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4 Abstract 

4.1 Abstract auf Deutsch 

Einleitung: Die navigierte repetitive transkranielle Magnetstimulation (rTMS) 

ermöglicht die transiente Störung lokaler neuronaler Funktionen auf nicht-

invasive Weise. Da Patienten eine signifikante Heterogenität in Bezug auf 

tumorassoziierte Sprachnetzwerkveränderungen und rTMS-

Funktionsmapping-Ergebnisse aufweisen, kann die Verwendung von 

maschinellem Lernen eine effektive Möglichkeit darstellen, rTMS-

Sprachmapping-Muster zuverlässig zu klassifizieren. 

Methode: Präoperatives navigiertes rTMS-Sprachmapping wurde bei 90 

rechtshändigen Patienten mit linksperisylvischen WHO-Grad II-IV-Gliomen 

durchgeführt. Zur Beurteilung des Schweregrades der Aphasie wurde der vom 

Aachener Aphasie-Test (AAT) adaptierte Berlin Aphasia Score (BAS) 

eingesetzt. Nach der räumlichen Normalisierung aller rTMS-Spots auf den 

standardisierten Raum des Montreal Neurological Institute (MNI) wurden die 

Sprachfehlerraten (ER) in jeder der 28 stimulierten kortikalen Areale (ROIs) mit 

Hilfe der automatisierten anatomischen Parzellierung (AAL3) des Illinois 

Institute of Technology (IIT) berechnet. Signifikant aphasieassoziierte 

Regionen wurden mit Hilfe einer Support-Vektor-Maschine (SVM) klassifiziert. 

Ergebnisse: Von 90 Patienten in der vorliegenden Studienkohorte lag bei 29 

(32,2 %) eine Aphasie vor. Nach Eingabe der demographischen Daten und der 

ERs jeder ROI in ein SVM-Modell wurde festgestellt, dass die Merkmale, die 

am signifikantesten zum Gesamtmodell beitrugen, das Alter (w = 2,98) sowie 

die ERs des linken Gyrus parietalis inferior (w = 2,28), des linken Gyrus 

supramarginalis (w = 3,64) und der rechten Pars triangularis (w = 1,34) waren. 

Die Gesamtwerte für Sensitivität, Spezifität und Genauigkeit des Modells 

betrugen jeweils 86,2 %, 82,0 % bzw. 85,5 %, mit einem AUC-Wert von 89,3 %. 
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Zusammenfassung: Unsere Daten zeigen eine erhöhte Vulnerabilität für rTMS 

induzierte Sprachfehler in den linken posterioren perisylvischen Arealen, wie 

dem Gyrus supramarginalis oder dem Gyrus parietalis inferior, was die 

Sprachrelevanz des klassischen und erweiterten Wernicke-Areals bestätigt. 

Weiterhin deutet die Beteiligung der rechten inferioren Pars triangularis bei links 

perisylvischen Gliom-Patienten mit Aphasie auf eine funktionell wichtige Rolle 

für diese Region hin. Das hier verwendete SVM-Modell wurde nicht durch die 

Tumorlokalisation beeinflusst, die durch den Vergleich überlappender 

Regionen mit Atlanten der grauen und weißen Substanz bestimmt wurde. Das 

SVM-Modell wurde am deutlichsten durch Einschluss des linken 

supramarginalen Gyrus als Merkmal verbessert. Unsere Daten bestätigen auch, 

dass das Potential für Neuroplastizität mit zunehmendem Alter abnimmt.
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4.2 Abstract in English 

Background: Neuronavigated repetitive transcranial stimulation (rTMS) 

permits the transient disruption of local neuronal functions in a non-invasive 

manner. As patients exhibit significant heterogeneity with respect to tumor-

associated language network changes and rTMS functional mapping results, 

the utilization of machine learning approaches may represent an effective 

means of classifying rTMS language mapping patterns in a reliable manner. 

Method: Presurgical neuronavigated rTMS language mapping was performed 

in 90 right-handedness patients with left perisylvian WHO grade II-IV gliomas. 

The Berlin Aphasia Score (BAS) adapted from the Aachen Aphasia Test (AAT) 

was employed to assess aphasia severity. Following spatial normalization to 

standardized Montreal Neurological Institute (MNI) space of all rTMS spots, the 

error rate (ER) of language mapping in each of 28 stimulated cortical regions of 

interest (ROIs) by the use of automated anatomical labeling parcellation (AAL3) 

and Illinois Institute of Technology (IIT). Significant aphasia-associated regions 

were classified using a support vector machine (SVM). 

Results: Of 90 patients in the present study cohort, symptoms of aphasia were 

present in 29 (32.2%). After feeding the demographic data and ERs of each 

ROI into an SVM model, the features found to contribute most significantly to 

the overall model included age (w = 2.98), as well as the ERs of the left inferior 

parietal gyrus (w = 2.28), left supramarginal gyrus (w = 3.64), and right pars 

triangularis (w = 1.34). Overall model sensitivity, specificity, and accuracy 

values were 86.2%, 82.0%, and 85.5%, respectively, with an AUC value of 

89.3%.  

Conclusions: Our data show enhanced vulnerability in the left posterior 

perisylvian areas, such as the supramarginal gyrus or the inferior parietal gyrus, 

confirming the language relevance of the classic and extended Wernicke's area. 

Further, the susceptibility of the right inferior pars triangularis for rTMS in left 

perisylvian glioma patients with aphasia suggests a functionally important role 

for this region in aphasia. The SVM model used herein was unaffected by 
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glioma location, which was determined by comparing overlapping regions with 

atlases of grey and white matter. Our SVM model was improved most 

significantly by the use of the left supramarginal gyrus as a feature. Our data 

also confirm that the potential for neuroplasticity decreases with age.
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5. Main text
5.1 Introduction

In general, tumor situated in the perisylvian region of the left hemisphere has an 

inherent risk of causing aphasia. One decade ago, our team introduced rTMS as a tool 

enabling personalized cortical language mapping in order to guide the surgical 

treatment of brain tumors[2]. As patients exhibit significant heterogeneity with respect 

to tumor-associated language network changes and rTMS functional mapping results, 

the utilization of machine learning approaches may represent an effective means of 

classifying rTMS language mapping patterns in a reliable manner.

5.1.1 History and current models of language network 

Over time, awareness of language processing has gradually increased. In 1865, the 

French physician, Pierre-Paul Broca, discovered that the left inferior frontal cortex 

played an role of vital importance during the language production based on autopsy 

results[3]. In the same way, it was revealed by Carl Wernicke in 1874, a German 

neurologist, that the left inferior temporal region served an essential position during 

the procedure of language comprehension[4]. Wernicke likewise emphasized that 

Broca's area and Wernicke's area are connected, and aphasia could be caused 

through damage to language centers, for instance, Wernicke's area and Broca's area, 

as well as damage to their pathways. In 1885, Ludwig Lichtheim summarized and 

systematized the work of Broca and Wernicke, leading to the classic "Wernicke-

Lichtheim model"[5]. In 1970, the Wernicke-Lichtheim model was revised by Norm 

Geschwind as the "Wernicke-Geschwind model"[6]. After the millennium, the theory 

of a “dual stream model”, as put forth by Hickok and Poeppel et al., has been 

extensively embraced[7]. It is assumed that the ventral stream, rooted in the bilateral 

temporal lobes, supports relevant auditory information processing, making it critical for 

the appropriate comprehension thereof. The auditory-articulatory information is 

processed by the dorsal stream and is organized unilaterally in the frontal phonological 

region of the left hemisphere, as well as at the temporoparietal junction[7, 8]. The 

dorsal stream yields both proprioceptive and auditory feedback, making it essential to 

fluent speech production[9]. At present, neurological models of semantic and 

phonological perception suggest these assemblies to be bilaterally distributed with 



Introduction 

10 

differential lateralization within perisylvian and extrasylvian sensorimotor and 

multimodal regions[10]. 

However, the impact of tumors on language has considerable individual 

differences. In certain situations, the tumors located in language network related area 

did not lead to an extensive damage to language even after the total resection[11-14]. 

In this set up, one interpretation was tumor-induced neural reorganization[15]. Thus, 

detecting neural reorganization not only assists in performing more radical resections 

of the tumor, enabling patients to achieve higher benefit/risk ratios but likewise assists 

in avoiding the postoperative language dysfunction resulted from resection of the 

reorganized language-related functional areas[11, 16]. 

5.1.2 r TMS mapping method 

In 1985, Barker put forward the first transcranial magnetic stimulation (TMS) 

designed for the stimulation of human brain. Subsequently, neuronavigated rTMS 

served a crucial function in cognitive neuroscience study, as well as clinical 

preoperative planning, because of the features of non-invasiveness and low side 

effects. rTMS inhibits the electrical bio-signals transmission through the induction of a 

series of magnetic field pulses. When transcranial magnetic stimulation excites cortical 

areas (e.g. motor areas), the corresponding target muscles are excited and 

subsequently contracted, which is capable of being observed through the 

neurophysiological techniques, for instance, electromyography; when rTMS briefly 

impedes cortical areas (e.g. language areas) and causes effects that interfere with 

task performance, a transient "lesion" pattern, which is similar to that of direct electrical 

stimulation (DES) is produced. Thus, rTMS shares the highest similarity in principle 

with the ‘gold standard’, i.e. DES, and denotes an alternative to DES for non-invasive 

brain mapping. Comparing with DES, rTMS demonstrated variable correspondence in 

terms of localizing the cortical areas for language processing[17]. 

5.1.3 Support vector machine 

To evaluate complex language networks with regards to aphasia and rTMS object 

naming results, one viable approach involves the utilization of machine learning (ML) 

strategies. In contrast to conventional statistical methods, machine learning has more
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suitable predictive power and concentrates on classification and regression analysis 

in rich and complex data, and can equally be utilized to infer data[18]. The most 

prominent classification methods frequently applied nowadays are: logistic regression, 

neural networks, decision trees, Bayes classification, K-nearest neighbor classification, 

support vector machine (SVM). Between the period of 1992 and 1995, the SVM was 

developed on the basis of the statistical learning theory. The basis of the SVM is the 

Vapnik-Chervonenkis theory, along with the structural risk minimization principle that 

pursues the most compromise between model complexity and learning ability 

according to restricted sample information to acquire the most appropriate 

generalization ability. SVM is already considered to be a suitable development of 

conventional classifiers and reveal several distinctive advantages to solve small-

sample along with high-dimensional ML problems. Moreover, SVM has been revealed 

to perform better than traditional methods, for instance, in biogenic selection related 

to cancer. SVM tends to maximize classification margins and be more robust than 

more conventional analysis methods (e.g. multivariate logistic regression), particularly 

when considering the analysis of a large feature space and data 

imbalance[19].Previous researches had illustrated linear SVM methods based on 

recursive feature elimination (RFE) have a better ability of selecting biological relevant 

features than classical correlation methods, for example, as in studies of cancer-

related gene selection.[20].

This study was designed to employ a machine learning approach for the 

retrospective assessment of rTMS language mapping results in order to classify 

patients with and without aphasia in a rich feature space composed of the rTMS 

language mapping error rate for particular regions together with patient clinical data 

and lesional profiles. 
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5.2 Methods & Materials 

5.2.1 Participants 

In total, 296 patients included in our prospective database with left perisylvian brain 

tumors that had undergone preoperative rTMS language mapping since 2010 were 

evaluated for this study. The standardized consensus protocol was used to perform 

rTMS examination on 218 of these patients[21]. Of these patients, 147 had glioma, 

and 90 of these patients had complete formal language testing (AAT/BAS) results and 

other data, including 49 males and 41 females with an average age of 48.86 ± 14.12 

years (range: 21–82). Of these patients, 12, 42, and 36 had WHO II°, III°, and IV° 

tumours, resepectively. For further information regarding this patient population, see 

Table 1. The Edinburgh handedness inventory was used to establish handedness[22]. 

Patients were excluded from this study if they exhibited aphasia associated with an 

error rate > 28% in the object naming task, given that this was previously shown to be 

an effective reliability threshold (Schwarzer et al., 2018). Also, patients who were left-

handed, diagnosed with multicentric gliomas, or experienced more than one 

generalized seizures per week were excluded from this study.  
 

5.2.2 rTMS  

Neuronavigated rTMS language mapping was conducted using rTMS eXimia NBS 

version 3.2.2, Nexstim NBS 4.3 and the NexSpeech module (Nexstim Oy, Helsinki, 

Finland). Prior to the rTMS mapping, the patients were shown the black-and-white 

drawings of common objects 3 times (baseline naming task, n = 150), and misnamed 

images were discarded after each showing. Following the baseline naming task, the 

remaining images (M = 85.5, SD = 28.6, Min = 35, Max = 149) were presented to the 

patients consequently with the rTMS stimulation in random sequence during the rTMS 

mapping (Fig 1). Individual stimulation intensity corresponded to 100% of the patient’s 

resting motor threshold (RMT) of the first dorsal interosseous muscle of the 

contralateral hand measured utilizing the 5/10 method on the ipsilateral hemisphere’s 

primary motor cortex[23]. Briefly, RMT denotes the lowest TMS intensity that is able 

to cause MEPs with an amplitude of at least 50 μV in 5 out of 10 stimuli with the first 

dorsal interosseous muscle in a relaxed state. The black and white objects left from 

the baseline naming task were presented on a screen in front of the patient. At the 
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onset, the TMS parameters were set for inter-picture interval of 4.0s, picture 

presentation time of 1000ms, and stimulation frequency of 5Hz. In case the stimuli had 

no effect on naming over the first 20-30 rTMS trains, these parameters could be 

sequentially modified to inter-picture interval 2.5s, picture presentation time 700ms, 

stimulus frequency 7Hz, and 10Hz to augment the challenges. Each patient underwent 

rTMS mapping for targeting the cortical language function areas within a week 

following MRI scanning. For each hemisphere, stimulation was conducted at 50-80 

distribution sites, each adressed a minimum of three times, as the condition of the 

patient will allowed. During mapping, the level of discomfort or pain was assessed 

using a visual analog scale (VAS). The entire process was recorded and analyzed 

offline. rTMS spots were classified as being either negative or positive, and rTMS-

positive spots indicated that rTMS stimulation elicited any form of error response, 

meanwhile negative spots indicated no error response. rTMS mapping coordinates of 

the stimulation points were derived for following spatial normalization. 

 
Fig. 1: Performing the rTMS mapping. 
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5.2.3 Aphasia grading  

Preoperative estimation of aphasia severity was conducted with the use of the BAS. 

The development and application of the BAS was done through the physicians of the 

Charite ́ University Hospital and adapted to the Aachen Aphasia Test. The patients 

were classified into four categories by the BAS test: 0 (61 patients) = no aphasia, 1 = 

mild aphasia (18 patients), 2 = moderate aphasia (8 patients), 3 = severe aphasia (3 

patients). The entire patients having a BAS score of 0 were grouped into the non-

aphasic group, others were classified as aphasic patients (n = 29). All patients 

underwent the BAS assessment on the day of rTMS examination. 

 

5.2.4 Data preprocessing 

5.2.4.1 Skull striping 

Skull stripping is a preliminary step performed to achieve optimal results for spatial 

normalization of structural MRI data. This method removes the skull, as well as other 

non-brain tissues from the T1 MRI. These non-brain tissues might impact the 

robustness and accuracy of spatial normalization which was the next step of data 

preprocessing. In order to obtain optimal skull striping results, we compared the state-

of-art skull striping toolbox, namely FMRIB software library (FSL) and Advanced 

Normalization Tools (ANTs). In FSL, we used the parameters and approaches 

proposed by Popescu et al. which is to remove the neck first and then set f=0.1 and 

option “B” in the brain extraction tool[24]. We used the IXI template to evaluate brain 

tissue boundaries 

(https://figshare.com/articles/dataset/ANTs_ANTsR_Brain_Templates). Precisely, the 

brain with skull template, brain with cerebellum probability mask template and brain 

with cerebellum registration mask were utilized during the skull striping. From Figure 

2, the visually inspection confirms that ANTs had better performance on skull striping 

than FSL, having less amount of non-brain tissues. In the red and yellow ellipses, it is 

demonstrated that the FSL results cut off normal brain tissue, whereas the ANT results 

did not cut off any more brain tissue after stripping the skull. Thus, we consistently 

utilized ANTs for skull stripping in all patients.
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Fig. 2: Comparison of skull striping result between FSL and ANTs. The figure shows the comparison skull 
striping result of ANTs and FSL on one patient. The first row shows the results for ANTs and the second row 

shows the results for FSL on the coronal, sagittal and axial view, respectively. 

 

5.2.4.2 Lesion masking  

We used a semi-automatic approach to segment the tumor, based on the open 

source software ITK-SNAP (http://www.itksnap.org). First, we activated the 

"segmentation 3D" mode. Then, appropriate lower and upper thresholds were 

manually set to compose the tumor and try to exclude the normal brain tissue. After 

that, we set seeds inside the structure of interest in order to fill it. The resulting 

lesions masks were visually inspected and corrected if needed. 
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5.2.4.3 Registration to MNI space 

Spatial normalization serves as a method to co-register the various patients’ T1 

images to a standard space. In our study, we co-registered to montreal neurological 

institute (MNI) space. The spatial normalization of tumor patients has usually been a 

challenge since the tumor’s inhomogeneous signal intensity in the anatomical image 

affects the normalization result. The tumor profile of each patient was depicted by the 

method mentioned in the previous section. The unmasked region of the anatomical

image was firstly registered and subsequently utilized the same warping parameters 

in normalizing the masked area, see Figure 3. All patients’ skull striped images were 

normalized to standard space (MNI space) with ANTs-based Symmetric Normalization 

(SyN) transformation[25]. The coordinates of the stimulations earlier derived from 

rTMS mapping were likewise transformed from the individual space to the standard 

space (i.e., MNI space) through the application of the matrix generated during 

normalization. 

Fig. 3: Lesion map MNI space lesion maps along with sagittal, coronal, and axial coordinates being shown 
above corresponding slices. All lesions were perisylvian. Numbers of tumors per voxel are indicated with a 

colorimetric scale. Own illustration, 2021.
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5.2.5 Atlas and error rate  

To calculate overlap between tumor masks and atlas regions as a percentage, the 

MNI template brain was parcellated by applying the automated anatomical labeling 

atlas, 3rd version (AAL3) and Illinois Institute of Technology (IIT) atlas[26]. For the 

xjView toolbox (ww.alivelearn.net/xjview), the normalized rTMS spot coordinates were 

input for obtaining which ROI of the AAL3 atlas each rTMS spot belongs to. After 

obtaining the entire rTMS spots of the ROI, the error rate (ER) was computed for each 

ROI per patient, i.e. the amount of error naming TMS stimulations divided by the 

amount of all rTMS stimulation in this ROI. For example, if a patient's one ROI was 

stimulated 10 times and 5 times the objects were incorrectly named. The ER was 5 

divided by 10, which was 50%. Meanwhile, tumor location can be demonstrated by 

the proportion of tumor overlap on different ROIs of AAL3 and IIT. 
 

5.2.6 SVM 

SVM represents a structural risk minimization principle-based supervised machine 

learning. SVM denotes a binary classification model whose main focus is to determine 

the optimal classifying hyperplane that is maximally separates the two groups of 

samples. When it is not feasible to distinguish the training samples in a linear way, the 

relaxation factor or penalty coefficients can be introduced to relax the limitations and 

enable them to be partially tolerant to classification errors. The non-linear problem in 

the original space tends to likewise be solved through mapping the samples to a higher 

dimensional space by a non-linear kernel, for example, polynomial kernel, Gaussian 

kernel and Sigmoid kernel. Provided that in this study our focus is not solely on the 

classification results but likewise on the weight of the features during the classification, 

a linear kernel function is adopted. In our dataset, patients were categorized into 

aphasic or non-aphasic groups on the basis of BAS scores. The TMS ER, age, gender, 

tumor WHO grade, and principal component analysis (PCA) components of individual 

IIT and AAL3 lesion percentage for each AAL3 region of the patients were entered 

into the SVM model as features. As regards to missing data, we discovered that TMS 

ER was not normally distributed, therefore we utilized median interpolation, denoted 

as SVM1. To investigate the effect of missing data on the final results, we accordingly 

applied two more methods, K-NN interpolation (SVM2) and exclusion of 26 patients



Methods & Materials 

18 

who failed to undergo rTMS in the right hemisphere (SVM3).  

In this study, RFE method was utilized for feature selection in eliminating 

redundant and irrelevant features. During the construction of a linear classifier, it 

utilizes the magnitude of the effect of each feature on the objective function as a 

coefficient for ranking. Assuming it is feasible to express linear classification surface 

as f(𝑥) = 	𝑤	 ⋅ 	𝑥 + 	𝑏, then the parameter to construct the ranked list of features is the 

weight vector size, meaning, the impact size on the objective function. The larger the 

weight, the higher the influence on the decision function n, as well as the greater the 

amount of discriminative information it has. The algorithm removes one feature at a 

time with the least absolute value of weight, and subsequently retrains the classifier to 

perform the above iterative steps once more, therefore iterating until the feature 

ranking list is constructed. To enhance the generalization ability of the SVM model, 

we utilized nested cross-validation for training[27]. Nested cross-validation uses an 

internal cross-validation loop (5-fold crossover) in adjusting parameters (e.g., penalty 

parameter C) and select the best model. Parameters C were assessed from 2-10 to 210 

in steps of 0.1. Data were separated into 5 subsets. One of them was assigned to the 

test set, while the rest were assigned to the training set. Next, optimization parameter 

C was estimated from the highest average classification procedure. To assess the 

selected model through the internal loop, an external cross-validation validation loop 

(10-fold crossover) was utilized. The data were classified proportionally into 10 

subsets, i.e., each subset retained the same proportion of each class as the whole 

data. Regarding these subsets, one was assigned to the test set, while the others were 

assigned to the training set, and the results acquired from the test set were utilized for 

assessing parameters, including the model’s accuracy sensitivity and specificity. To 

reduce the variance, we included a model aggregation method known as bagging and 

cross-validation to the model. In each iteration, 1000 training sets, as well as 

corresponding models are generated through random resampling, which determine 

the final classification outcomes in a voting manner[28] (Figure 4). For machine 

learning coding, I learned the MATLAB language and the basics of SVM, and we 

applied MATLAB R2014b (MathWorks, Natick, MA, US), with modifications and 

additions based on the script of LIBSVM[29]. We assess the performance of the SVM 

model as regards sensitivity, specificity, overall accuracy, and area under the receive
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operating curve (AUC). 

It was possible that tumor location could serve as a predictive factor of aphasia 

status, however, the previous SVM model could conceal this information. Thus, binary 

logistic regression was applied for analyzing the correlation between the percentage 

of impairment of a particular ROI through and aphasia status. The percentage of 

impairment for a specific ROI, defined as the area covered between the ROI and the 

tumor divided by the total ROI area. Prior to conducting the other analyses, we 

computed the variance inflation coefficient between each ROI. Since adjacent ROIs 

tended to show correlations between their tumor overlap, which was due to the 

anatomical relationship between ROIs, such correlations were capable of causing 

problems of multicollinearity. To prevent this problem, we set that if the variance 

inflation coefficient was higher than 5, we would perform principal component analysis 

on the data to avoid multicollinearity. The results of PCA were entered as predictors 

in the binary logistic regression model. To assess whether the prediction of aphasia 

status was impacted through tumor location, we subsequently performed a mediation 

analysis. Mediated analysis added mediating variables to a simple model with only 

dependent and independent variables and proposed that independent variables 

influence (unobservable) mediating variables, which in turn influence dependent 

variables. Thus, the role of the mediating variable was to specify the character of the 

relationship between the independent and dependent variables. The Matlab script 

which was used for the SVM model was published on Zenodo (https://doi.org/10. 

5281/zenodo.3727663). The SVM pipeline was illustrated by Figure 4.
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Fig. 4: SVM analysis pipeline. Nested cross-validation and bootstrap aggregating (bagging). Own 

illustration, 2021. 

 

5.2.7 Statistical analysis  

Statistical analysis was conducted by MATLAB R2014b (MathWorks, Natick, MA, US) 

and SPSS 22 (IBM SPSS, Armonk, New York, US). Categorical variables were 

analyzed using Chi-Squared test. It was feasible to divide continuous variables into 

normal and non-normal distributions. As regards normal distribution, the two tailed 

Student’s t-test analysis is applied, while in the case of non-normal distribution, the 

Mann-Whitney U tests analysis is utilized. The statistical significance was set at P-

value less than .05. For ER comparisons, the p-values were adjusted using the Holm-

Bonferroni method. Spearman’s rank correlation was applied for detecting the 

correlation between BAS and AAT T-scores since the BAS was categorical data.
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5.3 Results 

Out of the 90 patients recruited, 29 (32.2%) demonstrated preoperative aphasia, i.e., 

a BAS score higher than 0. No significant difference exists between gender or tumor 

size and aphasia (χ2=1.207 [1, 90], p=.272; t[88]=0.023, p=.982). Patients with 

aphasia were elder (56.69 ± 13.64) compare to those without aphasia (45.13 ± 12.84), 

p = .0003 (t[52] = 3.83). Out of all the patients in this study, twenty-six patients (19 

non-aphasic, 7 aphasic) were mapped only in their left hemisphere due to fatigue or 

decreased attention. The number of missing ER data points in the AAL3 ROI for the 

entire patients was 28.8%.  

5.3.1 Presurgical rTMS mapping 

Mean VAS scores during rTMS mapping were 3.9 ± 2.9 in the left hemisphere and 3.7 

± 2.8 in the right hemisphere. The ER of the entire brain mapping was significantly 

higher in the aphasic group (Mdn = 7.49) than in the non-aphasic group (Mdn = 3.48) 

(P < .0001, Z = 4.60, η2 = 0.24). Additionally, ERs were significantly higher in the left 

hemisphere of aphasic patients compare to those in non-aphasic patients (aphasic: M 

= 8.87, SD = 4.66, non-aphasic: M = 4.55, SD =3.06, p = .000001), and the difference 

in ERs in the right hemisphere was insignificant (aphasic: M = 6.71, SD = 4.93, non-

aphasic: M = 5.01, SD = 3.67, p = .232). There was no clear pattern in the overall 

rTMS positive or negative spot distribution, with no prejudice toward specific cortical 

regions (Figure 5). Whereas, the evaluation of the ERs distribution as regards to rTMS 

in aphasic and non-aphasic patients depicted specific cortical patterns (Figure 6). The 

number of stimuli per AAL3 ROI/patient was M = 14.9, SD = 16.2. ERs from the AAL3 

ROI that were stimulated above 6 times (> = 25% of stimuli per AAL3 ROI/patient) had 

been included. A threshold of > = 25% led to a total inclusion of 28 AAL3 ROIs per 

patient.
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Fig. 5: Voxel-wise rTMS stimulation percentages in the MNI space for all patients. Negative spots on the top 
left (A) and right (B). Positive spots on the bottom left (C) and right (D). Numbers and color bars correspond to 

the number of negative or positive stimulations per voxel. Own illustration, 2021. 
 

 
Fig. 6: Overall ER distributions associated with AAL3 parcellation in groups of patients with (right) and without 

(left) aphasia. The median ER per region is indicated by color bars. Own illustration, 2021.
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5.3.2 SVM results 

We fed the entire 28 ERs of ROIs, age, gender, glioma location PCA components, and 

glioma WHO grade as features to SVM-RFE models for classifying aphasic status. 

The final classification accuracy values of the three missing data processing methods 

for SVM1-3 were 85.53%, 82.4% and 77.6%, respectively. The sensitivity values for 

these three methods were 86.2%, 90.0% and 59.1%, respectively, with corresponding 

specificity values of 82.0%, 78.7% and 85.7%, and with AUC values of 89.3%, 86.7% 

and 74.8%. Four features were chosen as the most essential features based on their 

weights (Fig 7). These four features were age (W = 2.98), ER of the right pars 

triangularis (W = 1.34), the left supramarginal gyrus (W = 3.64) and the left inferior 

parietal gyrus (excluding the angular and superior gyrus, W = 2.28). The ERs of these 

three ROI’s differed significantly between groups with and without aphasia after FDR 

correction (Figure 8).  

We computed the overlap between the tumor and the white matter template IIT 

and the gray matter template AAL3. Since we solely included patients whose tumors 

were situated in the left perisylvian areas, only 69 ROIs (AAL3, 170 ROIs; IIT, 24 ROIs) 

overlapped with the tumors out of a total of 194 ROIs (AAL3, 48 ROIs; IIT, 21 ROIs). 

The variance inflation coefficients of the 69 ROIs ranged from 6 to 10, demonstrating 

that the overlap ratio between the ROIs there was strong multicollinearity. 

Subsequently PCA was applied for reducing the data dimensionality, also a total of 10 

PCA components were extracted with a Kaiser-Meyer-Olkin value = 0.717. It is 

revealed from the logistic regression of these 10 PCA components for aphasia status 

classification that significant results are obtained from component 6 and PCA 

component 9 (p = .023, Exp(B) = 1.85; p = .005, Exp(B) = 2.36). Based on mediation 

regression equation showed on Fig 9, we found no complete mediation and only 

component 6 as a partial mediation between ER of left supramarginal gyrus and 

aphasia status. Therefore, mediation analysis revealed that tumor location failed to 

provide explanation for the full predictive value of TMS-induced ER for aphasic status. 
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Fig. 7: Visualization of spherical ROIs-based SVM (SVM1) weights. Own illustration, 2021. 

Fig. 8: Comparison of ERs in patients with and without aphasia based upon SVM (SVM1)-derived AAL3 ROIs. 
Own illustration, 2021. 

Fig. 9: Mediation regression results. Own illustration, 2021.
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5.4 Discussion 

In this study, rTMS language mapping was performed in 90 patients with gliomas in 

their left perisylvian area, and subsequently SVM were applied in classifying the 

aphasia status of them (aphasic or non-aphasic). As regarding the SVM results, 

though the tumors were located in the left hemisphere in all patients, the ER of right 

pars triangularis had a high classification weight. There could be a correlation between 

this finding and the current neuroplasticity model, with activation predominantly in 

bilateral frontal brain regions, which is in line with the post-stroke aphasia studies[30]. 

As regards the rTMS spots distribution, after we separately mapped positive and 

negative stimulations to the standard brain, it was discovered that the pattern of the 

overall negative rTMS spots as well as the pattern of overall negative rTMS spots are 

not observably different. Furthermore, the rTMS-based analysis revealed that the 

distribution of rTMS-positive cortical areas around the bilateral hemispheres suggests 

a bilateral clustering of language functions around the perisylvian areas. This 

observation corroborates with other research indicating a crucial role for language 

function in the right triangularis, as well as in the left precentral, central, and parietal 

regions. The wide rTMS-positive response distribution aligns with language being 

configured in a large-scale distributed network. 

 The SVM results revealed that the right pars triangularis, left supramarginal 

gyrus, left inferior parietal gyrus, and age contributed more to the classification model 

compared to the rTMS induced object naming. ERs in the right pars triangularis were 

essential to distinguish patients’ aphasic status. The possible reason for this is a 

functional shift in language ability from the left to the right hemisphere as a 

compensation mechanism based on the initial impact of left hemisphere brain tumors 

on the language network. Nevertheless, this may be because of behavioral changes 

resulting from differences in the prenatal function of specific brain regions or 

differences in the potential in compensating for loss of function due to reorganization 

of function. In the study by Hartwigsen and Saur et al., early resolution of acute stroke-

induced network disruption and network failure was discovered to be revealed in the 

left pars triangularis, and chronic spontaneous and treatment-induced reorganization 

was shown in the right pars triangularis[30]. Inhibition of the right pars triangularis may 

be related with enhanced object naming performance in TMS-induced post-stroke 
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aphasia patients. This finding has been replicated multiple times, though other studies 

have reported large inter-patient differences in the effects of inhibitory rTMS on the 

right pars triangularis in acute stroke patients[31]. Nevertheless, in the case of patients 

having brain tumors in left hemisphere, an evidence exists that shifting of function to 

the right hemisphere is connected with more suitable outcomes following surgery. The 

hypothesis of enhanced functional reserve in patients having a higher bilateral 

distribution of language function is supported by these results [32, 33]. The present 

results remain contentious as regards if the effect of right hemisphere neuroplasticity 

on the aphasic state has a benefit or is detrimental. The difference in right hemisphere 

ERs may serve as the proof that neuroplasticity compensates for the (otherwise more 

severe) language impairment after tumor-induced lesions. On the other hand, at least 

theoretically, right hemisphere neuroplasticity may likewise reflect the mechanism of 

dysfunction resulting in (increased) aphasia symptoms in the patients explored in this 

analysis. 

The anterior-inferior part of the parietal lobe consists of the angular gyrus and 

the supramarginal gyrus. They are situated in the junctional area of auditory, 

somatosensory areas, along with the visual joint cortex, interconnecting the joint 

cortex of the three regions. Written or typed words initiate activation of the visual 

cortex, which then sends the information to the angular and supramarginal gyri, 

where the visual words are recognized. This information is then associated with 

auditory word forms in Wernicke's area. The supramarginal gyrus belongs to the 

region of Geschwind territory. Previous stroke studies have shown that this region is 

anatomically connected to the arcuate fasciculus and is functionally related to the 

repetition deficit[34]. Interestingly, the atrophy of the direct arcuate fasciculus (from 

left inferior frontal gyrus to the superior and middle temporal gyrus) doesn’t affect the 

capability of speech repetition. Whereas, the atrophy of supramarginal gyrus or the 

indirect arcuate fasciculus (from surparmarginal to left inferior frontal gyrus or the 

superior and middle temporal gyrus) result in speech repetition deficit. Admittedly, 

the exact region of speech repetition function remains anatomically controversial, 

with some suggesting a more posterior position, relative to the superior marginal 

gyrus, in the angular gyrus or even the superior temporal gyrus[35, 36]. However, 
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there is still consensus that the region of speech repetition function is at the 

temporoparietal junction. And our results obtained through the SVM model corroborate 

with other present studies. 

Our results confirmed the importance of the inferior parietal cortex for language-

related processing, as already been shown in the Danilo et al.’s study [37]. At the same 

time, this result was the further point of convergence to the latest dual-stream model 

which was proposed by Gregory Hickok and David Poeppel[7]. Briefly, this dual-

stream model assumes that the dorsal stream is in charge of articulation and ventral 

stream is involved in language recognition. In addition, Jiao et al. provided evidence 

for functional reorganization of recruitment of the Broca's right hemisphere 

homologous area after resection of inferior parietal cerebral arteriovenous 

malformations[38]. This evidence is consistent with our findings on the functional 

reorganization of right pars triangularis. 

Age contributes a high weight in the disfluency classification of our SVM model, 

which might be due to neuroplasticity of patients decreasing with age. This observation 

confirms previous studies, in which tumor grade and age, but not tumor location, were 

associated with aphasia incidence when predicting language dysfunction[39]. The 

notion of a general tumor induced network disconnection - and no mandatory 

association with specific lesion locations being relevant for aphasia - is supported by 

this finding[40]. 
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5.5 Conclusion  

In summary, our results were based upon the use of an SVM model to classify 90 left 

perisylvian glioma patients via machine learning and cortical parceling. It was shown 

that there were clear differences in rTMS-induced error patterns when comparing 

individuals with and without aphasia. Specifically, we found that aphasic patients 

exhibited an increase of ERs in the right hemisphere, particularly in the right pars 

triangularis, together with an expansion of ERs in the overall right perisylvian 

distribution. These results suggest that the right frontal lobe may be closely involved 

in the context of functional reorganization associated with aphasia. Although reliably 

mapping language networks remains challenging for individual patients with brain 

tumors, these data highlight the promise of machine learning as a means of detecting 

distinct areas related to functional reorganization in brain tumor patients in the 

language network. This study is to our best knowledge the first to have conducted a 

machine learning based classification of rTMS language mapping data for patients 

with brain tumors. 
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