
Appendix B

Fourier-basis DVR method

The discrete variable representation (DVR) methods, pioneered by Light and cowork-

ers [44, 45], have established themselves as a powerful tool for solving both time-

independent [44], as originally introduced, and time-dependent [161, 162] quantum

mechanical problems. In this work these techniques are used for finding eigenvalues

and eigenfunctions of the Hamilton operator of the equation (4.22) in Chapter 4.

The conventional methods for the solution of eigenvalue problems, for example, the

Fourier grid Hamiltonian (FGH) method, require modifications in order to allow

the treatment of the first coordinate derivatives, present in the equation (4.22). In

this Appendix, a convenient analytical expression for the matrix elements of a first

coordinate derivative operator within the Fourier-basis DVR formalism.

All DVR’s are based on the expansion of a wave function in an orthonormal

basis set φi(x); i = 1, N and utilization of a quadrature rule. Normally, the Gaussian

quadrature on a set of points xi with corresponding weights wi is used. For example,

Ψ(x, t) =
N∑
i

ai(t)φi(x), (B.1)
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where the time-dependent expansion coefficients ai(t) are given by

ai(t) =
N∑
j

wjφ
∗
i (xj)Ψ(xj , t) (B.2)

Combining equations (B.1) and (B.2), we get

Ψ(x, t) =
N∑
i

N∑
j

wjφ
∗
i (xj)Ψ(xj , t)φi(x)

=
N∑
j

Ψjψj(x),

(B.3)

where the functions

ψj(x) =
√
wj

N∑
i

φ∗i (xj)φi(x) (B.4)

form a set of orthonormal coordinate eigenfunctions in the discrete representation,

and

Ψj =
√
wjΨ(xj , t) (B.5)

is the amplitude of the wave function on the j-th basis function. The weight factor
√
wj ensures the orthonormality of the basis. The nth order derivatives of the wave

function are obtained from

∂nΨ(x, t)

∂xn
=

N∑
j

Ψj

∂nψj(x)

∂xn
, (B.6)

where

∂nψj(x)

∂xn
=
√
wj

N∑
i

φ∗i (xj)
∂nφi(x)

∂xn
, (B.7)

So far no assumptions were made on the particular basis functions, the only

condition imposed on them was that of orthonormality. In this work the Fourier

functions (i.e., the eigenfunctions of a particle in a box) shall be utilized. This choice

of basis set makes the technique conceptually similar to the FGH method.
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Let’s consider a one-dimensional quantum system with coordinate x ∈ (a, b).

The kinetic energy operator is given by

T̂ = −
~

2

2m

d2

dx2
(B.8)

It is assumed here, that the wave function vanishes at the endpoints a and b. The

grid xi is equally spaced

xi = a+ (b− a)i/N, i = 1, ..., N − 1 (B.9)

and the associated functions for this grid are Fourier functions

φn(x) =

√
2

b− a
sin

[
πn(x− a)

b− a

]
(B.10)

The DVR representation of the kinetic energy operator (B.8), according to (B.7) is

given by

Tjk = −
~

2

2m
∆x

N−1∑
n=1

φn(xj)φ
′′
n(xk), (B.11)

where ∆x = (b−a)/N is the grid spacing. Taking into account the above definitions,

we obtain

Tjk =
~

2

2m

(
π

b− a

)2
2

N

N−1∑
n=1

n2 sin

(
πnj

N

)
sin

(
πnk

N

)
. (B.12)

This sum can be evaluated analytically. First, we consider the case j 6= k. The

product of sine functions under the sum can be rewritten as

sin

(
πnj

N

)
sin

(
πnk

N

)
=

1

2
[cos(nA)− cos(nB)], (B.13)

where A = π(j − k)/N,B = π(j + k)/N . It is to note that

N−1∑
n=1

n2 cos(nA) = −
∂2

∂A2
Re

N−1∑
n=1

einA (B.14)

The latter sum is a geometric progression, which yields

Re
N−1∑
n=1

einA = −
1

2
+

1

2

sin(NA−A/2)

sin(A/2)
(B.15)
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Collecting together equations (B.13),(B.14), and (B.15), we obtain1

Tjk =
~

2

2m

(−1)j−k

(b− a)2

π2

2

[
csc

(
π(j − k)

2N

)2

− csc

(
π(j + k)

2N

)2
]

(B.16)

for j 6= k. In the case j = k, the sum (B.14) becomes

N−1∑
n=1

n2 sin2

(
πnj

N

)
=

1

2

N−1∑
n=1

n2

[
1− cos

(
2πnj

N

)]
=

1

2

[
N−1∑
n=1

n2 −
N−1∑
n=1

n2 cos

(
2πnj

N

)]
.

(B.17)

The first sum in (B.17) is equal to 1
6
(N − 1)N(2N − 1), and the second sum has

been calculated previously. We obtain

Tjj =
~

2

2m

1

(b− a)2

π2

2

[
2N2 + 1

3
− csc2

(
πj

N

)]
(B.18)

for the diagonal elements of the kinetic energy DVR matrix ( j = k ).

Now we consider the following operator

K̂ =
d

dx
, (B.19)

which, with the appropriate multiplier, represents the momentum conjugate to the

coordinate x. The DVR expression for this operator is

Kjk = ∆x
N−1∑
n=1

φn(xj)φ
′
n(xk). (B.20)

Substituting the Fourier basis functions (B.10) into (B.20), we obtain

Tjk =
2π

N(b − a)

N−1∑
n=1

n sin

(
πnj

N

)
cos

(
πnk

N

)
. (B.21)

Rewriting the product of sine and cosine functions using trigonometric relations,

sin

(
πnj

N

)
cos

(
πnk

N

)
=

1

2
[sin(nA) + sin(nB)] , (B.22)

1cscx = 1/ sinx
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where A and B have been defined previously. Using the same reasoning as in equa-

tion (B.14),

N−1∑
n=1

n sin(nA) = −
∂

∂A
Re

N−1∑
n=1

einA. (B.23)

Further calculation is straightforward. Finally, we obtain

Kjk = −
(−1)j−kπ

2(b− a)

[
cot

(
π(j − k)

2N

)
+ cot

(
π(j + k)

2N

)]
, j 6= k, (B.24)

for non-diagonal, and

Kjj = −
π

2(b− a)
cot

(
πj

N

)
, j = k (B.25)

for the diagonal matrix elements of the K̂ operator in the DVR basis. The potential

energy operator V̂ is diagonal in this representation.

To demonstrate, how the DVR technique described above is applied in practice,

let us consider the formulation of the DVR matrix elements of the zeroth-order

bending molecular Hamiltonian (4.22). It is defined as:

Ĥ0
α =−

(
~

2

2µ1r
2
1

+
~

2

2µ2r
2
2

−
~

2 cosα

m2r1r2

)
∂2

∂α2
−

~
2 sinα

2m2r1r2

∂

∂α

−
~

2 cosα

4m2r1r2

−
~

2

8µ1r
2
1

−
~

2

8µ2r
2
2

,

(B.26)

where r1, r2 are assumed fixed at their equilibrium values. The matrix elements of

this Hamiltonian are then written as:

(Hα)jk = −c1Tjk + c2

[
(CT)jk − (SK)jk −

1

4
Cjk

]
+

(
1

8
c1 + V(αj)

)
δjk, (B.27)

where

c1 =
~

2

2

(
1

µ1r
2
1

+
1

µ2r
2
2

)
, c2 =

~
2

m2r1r2

, Cjk = cos(αj)δjk, Sjk = sin(αj)δjk.

(B.28)

To obtain the eigenenergies and eigenfunctions of the Hamilton operator (B.26) the

following matrix equation is solved:

[(Hα)jk −Ejδjk]χ
0
j(αk) = 0. (B.29)


