
Chapter 4

System - HONO2

One of the key steps in the investigation of ultrafast photoinduced dynamics of

molecules is the choice of a proper model for the description of the system. This

step is not trivial, especially in systems with many degrees of freedom. A good model

should be specific enough to adequately represent the relevant physical effects, and

yet simple enough to be computationaly feasible. In this chapter a novel model for

studying the vibrational dynamics of a nitric acid (HONO2) molecule in the gas

phase (Figure 4.1) induced by ultrashort laser pulses shall be presented.

The dynamics shall be investigated in three dimensions, corresponding to three

vibrational degrees of freedom, represented by the natural molecular coordinates,

consisting of two bond lengths (the ON single bond and the OH bond), and the

bending angle between them. Since no assumptions shall be introduced for the

amplitudes of vibrations, the model is suitable for treatment of dissociation, large

amplitude bending vibration, and can naturally accomodate different molecular con-

formations [110]. The model is by no means restricted to a particular system, and

can in fact be applied to any planar nonrotating asymmetric triatomic molecule.

For the proposed model, the vibrational Hamilton operator shall be derived,

which is free from singular terms (see, e.g. references [111–115]) in the vicinity

of linear configuration (bending angle α ≈ π), and smoothly transforms into the
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Figure 4.1: The nitric acid molecule.

Hamilton operator of a linear molecule when α = π. This enables the investigation

of large amplitude bending vibrations, even the ones that pass through the linear

molecular configuration.

To illustrate the potential of the model, two exemplary applications shall be

considered: the investigation of the restricted IVR in the OH bond, involving free

evolution and preparation of the zeroth-order OH states, and highly selective ON

bond breaking of the HONO2 molecule. The task of finding the optimal laser fields

for both problems was performed by Dr. G.K. Paramonov. The results of this

chapter are published in [116]. For a more systematic study of the restricted IVR

and bond-selective dissociation in HONO2 the reader is refered to Ref. [117].
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4.1 Model, equation of motion, and technique

4.1.1 Derivation of the molecular Hamiltonian

Let us consider the nonrotating HONO2 molecule lying in the (x, y) plane. Trans-

lational motion shall not be taken into account. The NO2 fragment is treated at

its equilibrium configuration, and represented by a single particle at its center of

mass, which reduces the model to that of a nonrotating asymmetric triatomic ABC

molecule. The number of system degrees of freedom in this case reduces to three,

which shall be represented by the natural molecular coordinates, namely the lengths

of the ON single (r1) and OH (r2) bonds, and the bending angle (α) between them

(see Figure 4.2). The molecular Hamiltonian operator then reads:

Ĥmol(r1, r2, α) = T̂ + V̂(r1, r2, α). (4.1)

The potential energy term V̂(r1, r2, α) in equation (4.1) has been defined ab initio

[110]. Below the derivation of the kinetic energy operator T̂ is outlined in detail.

The starting point for the derivation is the kinetic energy operator written in

Cartesian coordinates in a laboratory reference frame:

T̂ = −
~

2
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(
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∂y2
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)
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)
, (4.2)

where xi, yi; i = 1, 2, 3 are Cartesian coordinates of the center of mass of the NO2

fragment, central O atom and the H atom respectively, m1 = m(NO2),m2 = m(O),

m3 = m(H).

First, it is appropriate to change to the coordinate system consisting of the center

of mass positions and projections of the bond lengths on Cartesian axes. In matrix
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Figure 4.2: The HONO2 molecule and the relevant coordinates. The NO2 fragment

(encircled and scaled down) is treated as one particle.

form,
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=



m1/M 0 m2/M 0 m3/M 0

0 m1/M 0 m2/M 0 m3/M
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x2

y2

x3

y3


. (4.3)

Here x0, y0 are the Cartesian coordinates of the center of mass, M = m1 +m2 +m3

is the total mass, lxi, lyi; i = 1, 2 are the projections of the ON and OH bonds,

respectively, on the x and y axes. In compact form equation (4.3) can be rewritten

as

Xnew = AXold. (4.4)

The corresponding conjugate momenta

p̂j = −i
∂

∂xj
(4.5)
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transform according to the following equation [118])

Pold = ATPnew, (4.6)

where A is the transformation matrix from equation (4.3). Solution of equation

(4.6) gives us the old momenta in Cartesian coordinates as functions of new ones,

and substituting these solutions into equation (4.2) gives the following expression

for the kinetic energy operator:

T̂ =−
~
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(4.7)

Here the reduced masses µ1 = m1m2/(m1 + m2) and µ2 = m2m3/(m2 + m3) of

the ON and OH bonds respectively are introduced. The last two terms in (4.7)

correspond to the translational motion of the molecule, which can be separated

from the Schrödinger equation and disregarded.

Now from the center-of-mass and bond length coordinates we change to a polar

coordinate system of bond lengths and angles (ri, φi; i = 1, 2) (see figure 4.2). These

coordinate transformation reads as follows:

lx1 = r1 cosφ1,

ly1 = r1 sinφ1,

lx2 = r2 cosφ2,

lx2 = r2 sinφ2.

(4.8)

We proceed by expressing the momenta of equation (4.7) in terms of the momenta

conjugate to (ri, φi) coordinates by applying the chain rule of differentiation. The

calculation is straightforward, albeit tedious, and was performed using the Mathe-
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matica 3.0 symbolic mathematics package. We obtain:
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(4.9)

The transformation to polar coordinates gives the following expression for the vol-

ume element : dτ = r1r2dr1dr2dφ1dφ2, which is dependent on ri. However, to cal-

culate the observables we are interested in evaluating integrals involving quadratic

combinations of the wave functions. The following similarity transformation

Φ(r1, r2, φ1, φ2) = Ψ(r1, r2, φ1, φ2)
√
r1r2, (4.10)

allows to avoid the r1r2 product in the volume element. Here Ψ is the original wave

function, and Φ is the wave function that shall be used in all subsequent calculations.

The kinetic energy operator (4.9) then becomes
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(4.11)

The last three ‘potential-like’ terms in this expression are a direct consequence of

the transformation (4.10).

We consider our molecule to be non-rotating (J = 0). The total angular momen-

tum has only the Lz component, since we assume the molecule to be constrained to
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(x, y) plane. The angular momentum conservation law therefore requires Lz = 0.

Expanding the latter equation in Cartesian coordinates gives:

L̂z = i

3∑
i=1

(
yi

∂

∂xi
− xi

∂

∂yi

)
= 0. (4.12)

After changing to polar coordinates, we obtain

L̂z = −
∂

∂φ1
−

∂

∂φ2
= 0. (4.13)

It is reasonable to redefine the angular variables in a way which makes the kinetic

energy operator invariant with respect to the laboratory frame of reference. This

may be achieved by the following transformation of angular coordinates:

φ+ = φ2 + φ1,

φ− = φ2 − φ1.
(4.14)

The momenta conjugate to φ+ vanish due to the momentum conservation constraint,

and the kinetic energy operator is dependent only on the angle φ− between ON and

OH bonds.

After substituting (4.13) and (4.14) in (4.11), and redefining φ− = π − α, we

finally obtain:
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(4.15)

For the integration of the wave functions, the volume element is dτ = dr1dr2dα.

The kinetic energy operator (4.15) is very similar to those already known (see,

for example, equation (78) in Ref. [111]). The only difference, which is nevertheless
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important, is the absense of two singular “potential-type” terms in the equation

(4.15),

~
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4m2r1r2 sin2 α
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~
2

8 sin2 α

(
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µ1r
2
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+
1

µ2r
2
2

)
, (4.16)

which do appear in equation (78) in Ref. [111]. These terms are not significant in

the vicinity of the equilibrium configuration, but they prohibit the investigation of

dynamics in the vicinity of the bending angle α = π. In contrast, equation (4.15)

allows the smooth transition through the ‘linear’ configuration, which enables us

to study the processes with the linear configuration as transition state, such as the

selective preparation of conformers in HONO2 [110]. For a discussion on the origin

of the singular terms in the Hamiltonian, see Appendix C.

4.1.2 Basis set and interaction with the laser field

For the problem of monitoring the IVR in HONO2 molecule the direct product

of one-dimensional zeroth-order states of individual vibrational modes is used as

the basis set. To calculate these zeroth-order states, the following zeroth-order

Hamiltonians are formulated by fixing all but one of the degrees of freedom at their

equilibrium values, analogously to [111], as suggested by G.K. Paramonov [110]:

Ĥ0
r1

(r1) = Ĥmol(r1, r2 = req2 , α = αeq), (4.17)

Ĥ0
r2

(r2) = Ĥmol(r1 = req1 , r2, α = αeq), (4.18)

Ĥ0
α(α) = Ĥmol(r1 = req1 , r2 = req2 , α). (4.19)

Then the corresponding time-independent Scrödinger equations

Ĥ0
r1
|ψ0
n〉 = E0

n|ψ
0
n〉, (4.20)

Ĥ0
r2
|φ0
m〉 = E0

m|φ
0
m〉, (4.21)

Ĥ0
α|χ

0
k〉 = E0

k |χ
0
k〉. (4.22)

give the zeroth-order vibrational eigenenergies and eigenstates for each of the degress

of freedom.
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The equations (4.20) and (4.21) were solved by the Fourier grid Hamilonian

(FGH) method [72], and for equation (4.22) a DVR method was used, with ex-

tensions necessary to allow treatment of first order derivatives in the zeroth-order

Hamiltonian Ĥ0
α. The calculated frequency of the transition to the first excited

zeroth-order bending state, 1306.8 cm−1 is in good agreement with the spectro-

scopic data, which gives ν4 = 1303 cm−1 [119]. The first ten zeroth-order bending
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Figure 4.3: The localized linear combinations of the selected few degenerate low-

lying zeroth-order bending states of HONO2

.

eigenfunctions |χ0
k〉 form doublets of nearly degenerate states. For the purpose of

analysis, the bending zeroth-order eigenfunctions shall be redefined as follows:

|χ̃0
2k〉 = 1√

2
(|χ2k+1〉+ |χ2k〉), (4.23)

|χ̃0
2k+1〉 = 1√

2
(|χ2k+1〉 − |χ2k〉), (4.24)

see reference [110]. The even-numbered states |χ̃0
k〉, k = 0, 2, 4, ... are then local-
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ized in one well of the double-minimum potential, whereas the odd-numbered ones,

|χ̃0
k〉, k = 1, 3, 5, ..., are located in the other well, which is separated by the bar-

rier of the 2.04 eV height (see Figure 4.3). Thus defined, the wave functions |χ̃0
k〉

describe two energetically equivalent conformers of the HONO2 molecule [110].

We shall henceforth use the following notation

|n,m, k〉 = |ψ0
n〉|φ

0
m〉|χ̃

0
k〉 (4.25)

for the 3-D direct product zeroth-order states. The |0, 0, 0〉 zeroth-order state was

propagated in imaginary time [74] to obtain the ground vibrational state Φ0, an

initial state for quantum molecular dynamics simulations.

The HONO2 molecule is considered lying in the (x, y) plane and preoriented in

such a way that the ON single bond is parallel to the x axis. Such an orientation

can be achieved, for example, by subjecting the initial ensemble of molecules to an

external direct current (DC) electric field [120]. The electric field of the laser is as-

sumed to be linearly polarized and aligned in the (x, y) plane with and angle β to the

x axis. The interaction of the molecule with the laser field is treated semiclassically

within the electric dipole approximation by the interaction Hamiltonian

Ĥint(r1, r2, α, t) = −E(t)[dx(r1, r2, α) cosβ + dy(r1, r2, α) sinβ], (4.26)

where dx(r1, r2, α) and dy(r1, r2, α) are the components of the dipole function along

the x and y axes, defined ab initio together with the potential energy surface

V (r1, r2, α) [110], and E(t) is the electric field strength of the IR laser, defined

as a single pulse of the type

E(t) = E0S(t) cos(ω0t), (4.27)

where E0 is the (peak) amplitude of the pulse, ω0 is the carrier frequency, and S(t)

is the shape function of the laser pulse.
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4.1.3 Equation of motion and technique

The 3-D quantum dynamics of the molecule in the classical laser field E(t) is de-

scribed by the time-dependent Schrödinger equation

i~
∂

∂t
Φ(r1, r2, α, t) = [Ĥmol(r1, r2, α) + Ĥint(r1, r2, α, t)]Φ(r1, r2, α, t), (4.28)

where the molecular Hamiltonian Ĥmol and the interaction Hamiltonian Ĥint are

defined by equations (4.1),(4.15) and (4.26) respectively.

The wave function and operators of the equation (4.28) have been represented on

a 256×32×64-point spatial grid for r1,r2 and α coordinates respectively. The time-

dependent Schrödinger equation (4.28) was solved by split-operator method [54] with

several modifications to enable the evaluation of mixed kinetic energy terms [58].

The time step of propagation ranged from 0.3 to 1.5 atomic time units.

At large values of the dissociative coordinate r1 we use an imaginary optical

potential of the kind

Uopt
1 = −iU0 exp{(3/2)[1− (rmax

1 − ropt
1 )2/(r1 − r

opt
1 )2]}, (4.29)

if r1 ≥ ropt
1 , and Uopt

1 (r1) = 0 otherwise [121]. A similar absorbing boundary condi-

tion was also provided for large values of r2. In practice, however, the wave packets

never approached the outer end of the r2 coordinate.

The time-dependent populations of the zeroth-order vibrational states of the

molecule are defined by projection of the time-dependent wave function Ψ(t) on the

respective zeroth-order states |n,m, k〉 as follows:

P(n,m,k)(t) =

∫ r
opt
1

rmin
1

∫ rmax
2

r
opt
2

∫ αmax

αmin

|〈k,m, n|Φ(t)〉|2dr1dr2dα, (4.30)

As a measure of the degree of excitation in different vibrational modes, the use is

made of overall excitation probabilities in certain degrees of freedom, defined as

PON(t) =
∑
n>0

P(n,0,0)(t) (4.31)
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for the ON bond, and

Pb(t) = N (t)−

∫ r
opt
1

rmin
1

∫ r
opt
2

rmin
2

∫ αmax

αmin

(|〈χ̃0
0(α)|Φ(t)〉|2 + |〈χ̃0

1(α)|Φ(t)〉|2)dr1dr2dα,

(4.32)

for the bending degree of freedom.1 Here N (t) is the norm of the wave function

remaining on the grid (excluding the absorbing boundary regions), given by the

expression

N (t) =

∫ r
opt
1

rmin
1

∫ r
opt
2

rmin
2

∫ αmax

αmin

|Φ(r1, r2, α, t)|
2dr1dr2dα. (4.33)

Two zeroth-order states χ̃0
0 and χ̃0

1 appear in the equation (4.32) because of the

degenerate character of bending vibrational eigenfunctions.

4.2 Evolution and preparation of zeroth-order vi-

brational states

In this section the Hamilton operator derived in Section 4.1.1, together with the

techniques described above, shall be applied to the problem of preparation and

evolution of zeroth-order OH states of HONO2. The zeroth-order states play an im-

portant role in mode-selective chemistry and molecular spectroscopy [11, 122–125],

for several reasons. Firstly, by definition, they represent molecular states, in which

the excitation is limited only to certain desired vibrational modes, which makes

these states useful as an intermediate steps in photochemical reactions, for exam-

ple. Secondly, the zeroth-order states, in contrast to molecular eigenstates, are not

stationary, and can couple with other modes, which manifests itself in characteristic

oscillations, or quantum beats [10,11,126]. The analysis of these oscillations yields

1The formula (4.32) has its origins in the projection method as defined by the equation (2.20).

The total 3-D wave function is projected on the bending degree of freedom, where the overlap

with the ground zeroth-order state is calculated. The higher the degree of bending excitation, the

smaller the overlap. For the low-lying zeroth-order states considered here the norm remaining on

the grid was always equal to one.
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information on the energies of states, to which the zero-order state is coupled, and

also the strengths of these couplings. The number of vibrational states which are

efficiently coupled can in many cases be quite small, which corresponds to the case

of restricted IVR [127].
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Figure 4.4: Low lying vibrational zeroth-order states of the HONO2 molecule. The

circle denotes the initial |0, 3, 0〉 zeroth-order state, and cross-markers denote the

states efficiently coupled to the initial one.

The restricted IVR in HONO2 molecule shall be illustrated on the example of the

|0, 3, 0〉 zeroth-order state, which has three vibrational quanta in the local OH bond,

and the other vibrational degrees of freedom are not excited. The energy of this state

lies well below the dissociation threshold, and the density of states in this region is

small, which means that rather few states may participate in restricted IVR. The

energy level diagram in the vicinity of the |0, 3, 0〉 state is presented in figure 4.4.

We note, that there are only a few states in the vicinity of the |0, 3, 0〉 state, and

the closest lying |1, 2, 4〉 and |3, 2, 2〉 zeroth-order states should be quite strongly

coupled to the chosen |0, 3, 0〉 state. Which other states also play an important role

in the restricted IVR, shall be clarified below.



4.2 Evolution and preparation of zeroth-order vibrational states 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
op

ul
at

io
n

Time , ps

0,3,0〉

Pb

Figure 4.5: Free evolution of the |0, 3, 0〉 zeroth-order state, compared to the time-

dependent probability of the excitation of the bending degree of freedom Pb(t).

First, the free evolution of the |0, 3, 0〉 state was studied, assuming that it was

already prepared selectively. The dynamics of this process is presented in Figure

4.5. The bottom curve in Figure 4.5, is the overall probability of the excitation of

the bending degree of freedom, defined by equation (4.32). We see the characteristic

quantum beat pattern, which consists of several harmonics, suggesting that several

vibrational zeroth-order states are involved in restricted IVR. Also, the Pb(t) curve

is out of phase with the P(0,3,0), which indicates, that the vibrations in the bond

lengts are primarily coupled via the bending mode, a manifestation of the heavy-

atom blocking effect of the central oxygen atom. The relatively small amplitude of

the oscillations suggests a comparatively weak coupling between the bending and

two stretching degrees of freedom at the energies close to that of the |0, 3, 0〉 state.

Let us now attempt to establish, which zeroth-order states dominate the re-

stricted IVR. This is achieved by free propagation of several selected zeroth-order

states, with energies close to that of the state |0, 3, 0〉. By this means, four states were

selected, marked on the Figure 4.4 by cross-markers. The time evolution of these
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Figure 4.6: Population dynamics of selected low-lying zero-order states of HONO2

molecule. The states are arranged in descending order by energy.

states is presented in Figure 4.6. Previous studies of restricted IVR [11, 125] point

at the following characteristics of quantum beats: the frequency of the oscillations is

determined by the energy difference between the two coupled zero-order states, and

the amplitude is determined by the strength of the coupling [11, 125]. The Figure

4.6 clearly illustrates these tendencies: the two states closest to |0, 3, 0〉, i.e. |1, 2, 4〉

(Figure 4.6b) and |3, 2, 2〉 (Figure 4.6c) provide the dominant low-frequency contri-

bution to the total bending excitation probability, and the two other states, |0, 3, 2〉

(Figure 4.6a) and |0, 2, 2〉 (Figure 4.6d) are responsible for the high-frequency low-

amplitude modulation. To prove that the four zeroth-order states marked on Figure

4.4 are indeed the ones most efficiently coupled to the |0, 3, 0〉 state, we compare

their combined contribution

Psum(t) = P(0,3,2)(t) + P(3,2,2)(t) + P(1,2,4)(t) + P(0,2,2)(t) (4.34)

with the total bending excitation probability (Figure 4.7). As we can see, taking into

account the contributions from the four states most efficiently coupled to |0, 3, 0〉

reproduces the features of the out-of-phase oscillations in the bending mode quite

adequately. The difference between Psum(t) and Pb(t) diminishes, when more zeroth-
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order states are taken into account.
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Figure 4.7: Comparison of the total time-dependent bending excitation probability

Pb(t) (solid line) with the combined contribution from four selected zeroth-order

states Psum(t) (dashed line), see Eqn. (4.34).

So far the free evolution of the |0, 3, 0〉 zeroth-order OH state was considered. It

is also possible to prepare this state selectively, using a short sine-squared shaped

laser pulse. The task of selective preparation of zeroth-order state is more complex

than that of eigenstate preparation, because in order to prepare a zeroth-order state

one has to utilize short intense pulses to compete against IVR, at the expense of

spectral selectivity. Nevertheless, such preparation is feasible, which was demon-

strated previously both experimentally [11,127–131] and theoretically [11,125,127].

The use of a laser pulse with the sine-squared envelope shall be made, when the

shape function S(t) in the equation (4.27) is:

S(t, τp) = sin2

(
πt

τp

)
, (4.35)

where τp is the duration of the pulse. The electric field axis of the linearly polarized

laser field was aligned along the OH bond of the HONO2 molecule.
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The preparation of the |0, 3, 0〉 zeroth-order state is demonstrated in Figure 4.8.

The excitation proceeds along the following pathway:

Φ0 −→ (3 photons) −→ |0, 3, 0〉. (4.36)

The sine-squared shaped laser pulse of the duration τp = 0.3 ps, frequency ω0 =

3351.60 cm−1 and amplitude E0 = 110.56 MV/cm was used (see figure 4.8c). The

optimal laser fields were designed by G.K. Paramonov [116, 117]. Shown on the

Figure 4.8a are the population of the target zeroth-order state P(0,3,0), the population

of the vibrational ground state of the HONO2 molecule P0, and the total probability

of the excitation of the bending degree of freedom.

Analogously to the case of the free evolution, the P(0,3,0)(t) and Pb(t) curves

display the in- and out-phase oscillatory behaviour. The vibrational ground state

retains about 15% of the population, which does not influence the IVR, since the

population is confined in an eigenstate. The character of the quantum beats is

only slightly different from the case of free evolution in a sense, that the high-

frequency modulation of the oscillating populations is much less pronounced, when

the molecule is prepared with a laser. The origin of the difference lies in the process

of preparation of the target zeroth-order state with the laser light, during which

the intramolecular coherency is induced [11, 125]. The contributions from the four

zeroth-order states involved most efficiently in restricted IVR are presented in fig-

ure 4.8b. One can observe, that the amplitudes of the high-frequency components

|0, 3, 2〉 and |0, 2, 2〉 are indeed much less than in the case of free evolution, indicating

their efficient averaging by the laser field, which has frequency close to that of the

population oscillations.

4.3 Selective breaking of the ON bond

Another important aspect of the model discussed in this work is its suitability for

problems involving large amplitude motions of a molecule, including those of the

laser-induced dissociation. In this section we shall demonstrate this by considering



4.3 Selective breaking of the ON bond 69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Po
pu

la
tio

n

Time , ps

0,3,0〉

P0

Pb

(a)

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

 

0,3,2〉

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

 

3,2,2〉

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

 

1,2,4〉

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time , ps

0,2,2〉

Po
pu

la
tio

n

(b)

-150

-100

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Ele
ctr

ic 
fie

ld,
 M

V/
cm

Time , ps

(c)

Figure 4.8: Selective preparation of the |0, 3, 0〉 zeroth-order state. (a) Population

dynamics. P0 and Pb denote the population of the ground vibrational state and

the total bending excitation probability, respectively; (b) Population dynamics of

selected zeroth-order OH states most efficiently involved in IVR; (c) Optimal laser

field: τp = 0.3 ps, ω0 = 3351.60 cm−1, E0 = 110.56 MV/cm.
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the process of ON single bond breaking. Instead of a sine-squared type pulse, use

shall be made of a laser field with the following shape function:

S(t, τs, τpl, τp) =


sin2(πt/2ts) if 0 ≤ t ≤ ts

1 if ts ≤ t ≤ ts + tpl

sin2(π(t− tpl)/2ts) if ts + tpl ≤ t ≤ tp

(4.37)

Such plateau-type pulses with sine-squared switch-on and switch-off proved to be

more suitable for efficient control of molecular dissociation than purely sine-squared

type pulses of the same duration [110,117]. The shape parameters of the pulse (4.37)

have been optimized by Dr. G.K. Paramonov together with the amplitude and the

carrier frequency to maximize the dissociation yield. The electric field axis of the

linearly polarized laser field has been aligned along the ON single bond.

As a measure of the dissociation yield, we take the integrated outgoing flux,

which is monitored at the position of the beginning of the absorbing boundary in

NO bond length:

D(t) =
~

µ1

∫ t

0

dt′
∫ rmax

2

rmin
2

dr2

∫ αmax

αmin

dα Im

(
Φ∗(r1, r2, α, t

′)
∂Φ(r1, r2, α, t

′)

∂r1

) ∣∣∣∣
r1=ropt

1

(4.38)

At any given time the consistency check

N (t) +D(t) = 1, (4.39)

was fulfilled with better than 1% accuracy.

The results for the selective breaking of ON bond are presented in figure 4.9a.

The laser excitation has a resonant character, with the pathway given by

Φ0 −→ (27 photons) −→ |30, 0, 0〉 −→ continuum. (4.40)

The duration of the pulse was τp = 1 ps, which includes the sine- squared type

switch-on and switch-off of the duration τs = 0.1 ps and 0.8 ps plateau. The laser

carrier frequency was ω0 = 609.92 cm−1, and the peak amplitude E0 = 179.98
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MV/cm. As we can see, a single plateau-like laser pulse leads to highly efficient

(93% probability) dissociation. The laser pulse is shown in Figure 4.9b.

It is worth noting, that the behaviour of the excitation probabilities in the ON

and bending modes indicate an efficient interchange of energy, which manifests itself

in strongly modulated, almost out-of-phase oscillations of the respective probabilities

during the initial stages of laser excitation ( 0.05 ps < t < 0.2 ps ). After the first 0.2

ps, the excitation is transfered mainly to the bending degree of freedom (curve ’Pb’),

and shortly afterwards the molecule starts to dissociate. The fact that the bending

mode of vibration plays a very important role in the energy redistribution highlights

the advantages of the model presented here, since it allows accurate treatment of

bending vibrations, including the large amplitude ones. The OH bond stretching

degree of freedom remains unexcited, and plays a negligible role in the process of

selective ON bond breaking.
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Figure 4.9: Breaking of the ON single bond. (a) Population dynamics. P0 is the

population of the vibrational ground state, PON and Pb are the excitation probabil-

ities of ON single bond and the bending mode respectively, D is the dissociation

yield; (b) Optimal laser field: τp = 1 ps, τs = 0.1 ps, τpl=0.8 ps, ω0 = 609.92 cm−1,

E0 = 179.98 MV/cm.


