
tinction if those features are dips or peaks did not only depend on the relative
magnitude of the magnon and impurity lifetimes but also on the (thermal) magnon-
phonon mean free path and the length of the ferromagnet. We found that for short
systems of experimentally relevant length-scales ∼ µm there are peaks in the spin
Seebeck signal while for longer system sizes dips occur.

In our calculations, we implied strong inelastic magnon-magnon and phonon-
phonon coupling, hence the model applicability generally increases with tempera-
ture. Although the results can technically also be extrapolated to low tempera-
tures, there is no a priori justification for the model to be valid at low temperatures
as impurity scattering is the dominating source of scattering at low temperatures
[43, 101]. Elastic impurity scattering conserves the energy of the magnons/phonons
and thus can’t distribute energy among magnons and phonons. As the magnons are
too good approximation confined to the ferromagnet and excited almost exclusively
by phonons via magnon-phonon interaction this leads to singularities in the magnon
distribution near the frequencies where the magnon and phonon dispersions cross
and the magnon-phonon interaction is drastically enhanced. To cover these singu-
larities in the magnon distribution additional terms in the power series expansion
(2.16) of the distribution function should be included in the evaluation. There is no
controlled way to predict a priori how many additional terms have to be added to
the expansion until it converges.

Thus, in Chapter 3 we entirely released the assumption of strong magnon-magnon
and phonon-phonon background interaction and instead kept the full frequency de-
pendence of the isotropic and anisotropic moments (still accounting for one isotropic
and one anisotropic moment in the expansion, which is valid for systems larger than
the respective magnon-impurity and phonon-impurity rates) in the magnon and
phonon distribution functions (3.44). To emphasize the importance of magnon-
phonon coupling we set up a microscopic lattice model, based on a Heisenberg
Hamiltonian, a harmonic lattice potential, and pseudo-dipolar exchange coupling,
that reproduces the phenomenological theory in the continuum limit [86, 78, 80] (i.e.
it reproduces the long-wavelength limits of the magnon and phonon dispersions as
well as the magnon-phonon collision integrals) and gives additional insight in the
underlying scattering mechanism on a microscopic level. In extension to the model
in Chapter 2, we accounted for the one-magnon-one-phonon interaction in the cal-
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culation of the eigenmodes of the magnon-phonon Hamiltonian instead of treating
it as a weak coupling in the collision integrals. This is motivated by the divergence
of the phonon-to-magnon collision rate at the critical magnetic fields where the dis-
persions have touching points, see Figure 2.2. The resulting hybridized eigenmodes
describe mixed-states of magnons and phonons, referred to as “magnon polarons”.
Flebus et al. [20] restricted their analysis of the spin Seebeck effect to the evalu-
ation of the bulk magnon spin current in the ferromagnet. We also evaluated the
contributions from the reservoirs to the spin Seebeck effect. The interaction of the
magnon polarons in the ferromagnet with the metal and the isolator reservoirs at the
connecting interfaces was derived non-perturbatively from the magnon and phonon
equations of motion in the discrete lattice model by matching the (conserved) en-
ergy currents at the interfaces. These microscopic boundary conditions extend the
phenomenological Kapitza interface resistances [98, 99, 19, 33].

To apply our theory to experiments that suggest significant importance of magnon-
phonon interaction, we quantitatively described magnetic-field dependence measure-
ments of the longitudinal spin Seebeck effect at low temperatures. Previous theories
imply strong magnon-magnon and phonon-phonon interaction that re-distributes
energy among the magnon-polaron modes. Consequentially, the spin current is car-
ried by polarons of all thermally accessible frequencies. This holds even for low
temperatures and small system sizes where the mean free path of inelastic scatter-
ing processes far exceeds the experimentally used lengths of the ferromagnet, see
Figure 3.3. These system lengths are typically still larger than the mean free paths
of the magnon-impurity and phonon-impurity interactions such that the spin cur-
rent is driven exclusively by magnon polarons near the magnon-phonon resonance
frequencies where the impurity mediated heating of the magnons by phonons is
strongest, see Figure 3.7. For such systems, we predicted persistent peaks in the
spin Seebeck current independent of the magnetic and acoustic qualities of the fer-
romagnet. This is contrary to the theory by Flebus et al. who predict peaks for
acoustic clean samples and dips for magnetic clean ones whereas the peaks vanish
if the acoustic and magnetic qualities are the same. As a result, we concluded that
the type (dips/peaks) of the features in the spin Seebeck coefficient does not allow
any conclusions about the quality of the sample. When going to larger temper-
atures and system lengths where inelastic magnon-magnon, phonon-phonon, and
two-magnon-one-phonon scattering becomes relevant, we predicted that the most
efficient re-distribution of energy among magnon polarons is due to a combination
of spin-conserving four-magnon and two-magnon-one-phonon interaction. This en-
ergy re-distribution activates the whole frequency spectrum of magnon polarons to
contribute to the spin current and can significantly enhance the spin Seebeck effect.

Our theory is not limited to the study of the longitudinal spin Seebeck effect but
can be extended and be applied to other interesting phenomena. In acoustic (long-
range) spin pumping experiments [25, 26, 27] the phonons in the ferromagnet are
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not excited thermally by contact to a heat reservoir but rather by (mode-selective)
acoustic waves. By keeping the full frequency dependence in our Boltzmann the-
ory, we can model strongly frequency-dependent transport in more detail compared
to the low-order Legendre-polynomial expansions [35, 37, 20] that truncate the fre-
quency dependence of the distribution functions to a small set of polynomials. Other
interesting applications are non-local spin Seebeck setups [30, 9, 10, 12, 31] and sys-
tems where the magnons in the ferromagnet are directly excited via spin pumping
and magnetization dynamics of adjacent materials through the boundaries. Both
setups can be investigated within the developed Boltzmann approach with only a
few adjustments to the boundary conditions in Section 3.3.4.

The ferromagnetic description of YIG (which is a ferrimagnetic insulator) is
limited to low temperatures [83]. For room-temperature measurements, optical
magnons are excited and contribute significantly to the magnon transport [152, 153].
Recently, the spin Seebeck effect was observed in antiferromagnetic insulators Cr2O3

[75, 154, 155], MnF2 [76], FeF2 [77], and Fe2O3 [154]. To describe the spin Seebeck
effects in these materials our model can be extended by adding a second sub-lattice
to describe spin-caloric transport in antiferromagnets and ferrimagnets. In contrast
to a single-lattice ferromagnetic insulator where magnetization-conserving Heisen-
berg exchange interaction can not lead to a spin current by itself, in a two sub-lattice
antiferromagnet it still conserves the total magnetization but allows for spin trans-
fer between the sub-lattices which leads to spin currents within the sub-lattices
[156, 157, 158, 159].

So far we focused our study on steady-state situations which led to a time-
independent spin current in the ferromagnet. Seifert et al. [17] measured the spin
Seebeck effect in a YIG–Pt bilayer that is generated in response to heating up the
Pt with ultrashort laser pulses. They observed an instantaneous spin Seebeck effect
in response to the normal metal heating as the temperature difference between
magnons in YIG and electrons in Pt, which governs the spin Seebeck effect, see
Eq. (A.6), which leads to an immediate response. To investigate the role of the
magnons in the ferromagnet to the time-scales of the SSE, we suggest that heating
up the magnons on the other end of the ferromagnetic sample directly or indirectly
via the phonon system is leads to more insight into the role of the magnons (and
of the magnon-phonon coupling). Similar measurements by Kimling et al. [16] and
Jamison et al. [18] who also heated up the Pt in a Yig–Pt spin Seebeck setup also
observed an instantaneous spin Seebeck effect which they addressed to the rapidly
generated temperature bias ∆Tm −∆Te between magnons and electrons at the FN
interface. In addition Jamison et al. observed that there is a second timescale
∼ 100µs involved where the spin Seebeck voltage further increases until saturation.
They addressed this to a contribution from the magnon chemical potential. With
the extension of our model in Chapter 2 by a magnon chemical potential as in Ref.
[37], the Boltzmann theory in Chapter 2 can be used to describe the time-scales of
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the spin Seebeck effect beyond a simple two-temperature model used in Ref. [18].

Reviewing Chapter 2, in the Boltzmann equation (2.26)-(2.29) we already intro-
duced the full time-dependent components to the Boltzmann equation. This allows
us to theoretically study the effect of spin conserving and spin nonconserving scatter-
ing on the temporal evolution of the spin Seebeck effect. Without spin-nonconserving
scattering the Planck-like distribution function of the magnons, characterized by a
temperature Tm is extended by a magnon chemical potential µm [37] towards a Bose-
like distribution whereas the phonons are still governed by a Planck-like distribution
as a consequence of dominating three-phonon interaction. Magnon-number conserv-
ing two-magnon-phonon interaction leads to an energy transfer from the phonon into
the magnon system without affecting the net magnetization. In a steady-state situa-
tion this led to a re-distribution of magnons from low to high frequencies, see Figure
3.11 in Chapter 3, which also affected the frequency-resolved spin current jsx(ω).
In combination with spin-nonconserving scattering, these magnon-phonon collisions
can have a significant effect on the spin Seebeck effect for system sizes longer than
the corresponding magnon-phonon mean free path. In contrast, this process alone
is not able to create a net spin current, as can be seen after integration of the
spin current jsx(ω) over all frequencies, see Figure 3.13. In a time-dependent setup,
the re-distribution of magnons simultaneously affects the magnon temperature and
chemical potential in such a way that the magnon number does not vary. As the
magnon temperature and the magnon chemical potential both contribute to the spin
Seebeck effect [37] with different spin pumping contributions, in contrast to a steady-
state, we predict a finite time-dependent transient spin Seebeck effect even in a pure
Heisenberg ferromagnet where only spin-conserving scattering is present. Relativis-
tic effects like anisotropic exchange and dipole-dipole interactions do not conserve
the number of magnons and relax the magnetization via spin non-conserving scat-
tering which leads to an additional spin current. Studying the time scales on which
both processes contribute to the spin Seebeck effect is important to understand the
time-dependent spin Seebeck effect phenomena.

The study of these effects poses interesting ideas for the expansion of the work
presented in this thesis and future research.
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A
Appendices Chapter 2

A.1 Magnon-electron coupling at FN interface

As in the main text of chapter 2, we consider a ferromagnetic insulator occupying the
region −LF < x < 0, coupled to a normal metal at 0 < x < LN. If the normal metal
is at zero temperature, the spin current density at the ferromagnetic insulator–metal
interface is [50]

jsx =
~
4π

gr
A
〈m× ṁ〉x , (A.1)

where gr is the real part of the spin-mixing conductance and m is a unit vector
pointing in the direction of the magnetization at the interface. (We omit a sec-
ond contribution to jsx, which is proportional to the imaginary part of the spin-
mixing conductance and vanishes upon time averaging.) Expressing m(r) in terms
of magnon creation and annihilation operators a†(r) and a(r) for a macrospin of
magnitude S located at position r and normal ordering, one finds

〈m(r)× ṁ(r)〉x =
i

S
〈ȧ(r)†a(r)− a(r)†ȧ(r)〉. (A.2)

Substituting the mode expansion

a(r) =
∑
k

√
2− δk,0
N

cos(kxx)eikyy+ikzzak, (A.3)
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INTERFACE

where N is the number of macrospins in the ferromagnetic insulator and the position
r is taken at the center of the unit cell, we find, for r at the ferromagnetic insulator–
normal metal interface at x = 0,

〈m(r)× ṁ(r)〉x =
2

NS

∑
k

(2− δk,0)εk
~

b0k, (A.4)

so that

jsx =
gr
πAS

1

2N

∑
k

(2− δk,0)εkb0k. (A.5)

If the normal metal is at a finite temperature, the net spin current across the
ferromagnet–normal metal interface is the sum of the spin current (A.5) and a coun-
terflow temp given by the same expression, but with the magnon temperature Tm
replaced by the electron temperature Te. Hence, with a small temperature difference
∆T = Tm − Te between normal metal and ferromagnetic insulator, one finds

jsx = −S ′m∆T, (A.6)

with

S ′m =
gr
πAS

1

2N

∑
k

(2− δk,0)εk
db0k
dT

. (A.7)

This is the same expression as Eq. (2.33) of the main text, where the limit of a
macroscopic sample with no exception for k = 0 was taken.

A.2 Simple model for magnon-electron coupling

at FN interface

To make the general expression (A.7) concrete, we describe the interface between
a ferromagnetic insulator (for x < 0) and a normal metal (for x > 0) using the
Hamiltonian

H =
~2(p2 − p2F)

2m
+ V (x) + JsdS(r) · σ, (A.8)

where p is the electron wavevector, pF the Fermi wavenumber, m the electron mass,
Jsd the sd exchange interaction between conduction electrons and localized spins,
V (x) a potential chosen such that V (x) = V0 > ~2p2F/2m in the ferromagnetic
insulator (for x < 0) and V (x) = 0 in the normal metal (for x > 0), see Fig. A.1.
The spin operator

S(r) =
1

Va

∑
j

Sjδ(r− rj), (A.9)
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FMI NM

Figure A.1: Simple interface model: Electrons incident from the normal metal
(x > 0) reflect from the ferromagnetic insulator with a scattering phase shift ϕ±
for majority (+) and minority (−) electrons. The ferromagnetic insulator is mod-
eled by a band offset V0 larger than the Fermi energy, ensuring that the electron
wavefunction decays exponentially inside the insulator.

where Sj is the macrospin operator and Va is the size of the unit cell. For small
deviations from a uniform magnetization in the z direction we may write

Sjz = S, Sj+ =
√

2Sa(rj), Sj− =
√

2Sa(rj)
†, (A.10)

where rj is the center of the jth unit cell, S is the size of the macrospin, and a(r)
the magnon operator, which has the mode expansion given in Eq. (A.3). For this
model, we now calculate the mixing conductance gr and the spin current jsx(0).

Calculation of the mixing conductance.— The wavefunction of an electron with
wavevector p‖ to the interface, |p| = pF, and spin ± is

ψ±(x) =

√
2

VN
eip‖·r ×

{
cos(pxx+ ϕ±) if x > 0,
eq±x cosϕ± if x < 0,

(A.11)

where VN is the volume of the normal metal, q2± = 2m(V0 ± SJsd) − p2x, tanϕ± =
−q±/px, and p2x = p2F − p2‖. Replacing S(r) by Sez, we find for the real part of the
mixing conductance

gr = 2
∑
p‖

sin2(ϕ+ − ϕ−)

≈ 2
∑
p‖

(SJsd)2p2x
V 2
0 (2mV0 − p2x)

, (A.12)

where in the second equality we expanded to second order in Jsd.
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Calculation of the spin current jsx(0).— We calculate the spin current to order
J2
sd using the Fermi Golden rule. From the matrix element

〈ψ′−, nk − 1|H|ψ+, nk〉 =
p2xJsd

√
S

mV0LN

√
N(2mV0 − p2x)

×√nk δp′‖=p‖+k‖ , (A.13)

where |ψ+, nk〉 (|ψ′−, nk−1〉) is a state with an electron of spin + (−) and transverse
wavevector p‖ (p′‖) and nk (nk−1) magnons in the model labeled by the wavevector

k. In the calculation of the matrix element (A.13) we assumed that all magnon
momenta are small in comparison to the Fermi momentum, so that we may neglect
the change of the magnitude of the longitudinal wavevector component px of the
electrons upon absorption of a magnon, and we neglected the exception arising from
the different normalization of the k = 0 magnon mode (see App. A.1). From the
Fermi Golden rule we then obtain the spin current

jsx(0) =
1

πAS

∑
p‖

2(SJsd)2p2x
V 2
0 (2mV0 − p2x)

( 1

N

∑
k

εk
db0k
dT

)
∆T, (A.14)

consistent with Eq. (A.7).
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B.1 Lattice model for magnon polarons

In this appendix we give the expressions for the Fourier representation of the lattice
model in Section 3.2.1. The equations of motion for the Fourier-transformed lattice
displacement uq, momentum pq, and magnetization amplitude nq are

u̇q =
∂H

∂p−q
, ṗq = − ∂H

∂u−q
, ṅq = −e× ∂H

∂n−q
. (B.1)

Without the restriction of long-wavelengths q → 0 the general expressions for the in-
teraction matrices B(q), K(q), and D(q) in the Fourier-transformed magnon-phonon
Hamiltonian (3.13) for the full lattice model read, for the magnon energy,

B(q) = 2JS
∑
α

(1− cos qαa) + µB, (B.2)

for the phonon energy,

K(q) = 2
∑
α,β

[
Kαβ(1− cos qαa) +K′αβ sin(qαa) sin(qβa)

+K′′αβ(1− cos(qαa) cos(qβa))
]
, (B.3)
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with the indices α and β summed over the three coordinate directions x, y, and z,
and

Kα = (K1eαe
T
α +K21)δα,β,

K′αβ =
1

2
K1(eαe

T
β + eβe

T
α),

K′′αβ =
1

2
K1(eαe

T
α + eβe

T
β ), (B.4)

and for the magnon-phonon coupling

D(q) =
2iS3/2

a5/2

∑
α

{
D[(e · eα)1 + eαe

T]

+

(
D′

a
− 2D

)
(e · eα)eαe

T
α

}
sin qαa. (B.5)

Applying the long-wavelength approximation q → 0 recovers the continuum theory
expressions (3.14), (3.16), and (3.17) in the main text.

B.2 Magnon-polaron Hamiltonian

Symmetries of the magnon-polaron Hamiltonian.— The 8-component column vector
bq of Eq. (3.27) and the 8×8 hermitian matrix Hq of Eq. (3.28) satisfy the symmetry
conditions

b−q = Σ1b
∗
q, H−q = Σ1H

∗
qΣ1, (B.6)

where

Σ1 =

(
0 1
1 0

)
. (B.7)

The symplectic matrix Vq and the diagonal matrix Ωq that diagonalize Hq, see Eq.
(3.30), satisfy the conditions

Σ1Ω−qΣ1 = Ωq,

Σ3V
†
qΣ3 =V −1q ,

Σ1V−qΣ1 =V ∗q , (B.8)

with

Σ3 =

(
1 0
0 −1

)
. (B.9)

In addition to the symplectic structure outlined above, the Hamiltonian Hq

satisfy the symmetry condition

H−q = IHqI
†, (B.10)
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where

I =


13

−1
13

−1

 . (B.11)

Since I commutes with Σ1 and Σ3, it follows that

V−q = IVq, Ω−q = Ωq. (B.12)

Together with the conditions (B.8), this implies that

V ∗q = IΣ1VqΣ1, ωq,λ = ω−q,λ. (B.13)

Symplectic diagonalization.— To (numerically) diagonalize the positive definite
hermitian matrix Hq using the symplectic matrix Vq that satisfies the condition
(B.8), we first consider the non-hermitian matrix Σ3Hq and diagonalize it with the
8× 8 matrix V ′ as (we omit the subscript q in the following equations)

Σ3H =
1

2
V ′Σ3ΩV

′−1. (B.14)

Since H is hermitian, Σ3H = Σ3H
† and we have

Σ3H =
1

2
Σ3(V

′†)−1Σ3ΩV
′†Σ3. (B.15)

Uniqueness of the diagonalization of a matrix then implies that

DΣ3V
′−1 = V ′†Σ3, (B.16)

where D is a diagonal matrix. Moreover, D is positive definite, so that we may write
D = P−2, with P a diagonal matrix. It follows that

Σ3 = (Σ3V
′P )†Σ3(Σ3V

′P ). (B.17)

One then easily verifies that the matrix V = Σ3V
′P diagonalizes H via

H =
1

2
V ΩV † (B.18)

and satisfies the condition (B.8).
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B.3. MAGNON-PHONON COUPLING FROM
MAGNETO-ELASTIC THEORY

B.3 Magnon-phonon coupling from

magneto-elastic theory

Here, we review the magneto-elastic theory of magnon-phonon interaction and show
how microscopic magnon-phonon Hamiltonians from magnetic dipole-dipole inter-
action and magnetic anisotropy compare to it.

Magneto-elastic coupling— Based only on symmetry considerations in a contin-
uous medium Kittel [136] and Kaganov et al. [86, 87] proposed a phenomenological
magneto-elastic coupling energy. The leading-order contribution to magnon-phonon
coupling in the presence of a cubic symmetry takes the form

Hme =

∫
dV

a3

∑
α,β

Bαβeαβsα(r)sβ(r), (B.19)

where s(rj) is the continuous spin density in the long-wavelength limit, eαβ =
(1/2) (∂βuα + ∂αuβ) the symmetrized strain tensor, the integral is over the volume
V of the magnetic insulator, and Bαβ = B1δαβ +B2(1− δαβ) is the magneto elastic
coupling tensor. The constants B1 and B2 are material-specific constants describing
the strength of the magneto-elastic coupling. For YIG these constants were fitted
to magnetostriction experiments at 300 K [141] as B1 = 0.08J and B2 = 0.16J .

The magneto-elastic Hamiltonian (B.19) can be written in terms of magnon
and phonon creation and annihilation operators by applying Eqs. (3.4) and (3.23).
Taking the magnetization direction e in the (111) direction, we can compare the
magneto-elastic Hamiltonian with the magnon-phonon Hamiltonian obtained for a
simple cubic lattice model with nearest-neighbor pseudo-dipolar exchange interac-
tions, see Sec. 3.2.1. Comparing Eq. (B.19) with Eq. (3.9) shows that the two
Hamiltonians agree if we set B1 = aD′ and B2 = 2D.

We now discuss two additional contributions to the microscopic simple cubic
spin model of Sec. 3.2.1 that also lead to magnon-phonon coupling and that can
easily be included into the phenomenological magneto-elastic Hamiltonian: an on-
site magnetic anisotropy and the long-range dipole-dipole interaction. The numer-
ical evaluations reported in this article are obtained without these two additional
contributions.

On-site magnetic anisotropy.— A model with cubic symmetry allows an on-site
magnetic anisotropy term of the form [136]

Ha =
∑
〈i,j〉

Kij(Si · eij)2, (B.20)
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where eij is the unit vector connecting nearest-neighbor lattice sites i and j and
the coupling constant Kij depends on the direction of eij and the distance |ri − rj|
between the sites i and j. Although such a magnetic anisotropy term does not affect
the magnon dispersion in a system with cubic symmetry, there is a magnon-phonon
interaction resulting from it. Passing to the continuum limit, we find that the on-
site anisotropy Hamiltonian (B.20) yields the same magnon-phonon coupling as the
pseudo-dipolar exchange coupling (3.9) with the on-site anisotropy constants chosen
as K = D and K ′ = D′, where K ′ = dKij/d|ri − rj|.

Dipole-dipole interaction— The weak but long-range dipole-dipole coupling be-
tween magnetic dipoles corresponds to the Hamiltonian

Hdi =
1

2

∑
i,j

µ2

r3ij

[
Si · Sj −

3

r2ij
(Si · rij)(Sj · rij)

]
, (B.21)

where rij = |ri−rj| and µ = gµB is the magnetic moment of the spins. The summa-
tion is over all pairs of lattice sites (i, j), irrespective of their distance. In contrast
to the Heisenberg Hamiltonian, the interaction strength does not only depend on
the length of the bond between the spins, but also on the angle of the spins with the
connecting bonds. Expanding the dipole-dipole coupling to first order in the lattice
displacements ui we find a Hamiltonian of the same structure as (B.19). Evaluating
the summation over pairs of lattice sites and taking the continuum limit, the coupling
strength converges towards Bd

1 = (9π/4)µ2/a3 and Bd
2 = −(3π/2)µ2/a3. Comparing

the strength of the dipole-dipole interaction to the magneto-elastic constants B1,2

we see that the dipole-dipole interaction makes up for a fraction of roughly 5% of
the measured magneto-elastic constants in YIG, in agreement with the estimate of
Ref. [139].

B.4 Interface and boundary conditions

Solutions at fixed frequencies.— The frequency ω and the transverse component
q⊥ = qyey + qzez of the wavevector are conserved at the interfaces. To prepare
for the calculation of the transmission and reflection coefficients of the IF and FN
interfaces, we therefore need to construct wave-like solutions of the equations of
motion (3.11) at fixed ω and q⊥. In general such solutions are of the form

uj(t) =
∑
ν

cνuω,q⊥,νe
iq(ν)·rj−iωt,

nj(t) =
∑
ν

cνnω,q⊥,νe
iq(ν)·rj−iωt, (B.22)
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where we write q(ν) = qx(ν)ex + q⊥ for the wavevector of the mode ν. In all cases
the momentum amplitude pj follows from the equalities p = −imωu, so that the
momentum amplitude needs not be considered explicitly.

For each combination (ω,q⊥) there are ten such solutions, five of which are prop-
agating or exponentially decaying in the positive x direction and five are propagating
or exponentially decaying in the negative x direction. At least one out of each set
of modes that propagate in the positive and negative directions, respectively, is de-
caying [110]. Exponentially decaying solutions have a complex wavenumber qx. We
label the ten solutions by the composite index ν = (n,L/R) where n = 1, 2, 3, 4, 5.
The label L is used for solutions that are propagating or exponentially decaying in
the positive x direction; the label R is for solutions that are propagating or expo-
nentially decaying in the negative x direction.

The equations of motion determine the prefactors uω,q⊥,ν and nω,q⊥,ν up to an
over-all factor. For the propagating modes, we fix this factor by requiring that the
energy current carried by that mode is |cν |2 for right-moving modes and −|cν |2 for
left-moving modes. The expression for the energy current is, after averaging over
one period and using the Fourier representation (3.12),

J =
1

2Nxa

∑
q

Im

[
ṅ∗q ·

∂B(q)

∂qx
nq + u̇∗q ·

∂K(q)

∂qx
uq + 2u̇∗q ·

∂D(q)†

∂qx
sq

]
(B.23)

This equation is derived for the lattice model at the end of this appendix. A discus-
sion in the continuum limit can be found in Refs. [140, 110, 160].

IF and FN interfaces.— The magnetic medium F exists for 0 < x < L with
L = Nxa, Nx being the number of lattice sites in the x-direction. At x = L there
is a boundary to a non-magnetic metal N; at x = 0 there is a boundary to a non-
magnetic insulator I.

In both the non-magnetic insulator I and the normal metal N we consider phonon
degrees of freedom only. The phonon degrees of freedom have displacement u′j.
The equation of motion for the phonon modes at fixed frequency ω and transverse
wavevector q′⊥ in I and N is given by the eigensystem solution of a reduced version
of the Hamiltonian (3.26) with H = Hpho and without the magnon amplitudes,

uj(t) =
∑
ν′

c′ν′u
′
ω,q′⊥,ν

′eiq
′(ν′)·rj−iωt (B.24)

for rj in I or N with the mode index ν ′ = (n′,L/R), with n′ = 1, 2, 3. The factors
u′ω,q′⊥,ν′

of the propagating modes are required that the energy current is |cν′ |2 for

right-moving modes and −|cν′|2 for left-moving modes. The expression for the en-
ergy current in I and N is given by Eq. (B.23) without the terms containing the
magnetization amplitude nq.
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The boundary conditions at the IF interface are Eqs. (3.18) and (3.19) of the
main text. The boundary condition (3.19) ensures that the energy current (B.23) is
continuous at the interface. The boundary conditions for the FN interface are given
in Eqs. (3.21) and (3.22) of the main text. In this case, one has to also take into
account that magnons can excite conduction electrons in the normal metal [50, 32],
which leads to the condition that the energy current carried by the magnon mode
is equal to the energy current by the spin current emitted into the normal metal N
by the precessing magnetization at x = L, which is Eq. (3.22) of the main text.

Reflection and transmission coefficients.— Following the ideas of the Landauer-
Büttiker formalism [143], the amplitudes of the normalized coefficients |cν |2 and
|c′ν′|2 which are solutions of the boundary conditions at the interfaces at x = 0
and x = L can be recast in the form of reflection and transmission coefficients
for the propagating fixed-frequency solutions (B.22). These coefficients are written
Rνν′(ω,q⊥) and Tνλ′′(ω,q⊥), where only indices ν, ν ′, and λ′′ that correspond to
propagating modes are considered.

Energy conservation at the IF interface at x = 0 implies the unitarity conditions
(3.74) of the main text. There is no unitarity condition for the FN interface at
x = L because of the possibility that magnons excite the conduction electrons in
the normal metal, which are not accounted for explicitly in our theory. Instead,
we define the probability PνN(ω,q⊥) that a magnon polaron in mode ν emerging
from the FN interface was excited there by an incident spinful excitation of the
conduction electrons in N and the probability PNν(ω,q⊥) that a magnon polaron in
mode ν incident on the FN interface excites a spinful excitation in N by the amount
that the sum of reflection and transmission coefficients differ from one, see Eqs.
(3.76) and (3.77) of the main text.

Energy current density.— To find the energy current J flowing through an in-
terface between x = (j − 1)a and x = ja, we write the lattice Hamiltonian H
as

H = H< +Hj−1,j +H>, (B.25)

where H< and H> consist of all terms in H that contain on-site terms and nearest-
neighbor bond terms entirely within the regions x ≤ (j−1)a and x ≥ ja, respectively,
whereas the Hamiltonian Hj−1,j contains the bond terms that connect these two
regions. We then have

J = Ḣ> = {H>, Hj−1,j}, (B.26)

where {·, ·} is the Poisson bracket. Using the equations of motion for the amplitudes
uj, pj, and nj, this can be recast as

J = −
∑
xi=ja

(
ṗi ·

∂

∂pi
+ u̇i ·

∂

∂ui
+ ṅi ·

∂

∂ni

)
Hj−1,j, (B.27)

where the sum is over all lattice sites i with x = ja. If we substitute the Fourier
representation (3.12) and omit contributions that average to zero after one period,
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we find Eq. (B.23). Alternatively, expressing the energy current in terms of the
phasor amplitudes bq,λ gives

J =
~
L

∑
q

Im

[
3∑

λ,λ′=1

vq,λλ′ ḃ
∗
q,λbq,λ′ + vq,44ḃ

∗
q,4bq,4 − 2

3∑
λ=1

vq,4λḃ
∗
q,4(bq,λ + b∗−q,λ)

]
,

(B.28)

with the velocities

vq,λλ′ = e∗q,λ ·
∂K(q)

∂qx
eq,λ′

√
a6

2m2ω0
q,λω

0
q,λ′

,

vq,4λ = e+ ·
∂D(q)

∂qx
eq,λ

√
a3

2mω0
q,λ

. (B.29)

The diagonal velocities vq,λ ≡ vq,λλ are equal to the phonon group velocities vq,λ =
∂ω0

q,λ/∂qx whereas vq,44 = ∂ω0
q,4/∂qx is the magnon group velocity.

B.5 Inelastic scattering

The main contributions to inelastic magnon and phonon scattering are dominated
by three-magnon, four-magnon, three-phonon, and two-magnon-phonon collisions.
Here we show how these interactions can be obtained as sub-leading corrections
to the isotropic and anisotropic exchange coupling, anisotropic corrections to the
periodic lattice potential, and long-range dipole-dipole coupling.

Three-phonon interaction.— Instead of deriving a microscopic three-phonon in-
teraction from an expansion of the lattice potential, we here use an effective descrip-
tion based on a continuum model [43],

H3p =
1√
V

∑
q,λ

∑
q2,λ2

∑
q′,λ′

U3p,0
qλ,q2λ2;q′λ′

(b∗q,λ + b−q,λ)

× (b∗q2,λ2
+ b−q2,λ2)(bq′,λ′ + b∗−q′,λ′) (B.30)

with the phonon-phonon scattering potential

U3p,0
qλ,q2λ2;q′λ′

=
1

6

(
~a3

2m

)3/2

K ′δq+q2,q′

× qq2q
′√

ω0
q,λω

0
q2,λ2

ω0
q′,λ′

. (B.31)
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In general the anharmonicity constant K ′ = K ′qλ,q2λ2;q′λ′
can itself be a complex

function that depends on the crystal geometry. However it is argued in Ref. [43]
that approximating the anharmonicity by a single momentum- and polarization-
independent number

K ′ ' 1

3a
(K1 + 2K2) (B.32)

is well suited for a simplified study. For our model parameters this givesK ′ ' 2×1010

J/m3.

Three-magnon interaction.— The magnon number non-conserving three-magnon
collisions can be obtained from the sub-leading contributions of the Holstein-Primakoff
expansion (3.4) of the pseudodipolar anisotropic exchange (3.6) and the dipole-
dipole interaction (B.21). Omitting terms that create or annihilate three magnons,
this gives

H3m = − 1√
V

∑
q

U3m,0
q,q2;q′

∑
q2

∑
q′

a∗qa
∗
q2
aq′ (B.33)

with
U3m,0
q,q2;q′

= Upd,0
q,q2;q′

+ Udi,0
q,q2;q′

. (B.34)

The matrix element from anisotropic exchange reads, with the magnetization direc-
tion e along the (111) direction,

Upd,0
q,q2;q′

=
iDS1/2a3/2

3
δq+q2,q′

×
∑
α

[cos(aqα) + cos(aq2α)]w2
α, (B.35)

where we defined
wx = e−2iπ/3, wy = e2iπ/3, wz = 1. (B.36)

The contribution from dipole-dipole interaction is [82, 80]

Udi,0
q,q2;q′

=
√

2π2Msµ3

(
qzq+
q2

+
q2zq2+
q22

)
δq+q2,q′ , (B.37)

with Ms = µS/a3. Although the magnitude of the anisotropic exchange coupling is
larger than the dipole-dipole interaction, due to the equality

∑
αw

2
α = 0 the leading-

order contribution of anisotropic exchange vanishes in the long-wavelength limit, so
that the dipole-dipole contribution is dominant.

Four-magnon interaction.— The magnon number conserving four-magnon colli-
sions derive from the sub-leading contribution of the Holstein-Primakoff expansion
of the Heisenberg exchange coupling (3.3). This gives the well-known expression
[80],

H4m =
1

V

∑
q

∑
q2

∑
q′

∑
q′2

U4m,0
q,q2;q′,q′2

a∗qa
∗
q2
aq′aq′2 (B.38)

114



B.5. INELASTIC SCATTERING

with the symmetrized matrix element in the long-wavelength limit

U4m,0
q,q2;q′,q′2

=
√

2Ja4(q · q2)δq+q2,q′+q′2
. (B.39)

Two-magnon-phonon interaction.— Upon inclusion of exchange-based magnon-
phonon coupling, the magneto-elastic coupling (B.19) is extended by spatial deriva-
tives of the spin density [80],

Hme =

∫
dV

a3

∑
α,β

(Aαβeαβ∂αs · ∂βs + A′αβeαα|∂βs|2), (B.40)

where again all processes allowed by symmetry in a cubic crystal are taken into
account. The coupling tensors are Aαβ = A1δαβ+A2(1−δαβ) and A′αβ = A′(1−δαβ).

In a simple model these processes can be reproduced by nearest and next-nearest-
neighbor Heisenberg exchange coupling (3.3) as well as a next-nearest-neighbor
neighbor transverse exchange coupling due to super-exchange via nearest-neighbors.
As explained in detail in Sec. 3.2.1, magnon-phonon coupling appears when one
takes into account that the magnitudes of the exchange couplings Jij, Dij depend
on the precise positions of the lattice atoms. In a simple cubic lattice, symmetry
requires that for nearest-neighbor sites i and j the isotropic exchange coupling Jij
depends on the distance rij = |ri−rj| only. For small displacements uj of the lattice
atoms, the nearest-neighbor exchange coupling can then be approximated as

J → J + J ′uij · eij, (B.41)

where eij = (ri − rj)/|ri − rj| is the unit vector connecting lattice sites i and j and
J ′ = dJ/drij. We note that in general the strength of the exchange coupling J2
between next-nearest-neighbor spins 1 and 2 not only depends on the displacements
u1 and u2 of the positions of the spins 1 and 2, but (via super-exchange) also on
the displacements u3 and u4 of the two lattice site positions intermediate between 1
and 2. Denoting the corresponding spatial derivatives by J ′2‖ and J ′2⊥, respectively,
we find that upon inclusion of next-nearest-neighbor Heisenberg exchange the sim-
ple cubic model reproduces the full magneto-elastic magnon-phonon Hamiltonian
(B.40), with

A1 =
a3

2
J ′ +

a3√
2

(2J ′2‖ + J ′2⊥),

A2 =
a3√

2
(2J ′2‖ − J ′2⊥),

A3 =
a3

2
√

2
(2J ′2‖ + J ′2⊥). (B.42)
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We specialize to an isotropic medium [87] with the choice A1 = A2 and A3 = 0. This
can be achieved by choosing the Heisenberg exchange constants as J ′2⊥ = −2J ′2‖ and

J ′2‖ = J ′/4
√

2. We find a magnon-phonon Hamiltonian of the form

Hmp =
1√
V

∑
q,λ

∑
q2

∑
q′

Ump,0
q,q2λ;q′

b∗q2,4
(b∗q,λ + b−q,λ)bq′,4 (B.43)

with
Ump,0
qλ,q2;q′

= U ex,0
qλ,q2;q′

+ Upd,0
qλ,q2;q′

. (B.44)

In the continuum limit the matrix element from Heisenberg exchange reads

U ex,0
qλ,q2;q′

= J ′Sa3

√
~a3

8mω0
q,λ

i[(eq,λ · q′)(q · q2)

+ (eq,λ · q2)(q · q′)]δq+q2,q′ , (B.45)

whereas the contribution from anisotropic exchange is

Upd,0
qλ,q2;q′

= −iD
√

2~S2a3

mω0
q,λ

∑
α 6=β

qαeqλ,β. (B.46)

To find a numerical value for the coupling constant J ′, we approximate J ′ ≈ J/a.

Relativistic two-magnon-phonon interaction.— As the anisotropic exchange Hamil-
tonian does not conserve spin, besides the spin-conserving two-magnon-phonon con-
tribution it also yields processes where a phonon is converted into two magnons
via

Hrel =
1√
V

∑
q,λ

∑
q′

∑
q′2

U rel,0
qλ;q′,q′2

b∗q,λbq′,4bq′2,4. (B.47)

The matrix element in the long-wavelength limit is

U rel,0
qλ;q′,q′2

= − i
√

~S2a3

18mω0
q,λ

∑
α,β

qαwαwβeqλ,β[2D(1− δα,β)− aD′δα,β], (B.48)

where we again chose the magnetization direction e along the (111) direction.

Angle-independent models.— For a numerical computation of the inelastic re-
laxation rates, we replace the matrix elements of these four inelastic interaction
channels by a phenomenological model, for which the matrix elements become sta-
tistical quantities with zero mean and with a variance chosen in such a way that the
angle-averaged transition rates are the same as for the microscopic model. Specifi-
cally, for the three-phonon interactions, we set

〈|U3p,0
qλ,q2λ2;q′λ′

|2〉 = |u3p(ω0
q, ω

0
q2

;ω0
q′)|2, (B.49)
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where the variance |u3p(ω0
q, ω

0
q2

;ω0
q′)|2 is given by

|u3p(ω, ω2;ω
′)|2 =

1

V 3Ep,00 (ω)Ep,00 (ω′)Ep,00 (ω2)

∑
q,λ

∑
q2,λ2

∑
q′,λ′

|U3p,0
qλ,q2λ2;q′λ′

|2

× δ(ω − ω0
q,λ)δ(ω2 − ω0

q2,λ2
)δ(ω′ − ω0

q′,λ′), (B.50)

where, on the right-hand side of this equation, the matrix element U3p,0
qλ,q2λ2;q′λ′

is

taken from the microscopic model, see Eq. (B.31). The density of states Ep,00 is
defined as

Ep,00 (ω) =
1

V

∑
q,λ

δ(ω − ω0
q,λ). (B.51)

By construction, in the absence of magnon-phonon coupling this change of the model
results in the same relaxation matrix G0 as the microscopic model (B.31).

Similarly, for the three-magnon interaction, the four-magnon interaction, and
the two-magnon-phonon interaction we set

〈|U3m,0
q,q2;q′

|2〉 = |u3m(ω0
q, ω

0
q2

;ω0
q′)|2,

〈|U4m,0
q,q2;q′,q′2

|2〉 = |u4m(ω0
q, ω

0
q2

;ω0
q′ , ω

0
q′2

)|2,
〈|Ump,0

qλ,q2;q′
|2〉 = |ump(ω0

q, ω
0
q2

;ω0
q′)|2,

〈|U rel,0
qλ;q′,q′2

|2〉 = |urel(ω0
q;ω0

q′ , ω
0
q′2

)|2, (B.52)

with

|u3m(ω, ω2;ω
′)|2 =

1

V 3Em,00 (ω)Em,00 (ω′)Em,00 (ω2)

∑
q

∑
q2

∑
q′

|U3m,0
q,q2;q′

|2 (B.53)

× δ(ω − ω0
q,4)δ(ω2 − ω0

q2,4
)δ(ω′ − ω0

q′,4),

|u4m(ω, ω2;ω
′, ω′2)|2 =

1

V 3Em,00 (ω)Em,00 (ω′)Em,00 (ω2)Em,00 (ω′2)

∑
q

∑
q2

∑
q′

∑
q′2

|U4m,0
q,q2;q′,q′2

|2

× δ(ω − ω0
q,4)δ(ω2 − ω0

q2,4
)δ(ω′ − ω0

q′,4)δ(ω
′
2 − ω0

q′2,4
),

|ump(ω, ω2;ω
′)|2 =

1

V 3Ep,00 (ω)Em,00 (ω′)Em,00 (ω2)

∑
q,λ

∑
q2

∑
q′

|Ump,0
qλ,q2;q′

|2 (B.54)

× δ(ω − ω0
q,λ)δ(ω2 − ω0

q2,4
)δ(ω′ − ω0

q′,4),

|urel(ω;ω′, ω′2)|2 =
1

V 3Ep,00 (ω)Em,00 (ω′)Em,00 (ω′2)

∑
q,λ

∑
q′

∑
q′2

|U rel,0
qλ;q′,q′2

|2 (B.55)

× δ(ω − ω0
q,λ)δ(ω

′ − ω0
q′,4)δ(ω

′
2 − ω0

q′2,4
).

As before, the matrix elements U3m,0
q,q2;q′

, U4m,0
q,q2;q′,q′2

, Ump,0
qλ,q2;q′

, and U rel,0
qλ;q′,q′2

on the

right-hand side of this equation are taken from the microscopic models, see Eqs.
(B.34), (B.39), (B.44), and (B.48), respectively.

117



APPENDIX B. APPENDICES CHAPTER 3

This replacement is motivated by practical considerations — since the absence of
an angular dependence considerably simplifies the calculation of the inelastic rates
— but also by the physical consideration that as long as impurity scattering is the
dominant scattering process, the propagation direction of magnon-polaron modes is
subject to fast fluctuations, calling for an effective description in terms of frequencies
only. For the implementation in the angular summations in Eq. (3.71) we replace
the frequency arguments ω0

q,λ of the phonon modes and ω0
q,4 of the magnon mode

by the frequency ωq,ν of the corresponding magnon-polaron mode.

B.6 No magnon-phonon coupling

Without magnon-phonon coupling and without inelastic processes, phonon and
magnon modes obey separate linearized Boltzmann equations.

Magnons.— For the magnon mode, we denote the isotropic and anisotropic mo-
ments of the linearized distribution function by ψ0,m(ω) and ψ1,m(ω), respectively.
The linearized Boltzmann equation for these moments reads

∂ψ1,m(ω)

∂x
= 0,

∂ψ0,m(ω)

∂x
= − G1m(ω)ψ1,m(ω), (B.56)

with

G1m(ω) =
vm(ω)

3lmi(ω)
, (B.57)

where the magnon-impurity length lmi(ω) is given in Eq. (3.57) and the magnon
group velocity vm(ω) = ∂ωm(q)/∂q, with ωm(q) = µB + JSa2q2 the magnon fre-
quency.

The magnon mode is fully reflected at the interface at x = 0,

Rm,m(ω,q⊥) = 1, (B.58)

whereas at the FN interface at x = L,

Rm,m(ω,q⊥) = 1− P4N(ω,q⊥)

=

∣∣∣∣4πMsJSa
2qx(ω,q⊥)− µωσ↑↓

4πMsJSa2qx(ω,p⊥) + µωσ↑↓

∣∣∣∣2 , (B.59)

where

qx(ω,q⊥) =

√
ω − µB
JSa2

− q2⊥ (B.60)
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is the x component of the wavevector of a magnon propagating towards the FN
interface. The boundary conditions (3.80) and (3.82) at the IF and FN interfaces
become

ψ1,m(ω, 0) = 0,

ψ1,m(ω, L) =
3

2

1−R0,m

1 +R1,m

[ψ0,m(ω, L)− ψN], (B.61)

where R0,m and R1,m are angular averages of the reflection coefficient Rm,m, see Eq.
(3.81). The unique solution to these equations is

ψ0,m(ω, x) = ψN(ω), ψ1,m(ω, x) = 0. (B.62)

Phonons.— For the phonon modes, we use the label λ = 1 for the longitudinal
mode and the labels λ = 2, 3 for the transverse phonon modes. The linearized
Boltzmann equation for the isotropic and anisotropic moments ψ0,λ(ω) and ψ1,λ(ω)
of the distribution function then reads

∂ψ1,λ(ω)

∂x
=
∑
λ′

G0p,λ,λ′(ω)[ψ0,λ′(ω)− ψ0,λ(ω)],

∂ψ0,λ(ω)

∂x
=
∑
λ′

G1p,λ,λ′(ω)[ψ1,λ′(ω)− ψ1,λ(ω)], (B.63)

where the matrices G0p and G1p are

G0p =
3τpi(ω)−1

c2t (2c
3
l + c3t )

2clc
2
t −clc2t −clc2t

−c3t c3l + c3t −c3l
−c3t −c3l c3l + c3t

 , (B.64)

G1p = τpi(ω)−1

1 0 0
0 1 0
0 0 1

 . (B.65)

Here cl and ct are the longitudinal and transverse phonon velocities and τpi is the
mean scattering time for phonon-impurity scattering, see Eq. (3.59). The equilibra-
tion lengths λ1 and λ2 corresponding to Eq. (B.65) are

λ1 = τpi

√
c3t + 2c3l

3(2cl + ct)
, λ2 = τpict

√
1

3
. (B.66)

Without magnon-phonon coupling, phonon modes are fully transmitted at the in-
terfaces, i.e.,

Tλλ′(ω,q⊥) = δλλ′ , Rλλ′(ω,q⊥) = 0, λ = 1, 2, 3. (B.67)
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Figure B.1: Frequency-resolved spin current jsx(ω) = ~J s
x(ω)∆T/T for T = 10 K

at the FN interface for B = 7 T (left) and for B = 9.2 T (right), calculated from
the short-length prediction (3.99) based on the ansatz (3.45) (blue, solid) and the
exact result based on Eq. (B.70) (red, dashed). System parameters are taken from
Table 3.1. The magnetic field B = 9.2 T is the highest magnetic field for which the
dispersions of magnons and phonons touch.

The boundary conditions at the IF and FN interfaces at x = 0 and x = L are then
found to be

ψ1,λ(ω, 0) =
3

2
[ψI − ψ0,λ(ω, 0)],

ψ1,λ(ω, L) =
3

2
[ψ0,λ(ω, L)− ψN]. (B.68)

For short systems with length L � λ1, the solution for the phonon distribution
function is ψ0,λ = (ψI + ψN)/2. For a long system with length L� λ2, the solution
is ψ0,λ = ψI+(ψN−ψI)x/L. A small correction near the FN interface can be obtained
from Eq. (3.97) upon taking Eq. (B.65) for the matrices G1 and G =

√G1G0 and
replacing u0,0 by the three-component vector (1, 1, 1)T.

B.7 Ballistic systems

Strictly speaking the linearization of the polaron distribution with one isotropic and
one anisotropic moment as in Eq. (3.45) is only applicable in the diffusive regime.
For very short systems the transport is ballistic and the polarons only scatter off
the interfaces. In this limit the distributions for left and right moving polarons can
be solved directly using the boundary conditions (3.75) and (3.78), without making
the ansatz (3.45). Parameterizing wavevectors q via the frequency ω, the transverse
momentum q⊥, and the propagation direction, the linear-response ansatz for the
distribution function reads

nν(ω,q⊥,±) = n0(ω) + ω

(
−∂n

0

∂ω

)
ψν(ω,q⊥,±). (B.69)
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B.7. BALLISTIC SYSTEMS

To solve for the distribution function, we use a four-component vector notation,

ψ(ω,q⊥,+) = (14 −RIRN)−1 (B.70)

× [(14 −RI)ψI(ω) +RI(14 −RN)ψN(ω)],

ψ(ω,q⊥,−) = (14 −RIRN)−1 (B.71)

× [(14 −RN)ψN(ω) +RN(14 −RI)ψI(ω)].

Here we suppressed the arguments (ω,q⊥) of the matrices RI and RN. The corre-
sponding frequency-resolved spin current density jsx(ω) is, compare with Eq. (3.85),

jsx(ω) = ~ω
(
−∂n

0

∂ω

)∑
ν

∫
dq⊥
(2π)3

PνN(ω,q⊥)

× ψν(ω,q⊥,+). (B.72)

In Fig. B.1 we compare the frequency-resolved spin current density calculated using
the exact solution (B.70) and the spin current density based on the ansatz (3.45).
While the approximate calculation differs quantitatively up to a factor ∼ 1.05, all
qualitative features are correctly reproduced.
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sertation selbstständig und ohne Benutzung anderer als der angegebenen Quellen
und Hilfsmittel angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle
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