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S1 Modi�ed Young's Equation

The modified Young’s equation relates the contact angle θ of a spherical-section-shaped liquid droplet on
a flat solid surface to the droplet footprint radius a, the surface tensions γsl, γsv and γlv of the solid-liquid,
solid-vapor, and liquid-vapor interfaces, and the line tension τ of the solid-liquid-gas triphasic line.

a

r
θ

lv

sv sl
triphasic

Figure S1: Schematic illustrating a droplet on a solid surface. The three biphasic interfaces and triphasic
line, as well as the droplet radius r, droplet footprint radius a, and contact angle θ, are indicated.

For a droplet adsorbed on a flat solid surface, there is a free energy cost Fµν to each interface that is
proportional to its area Aµν , and to the triphasic line that is proporional to its length L, so the interfacial
free energy of the adsorbed droplet is given by

Fads = Fsl + Fsv + Flv + Ftriphasic (S1)
= γslAsl + γsvAsv + γlvAlv + τL . (S2)

The areas of the three interfaces and length of the triphasic line are given by

Asl = πr2 sin2 θ , Asv = Asurface −Asl , Alv = 2πr2 (1− cos θ) , L = 2πr sin θ , (S3)

where r is the droplet radius as illustrated in Figure S1. Asurface is the constant area of the planar surface,
so dAsl

dθ = −dAsv

dθ . The system should relax to a free energy minimum, so

dFads

dθ
= γsl

dAsl
dθ

+ γsv
dAsv
dθ

+ γlv
dAlv
dθ

+ τ
dL

dθ
(S4)

= ∆γs
dAsl
dθ

+ γlv
dAlv
dθ

+ τ
dL

dθ
= 0 , (S5)
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where ∆γs ≡ γsl − γsv. The volume of the droplet

V =
π

3
r3 (2 + cos θ) (1− cos θ)

2
, (S6)

should remain constant under relaxation. Setting its total derivative with respect to θ to zero yields

dr

dθ
=
−r sin θ (1 + cos θ)

(2 + cos θ) (1− cos θ)
. (S7)

The total derivatives of Asl, Alv and L with respect to θ are taken, and by substituting the result for dr
dθ

in Equation (S7), can be written as

dAsl
dθ

= −2πr2
sin θ

2 + cos θ
,

dAlv
dθ

=
dAsl
dθ
· cos θ ,

dL

dθ
=
dAsl
dθ
· 1

r sin θ
. (S8)

Substituting these expressions into Equation (S5) gives(
∆γs + γlv cos θ +

τ

r sin θ

) dAsl
dθ

= 0 . (S9)

Geometry demands that dAsl

dθ 6= 0. This, coupled with the fact that a = r sin θ gives

∆γs + γlv cos θ +
τ

a
= 0 . (S10)

As the droplet size and therefore droplet footprint radius a tend to infinity, the line-tension term vanishes,
giving Young’s equation

cos θ0 =
γsv − γsl
γlv

, (S11)

where θ0 is the contact angle in the macroscopic limit. Equation (S11) may be resubstituted into Equation
(S10) to give the modified Young’s equation

cos θ = cos θ0 −
τ

γlva
. (S12)

Thus, finite size effects in cos θ from the line tension τ are expected to scale like 1/a, and the macroscopic
contact angle θ0 can be recovered by extrapolating cos θ to the a→∞ limit.

S2 Interaction Energy in Continuum Approximation

Consider a liquid droplet adsorbed on a flat solid surface, each consisting of one type of atom only.
Approximating the liquid and solid as continua, the interaction energy between the two can be written

Eint = −
∫

dr ñl(r)

∫
dr′ ñs(r

′)Ṽ (|r′ − r|) , (S13)

where ñl and ñs are number densities of the liquid and solid respectively, and Ṽ (r) is the interaction
potential between liquid and solid. The minus sign in Equation (S13) is there because we are taking
Eint to be positive for an attractive surface. Assume that Ṽ (r) decays to zero for large r, becoming
insignificant over a distance on the order of nanometers. Next, it is assumed that the number densities
inside the continua are constant. Thus, there exists a function ns(z) = ñs(r), and

Eint = −
∫

dr ñl(r)

∫
dz′ ns(z

′)

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′ Ṽ (|r′ − r|) (S14)

= −
∫

dr ñl(r)

∫
dz′ ns(z

′)

∫ ∞
−∞

d(x′ − x)

∫ ∞
−∞

d(y′ − y) Ṽ (|r′ − r|) (S15)

= −
∫

dr ñl(r)

∫
dz′ ns(z

′)V (|z′ − z|) , (S16)
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Figure S2: Schematic illustrating the continuum approximations used in the derivation of Equation (S19).

with
V (|z|) ≡

∫ ∞
−∞

dx

∫ ∞
−∞

dy Ṽ (r) . (S17)

In the macroscopic limit, the distance over which Ṽ (r) is significant is much smaller than the droplet foot-
print radius a, i.e. only the bottom layer of the droplet interacts with the solid. This can be approximated
as a wafer-like flat cylinder of area Asl, giving the areal interaction energy

εint =
Eint

Asl
= −

∫
dz nl(z)

∫
dz′ ns(z

′)V (|z′ − z|) . (S18)

Take the solid density to be ns for z ≤ 0, and zero otherwise. Further, assume there is a depletion layer
of thickness δ � R between the solid and liquid, such that the liquid density is nl for z ≥ δ, and zero
otherwise, as shown in Figure S2. Thus

εint = −nsnl
∫ ∞
δ

dz

∫ 0

−∞
dz′ V (|z′ − z|) . (S19)

S3 Scaling of Interaction Energy in Lennard-Jones Cuto�

This derivation builds upon Section S2. First, take Ṽ to be the Lennard-Jones potential, set to zero
beyond the cutoff distance R, and only consider the long-range attractive term. In simplified units,

Ṽ (r) = −H(R− r)
r6

, (S20)

where H is the Heaviside step function. Thus, with reference to Equation (S17),

V (|z|) = −
∫ ∞
−∞

dx

∫ ∞
−∞

dy
H(R− r)

r6
. (S21)

Transforming to polar coordinates s and φ where x = cosφ, y = sinφ, s2 = x2 + y2, and thus r2 = s2 + z2,
and using that H(R− r) = H(R2 − r2) = H(R− |z|)H(

√
R2 − z2 − s) gives the more tractable integral

V (|z|) = −H(R− |z|)
∫ 2π

0

dφ

∫ ∞
0

ds
s

(s2 + z2)3
H
(√

R2 − z2 − s
)

(S22)

= −2πH(R− |z|)
∫ √R2−z2

0

ds
s

(s2 + z2)3
(S23)

= −π
2
H(R− |z|)

(
1

z4
− 1

R4

)
. (S24)
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Equation (S24) may be substituted into Equation (S19) giving

εint =
π

2
nsnl

∫ ∞
δ

dz

∫ 0

−∞
dz′H(R− |z − z′|)

(
1

(z − z′)4 −
1

R4

)
(S25)

=
π

2
nsnl

∫ R

δ

dz

∫ 0

z−R
dz′

(
1

(z − z′)4 −
1

R4

)
. (S26)

These integrals may be solved analytically, giving

εint =
π

12
nsnl

(
1

δ2
− 6

R2
+

8δ

R3
− 3δ2

R4

)
. (S27)

Thus, the R-dependent part of the areal interaction energy between the liquid and solid scales to leading
order like R−2. Since δ � R, the δ/R3 and δ2/R4 terms are insignificant and the R−2 term gives the
predominant scaling behavior of εint in R.

S4 Interaction Energy and Entropy in Work of Adhesion

The work of adhesion, i.e. the work to isothermically completely detach a macroscopic droplet from a flat
solid surface, is given by the Young-Dupré equation

W = Asl (γlv − γsl + γsv) = Aslγlv (1 + k) , (S28)

where k = cos θ0 is the wetting coefficient. The work of adhesion W corresponds to a free energy, and
may be written as

W = ∆F = ∆U − T∆S (S29)

where U is the internal energy, S the entropy, and T the constant temperature. Here, ∆ indicates the
difference between quantities in detached and adsorbed states, ∆x ≡ xdet − xads. Introducing the areal
definitions

w =
W

Asl
, ∆u =

∆U

Asl
, ∆s =

∆S

Asl
, (S30)

allows Equation (S29) to be rewritten as

w = ∆u− T∆s . (S31)

See that w must be positive-valued, because otherwise the droplet would spontaneously detach from the
surface. The entropy for the detached state is expected to be larger than for the adsorbed state, because
liquid at a solid-liquid interface is ordered and the motion of an adsorbed droplet is restricted. Thus ∆s
is positive, and −T∆s reduces w. Since w is positive, the change in energy ∆u must be positive, and
larger than T∆s. ∆u and ∆s each comprise contributions due to liquid-liquid and solid-solid interactions
and contributions due to solid-liquid interactions,

∆u = ∆u∗ + εint , ∆s = ∆s∗ + ∆sint , (S32)

where the starred quantities are the summed liquid-liquid and solid-solid contributions, and those labeled
“int” are the solid-liquid interaction contributions. We refer to ∆sint as the adhesion entropy. It has been
shown that ∆u∗ = T∆s∗ [1]. This leaves only the areal interaction energy and adhesion entropy, giving

w = εint − T∆sint . (S33)

Rearranging Equation (S33) and substituting Equation (S28) for w gives the entropic contribution

T∆sint = εint − γlv (1 + k) . (S34)

From Ref. [2], the surface tension of SPC/E water at 300 K is found to be γlv = 63.6 mJ/m2. The
areal interaction energy εint is obtained from slab simulations by summing over pairwise SAM-water
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Figure S3: Areal interaction energies εint and adhesion entropy estimates T∆sint (calculated via Equation
(S33)) for H-SAMs and F-SAMs as a function of Lennard-Jones cutoff R, SAM grafting distance d,
and roughness σ, engendered both statically and dynamically. The horizontal dotted lines show the
respective values for the default SAMs, i.e. Lennard-Jones cutoff distance R = 1.0 nm, restraint potential
k = 25000 kJ/(mol nm2), static roughness offset ∆zr = 0, and grafting distance d = 4.97 Å for H-SAMs
and d = 5.90 Å for F-SAMs.

interactions. The wetting coefficient k = cos θ0 is obtained via droplet extrapolation technique. Thus,
the entropic contribution T∆sint may be estimated from Equation (S34) for any of the systems simulated
in the main work. The results for H-SAMs and F-SAMs over Lennard-Jones cutoff distance R, SAM
grafting distance d, and roughness σ (for both static and dynamic roughness) are shown in Figure S3.
Here, it is clear that the magnitude of the energetic term is always much larger, being nearly everywhere
greater than double the entropic term. Further, the entropic terms scale similarly to, but less strongly
than, the interaction energy terms for varying d and R for both H-SAMs and F-SAMs. This, coupled
with the fact that εint = 0⇒ w = 0, leads to the conclusion that for the parameter regimes studied,

w(R) ≈ κ εint(R) , (S35)

w(d) ≈ κ εint(d) , (S36)

where κ is a constant. On the other hand, increasing nanoroughness causes the entropic contribution to
change more than the energetic contribution, and adhesion entropy reduction at nanoroughened surfaces
should be regarded as the main cause of their elevated hydrophobicity.

S5 Gold/Water Interaction Energy and Hamaker Constant

In the main work, SAMs are simulated with vacuum below, whereas in real systems the SAMs are fixed to
a gold surface. Here, we estimate the difference the interaction of the water with the gold surface under
the SAM would make in case of an infinite cutoff for H-SAMs and F-SAMs. We take smooth SAMs and
the default spacing dH = 4.97 Å and dF = 5.90 Å.

We begin with Equation (S27), where the attractive Lennard-Jones potential is given by −B/r6 (instead
of −1/r6), the Lennard-Jones cutoff distance R is set to infinity, and contributions from O and H atoms
are summed,

εAu
int =

π

12

nAu(nOBAuO + nHBAuH)

δ2
. (S37)

The relevant values for the London coeffcients for Au-O and Au-H interactions are found in Ref. [3] to be
BAuO = 7.4675861 · 10−3 kJ/mol nm6 and BAuH = 1.2886163 · 10−3 kJ/mol nm6. Number densities for
solid gold and liquid water are calculated from their respective mass densities under standard conditions,
ρAu = 19.30 g/cm3 and ρH2O = 0.9982 g/cm3. The spacing between the water slab and gold surface
δ is taken to be the sum of the distances between the gold surface and the restraint positions of the
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bottom C atoms of the SAM, δAu−r and between the restraint positions and Gibbs dividing surface of
the water, δr−GDS. The distance δr−GDS is obtained directly from slab simulations, and is found to
be 1.28 nm for the H-SAM and 1.35 nm for the F-SAM. The distance δAu−r is estimated from Ref.
[4] to be between 2.98 and 3.73 Å, and depends on whether S atoms are taken to bind on top of Au
atoms or above hollow sites in the Au(111) surface. Substituting these values into Equation (S37) gives
εAu
int = 3.30± 0.15 mJ/m2 for the H-SAM and 3.03± 0.14 mJ/m2 for the F-SAM. By comparison, the
areal dispersive SAM-water interaction energies in the R → ∞ limit for the H-SAM and F-SAM are
found to be εLJint = 54.23± 0.01 mJ/m2 and 46.31± 0.03 mJ/m2 respectively (see Figure 3c in the main
work). Thus εAu

int is roughly 6.0% and 6.5% as large as εLJint for the H-SAM and F-SAM respectively.

The areal work of adhesion w should be expected to increase upon inclusion of the gold surface; call this
larger Au-adjusted areal work of adhesion w∗. Equation (S35) implies that upon inclusion of the gold
surface, the work of adhesion should scale in the same manner as does the interaction energy,

w∗

w
=
εLJint + εAu

int

εLJint
⇒ w∗ = (1 + ζ)w , (S38)

where ζ ≡ εAu
int/ε

LJ
int. From (S38), a corrected wetting coefficient k∗ and contact angle θ∗ may be calculated.

Starting from Equation (S11), namely using that w = γlv(1 + k), it follows that

k∗ = k + ζ(1 + k) , θ∗ = arccos [k + ζ(1 + k)] . (S39)

For the H-SAM, the contact angle in the R→∞ limit is θ = 115.4◦, from which Equation (S39) gives
an adjusted angle of θ∗ = 113.2◦, and for the F-SAM, θ = 121.4◦ and θ∗ = 119.3◦. Thus in both cases,
we estimate inclusion of the gold surface to reduce the water contact angle only by about 2◦. These
corrections are shown in Figure 3d in the main work.

The number densities and London coefficients may also be used to obtain the Hamaker constant, which
parametrizes the interaction strength between two materials [5]. The Hamaker constant may be written

A = π2
∑
i,j

ninjBij , (S40)

where i and j each index atom types in one of the two respective materials. We wish to compare the
Hamaker constants of solid gold-water and SAM-water for both H-SAMs and F-SAMs. The average SAM
number densities are found from SAM-water slab simulations to be (in nm−3) for the H-SAM: nC = 39.4
and nH = 79.2, and for the F-SAM: nC = 27.0 and nF = 53.8. The London coefficients for the SAMs are
calculated directly from the relevant OPLS-AA Lennard-Jones parameters as Bij = 4εijσ

6
ij . The resulting

H-SAM-water and F-SAM-water Hamaker constants are 7.33 · 10−20 and 6.99 · 10−20 J respectively. The
gold-water Hamaker constant is found from the number densities and London coefficients above to be
3.24 · 10−19 J. Thus, H-SAMs and F-SAMs are 22.6% and 21.6% as attractive to water as an equal volume
of solid gold at an equal distance, respectively.

S6 Contact Angle Goniometry

H-SAMs and F-SAMs are prepared using dip-coating of 1-decanethiol and 1H,1H,2H,2H-perfluordecanthiol
on gold slides (Au(111) on mica, PHASIS), respectively. The freshly cleaned gold slides are incubated
in the solution of 1H,1H,2H,2H-perfluordecanethiol or 1-decanethiol solution (1 mM in ethanol) at room
temperature for 24 hours. Afterwards, the coated slides are removed, thoroughly rinsed with ethanol,
dried with nitrogen blowing, and again dried in vacuum for another 24 hours. The static contact angle
measurements are performed with a contact angle goniometer (DataPhysics Instruments, Germany) using
the sessile drop method. A liquid drop of 2 µL Milli-Q water is placed on the substrate and allowed to
equilibrate for 15 s at room temperature. At least fifteen measurements from five different samples are
averaged in order to obtain a standard deviation and assess measurement reproducibility.
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The advancing and receding contact angles on the SAMs are quantified using a method similar to that
reported by Korhonen et al. [6]. To measure the advancing contact angle, a sessile drop of 2 µL of water is
first dispensed on the surface with the dispensing unit (needle) remaining in the water droplet. Water is
then slowly dispensed into the droplet at a rate of 0.1 µL/s. Even as the volume of the droplet increases,
the contact line at the base of the droplet tends to remain stable temporarily, causing the contact angle
to increase. During this process, the contact angle is automatically measured and recorded twice per
second. Once the volume becomes “saturated”, the contact line begins to advance, and the corresponding
contact angle is taken as the advancing contact angle θa. Measurement of the receding contact angle is
similar to that for the advancing contact angle, except in reverse: water is continuously removed from
the droplet until the droplet contact line begins to recede, with the corresponding contact angle taken as
the receding contact angle. The resulting contact angle measurements are reported in Table S1.

θr θs θa
H-SAM 89.9± 2.7◦ 98.4± 2.4◦ 107.6± 3.1◦

F-SAM 99.7± 2.6◦ 102.3± 2.2◦ 113.2± 2.5◦

Table S1: Experimental receding, static and advancing contact angles of H-SAMs (1-decanethiol) and
F-SAMs (1H,1H,2H,2H-perfluordecanthiol) on Au(111).

S7 F-SAM Tilt Angle via SEIRAS
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Figure S4: SEIRA spectrum of the self-assembled monolayer of heptadecafluorodecane thiol (H2F8)
bound to the rough gold surface (red curve). The blue curve represents the normalized spectrum of the
bulk sample recorded by the attenuated total reflection method.

The tilt angle of an F-SAM on Au was determined from surface enhanced infrared absorption spectroscopy
(SEIRAS). Figure S4 shows the SEIRA spectrum (solid red) of the F-SAM, comprising SH(CH2)2(CF2)7CF3

or H2F8 molecules, covalently adsorbed via the terminal thiol on a gold film surface. The FTIR spectrum
of bulk H2F8 (blue curve) which represents an isotropic distribution of H2F8 molecules, was recorded in
attenuated total reflection (ATR) geometry. The SEIRA spectrum represents the orientated F-SAM and
is similar to the IRRAS spectrum reported by Chidsey et al. [7]. When comparing the spectra of the
F-SAM and the isotropic bulk sample, striking differences are observed in the intensities of the bands.
Strong bands between ∼1200 and 1146 cm−1 in the ATR spectrum of the isotropic sample significantly
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decrease in relative intensities in the SEIRA spectrum of the F-SAM. Most of the bands in this region
were assigned to normal modes with a transition dipole moment perpendicular to the molecular axis (per-
pendicular component). In contrast, the relative intensities of the bands at 1371, 1362, 1335, and 1238
cm−1 are drastically increased in the SEIRA spectrum. These bands correspond to vibrational modes
with an associated transition dipole moment oriented along the helical backbone axis (axial component).
The increase and decrease in the relative intensities of the two groups of bands can be explained in terms
of the molecular orientation of the F-SAM and the surface selection rule of SEIRAS. In SEIRAS, only
the transition dipole moment component parallel to the surface normal is selectively enhanced. This ef-
fectively leads to spectral shapes similar to the ones obtained from p-polarized measurements conducted
by IRRAS. The molecular tilt angle is retrieved from the comparison of the relative intensities of the
axial and perpendicular bands in the isotropic and F-SAM spectra (see below for details). Our analysis
resulted in a tilt angle for the F-SAM of 16 ± 4◦ which agrees with reported IRRAS data on F-SAMs
bound to the Au(111) surface.

S7.1 Calculation of Vibrational Normal Modes and Dipole Derivatives

Figure S5: The molecular and surface coordinates of an idealized H2F8 molecule on a gold surface. The
helical axis of the H2F8 molecule is defined as z-axis of the molecular reference frame. Bands with a
transition dipole moment (TDM) parallel to this direction are referred as “axial” or “out-of-plane” bands.
Accordingly, bands with a TDM contained within the XY plane are referred as “perpendicular bands”
or “in-plane” bands. Tilt angle φ is defined as the angle formed between the axial component and the
surface normal.

The vibrational normal modes of a single H2F8 molecule in vacuum were calculated by the Gaussian09
program package using B3LYP,6-31G(d,p) level of theory. This calculation also provides the Cartesian
coordinates of the transition dipole moment (TDM) of all normal modes, which can be used to calculate
the absorptivity of each band for different polarizations of the IR electric field (EF). The molecular
reference frame shown in Figure S5 was adopted to describe our system. The helical axis was chosen
as the z-axis of the molecular reference frame. Because H2F8 adopts a helical structure, any rotation
around the helical axis produces an invariable IR spectrum for a fixed EF polarization. To account for
this effect, the contribution to the intensity of each normal mode is decomposed into “axial” (out-of-plane)
and “perpendicular” (in-plane) components. These components are calculated from the TDM coordinates
as TDMz2 (axial) and TDMx2 +TDMy2 (in-plane). These definitions result from averaging the expected
absorptivity of a given mode for all possible twist angles, a detailed description of which can be found in
Ref. [8]. It should be noted that only half of the in-plane intensity as defined is observed in the polarized
spectrum of a single molecule ((TDMx2 + TDMy2)/2). The most relevant normal modes in the region
between 1000 and 1500 cm−1 are compiled in Table S2 along with their molar absorptivity for each
direction.
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Table S2: Experimental and calculated IR absorption bands of heptadecafluorodecane thiol (H2F8). R.I.
indicates relative peak intensities with respect to the peaks found at 1240 cm−1 (SEIRAS) and 1200
cm−1 (ATR).

S7.2 Band Deconvolution of the Experimental Spectra

Figure S6: IR absorption and wavelet deconvolution (resized) of H2F8 in (a) Self-assembled monolayer
and (b) Bulk sample. (c) Correlation diagram between the bands from the calculation (black), bulk
sample (blue) and F-SAM (red).

The band broadening typically observed in perfluoro-oligomers obscures the exact positions of the indi-
vidual bands. To make a direct comparison with the calculated normal modes, wavelet deconvolution
was applied. The continuous wavelet transform of the experimental data was calculated using a Gaussian
generating function with a sigma value of 3 cm−1 (ATR) and 3.58 cm−1 (SEIRAS). A threshold of 3%
for the intensity of the local maxima was used to avoid introducing peaks from noise. The results of
the wavelet deconvolution are shown in Figure S6a and b, for the bulk isotropic sample (blue) and SAM
(red), respectively. The correlation between the peak positions in SEIRAS, ATR and DFT are shown in
Figure S6c.
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S7.3 Band Assignment and Di�erences Between Bulk and Monolayer Spectra

Figure S4 shows a direct comparison of the SEIRA spectrum of a H2F8 SAM (red) and the ATR spectrum
of an isotropic bulk sample (blue). In the latter spectrum, two prominent bands are observed at around
1200 and 1146 cm−1. The band features are broad and consist of clusters of several bands indicated from
the shoulder peaks at 1242, 1132 and 1114 cm−1. These features are typically observed in the IR spectra
of poly(tetrafluoroethylene) (PTFE) and assigned to various modes of CF2 vibrations in the long C–C
chain [9, 10, 11, 12]. Along with these strong bands, there are minor bands observed at 1366, 1330 and
1312 cm−1. These bands are not observed in the IR spectrum of PTFE, but they start to appear in
the short oligomers such as F14 or F20 [12]. From this observation these bands can be assigned to CF2

vibrations towards the end of -(CF2)- chains. Overall, the features of the monolayer SEIRA spectrum
correspond well to those previously reported in Refs. [7, 13, 14], except for the small bands at 1441, 1414
and 1068 cm−1 in SEIRAS. We assigned these bands to residual DMSO used as solvent for the deposition
process. This assignment was also suggested by a control experiment where the formation of the SAM
layer took place in different solvents (data not shown). The gap at around 1100 cm−1 is due to the
absorption from the silicon prism used as a substrate.

When comparing the spectrum of the monolayer and the bulk samples, the most prominent difference
observed is the drastic increase in relative intensity of the bands at 1372, 1360 and 1334 cm−1. Bands
in this wavenumber region are caused by the vibrational coupling of the perfluorinated moiety with the
alkyl spacer. More specifically, these bands are associated with the CH2 wagging mode coupled with
the symmetric CF2 stretching and deformation vibrations. Because fluorine is heavier than carbon, CF2

stretching vibrations involve large displacements of the carbon atoms with respect to the mass center but
only minimum displacements of the fluorine atoms. This is one of the major differences between CF2 and
CH2 vibrational modes, where the opposite situation applies for hydrogens. The resulting deformation
of the C–C backbone generates the strong coupling of the CH2 wagging and CF2 symmetric stretching
modes and results in a vibrational mode with the associated TDM oriented predominantly along the
molecular axis. The relative components of these modes along the z-axis and in the xy-plane are shown
together with the band assignment in Table S2.

In the spectral region below 1300 cm−1, a strong set of bands is observed at 1242, 1200, and 1146 cm−1
in the bulk spectrum. These are the characteristic fingerprint bands of perfluorinated molecules and are
due to CF2 asymmetric stretching and deformation vibrations. The relative intensities of these bands are
significantly decreased in the spectrum of the monolayer except for the band at 1240 cm−1. These bands
with reduced relative intensities are associated with TDMs perpendicular to the helical backbone axis
(perpendicular component). The relative intensity of the band at 1240 cm−1 increases in SEIRAS, which
suggests an axial TDM (A2 symmetry group). On the basis of its frequency and its relative intensity, it
was however assigned to the mode at 1271 cm−1 (DFT) with a mostly perpendicular TDM component.
We do not have a satisfactory explanation for the behavior of this band, but it may be due to other
phenomena, e.g. Fermi resonance with an axial component.

S7.4 Determination of the Tilt Angle

The plasmonic enhancement exploited in SEIRAS creates a local EF oriented along the normal to the
gold surface. This property, often referred as the selection rule of SEIRA spectroscopy, implies that only
the TDM component normal to the gold surface of a given mode is selectively enhanced. The same
property can be exploited to resolve molecular orientation. In the specific case of a helical molecule,
this can be done by identifying two bands with associated TDMs perpendicular to one another, one
oriented along the molecular axis and the other perpendicular to it. The tilt angle can be retrieved via
the “ratio method” [15]. Intensities observed in SEIRAS are normalized with respect to those observed in
an isotropic spectrum and the tilt angle φ is calculated from the ratio of the two normalized intensities,

tan2 φ = 2 · I
SAM
p

IATR
p

· I
ATR
z

ISAM
z

. (S41)

S10



Figure S7: Fitting of experimental data with a set of Gaussian functions (Equation (S42)) centered at
the wavenumber values obtained from the wavelet deconvolution method. (a) Self-assembled monolayer
(SEIRAS). (b) Liquid bulk sample (ATR).

In our case, the isotropic spectrum was recorded with the attenuated total reflection technique from a
liquid (bulk) sample of H2F8. To derive peak intensities, experimental data was fit with the Matlab fitnlm
method using a set of Gaussians, ∑

i

Ii

σi
√

2π
e−

1
2 (ω−ωi)

2/σ2
i , (S42)

where standard deviation σi and intensity Ii are the fitting parameters and wavenumbers ωi are obtained
beforehand by the wavelet deconvolution method and held constant for the fit. The results from the
fitting process are shown in Figure S7a and b.

Figure S8: (a) ATR spectrum of H2F8 bulk sample. (b) SEIRA spectrum of the monolayer together with
some of the peaks discussed for the estimation of the tilt angle φ. Transition dipole moments (TDMs)
associated with peaks at 1352/1372, 1366/1360 and 1330/1334 cm−1 are oriented predominantly along
the molecular axis while the TDM of the band at 1146/1150 cm−1 is oriented perpendicular to it. The
final value of 16± 4◦ was obtained by comparing areas of peaks at 1330/1334 and 1146/1150 cm−1.

From the band assignment and the DFT calculation (Table S2), the most suitable bands to obtain the tilt
angle were determined to be the modes at 1345 and 1237 cm−1 (DFT), assigned to the experimental peaks
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at 1334 and 1148 cm−1 (SEIRAS) and 1330 and 1146 cm−1 (ATR). These peaks have the highest and
lowest axial projection, respectively, of all peaks of the list (see the along-axis absorptivity percentage
in Table S2) and also benefit from being relatively isolated in the spectrum. This choice is further
supported by previous pMAIRS studies [16]. The confidence interval of the tilt angle was estimated using
error propagation on Equation (S41) and the standard errors from the fitting procedure.

The calculated tilt angle φ = 16± 4◦ corresponds well to the values previously reported by Chidsey et al.
determined from IRRAS [7]. In the same article they also provide other possible tilt angles of φ = 15-16◦

and φ = 5◦, depending on the IR bands used. For comparison, we also determine the tilt angle using the
other two axial bands at 1408 and 1385 cm−1 (DFT) of the same symmetry group, which yield tilt angles
of 17± 7◦ and 18± 3◦ respectively. However, calculation from these peaks is more prone to error due to
the overlap between the two, which can lead to an uneven distribution of intensities when comparing the
ATR and SEIRAS spectra. To avoid this issue, the intenities of the two peaks can also be summed and
treated as a single peak in both spectra. Using this procedure, a value of 17± 4◦ was obtained, quite
close to the one derived from the analysis of the peak at 1345 cm−1 (DFT).

S8 Contact Angle as a Function of Surface Number Density

This derivation builds upon Section S2. For the case of multiple species η of atoms in the solid (e.g.
η=C, H, F etc.), the areal interaction energy is just the sum over all species of the interaction energies
as calculated via Equation (S19),

εint =
∑
η

εηint = −nl
∫ ∞
δ

dz

∫ 0

−∞
dz′

∑
η

nηsV
η(|z′ − z|) . (S43)

In the main work, the density of SAMs is varied by changing intermolecular spacing, with molecular
composition unchanged. Thus the proportions of hydrogen or fluorine atoms to carbon atoms remains
constant. Taking as an example an F-SAM, this implies nFs = λnCs (with λ ≈ 2). Under this assumption,
Equation (S43) gives

εint = −nl
∫ ∞
δ

dz

∫ 0

−∞
dz′

(
nCs V

C(|z′ − z|) + nFs V
F(|z′ − z|)

)
(S44)

= −nlnCs
∫ ∞
δ

dz

∫ 0

−∞
dz′

(
V C(|z′ − z|) + λV F(|z′ − z|)

)
(S45)

= α̃ nC
s , (S46)

where α̃ is a constant in nCs . In Section S4, it is shown that for varying d,

w = γlv(1 + cos θ0) ≈ κ εint , (S47)

where κ is a constant. Combining Equations (S46) and (S47) and defining a new constant α = α̃κ/γlv
gives

1 + cos θ0 ≈ αnC
s . (S48)

The same line of reasoning applies to H-SAMs, but the proportionality constant α will in general be
different.
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