
Appendix A

Parallelization of wave packet

propagation programs

A.1 Concepts of parallel programming

The latest generation of supercomputers are the so-called massively parallel ma-

chines. They consist of a large number of processing elements, or nodes — individ-

ual high speed processors with their own local memory. The processing elements

are connected to a high speed internal network, which enables efficient exchange

of data between them (see Figure A.1). A typical massive parallel computer has

several hundred nodes. The data to be operated upon is distributed between the

processing elements, which then operate on their locally stored data, and exchange

it when required by the algorithm.

There exist two fundamentally different programming concepts for such archi-

tectures, namely MIMD and SIMD . MIMD stands for Multiple Instruction Multiple

Data. Within this approach, different processing elements operate on different data,

and run different instructions on it. A possible application of this technique for

quantum dynamical problems would be to use several processing elements for the



A.1 Concepts of parallel programming 93

RAM RAM RAMRAM

communication network

CPU CPU CPUCPU

Figure A.1: A scheme of a generic parallel computer. Each processor (CPU) has its

own local memory (RAM), and is connected to a high-speed internal communication

network.

propagation of the wave packet, and dedicate the others to analysis of the generated

wave functions.

SIMD , or Single Instruction Multiple Data approach requires that all the pro-

cessing elements run the same program on different data portions, which are evenly

distributed between them. This method is primarily used for numerical mathematics

problems, especially for matrix operations and for the solution of systems of differ-

ential equations. This is the approach used here for the solution of the Schrödinger

equation.

Every program which runs on a parallel machine, consists of the sequence of

blocks of the following structure [158]:

• Local operations

• Data exchange

• Synchronization

First the individual processors operate on the data available locally to each. After

a certain point, to continue the calculation, the processing element has to get addi-

tional data and/or provide its own to a different processing element. The processing



94 Parallelization of wave packet propagation programs

element then makes requests for input-output (I/O), which are put into designated

queues. No data exchange takes place until the final step, the synchronization, when

all the processors are halted, and the queued I/O requests are carried out. Upon

completion of the exchange, the processing elements simultaneously resume opera-

tion, working on the newly acquired data. These three fundamental steps comprise

one superstep of computation. A parallel program consists of at least one superstep.

Care should be taken to minimize the number of supersteps in an algorithm, be-

cause the synchronization is a relatively time-consuming operation, the more so, the

greater the number of processing elements used. Since synchronization is required

for data exchange, it follows that the algorithms, which do not require movement of

large blocks of data benefit the most from parallelization.

To implement the above mentioned techniques in actual programs, several code

libraries can be used. In this work the Oxford BSP Library [159, 160] has been

used, which provides the subroutines for data exchange and synchronization for the

Fortran and C programming languages.

A.2 Parallelization of three-dimensional FFTs

The techniques described below were developed by Bisseling and Sundermann [75,

159,160]. Their successful applications to to several three-dimensional wave packet

propagation problems can be found in this thesis.

The heart of a wave packet propagation program is the fast Fourier transforma-

tion, and therefore the main task of parallelization of these programs is to enable the

efficient evaluation of the transformation of data distributed between the processing

elements. For the three-dimensional problems, the technique of slab decomposition

has proven to be effective. In this approach the three-dimensional wave function

in coordinate space is divided into P slices, or slabs, along one of the coordinates

(designated as z). The slices are then distributed between P processors, each of

which has all the data necessary for the Fourier transformation along the other two



A.2 Parallelization of three-dimensional FFTs 95

(x and y) coordinates (see Figure A.2).

To complete the transformation to the momentum space, one has to perform

the FFT along the z coordinate. For this, the abovementioned coordinate space

distribution is unsuitable. Therefore, the data are rearranged into P columns of

equal size by slicing along x and y coordinates. After the rearrangement, the FFT

in the z coordinate can be performed, and the desired wave function in momentum

space can be obtained (Figure A.2).

x

z

y

FFTx,y FFTz
coordinate

space

momentum
space

PE 2

PE 3

PE 0

PE 1

PE 0 PE 1

PE 2 PE 3

communication

communication

FFTzFFTx,y
-1 -1

Figure A.2: Two types of distribution of a three dimensional wave function. P = 4

For the inverse transformation, the procedure is reversed. First, the inverse FFT

along the columns of the momentum space wave function is performed, then the

data is rearranged to the coordinate space representation, where the inverse two-

dimensional FFT is applied. In contrast to the sequential propagation programs,

the transformation to/from coordinate space cannot be achieved “in place”, without

allocating additional storage. The parallel propagation programs require separate

data structures for the coordinate and momentum space wave functions.



96 Parallelization of wave packet propagation programs

For a detailed discussion of the problems of parallelization of the wave packet

propagation, as well as for formal description of the data exchange algorithm, the

reader is referred to the work of Sundermann [75].

A.3 Notes on the efficiency

The three-dimensional calculations of this work were performed on the Cray T3E

massively parallel supercomputer of the Konrad-Zuse-Zentrum für Informationstech-

nik, Berlin (ZIB). Typically, the number of processing elements used varied from 16

for test calculations to 128 for production runs. The scaling properties of the algo-

rithms with respect to the number of processors employed are illustrated in Figure

A.3, where the speedup factor (the ratio of the time required for a benchmark run

on one processor to the run time of the same program on P processors) as a func-

tion of the number of processors used. In the case of infinitely fast communication,

this ratio will be equal to P (solid line on Figure A.3). The measured performance

Figure A.3: Dependence of the performance gain on the number of processors utilized

for an exemplary propagation of Na3 molecule (adopted from [75]).

(Figure A.3, dashed line) was found to be very close to the linear scaling limit,

indicating that the parallelization technique employed is quite adequate. Even if



A.3 Notes on the efficiency 97

it did not prove to be the case, increasing the number of processing elements used

is unavoidable for very large scale problems, since the massively parallel computers

allow these to use the amounts of memory otherwise unavailable.

In order to give the feeling of the actual times required for the propagation

programs to run, it is worth mentioning, that the propagation of the wave packet for

Ag3 (Chapter 3) on 8,000,000 element grid for 2 ps, involving 10,000 time steps, took

approximately two hours of computation time on a Cray T3E using 128 processing

elements.


