
Appendix C

Vibrational Hamiltonian in

internal coordinates

C.1 General remarks

There exist two procedures for formulation of the quantum mechanical Hamilton

operator in arbitrary nuclear coordinates [163,164]. The first one is to:

• Write the quantum mechanical Hamiltonian for the system in Cartesian co-

ordinates (The application of the correspondence principle, i.e. replacing the

classical momenta by the corresponding operators, is implicit, since this pro-

cedure is straightforward for Cartesian coordinates).

• Change to the desired coordinates in this quantum Hamiltonian, using the

chain rule to calculate the derivatives [this method was used to obtain the

equation (4.15)].

Alternatively, one can

• Write the classical Hamiltonian in Cartesian coordinates.
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• In the classical expression, change to the desired coordinates.

• Apply the correspondence principle by replacing the generalized coordinates

and momenta by their operators.

Taken as it is, the second procedure might lead to incorrect results, unless the

classical expression for the Hamiltonian is written in a certain form suggested by

Podolsky [147](this is also known as Podolsky trick). With this correction, both

procedures, in principle, should lead to identical quantum Hamilton operators.

C.2 Derivation of the Hamiltonian

Let us consider the derivation of the Hamilton operator along the lines of the second

procedure described above, including the Podolsky trick. It is known from the

literature [111, 164, 165], that in this case the Hamilton operator has the following

form:

Ĥ = −
~

2

2

3N−6∑
j=1

3N−6∑
k=1

∂

∂qj
Gjk

∂

∂qk
+ V ′(q) + V (q). (C.1)

Here q = (qi), i = 1, 3N − 6 are the internal molecular coordinates (the molecule

is assumed to be nonlinear, hence there are 3N-6 of them), G is an instantaneous

function of molecular geometry (for the derivation of G-matrix elements see, for ex-

ample [41]), V (q) is the molecular potential energy function, and V ′(q) is a ‘purely

quantum-mechanical’ mass-dependent contribution to the potential energy, some-

times referred to as the Watson term [111, 166]. The Watson term is given by the

formula

V ′(q) =
~

2

8

3N−6∑
j=1

3N−6∑
k=1

∂Gjk

∂qj

∂ ln g

∂qk
+

~
2

32

3N−6∑
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3N−6∑
k=1

Gjk

∂ ln g

∂qj

∂ ln g

∂qk
, (C.2)

where g = |I|/|G| [111] and I is the 3×3 simultaneous inertial tensor [41].

For an asymmetric triatomic ABC molecule, the G matrix elements are given

below. For the sake of consistency, the notation is that used throughout this paper,
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describing the 3-D model of the HONO2 molecule.

G =
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sinα
m2r1

( 1
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1
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µ2r2
2
) + 2 cosα

m2r1r2

 . (C.3)

Substituting this G-matrix in the equation (C.1) yields for the ’kinetical’ (i.e. con-

taining operators of the momentum) part of the Hamiltonian
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. (C.4)

The corresponding part of the kinetic energy operator given by equation (4.15)

(which was derived according to the first procedure described here) is identical to

this expression. The only difference lies in the potential-like Watson term, which we

shall now define according to the second procedure.

In order to derive the Watson term V ′, we have to obtain the determinant of the

instantaneous inertial tensor I. In terms of bond distances and angles, the nonzero

components of this tensor for a planar asymmetric triatomic molecule are [166]

Ixx =(u1 + u3 − 2u13 cosα)/m,

Iyy =(u1 cos2(α− ε) + u3 cos2 ε+ 2u13 cos ε cos(α+ ε))/m,

Izz =(u1 sin2(α+ ε) + u3 sin2 ε+ 2u13 sin ε sin(α+ ε))/m,

Iyz =(u1 sin 2(α+ ε)− u3 sin 2ε− 2u13 sin(α+ 2ε))/2m.

(C.5)

Here an angle ε between r1 bond and the z-axis was introduced, which for the

adopted reference configuration of the molecule is given by

ε =
π − α

2
+

u1 − u3√
(u1 + u3)2 − 4u2

13

arctan

(√
u1 + u3 − 2u13

u1 + u3 + 2u13
tan

π − α

2

)
, (C.6)
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where u1 = m1(m2 + m3)r2
1, u3 = m3(m2 + m1)r2

2, u13 = m1m2r1r2. The instanta-

neous inertial tensor has the form

I =


Ixx 0 0

0 Iyy Iyz

0 Iyz Izz

 . (C.7)

The evaluation of the determinants of I and G matrices gives the following result

for the factor g, appearing in equation (C.2):

g =
m6

2r
4
1r

4
2µ
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1µ

3
2 sin2 α

(m2
2 − µ1µ2)3

. (C.8)

Substituting this in (C.2) gives us

V ′(r1, r2, α) =
cos3 α

4m2r1r2 sin2 α
−

1

8

(
1

µ1r
2
1

+
1

µ2r
2
2

)
(1 + csc2 α). (C.9)

The Hamilton operator defined by equations (C.1) and (C.9) is well-known [111–

113,115]. However, in these approaches V ′ has a singularity at α = π, which is not

present in the kinetic energy operator derived “quantum mechanically” (equation

(4.15)). The origin of the differences lies in the inherently classical procedure used to

obtain the Watson term given by the equation (C.9). In the case of a linear molecule

(α = π), the Izz component of the I tensor vanishes (equation C.7), in which case

the determinant of I is zero, and the logarithmic derivatives in (C.2) yield infinities.

This is the origin of singularities in equation (C.9).

To circumvent the problem of singularities in the Hamilton operator, one may

subject the Hamilton operator to a similarity transformation [112, 113]. A more

consistent approach requires certain rearrangement of the classical Hamiltonian, as

an extension of the Podolsky trick, which in general should lead to a non-singular

Hamilton operator [166].


