
Chapter 3

System – Ag3

3.1 Introduction

Small silver clusters represent an interesting and challenging subject for ultrafast

molecular dynamics. These systems have been extensively studied before, yielding

a wealth of information on their spectroscopic properties [76–78], structure and

energetics [79–81]. Recent studies have indicated, that silver miniclusters play a

key role in the process of the formation of photographic images [82, 83], a fact,

which highlights the importance of understanding their fundamental photochemical

properties. This work is concerned with the investigation of the dynamics of silver

trimers in the gas phase, and was triggered by the pioneering experiment in the

group of Wöste on NeNePo spectroscopy of Ag3 [84, 85].

The acronym NeNePo stands for Negative-to-Neutral-to-Positive ion spectroscopy,

which has its roots in pump-probe spectroscopy proposed by Zewail [3, 86–88], and

photodetachment spectroscopy of Neumark [89, 90]. This approach is also called

charge reversal spectroscopy [91]. The technique can be summarized as follows.

One starts from an ensemble of anions, jet-cooled and mass-selected. This ensemble

is then irradiated by two subsequent ultrashort ( typically of femtosecond duration
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) laser pulses, the time delay between which can be varied. The first pulse detaches

an electron from the anion, and neutral molecules or clusters are formed. Since the

equilibrium geometries of anions and neutrals are typically different, the neutrals

are formed in a nonequilibrium state, and undergo fast geometric relaxation on fem-

tosecond or picosecond time scale. The process of relaxation is monitored by the

second laser pulse, which detaches another electron, and the resulting cations are

collected, and their yield measured. This approach allows, firstly, to form neutral

molecules or clusters with high degree of vibrational excitation, and, secondly, to

follow the process of its redistribution on the time scale of molecular motions.

(a) Ag−3 (b) Ag0
3,Ag+

3

Figure 3.1: Two characteristic equilibrium configurations of Ag3 ions

In the specific case of silver trimers, it has been known from previous ab ini-

tio calculations [79, 80], that the Ag3 anions have linear equilibrium geometry in

the ground electronic state, and the neutrals and cations have triangular equilib-

rium configuration (isosceles for Ag0
3 due to Jahn-Teller effect, and equilateral for

Ag+
3 ) (see Figure 3.1). Therefore, one should expect fast geometrical relaxation in

this system after the photoionization of anions, which was indeed observed in the

experiments [84,91,92]. For a survey of the experimental results, see [93].

The relevant physical processes occuring in the NeNePo process can be summa-

rized as follows. Upon photodetachment by the first pulse (pump pulse), the neutral

species are prepared in a highly nonequilibrium state, and relax to their equilibrium

triangular geometry. The geometrical relaxation from the linear Ag3 to the trian-

gular nuclear configuration is investigated by a delayed ionizing probe pulse using

two-photon ionisation. The schematic of the process is shown in Figure 3.2. The
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transitions induced by laser pulses are treated as having vertical Franck-Condon

type character, and the probe pulses of different wavelengths probe the wavepacket

dynamics at three characteristic regions of the potential energy surface (PES): the

6.5 eV pulse monitors the dynamics in the vicinity of the linear configuration, the

5.8 eV probes the region of equilibrium triangular geometry, and the 6.1 eV pulse

is chosen as an intermediate point. It has to be noted, that the probing step is
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Figure 3.2: Schematic representation of NeNePo experiment in Ag3. Shown are the

one-dimensional cuts through the 3-D ab initio PES’s [79, 80] of different Ag3 ions

along the bending coordinate Qx.

achieved via the two-photon ionization, either resonant or nonresonant. A rigorous

description of the multiphoton excitation is not possible within the present model,

and the two-photon probe is approximated by a one-photon one, with the photon

energy double that in the two-photon process. That is why one-photon-kind tran-
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sitions are shown in Figure 3.2. The cations produced by the second ionization are

collected, and their yield is analyzed as a function of the delay time between the

pump and probe pulses, and the probe pulse wavelength. Later experiments in the

group of Wöste [94] also investigated the role of the vibrational temperature of the

initial anionic ensemble.

Taking into account the physics of the process, one should expect that the yield

of Ag3 cations at a given probe two-photon energy, e.g. 5.8 eV, should be close

to zero at zero delay time between the pulses, since this energy is not sufficient to

ionize the neutrals from their linear configuration, but should rise at later times,

when the representative wave packet approaches the region of the PES, from which

the ionization is possible. At even longer delay times, the cation yield should slowly

decrease, as the IVR sets in. Such behaviour of the signals was indeed observed

in the experiments, first in the group of Wöste, then in the group of Lineberger,

where an extension of the NeNePo pump-probe technique using two-color excitation

and sensitive ion and electron detection was applied to the study of Ag−3 /Ag3/Ag+
3

system. [91].

First theoretical confirmation of the experimental results was provided by Jeschke

et al. [95, 96]. In their calculations, microscopic electronic theory within a tight-

binding model was combined with molecular dynamics simulations, yielding the

information on the time-dependent changes of the ionization potential (IP) of Ag3.

It was found, that with the pump photon energies corresponding to those of experi-

ment, the trimer can only be ionized after a certain delay time, in their case ≈ 750

fs. With further increase of the delay time, the signal slightly decreases, and reaches

saturation, which was interpreted as a statistical effect induced by temperature.

Subsequent theoretical studies of the multi-state nuclear dynamics based on clas-

sical trajectories on the ground electronic adiabatic PES of Ag−3 , Ag3 and Ag+
3 (

obtained from accurate ab initio quantum chemistry calculations ) and the simu-

lations of the pump-probe femtosecond signals utilizing the Wigner representation

of the vibrational density matrix by Hartmann et al. [97, 98] elucidated the rich

dynamics of this system. In these studies it has been shown that the dynamics of

the Ag3 cluster initiated from the linear transition state involves, in addition to the
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configurational relaxation towards the triangular geometry, sequential intracluster

vibrational relaxation (IVR) processes, which can dominate the intracluster dynam-

ics. These processes involve intracluster collisions, the onset of IVR, resonant and

dissipative IVR and vibrational equilibration, whose time scales were determined.

Furthermore, their dependence on the initial cluster temperature was discussed. The

calculated NeNePo-ZEKE signal and the total, integrated over the photoelectron en-

ergy , NeNePo signal allowed to show how geometrical change, completion of IVR

and vibrational coherence effects can be identified in the signals.

The first full-dimensional quantum dynamical simulations of the dynamics of

silver trimers in the process of NeNePo were obtained in this thesis, see Ref. [99]. In

these simulations the same adiabatic ground state PES’s as in [97,98] have been used,

which enables a close comparison between the semiclassical and quantum mechanical

treatments. The characteristic features of the process of geometric relaxation in

neutral silver trimers have been observed, including the intracluster collision, onset

and evolution of IVR, vibrational equilibration. The influence of the temperature of

the initial anionic ensemble has also been studied. These topics, and the comparison

of quantum mechanical and semiclassical approaches for treatment of molecular

dynamics shall be the main focus of this chapter.

3.2 Model and Techniques

In this investigation, the vibrational dynamics of neutral Ag trimers, as induced by

NeNePo spectroscopy [84,91], is simulated by the time evolution of a representative

three dimensional wave packet. These three dimensions correspond to the normal

modes of a trimer in the vicinity of the equilibrium D3h equilateral triangular geom-

etry. The modes considered are the symmetric stretch mode Qs, the bending mode

Qx, and the asymmetric stretch mode Qy. The potential energy surfaces for the

Ag−3 , Ag0
3 and Ag+

3 of Ref. [97, 98] are represented in terms of these normal modes.

Since a nonrotating planar triatomic molecule has three vibrational degrees of

freedom, a set of three nuclear coordinates should be sufficient for the description of
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vibrational motion of silver trimer. However, the question of suitability of the three

normal vibrational modes of an equilateral triangular molecule for the description

of the system arises, since the normal modes are always defined with respect to a

certain equilibrium reference configuration, and in the case of the silver trimer we

have to deal with large amplitude motion, from the linear to triangular configuration.

Nevertheless, it can be shown that the coordinates chosen are quite adequate for the

dynamical simulations.
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Figure 3.3: Vibrational normal coordinates of a triatomic molecule in the vicinity

of the D3h equilibrium geometry.
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The normal coordinates of a triatomic molecule, defined with respect to the

equilateral triangular equilibrium configuration, are defined as follows [42,100]:
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where xi, yi; i = 1, 2, 3 are the Cartesian displacements from the equilibrium config-

uration, Tx, Ty are the translational modes, Rz is the uniform rotation about the z

axis, Qs, Qx, Qy are the symmetric stretch, bending, and asymmetric stretch modes,

respectively. The normal coordinates are schematically represented in Figure 3.3.

Applying the general procedure for derivation of quantum mechanical Hamilton

operator (cf. Appendix C ), we obtain the following expression for the kinetic energy

part of the Hamiltonian:
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1

2m
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)
. (3.2)

Here m = m(Ag) is the mass of one silver atom. The Cartesian-like separation of

terms in the Hamiltonian and the absence of kinetic coupling between the normal

modes is one of the major advantages of the normal coordinate description of dy-

namics. When the amplitudes of the vibrations in the vicinity of the equilibrium

configuration are small, the translational and rotational motions can be separated

out of the Schrödinger equation and disregarded. In the case of silver trimers, how-

ever, the changes in Rz influence the internuclear distances, and the rotational mode

has to be taken into account, increasing the dimensionality of the problem to four.

Such increase in the number of degrees of freedom is not necessarily harmful,

since it greatly simplifies the vibrational Hamiltonian. For example, the three-

dimensional Hamilton operator (4.15) in Chapter 4 contains complicated kinetic
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couplings, the treatment of which can become prohibitive with the increase in the

grid sizes for propagation, whereas the simple form of the equation (3.2) can make

the computation feasible, even in four dimensions.

In the calculations of the dynamics of silver trimers, however, the Rz mode

has been neglected. This is justified, since the theoretical estimates of the relative

magnitude of the kinetic energy in the Rz mode have indicated that at any given

time it contains less than 5% of the total kinetic energy ( typically less than 1%,

except for the regions in the close vicinity of linear configuration ). The procedure

used to prove these facts can be outlined as follows. The kinetic energy operator

(3.2) was subjected to several constraints, which included the conservation of the

total angular momentum, fixing the position of the molecular center of mass to the

origin, neglecting the translational motions. In the vicinity of the linear molecular

configuration, where the influence of the Rz mode is the greatest, we know from the

semiclassical simulations [97], that the asymmetric stretch Qy mode is inactive at

the beginning of the propagation. Reference [97] also gives the amounts of kinetic

energy located in each of the normal modes at any given time. Taking into account

all the above, one can calculate the relative difference of the kinetic energy TRz of

the Rz mode (i.e. the expectation value of the ∂2/∂R2
z)to the kinetic energy Tothers

contained in other modes (Qx and Qs, since we treat the Qy mode as inactive at

initial stages of the dynamics). This ratio, given by the equation

R =
|TRz − Tothers|

Tothers
, (3.3)

is shown in the Figure 3.4. As we can see from this figure, in the regions close to

the linear molecular geometry (Qs = −Qx ≈ 5a0), the Rz mode never gets more

than 5% of the energy. In the region of triangular geometry the assumption that the

asymmetric stretch mode is inactive loses its validity, resulting in greater deviation.

However, in the vicinity of the triangular equilibrium geometry Rz is representing

a pure rotation and can be safely discarded. The fact that the rotational Rz mode

contains negligible amounts of kinetic energy was also independently confirmed in

the semiclassical simulations of Hartmann and coworkers [101].

The dynamics of the system was first investigated by solving the coupled time-
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Figure 3.4: The relative difference between the amount of the kinetic energy in the

Rz mode and the others at the initial stages of dynamics.
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i~
∂

∂t


ΨA

ΨN

ΨC

 =


T̂ + V̂A ŴAN 0
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where Ψi = Ψi(Qx, Qy, Qs; t), i = A,N,C are the three-dimensional time-dependent

wave functions moving on the PES’s of the anion, neutral and cationic silver trimer

respectively in their electronic ground states; T̂ is the kinetic energy operator

given by the equation (3.2); V̂i = V̂i(Qx, Qy, Qs) is the potential energy; Ŵj =

−µjE(t), j = AN,NC is the electromagnetic field interaction term in electric dipole

approximation, where µj is the transition dipole moment for the anion-neutral and

neutral-cation transitions respectively. The transition dipole moment for both the

pump and the probe transitions was assumed to be independent of the nuclear

coordinates, corresponding to the so-called Condon approximation. For the pump
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excitation this approach is reasonable, since the initial and promoted wave functions

are localized in the small region of the PES. For the probe excitation this approach

might be less suitable, because of the large amplitude motions involved. However,

the ab initio data on the transition dipole moment was not available, making the

Condon approximation imperative.

The electric field of the laser is defined as follows:

E(t) =
∑

k=pu,pr

Eke
−

(t−tk)2

τ2
k cos(ωkt). (3.5)

In the expression (3.5) we label two subsequent nonoverlapping pulses with gaus-

sian envelopes of widhts τpu, τpr centered at times tk, carrier frequencies ωpu,ωpr,

and field strengths Epu, Epr by pump (pu) and probe (pr), respectively. The time

delay between the pump and probe laser pulses is td = tpr − tpu. In the following

applications, the field strengths Epu, Epr were chosen small enough so that intrapulse

pump-dump processes were negligible. The relative NeNePo signal is then inde-

pendent of Epu and Epr. The coupled equations (3.4) correspond to simulations of

NeNePo-ZEKE spectra, i.e. for zero kinetic energy of the photodetached electron.

In the more general case of NeNePo spectra with arbitrary electron energies, the

electronic continuum should be taken into account, see e.g. the one-dimensional

model simulation in Ref. [102]. Application of such an approach for the 3-D model

of Ag3 proved to be prohibitively expensive for the available computer resources.

The equations (3.4) were propagated in time using the split operator method, the

time step ∆t being equal to 0.24 fs, and the diagonalization of the Hamilton matrix

at each time step was avoided by using a modified integral equation approach, as

in [58,103].

The procedure outlined above proved to be computationally demanding, so

that only two-dimensional or a few three-dimensional calculations could be car-

ried out, for exemplary choices of the laser parameters. For routine simulations

of the NeNePo-ZEKE spectra, including systematic variations of the delay times,

approximations had to be introduced. The optical excitation was treated using the

quantum analog of the expression for the NeNePo-ZEKE signals from Ref. [97], to

carry out a close comparison of quantum and semiclassical treatments. The pump
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pulse of zero duration (τpu = 0) promotes the initial wavepacket from the anionic

surface to that of a neutral unchanged, and the NeNePo signal scales with the den-

sity of the wave function accumulated in the Franck-Condon window of the probe

pulse as follows:

S(td) ∼
∑
G

e−
τ2
pr

~2 {Epr−VNC(Qx,Qy,Qs)}2 |ΨN(Qx, Qy, Qs; td)|
2, (3.6)

where S(td) is the NeNePo-ZEKE signal after ( delay ) time td, Epr = 2~ωpr is the

two-photon probe energy, VNC is the energy gap between the cationic and neutral

surface, and G is a predetermined set of grid points, over which the summation is
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Figure 3.5: Comparison between the NeNePo signals, calculated for different wave-

lengths of the probe pulse with the exact (equation (3.4)) and approximate (equation

(3.6)) methods for a 2-D model, considering the asymmetric stretch (Qy) mode in-

active.

performed. The preliminary two-dimensional simulations have shown that variations
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Table 3.1: Grid parameters for the propagation

Coordinate Min ( a0 ) Max ( a0 ) Number of points

Qs 2.5 6.5 256

Qx -7.0 1.5 256

Qy -1.3 1.3 128

of the widths of the pump pulse in the range 0-100 fs did not affect the resulting signal

significantly, due to the slow motion of the heavy silver atoms after the preparation

of the neutral cluster.

Using expression (3.6) to calculate the NeNePo-ZEKE spectra, the computa-

tional effort is significantly reduced, since it allows us to propagate the wave function

only on the PES of neutral Ag3 instead of three coupled surfaces of (3.4). The ap-

proach was tested in two dimensions, by comparing the signals obtained from solving

the system of equations (3.4) with the ones calculated with the two-dimensional ana-

log of formula (3.6). The agreement between the two signals was very satisfactory

(see Figure 3.5).

In the first, exemplary model simulation, the first excited vibrational eigenstate

of Ag−3 , with energy of 31 cm−1 (corresponding to 57 K in units of kT), was chosen as

an initial condition, in order to approximate the lowest temperature of a canonical

ensemble of trajectories from Ref. [97], i.e. 50 K. The vibrational eigenfunctions

of the anion were computed using the direct relaxation method of Tal-Ezer and

Kosloff [74].

The parameters of the three-dimensional spatial grid used for the propagation

are summarized in Table 3.1. As seen from this table, the wave function has to

be represented on a rather dense, albeit wide grid, in order to account for the

large amplitude vibrational motion from the linear to the near equilateral triangle

configuration. Also, the heavy mass of the silver atom (107.9 a.m.u.) means com-
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paratively long time scales of nuclear wavepacket evolution, and a fine, dense grid

for the corresponding representation of ψ̃ in the momentum space. The grid size

(256× 256× 128 = 8388608 points) and the long propagation times required propa-

gation programs adapted to a massively parallel supercomputer. For the discussion

of the details of algorithm parallelization, see Appendix A

3.3 Quantum dynamical propagation

The time evolution of the three-dimensional wave packet on the Ag0
3 surface is pre-

sented in the Figure 3.6 by projecting the total wave function on the Qx and Qs

coordinates.

The symmetry properties of the wave function represented in normal coordinates

allow for slight reduction of the size of the quantum dynamical propagation problem.

For example, the potential and the wave functions have a symmetry plane Qx+Qs =

0. Therefore, the propagation of vibrational eigenstate which have a node at the

point Qx + Qs = 0, Qy = 0 (the first vibrational excited state, for example) can

be sped up considerably. It is not sufficient to propagate the lobes lying in one

half-plane, since in this case the pronounced spreading of the wave packet breaks

the symmetry. On the other hand, when the symmetric parts of the wave packet

(two lobes in the case of the first excited vibrational state) are sufficiently separated,

one of them may be damped by an absorbing boundary, whereas the other is used

for calculating the observable quantities. Such an approach has been used in the

simulation of the evolution of the first vibrational excited state.

It should be noted, that such an approach has several drawbacks. First, it gives

incorrect results for the wave functions which have a maximum of density at the

point Qx +Qs = 0, Qy = 0, like the ground vibrational state. Second, the increase

in speed gained that way is not very substantial. In subsequent calculations of the

vibrational temperature dependence of the NeNePo-ZEKE signals this approach has

been abandoned.
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Figure 3.6: Snapshots of the evolution of the wave packet on the Ag0
3 surface (in

normal coordinates). The contour values of the potential energy start at -0.925 Eh,

and are incremented by 0.005 Eh. The density of the wave function is represented

by 40 equidistant contours from the zero to the maximum density, rescaled for each

snapshot.
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First, we observe the coherent motion of the wave packet towards the region

of equilibrium triangular geometry (Fig. 3.6a and b). This motion corresponds to

the bending of the linear trimer, simultaneously accompanied by stretching and

subsequent contraction. The asymmetric stretch mode does not play a significant

role at this stage. A feature to note is the pronounced spreading behaviour of the

wave packet, in spite of some intuitive expectations that a heavy molecule such as

a silver trimer should behave “almost classically”, that is, the wave packet should

remain more localized during the propagation.

At the delay time of ca. 0.8 picoseconds the leading portion of the wavepacket

arrives at the region of the equilibrium triangular geometry, where it collides with a

rather steep wall of the potential (Figure 3.6c). This corresponds to the event which

was discovered by means of classical trajectories in Ref. [97], and called “intracluster

collision”. The bend cannot proceed any further, and the energy flows into the

symmetric stretch mode, where a multi-nodal pattern of the wave function is formed

due to interferences of parts of the wave packet, which correspond to subsequent

symmetric stretches and compressions, in close analogy to the classical trajectories

in Ref. [97] (Fig. 3.6d).

After the intracluster collision, the remaining portion of the wavepacket arrives

at the region of equilibrium triangular geometry, causing interference with the pre-

ceding partial wave and, therefore, creating complex nodal patterns. In addition,

the energy starts to flow also into the asymmetric stretch mode, and we witness the

onset of the dissipative intramolecular vibrational redistribution (cf. figures 3.6d

and 3.6e).

As the IVR proceeds (Figure 3.6e and f), the wave function gradually fills all

available configuration space, and the kinetic energy of the wave packet distributes

equally among the three normal modes. The latter phenomenon was first found in

the classical simulations of Ref. [97]. The dynamics of the kinetic energy redistri-

bution is shown in Figure 3.7, where different curves show the value of the kinetic

energy in the respective normal modes of vibration.

One sees that initially the bending motion is excited, followed by the symmetric
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stretching. The asymmetric stretch mode plays a minor role before the intracluster

collision, and afterwards acts as an energy sink. From Figure 3.7 we clearly see, that

after the time of approximately 2.2 ps the vibrational equilibration is achieved, that

is, all modes contain an equal amount of the kinetic energy, marking the completion

of IVR.
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Figure 3.7: The decomposition of the kinetic energy of the evolving wave packet in

the normal modes.

Figure 3.6f also shows that a small portion of the wavepacket flows back to the

original configuration of the linear trimer – this fractional revival can also be seen in

corresponding classical trajectories. The rather weak appearance of this recurrence

in Ag3, in contrast with the observation of fairly coherent revivals in other systems,

in particular diatomic molecules [104–108], is a consequence of the dissipative IVR
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induced by the intracluster collision.

To gain a better understanding of the dynamics of the Ag3 cluster, it is also

helpful to look at the wave function projected on the Cartesian coordinates. These

results are shown in the Figure 3.8. The box in the upper left corner of the snapshots

contains the three-dimensional wave function represented as a contour plot in the

normal coordinates used for the propagation. In the center of Figs. 3.8a, 3.8b,

3.8c we see the projection of the nuclear wave function on the Cartesian plane.

Figure 3.8a represents the initial state, Figure 3.8c shows the wave function at the

beginning of the intracluster collision, and Figure 3.8b is chosen as a middle point.

One clearly sees the motion from the linear to triangular configuration, and also the

pronounced spreading of the wave packets. Thus one sees, that in ultrafast processes

the conventional stick-and-ball perception of a molecule has limited applicability.

The quantum dynamical simulation presented here thus complements the earlier

semiclassical MD simulations [97], and allows us to establish the correspondence

between quantal and classical descriptions of the same system. For comparison, in

Figure 3.9a an exemplary snapshot of the wave function at the time t = 1.2 ps is

presented together with the corresponding ensemble of classical trajectories of 1.2

ps duration (Figure 3.9b).

We can see that the essential features attributed to the intracluster collision are

present in both simulations. There are differences in the behavior of the classical

trajectories and the quantal wave packet, for example, the former rebound at a differ-

ent region of the potential energy surface, but these differences on the microscopic

level do not influence the observables dramatically. A feature which is observed

only in the quantum simulations is the very complex interference pattern of the

three-dimensional wave functions, which originate from the superposition of a large

number of eigenstates forming the initial wavepacket, which then evolve with phases

due to slightly different energies. The resulting complex nodal pattern (Figures 3.6e,

3.6f) corresponds to classical trajectories with apparently chaotic behaviour.

The resulting quantum mechanical and semiclassical NeNePo-ZEKE spectra for

three different frequencies of the probe laser pulse of 100 fs duration are compared
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(a)

(b)

(c)

Figure 3.8: Evolution of the nuclear wave packets of Ag3 projected on the Cartesian

coordinates (width of the figure - 11 a0, height - 8 a0) together with the 3-D prob-

ability density contour plots in normal coordinates (The height, width and depth

dimensions of the wire box correspond to Qs,Qy and Qx coordinates respectively.

The values of the maxima and minima of axes are given in Table 3.1).
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Figure 3.9: Comparison between quantum mechanical and semiclassical dynamics

of Ag3. (a) Quantum mechanical wave packet at t=1.2 ps, resulting from the first

vibrational excited state of Ag−3 , with the average energy of 57 K.(b) Classical

trajectories of the 1.2 ps duration, corresponding to a canonical ensemble of Ag−3
with 50 K initial temperature [97]
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Figure 3.10: Comparison of theoretical NeNePo-ZEKE spectra of Ag3 ( arbitrary

units ) obtained from quantum (a) and semiclassical (b) simulations adapted from

Ref [97] ( see the text for a discussion ).
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in figures 3.10a and 3.10b respectively. The probe frequencies were chosen to probe

the evolving wave packet, or classical phase space density, at three characteristic

domains on the potential energy surface during the evolution. The 6.5 eV probe

samples the system in the vicinity of the linear geometry, the 5.8 eV pulse covers

the region of triangular geometries, and the 6.1 eV value is chosen as an intermediate

point.

The calculated semiclassical [97] and quantum NeNePo-ZEKE spectra exhibit

common features, and are also in good quantitative agreement. Nevertheless, some

differences can be observed. The semiclassical signals are narrower, and shifted to

shorter delay times. Also to note is the different relative height of the signals for 5.8

eV and 6.5 eV in the quantum mechanical and semiclassical case. These phenomena

can be explained, first, in terms of the different initial ensembles, with higher aver-

age kinetic energy in the semiclassical case, and second, by the quantum mechanical

spreading of the wave packet, which features prominently in quantum mechanical

simulations and, as our working hypothesis, cannot be directly approached in the

semiclassical case. Both the semiclassical and quantum mechanical results corre-

spond well to the experimental data of Refs [84,91].

3.4 Influence of the initial temperature

The simulations of the dynamics of silver trimers using the first vibrational excited

state as a starting point, as described in the previous section, already illustrate

the characteristic features and timescales of the geometrical relaxation in neutral

trimers quite adequately. However, as shown in the semiclassical simulations [97], the

temperature of the initial anionic ensemble does influence the dynamics significantly.

The rigorous treatment of the temperature effects requires the use of the density

matrix formalism, which in the case of Ag3 is clearly prohibitive.

As an alternative, we use the quantum mechanical superposition principle, and

calculate the NeNePo-ZEKE spectra for each of the low-lying vibrational eigenstates

independently, and then sum their contributions with the respective Boltzmann
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weights as follows:

S(td, T ) =
4∑
v=0

e−
Ev
kT Sv(td, T ), (3.7)

where the contribution of the v-th eigenstate is defined as an absolute value of the

overlap of the time-dependent wave packet |ψv(t)〉 with a certain (unknown) state

|ψ(+)〉, which allows efficient detection of the Ag3 cations:

Sv(td, T ) = |〈ψ(+)|ψv(t)〉|
2. (3.8)

Using a semiclassical approximation [97], we obtain the following expression for the

signals of individual eigenstates:

Sv(td, T ) =
∑
G

e−
τ2
pr

~2 {Epr−VNC(Qx,Qy,Qs)}2 |Ψv
N(Qx, Qy, Qs; td)|

2. (3.9)

Here T is the initial vibrational temperature of the anionic ensemble, v is the vibra-

tional quantum number, Ev is the excess energy of the quantum state v, Ψv
N is the

time-dependent wave function evolving from the v-th eigenfunction of the anion.

Let us prove the validity of the expression (3.7) for the NeNePo-ZEKE signals.

Initially, the quantum state of the anionic ensemble is described by the density

matrix

ρ̂(0, T ) =
∑
v

|ψv(0)〉e−
Ev
kT 〈ψv(0)|, (3.10)

where ψv(t) = Ψv
N(t). The evolution of this density matrix is described by the

Liouville-von Neumann equation in the absence of dissipation:

i ˙̂ρ(t) = [ ˆH(t), ˆρ(t)]. (3.11)

At any given moment of time the “propagated” density matrix can be written as

follows:

ρ̂(t, T, laser parameters) =
∑
v

|ψv(t)〉e
−Ev
kT 〈ψv(t)|. (3.12)
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Table 3.2: Energies of the low-lying vibrational eigenstates of Ag−3

v (vs, vb, vas) Energy , cm−1 Energy , kT Boltzmann weight (T=50 K)

0 (0,0,0) 0 0 1.000

1 (0,1,0) 31 57 0.320

2 (0,2,0) 62 115 0.100

3 (0,3,0) 92 173 0.034

4 (1,0,0) 110 205 0.016

Note that in order for Ag3 cations to be detected, the system has to find itself in a

certain quantum state ψ(+). Then, the cation yield, or the sought NeNePo-ZEKE

signal, can be calculated the following way:

S(t, T ) =〈ψ(+)|ρ̂(t)|ψ(+)〉 =
∑
〈ψ(+)|ψv(t)〉e

−Ev
kT 〈ψv(t)|ψ

(+)〉

=
∑
|〈ψ(+)|ψv(t)〉|

2e−
Ev
kT =

∑
Sv(t, T )e−

Ev
kT ,

(3.13)

Q.E.D.

The energies of the first five low lying eigenstates of the anions are shown in

Table 3.2. First column of the table contains the vibrational quantum number, the

second - the assignment of the number of quanta in the normal modes of linear Ag3,

third and fourth - the energies of the eigenstates in wavenumbers and units of kT ,

respectively, and the last one - the Boltzmann weighing factor calculated for the

temperature of the anionic ensemble of 50 K. As we can see from the magnitude of

the weighing factors in Table 3.2, the five lowest eigenstates should represent the

initial ensemble quite adequately. The temperature of 50 K has been chosen to allow

the comparison with the semiclassical theoretical results of Ref. [97].

In order to obtain the combined NeNePo-ZEKE signal for a given temperature,

the first five lowest-lying eigenstates have to be propagated separately. Then, these

“pure” contributions are summed according to the equation (3.7) to yield the desired
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signal. The results of these calculations are presented in Figure 3.11, where the top

graph shows the combined signal corresponding to the temperature of 50 K, and

below the contributions from different eigenstates are presented.

One can see, as expected, that the NeNePo-ZEKE spectra for the thermal en-

semble at T=50 K are, firstly, broader than in the v = 1 case, and secondly, they

are shifted to shorter times, indicating the greater excess of energy. The signals

corresponding to different values of the vibrational quantum number v highlight the

latter trend. The characteristic maxima of the signals appear at earlier times, when

the v is increased. An interesting exception is the v = 4 case, where the signal for

v = 0 is almost duplicated. Also to note are the complex relationships between the

quantum number and the character of the signals.

To explain these trends one has to consider the dynamics of the respective wave

packets, presented in Figures 3.12-3.16 (For the values of contours of potential and

wave function, see the caption to Figure 3.6). The ground state (Figure 3.12) exhibits

the most pronounced spreading behaviour, which manifests itself in broad signals

of relatively low peak intensity. The first vibrational excited state, v = 1 (Figure

3.13), the dynamics of which was investigated in detail above, has one node in

the wave function. This node is located at the saddlepoint of the PES of Ag0
3,

which is therefore avoided, resulting in faster dynamics, during which the wave

packet stays more compact. Hence, the NeNePo signals for the v = 1 case are

narrower, and have higher peak intensities. Also, the maxima of the signals occur

at the delay times approximately 0.2 ps smaller than in the v = 0 case, indicating

greater excess of kinetic energy. The signals for the next vibrational eigenstate,

v = 2, (Figure 3.14), confirm these trends. The initial wave packet has two nodes,

resulting in even lesser degree of spreading, and faster dynamics. The signal for

6.1 eV probe energy exhibits an interesting feature, namely the deep minimum at

delay time ≈ 1.1 ps, followed by further increase. The emerging minimum can

also be seen at the 6.5 eV curve, although there it is quite weak. The origin of this

becomes clearer after consideration of the evolution of the corresponding wave packet

(Figures 3.14b and 3.14c). The nodal structure of the wave function is preserved

at the stages of propagation preceding the intracluster collision, and the minimum
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Figure 3.11: NeNePo-ZEKE signal at T=50 K, together with the contributions from

low- lying thermally populated vibrational eigenstates of Ag−3
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Figure 3.12: Evolution of the v = 0 eigenstate. For the contour values see figure 3.6.
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Figure 3.13: Evolution of the v = 1 eigenstate. For the contour values see �gure 3.6.
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Figure 3.14: Evolution of the v = 2 eigenstate. For the contour values see figure 3.6.
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Figure 3.15: Evolution of the v = 3 eigenstate. For the contour values see figure 3.6.
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Figure 3.16: Evolution of the v = 4 eigenstate. For the contour values see figure 3.6.
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in the signal emerges at the times, when the node passes the region of the Franck-

Condon transition. The signals for the v = 3 initial state (Figure 3.15) have two

minima, confirming this interpretation.

By considering the snapshots of the wave packet evolution, we are also able to

explain the seemingly abnormal behavior of the signals for v = 4 initial state (Figure

3.16). The wave function for this state has one node in the direction perpendicular

to the reaction path, corresponding to the excitation of the symmetric stretch of

Ag−3 . The two lobes propagate independently until the IVR sets in, and their prop-

agation is almost identical to that of the ground vibrational state v = 0. Since in
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Figure 3.17: The experimental NeNePo signals for two selected temperatures of the

anionic ensemble, in comparison with the ones calculated within a 3-D quantum

mechanical model for the two-photon probe energy of 6.5 eV.

Franck-Condon approximation the electronic transition occurs in the vicinity of the

equipotential contours of the difference potential (see equation 3.6) corresponding to
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the excitation energy, and these contours are perpendicular to the reaction path, we

cannot distinguish between the contributions of different lobes of the wave function

in this case. Hence, the NeNePo signals for v = 4 are almost a duplicate of those

for the ground v = 0 state. There are some marginal differences in the signals after

the onset of IVR, owing to the greater excess of kinetic energy in the v = 4 case.

It is appropriate now to compare the theoretical results with the latest exper-

imental data obtained by Hess et al. in the group of Wöste [94, 109]. Employing

an efficient cooling technique for the anion beam, they have obtained the NeNePo

signals for low temperatures of the anionic ensemble. In these experiments, as in

recent work by Leisner et al. [92], resonant two photon ionization was employed,

which results in very low kinetic energies of ejected electrons, almost approaching

the ZEKE case. This enables the direct comparison with the experiment. The

results of this comparison are presented in Figure 3.17.

The signals have been normalized in such a way that the maxima of the peaks

for the temperature of 70 K have equal height. Otherwise, the magnitudes of the

experimental signals with respect to each other were not corrected. As one can see,

the 3-D quantum mechanical approach to the dynamics of the silver trimers allows

to reproduce the experimentally observed signals with high degree of accuracy. The

difference between the experimental and simulated signal for the anion temperature

of 70 K after the delay times of 1.5 ps can be attributed to the poorer quality

of reconstruction of the thermal ensemble, when only five states are utilized (the

Boltzmann weight of the v = 4 state for T=70 K is 5%).

It should be noted, that based on the complementary experimental evidence,

the experimental signals correspond to both quantum mechanical and semiclassical

theoretical results only when the constant factor of 0.4 eV is subtracted from the

potential energy of Ag+
3 , thus lowering the IP [94,109]. This may indicate that the ab

initio quantum chemistry calculations, whilst providing very good relative accuracy

of a PES (the good agreement of both semiclassical and quantum mechanical results

with the experiment justifies this), give the absolute values of the energies with lower

accuracy. A similar effect had to be taken into account in the quantum mechanical

simulation of Na3 [70].
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Another important aspect, which should be taken into account when considering

the comparison of the both semiclassical and quantum mechanical results with the

experiment, is the fact that the models utilized in both theoretical approaches do not

accomodate the effects arising in the process of a resonant two-photon transition,

which involves an electronically excited states as an intermediate one. The PES for

this intermediate state is not known, and it may be that the agreement between the

theory and the experiment is fortuitous, due to the fact that PES the unknown state

Ag∗3 is “parallel” to that of Ag0
3, that is, not having repulsive sections in the interac-

tion regions of interest. Another (unknown) source of uncertainty is the previously

discussed Condon approximation. However, the very good level of agreement be-

tween the theoretical and experimental findings suggests that the assumptions made

when formulating the physical model have been justified.


