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Thermodynamics of precision in quantum nano-machines

Antoine Rignon-Bret,1, 2 Giacomo Guarnieri,1 John Goold,1 and Mark T. Mitchison1, ∗

1School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
2École Normale Supérieure, 45 rue d’Ulm, F-75230 Paris, France

Fluctuations strongly affect the dynamics and functionality of nanoscale thermal machines. Recent devel-
opments in stochastic thermodynamics have shown that fluctuations in many far-from-equilibrium systems are
constrained by the rate of entropy production via so-called thermodynamic uncertainty relations. These relations
imply that increasing the reliability or precision of an engine’s power output comes at a greater thermodynamic
cost. Here we study the thermodynamics of precision for small thermal machines in the quantum regime. In par-
ticular, we derive exact relations between the power, power fluctuations, and entropy production rate for several
models of few-qubit engines (both autonomous and cyclic) that perform work on a quantised load. Depending
on the context, we find that quantum coherence can either help or hinder where power fluctuations are con-
cerned. We discuss design principles for reducing such fluctuations in quantum nano-machines, and propose an
autonomous three-qubit engine whose power output for a given entropy production is more reliable than would
be allowed by any classical Markovian model.

I. INTRODUCTION

Close examination of a small-scale system typically reveals
significant fluctuations due to thermal noise. Not only do
these fluctuations open a window on otherwise hidden phe-
nomena [1–3], they also exert a decisive influence on the func-
tionality of nanoscale machines — such as atomic [4–6] or
molecular [7] motors. On a fundamental level, the occurrence
of microscopic fluctuations is inextricably linked to dissipa-
tion and the emergence of macroscopic irreversibility, which
originates from the same underlying randomness. Yet while
the quantitative relation between fluctuations and dissipation
has long been understood for equilibrium systems [8], the
principles that connect fluctuations to irreversible behaviour
far from equilibrium are still in the process of being uncov-
ered [9–13].

Recently, it was discovered [14, 15] that non-equilibrium
fluctuations are constrained by dissipation through a rather
general class of inequalities known as thermodynamic uncer-
tainty relations (TURs) [16]. Broadly speaking, TURs dictate
that the currents which characterise any non-equilibrium sce-
nario, e.g. the heat current powering an engine, must fluctuate
by a certain minimum amount that is controlled by the rate of
entropy production, such that reduced fluctuations necessitate
increased entropy production. This principle has striking con-
sequences for the performance of heat engines governed by
classical physics: approaching the ultimate Carnot efficiency
at finite average power output is possible only if the power
fluctuations diverge [17–19]. TURs also limit the accuracy
of autonomous clocks [20–26] and biochemical sensors [27],
and can be used to infer difficult-to-measure quantities such
as the entropy production of molecular motors [28, 29].

Due to their fundamental and practical importance, a wealth
of recent research has aimed at extending TURs beyond their
original realms of validity, finding that they apply to classical
stochastic systems under remarkably general conditions. Ex-
amples include finite observation times [30, 31], discrete-time
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processes [32, 33], counting observables [34], and feedback
protocols [35]. Tighter bounds have been derived [36, 37] and
connections have been found with other important concepts of
non-equilibrium thermodynamics, including fluctuation theo-
rems [38, 39] and information theory [40–42]. A substantial
body of theoretical work has also been devoted to the thermo-
dynamics of precision for quantum systems. In general, the
classical TURs can be violated in the presence of quantum
coherence, which can boost the reliability of nanoscale ther-
moelectric generators [43–46]. Quantum generalisations of
TURs have been proved for steady-state [47] and cyclic [48]
quantum heat engines, for quantum systems under linear-
response conditions [49], and for Markovian open quantum
systems subjected to continuous weak measurements [50–52].
While these general bounds are useful for understanding fun-
damental limits, the precise relation between entropy produc-
tion and non-equilibrium fluctuations must be assessed for
each specific system on a case-by-case basis [53–56].

Here, we analyse the thermodynamics of precision for
small quantum heat engines that perform work on a load with
an infinite-dimensional Hilbert space. Our study is motivated
by recent experimental implementations of nanoscale devices
whose work output is stored in the vibrations of a mechani-
cal oscillator [5, 6, 57]. At such small scales, energetic fluc-
tuations are unavoidable and may significantly affect perfor-
mance [58–65]. We show this explicitly by deriving exact
equalities connecting the power, its fluctuations, and the rate
of entropy production for some basic models of quantum heat
engines that have been considered in the literature. We will
henceforth refer to these equalities as TUR ratios, since they
share the structure and spirit of the TURs.

We begin in Sec. II with the two-qubit autonomous engine
introduced by Brunner et al. [61], which forms a minimal tem-
plate for all quantum absorption machines [22, 66]. We derive
TUR ratios describing the power fluctuations of this two-qubit
engine and discuss the underlying physical mechanisms that
give rise to them. In Sec. III, we use these insights to design
a three-qubit autonomous engine that exhibits substantially
reduced fluctuations due to quantum-coherent energy trans-
port. However, coherence is not always helpful, as we show
in Sec. IV by considering the work output of a cyclic Otto en-
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FIG. 1. Illustration of an autonomous two-qubit engine coupled to an
infinite-dimensional load via a tripartite interaction. The system is
maintained out of equilibrium by heat currents Q̇1 and Q̇2 exchanged
with thermal reservoirs at temperatures T1 and T2 > T1. A portion of
the energy flowing from the hot qubit (red) to the cold qubit (blue) is
diverted to peform work on the load (grey).

gine with a qubit working medium and a harmonic-oscillator
load [5]. In that case, local coherence in the load’s energy
eigenbasis lead to increased energetic fluctuations compared
to the analogous classical process. Our results reveal general
design principles for reducing fluctuations in quantum nano-
machines, and contribute towards a deeper understanding of
the differences between quantum and classical heat engines.
Units where ~ = kB = 1 are used throughout.

II. MINIMAL AUTONOMOUS TWO-QUBIT ENGINE

A. Two-qubit engine model

Our first example is the minimal model of an autonomous
quantum heat engine introduced in Ref. [61], which is de-
picted schematically in Fig. 1. The machine consists of two
qubits with energy splitting E1 and E2, coupled to indepen-
dent heat reservoirs at the respective temperatures T1 and T2,
where T2 > T1. This two-qubit engine performs work on a
load system which is described by an infinite-dimensional lad-
der of equidistant energy eigenstates separated by an energy
Ev = E2 − E1. The Hamiltonian of the system is given by
Ĥ = Ĥ0 + Ĥint, with

Ĥ0 =
1
2

∑
j=1,2

E jσ̂
z
j + Ŵ, (1)

Ĥint = g
(
σ̂+

1 σ̂
−
2 Â† + σ̂−1 σ̂

+
2 Â

)
, (2)

where σ̂
x,y,z
j denotes the standard Pauli operators describ-

ing qubit j = 1, 2, σ̂±j = (σ̂x
j ± iσ̂y

j)/2 are the spin low-
ering and raising operators, and we defined the load’s en-
ergy operator Ŵ =

∑∞
n=−∞ nEv |n〉w 〈n| and lowering operator

Â =
∑∞

n=−∞ |n − 1〉w 〈n|. Similar tripartite engine models have
been proposed in the context of quantum optics [60] and op-
tomechanics [63].

The form of the interaction in Eq. (2) allows energy quanta
to flow from the hot qubit to the cold one, but only by simulta-

neously transferring quanta of energy Ev = E2−E1 to the load.
This process is more likely than its time-reverse (whereby the
load loses energy) so long as entropy is produced in accor-
dance with the second law of thermodynamics. Each quan-
tum of energy transferred to the load leads to entropy changes
∆S 1 = E1/T1 and ∆S 2 = −E2/T2 associated with the heat
exchanged with the cold and hot reservoirs, respectively. De-
noting the total entropy production of this process by χ, the
engine’s operating condition is then given by

χ ≡
E1

T1
−

E2

T2
≥ 0. (3)

To understand this condition microscopically, we identify
a virtual qubit in the composite Hilbert space of the hot and
cold qubits [61]. The virtual qubit is defined by the pair of
states |0〉v = |1〉1 |0〉2 and |1〉v = |0〉1 |1〉2, where {|0〉 j , |1〉 j}

are the eigenstates of σ̂z
j. These virtual qubit states are eigen-

states of Ĥ0 with energy splitting Ev, which exchange energy
with the load via Ĥint (see Fig. 2). In the absence of cou-
pling to the load (g = 0), the machine qubits are in equilib-
rium with their corresponding baths, so that the population
of each energy eigenstate obeys the Boltzmann distribution,
i.e. P(|1〉 j)/P(|0〉 j) = e−E j/T j . It follows that the virtual qubit
states are populated in the ratio P(|1〉v)/P(|0〉v) = eχ = e−Ev/Tv ,
where Tv = −Ev/χ is the virtual temperature [67]. When
χ is large and positive, the virtual temperature is small and
negative and the virtual qubit populations are inverted, i.e.
P(|1〉v) � P(|0〉v). Turning on a weak interaction g , 0 cou-
ples the virtual qubit to the load by driving transitions of the
form |1〉v |n〉w ↔ |0〉v |n + 1〉w. The population inversion of
the virtual qubit biases the forward transition in favour of the
reverse one, causing the load’s energy to increase over time.
In this way, the engine’s operation can be understood as “ther-
malisation” of the load but with a negative virtual temperature.

B. Thermodynamics of precision for the two-qubit engine

We now turn to the explicit description of the engine’s dy-
namics. Following Refs. [61, 66], we model the thermalis-

Ev

|0⟩1 |1⟩2

|1⟩1 |1⟩2

|n⟩w

|n + 1⟩w

|n − 1⟩w

|1⟩1 |0⟩2

|0⟩1 |0⟩2

T2

T1

FIG. 2. The virtual qubit is the pair of states {|0〉1 |1〉2 , |1〉1 |0〉2} in
the composite Hilbert space of the two engine qubits. Thermal baths
drive transitions between the four engine eigenstates, generating pop-
ulation inversion in the virtual qubit, i.e. a negative temperature. Res-
onant coupling to the virtual qubit causes the load to thermalise with
the negative virtual temperature, thus performing work.
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ing effect of the reservoirs by assuming that in each small
time interval dt, the qubits either evolve coherently under the
Hamiltonian Ĥ or one of them is randomly reset to a lo-
cal thermal state τ̂ j = e−β jE jσ̂

z
j/2/Z j, with β j = 1/T j and

Z j = Tr
(
e−β jE jσ̂

z
j/2

)
. For each qubit, this resetting is assumed

to occur with probability p per unit time and is described by
the map ρ̂ → τ̂ j ⊗ Tr j(ρ̂). Taking the limit dt → 0, the corre-
sponding ensemble dynamics is given by the master equation

dρ̂
dt

= −i[Ĥ, ρ̂] +
∑
j=1,2

p
(
τ̂ j ⊗ Tr j(ρ̂) − ρ̂

)
(4)

= −i[Ĥ, ρ̂] +
∑
j=1,2

(
γ+

jD[σ̂+
j ] + γ−jD[σ̂−j ] + γzD[σ̂z

j]
)
ρ̂.

(5)

On the second line, the reset master equation is expressed ex-
plicitly in Lindblad form, where the dissipation super-operator
is defined by D[L̂]• = L̂ • L̂† − 1

2 {L̂
†L̂, •}, the gain and de-

cay rates are γ±j = pe∓β jE j/2/Z j, and γz = p/4 is an effec-
tive local dephasing rate. The description of thermalisation
in terms of local processes implicitly assumes that the cou-
pling strength g is not much larger than other energy or fre-
quency scales, in particular E j, T j and p. Note that, since
[Ĥ0, Ĥint] = 0, this local description of dissipation is thermo-
dynamically consistent [68–70] and the spurious violations of
thermodynamic laws predicted for systems with non-resonant
interactions [71, 72] do not arise.

The useful output of the two-qubit heat engine is quantified
by the energy transferred to the load. This energy transfer
is stochastic due to the inevitable fluctuations induced by the
coupling to thermal reservoirs. We denote the mean energy of
the load by W = 〈Ŵ〉 and its variance by ∆W = 〈Ŵ2〉 − W2.
In the long-time limit, the machine reaches a non-equilibrium
steady state (NESS) characterised by stationary power Ẇ =

dW/dt and power fluctuations ∆̇W = d∆W/dt. Our aim is to
relate this energetic output with the rate of entropy production,

Σ̇ = −β1Q̇1 − β2Q̇2, (6)

where Q̇ j = Tr[ĤD jρ̂] is the heat current entering the system
from bath j and D jρ̂ = p

(
τ̂ j ⊗ Tr j(ρ̂) − ρ̂

)
is the correspond-

ing dissipator. Note that, since the fluctuating energy transfer
to the load is identified with work output, we quantify entropy
production in terms of the heat flux only and ignore the ad-
ditional contribution associated with the load’s growing von
Neumann entropy [13, 73].

To relate the machine’s fluctuating power output to the en-
tropy production, we exploit the exact solution of the master
equation derived in Ref. [61], which is briefly described here
and detailed fully in Appendix A. The state of the virtual qubit
is characterised by the following two observables:

Ẑ = |1〉v 〈1| − |0〉v 〈0| = 1
2

(
σ̂z

2 − σ̂
z
1

)
, (7)

N̂ = |1〉v 〈1| + |0〉v 〈0| = 1
2

(
1 − σ̂z

1σ̂
z
2

)
. (8)

Respectively, these yield the mean bias (population inversion)
〈Ẑ〉 and the mean occupation 〈N̂〉 of the virtual qubit states. In

the absence of coupling to the load, these quantities take the
values 〈Ẑ〉eq ≡ Tr(Ẑτ̂1 ⊗ τ̂2) and 〈N̂〉eq ≡ Tr(N̂τ̂1 ⊗ τ̂2), where

〈Ẑ〉eq = − tanh(βvEv/2)〈N̂〉eq, (9)

〈N̂〉eq =
1
2

[
1 − tanh(β1E1/2) tanh(β2E2/2)

]
, (10)

which describe a qubit in equilibrium at inverse temperature
βv = 1/Tv and with a total normalisation 〈N̂〉eq less than unity
(because the qubit is virtual). For finite g, the virtual qubit
drives a coherent current to the load described by the dimen-
sionless operator

Ĉ = i
(
σ̂−1 σ̂

+
2 Â − σ̂+

1 σ̂
−
2 Â†

)
. (11)

The average power delivered to the load is then Ẇ = gEv〈Ĉ〉.
In the NESS, all currents are proportional to the bias, Q̇ j ∝

Ẇ ∝ 〈Ĉ〉 ∝ 〈Ẑ〉, while the load’s energetic fluctuations are
determined by both 〈Ẑ〉 and 〈N̂〉. Explicitly, we obtain the
asymptotic solutions

Ẇ = Γ2Ev〈Ẑ〉eq, (12)

Σ̇ = Γ2χ〈Ẑ〉eq, (13)

∆̇W = Γ2E2
v

[
〈N̂〉eq −

2Γ2(2p2 + g2)
p(p2 + 2g2)

〈Ẑ〉2eq

]
, (14)

where Γ2 = g2 p/(p2 + 2g2) is the characteristic rate of energy
transfer for the two-qubit engine. Due to the proportionality
of the power and heat currents, the engine’s efficiency is given
by

η =
Ẇ
Q̇2

= 1 −
E1

E2
. (15)

The Carnot bound, η ≤ ηC = 1 − T1/T2, follows directly from
condition (3).

It is now straightforward to derive the TUR ratio

∆̇W

Ẇ2
Σ̇ = χ

[
coth(χ/2) −

2Γ2(2p2 + g2)
p(p2 + 2g2)

〈Ẑ〉eq

]
≥ 2. (16)

This relation encapsulates the trade-off between the precision
of work deposition and its associated thermodynamic cost.
For any given set of finite temperatures and qubit energies,
Eq. (16) gives the necessary conditions to minimise fluctua-
tions in the engine’s power output at fixed entropy production.
The optimal operating point in this respect is g = p (see Ap-
pendix B), which is effectively an impedance-matching con-
dition between the bath-engine and engine-load couplings.

The inequality (16), which is proved in Appendix B, is
of the same form as the classical TUR for steady-state cur-
rents [14, 15]. We emphasise, however, that the conditions
for the validity of the classical TUR do not hold here due to
the presence of quantum coherences. To appreciate the im-
portance of the bound (16) for engine performance, we follow
Ref. [30] and rewrite it as

∆̇W ≥
2T1η

ηC − η
Ẇ, (17)
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where we have used the steady-state energy balance equation
Ẇ = Q̇1 + Q̇2 to express the entropy production rate (6) in
terms of the efficiency (15). The above inequality implies that
approaching the Carnot efficiency at finite power is possible
only by allowing the fluctuations to diverge. For the two-qubit
engine, the Carnot point corresponds to χ → 0, which is the
limit where the bound in Eq. (16) can be saturated. The virtual
qubit’s bias 〈Ẑ〉eq ∝ tanh(χ/2) tends to zero in this limit but
its normalisation 〈N̂〉eq does not. Therefore, when the two-
qubit engine operates at Carnot efficiency, its power output is
zero on average but has non-zero fluctuations. We note that
this behaviour was already discussed by Brunner et al. [61]
in terms of the qualitative notion of the “strength of work”.
Our results (16) and (17) give this notion a clear quantitative
meaning.

The emergence of a TUR-like bound for this small quantum
engine is not surprising, since the load’s behaviour has some
similarities with a classical stochastic process. In particular,
the variance of the load’s energy grows linearly in time, as ex-
pected for diffusive dynamics. Indeed, for g � p, the load’s
evolution can be accurately approximated by a classical ran-
dom walk [21, 22], with probabilities per unit time of an up-
ward or downward step related by p↑ = eχp↓. In this limit,
the second term in Eq. (16) can be neglected and one recovers
the TUR ratio ∆̇W Σ̇/Ẇ2 = χ coth(χ/2) for the biased random
walk, which is the prototypical model first used by Barato and
Seifert [14] to illustrate the thermodynamics of precision.

Conversely, at finite coupling g, the fluctuations are reduced
relative to the classical random-walk case. To clarify this, it is
instructive to rewrite Eq. (16) as

∆̇W

Ẇ2
Σ̇ = χ coth(χ/2)

〈N̂〉 − 3〈Ĉ〉2

〈N̂〉eq
. (18)

This form highlights two different ways in which a coherent
coupling between the virtual qubit and the load reduces the
TUR ratio. First, the coupling depletes the occupation of the
virtual qubit below its equilibrium value, 〈N̂〉 < 〈N̂〉eq. Con-
sidering the virtual qubit as an effective heat reservoir at tem-
perature Tv, this depletion occurs because the reservoir is not
macroscopic and thus experiences strong back-action from its
coupling to the system. Second, the coupling reduces the TUR
ratio by establishing a finite current 〈Ĉ〉, which is associated
with quantum coherences in the energy eigenbasis of the cou-
pled qubit-load system [74]. Eq. (18) thus suggests two ways
in which small thermal machines might overcome the con-
straints of the classical TUR: either by harnessing small or
non-Markovian heat sources, or by exploiting quantum coher-
ences.

C. Effect of local dephasing

Having established the connection between power, fluctua-
tions and dissipation, it is natural to ask whether a more pro-
pitious relationship between these quantities can be arranged.
As shown by Eq. (18), the presence of quantum coherence can
reduce the power fluctuations for a given entropy production
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FIG. 3. Thermodynamics of precision for autonomous few-qubit en-
gines. The product of relative power fluctuations and entropy produc-
tion rate is plotted as a function of the coherent coupling g relative
to the average dissipation rate p. Results are shown for the two-qubit
engine (2QE) with a reset (solid black line) or local Lindblad (dashed
grey line) thermalisation model, and for the three-qubit engine (3QE)
model (dot-dashed blue line). The classical Markovian TUR bound
is shown by the dotted black line. The parameters are β1E1 = 3 and
β2E2 = 1.

rate. We now show that this effect is enhanced by consider-
ing a different dissipation model, in which the local dephasing
terms proportional to γz in Eq. (4) are neglected. We thus con-
sider the master equation

dρ̂
dt

= −i[Ĥ, ρ̂] +
∑
j=1,2

(
γ+

jD[σ̂+
j ] + γ−jD[σ̂−j ]

)
ρ̂. (19)

A local Lindblad equation of this form can be derived from
a time-independent system-reservoir interaction under the as-
sumption of weak coupling g relative to the temperatures and
the local qubit and load energies [75]. In order to facilitate
comparison with the reset model of Sec. II B, we continue to
parametrise the gain and loss rates as γ±j = pe∓β jE j/2/Z j.

The dynamics is solved to find the NESS corresponding to
Eq. (19) in Appendix A. The diagonal elements of the density
matrix in the computational basis are found to obey identical
equations of motion to the reset model of Eq. (4), while the
off-diagonal elements experience reduced decoherence rates
due to the absence of a γz term. Explicitly, we find the solu-
tions

Ẇ = Γ′2Ev〈Ẑ〉eq, (20)

Σ̇ = Γ′2χ〈Ẑ〉eq, (21)

∆̇W = Γ′2E2
v

〈N̂〉eq −
Γ′2(5p2 + 4g2)

p(p2 + 4g2)
〈Ẑ〉2eq

 . (22)

The results are very similar to the reset model, Eqs. (12)–
(14), but with a modified characteristic rate of energy flux,
Γ′2 = 2g2 p/(p2 + 4g2), and somewhat reduced fluctuations.
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The TUR ratio then follows as

∆̇W

Ẇ2
Σ̇ = χ

coth(χ/2) −
Γ′2(5p2 + 4g2)

p(p2 + 4g2)
〈Ẑ〉eq

 . (23)

Due to its different dependence on the coefficients p and g,
this quantity can take smaller values than the TUR ratio (16)
for the reset model, given the same temperatures and qubit en-
ergies. We show in Appendix C 1 that the bound ∆̇W Σ̇/Ẇ2 ≥

1.982 . . . holds, which allows for fluctuations below the clas-
sical TUR. However, we have found that such violations are
typically extremely small and occur only in a very limited re-
gion of the parameter space where β jE j � 1. The TUR ratios
for the different 2QE models are compared in Fig. 3.

III. AUTONOMOUS THREE-QUBIT ENGINE

A. Three-qubit engine model

As we have seen, fluctuations in the power output may be
reduced in the presence of coherent energy transport, in ac-
cordance with previous studies [43–45]. We now use this in-
sight to design an autonomous quantum nano-machine with a
more reliable power output than would be classically allowed
by the TUR. In particular, we modify the two-qubit engine by
adding a third qubit that intermediates the flow of energy from
the baths to the load, as depicted in Fig. 4. This shifts the co-
herent coupling between engine and load further away from
the decohering effect of the thermal baths, thereby reducing
power fluctuations.

The Hamiltonian of the model is Ĥ = Ĥ′0 + V̂ + Ĥint, where

Ĥ′0 =
1
2

3∑
j=1

E jσ̂
z
j + Ŵ, (24)

V̂ = k
(
σ̂+

1 σ̂
−
2 σ̂

+
3 + σ̂−1 σ̂

+
2 σ̂
−
3

)
, (25)

Ĥint = g
(
σ̂−3 Â† + σ̂+

3 Â
)
, (26)

with Ĥ′0 the free Hamiltonian, V̂ the interaction between the
three qubits, and Ĥint the engine’s coupling to the load. We
take E3 = E2 − E1 = Ev to ensure that all interactions are
resonant. As before, we assume that qubits 1 and 2 are locally
coupled to thermal baths at temperatures T1 and T2, respec-
tively. For g = 0, the additional qubit thus thermalises to the
virtual temperature, with bias given by

〈σ̂z
3〉eq = − tanh(βvEv/2). (27)

This is analogous to Eq. (9) but with unit normalisation
(i.e. 〈N̂〉 = 1) because the qubit is physical, not virtual.

To model the dynamics for finite g, we simplify the prob-
lem by assuming that the local thermalisation rate is much
larger than both the coherent couplings k and g. As a result,
the rapidly damped qubits behave approximately like memo-
ryless thermal reservoirs on the slow timescale over which en-
ergy is transported between the engine and the load. As shown
in Appendix C, these qubits can be perturbatively eliminated

E2

E1

Evg

·Q2

·Q1

·W
Evk

FIG. 4. Schematic of the autonomous three-qubit engine. The energy
flow from the baths is intermediated by an additional qubit resonant
with the load. This boosts quantum coherence associated with energy
transport, allowing for reduced relative power fluctuations.

under the Born-Markov approximation. The result is an effec-
tive master equation describing the joint state of qubit 3 and
the load, which reads as

dρ̂
dt

= −i[Ĥ0 + Ĥint, ρ̂] + γ+D[σ̂+
3 ]ρ̂ + γ−D[σ̂−3 ]ρ̂, (28)

where Ĥ0 = Evσ̂
z
3/2 + Ŵ and the gain and decay rates obey

γ+/γ− = eχ. It is convenient to parametrise the effective dissi-
pation rate by the parameter p = γ+ +γ−, as in Sec. II. Explicit
expressions for γ± can be found in Appendix C assuming an
underlying reset thermalisation model.

B. Thermodynamics of precision for the three-qubit engine

The dynamics under Eq. (28) can be solved analytically
to find the power, fluctuations and entropy production in the
NESS. As shown in Appendix C, the results are given by

Ẇ = Γ3Ev〈σ̂
z
3〉eq, (29)

Σ̇ = Γ3χ〈σ̂
z
3〉eq, (30)

∆̇W = Γ3E2
v

[
1 −

6Γ3 p
p2 + 8g2 〈σ̂

z
3〉

2
eq

]
, (31)

where Γ3 = 4g2 p/(p2 + 8g2) is the characteristic energy trans-
fer rate for the three-qubit machine. As for the two-qubit en-
gine, the proportionality between power and heat currents im-
plies the ideal efficiency η = 1 − E1/E2.

Eqs. (29)–(31) are now easily combined with Eq. (27) to
obtain

∆̇W

Ẇ2
Σ̇ = χ coth(χ/2)

[
1 −

6Γ3 p
p2 + 8g2 tanh2(χ/2)

]
≥ 1.245 . . . ,

(32)
where the lower bound is derived in Appendix B. This in-
equality allows the TUR ratio to take values significantly
lower than the classical Markovian result (cf. Eq. (16)). As we
show in Fig. 3, such values are achievable: a judicious choice
of the coupling ratio g/p leads to substantially reduced power
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FIG. 5. Schematic depiction of an Otto cycle where a qubit working
medium is driven by a harmonic oscillator. The harmonic motion of
the oscillator, stylised here as a coiled spring of extension x, mod-
ulates the level spacing of the qubit periodically. The qubit couples
to hot and cold baths every half-period, thus changing the excited-
state occupation probability (grey circles). The difference in heat
absorbed from the hot and cold baths is converted into work done on
the spring, driving oscillations of increasing amplitude.

fluctuations relative to the classical TUR. The significance of
this finding can be appreciated by rewriting Ineq. (32) in terms
of power and efficiency, as in Ineq. (17). This shows that, for a
given average engine performance, the power fluctuations can
at best be reduced to approximately 1.245/2 ≈ 62% of those
produced by a machine governed by the classical TUR. As in
Eq. (16), the bound in Eq. (32) is saturated only as χ→ 0. We
note that the quantum steady-state TUR derived in Ref. [47]
is always satisfied by Eq. (32).

The above result demonstrates that adding an extra stage to
the transport pathway from engine to load can boost quantum
coherence and thereby reduce fluctuations in the machine’s
output. Similar effects have been reported in the context
of thermoelectric devices [43, 44] and autonomous quantum
clocks [24]. In the present model, these advantages come at
the cost of reduced power output compared to the two-qubit
autonomous engine because the optimal coupling regime is
g . p, which by assumption is much smaller than the rate
of thermalisation (see Appendix C). However, we stress that
this non-essential approximation was made only to simplify
the analytical treatment; it is possible that quantum-enhanced
reliability can be obtained in strong-coupling regimes of high
power, although we leave this question for future work.

IV. SINGLE-SPIN OTTO ENGINE WITH A HARMONIC
OSCILLATOR FLYWHEEL

A. Spin-oscillator engine cycle

As our final example, we investigate the thermodynamics
of precision for a four-stroke heat engine comprising a sin-
gle qubit working medium coupled to a harmonic oscillator
load. Our model is inspired by the experiment reported in
Ref. [5], where the qubit comprises two Zeeman spin levels
of a trapped ion and the oscillator corresponds to the ion’s
centre-of-mass degree of freedom. The qubit undergoes an
Otto cycle driven by the harmonic motion of the oscillator,
which therefore acts as a quantised flywheel. Closely related
engine models have also been discussed in Refs. [58, 62].

We consider a simple linear coupling between the qubit and

oscillator, described by the Hamiltonian

Ĥ =
ωz

2
σ̂z + ω0â†â +

1
2
ω0dσ̂z

(
â + â†

)
, (33)

where σ̂z is a Pauli operator describing the qubit, â and â† are
canonical ladder operators for the harmonic oscillator, and d is
a dimensionless parameter that quantifies the qubit-oscillator
coupling strength. A semi-classical depiction of the engine
cycle is shown in Fig. 5. The qubit is coupled alternately to
cold and hot baths at temperatures T1 and T2 every half period,
δt/2 = π/ω0. In between these isochoric strokes, the qubit is
decoupled from the baths and the system evolves freely under
the Hamiltonian (33).

In a mean-field picture, the qubit exerts an effective force
on the oscillator proportional to 〈σ̂z〉. Coupling to the heat
baths alters the qubit’s populations every half-cycle, so that
the force oscillates resonantly with the motion. This drives
increasingly large oscillations of the flywheel, corresponding
to the work output of the engine. In turn, the harmonic motion
of the oscillator modulates the effective energy splitting of the
qubit by an amount proportional to the displacement 〈â + â†〉.

We focus on the regime of large qubit frequency (ωz � ω0),
weak qubit-oscillator coupling (d � 1), and correspondingly
small oscillator displacements. We also assume for simplic-
ity that the isochores have a negligible duration and result in
perfect thermalisation of the qubit. The heat absorbed during
the cold and hot isochores is thus given approximately by the
change in the qubit’s mean energy, i.e.

Q1 = (p1 − p2)
(
ωz − ω0d〈â + â†〉

)
, (34)

Q2 = (p2 − p1)
(
ωz + ω0d〈â + â†〉

)
, (35)

where p j = e−β jωz/2/Z j is the qubit’s excited-state population
at temperature T j = 1/β j, while 〈â + â†〉 is the maximum dis-
placement amplitude. In Eqs. (34) and (35), we have used a
mean-field approximation for the qubit energy and neglected
small corrections to the Boltzmann factors due to the oscilla-
tor displacement. Hence, the mean energy transferred to the
flywheel per cycle is approximately

Wcyc = Q1 + Q2 = 2ω0d(p2 − p1)〈â + â†〉. (36)

For the purposes of the present study, we consider this energy
to be the engine’s useful work output. We note that, since
the displacement increases on each cycle, the engine’s power
output increases over time and the cycle is not closed.

B. Random-walk model of the flywheel dynamics

Following Ref. [5], we now show that the dynamics of the
flywheel can be modelled as a random walk in phase space,
under the assumption of fast qubit thermalisation during the
isochores. Considering the density matrix of the composite
system, the effect of thermalisation is described by the map

K jρ̂ =
[
p jΠ̂+ + (1 − p j)Π̂−

]
ρ̂ f , (37)
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where j = 1, 2 specifies the cold or hot bath, p j = e−β jωz/2/Z j

is the corresponding Boltzmann factor, Π̂± denote projec-
tors onto the ground and excited states of the qubit such that
σ̂zΠ̂± = ±Π̂±, and ρ̂ f = Trq[ρ̂] is the reduced state of the
flywheel obtained by tracing over the qubit. Between the iso-
chores, the state evolves freely under the Hamiltonian (33)
over a time interval δt/2. This generates the unitary map
Uρ̂ = e−iĤδt/2ρ̂eiĤδt/2, with

e−iĤδt/2 = Π̂+P̂D̂(+d) + Π̂−P̂D̂(−d), (38)

where D̂(±d) = e±d(â†−â) and P̂ = eiπâ†â. Physically, D̂(±d)
enacts a displacement of the oscillator in phase space, while
the parity operator P̂ reverses the direction of motion every
half-period.

The evolution over one full period is found by concate-
nating the thermalisation and unitary maps in turn, yielding
ρ̂(N) = UK1UK2ρ̂

(N−1) as the state after N engine cycles
(i.e. N oscillation periods). Tracing over the qubit, we obtain
a recursion relation for the flywheel state

ρ̂(N)
f = p0ρ̂

(N−1)
f + p+D̂(+2d)ρ̂(N−1)

f D̂†(+2d)

+ p−D̂(−2d)ρ̂(N−1)
f D̂†(−2d). (39)

This describes a discrete-time random walk in phase space,
where p+ = p2(1 − p1) is the probability of taking a forward
step, p− = p1(1 − p2) is the probability of a backward step,
while with probability p0 = 1 − p+ − p− the state does not
change. As depicted in Fig. 6, these probabilities have a nat-
ural interpretation in terms of “spin-flip” processes during the
isochores. Each forward step of size 2d corresponds to an in-
crease of the oscillation amplitude, whereby the qubit work-
ing medium deposits energy into the flywheel. The ratio of the
forward and backward rates is given by p+/p− = eχ where, by
analogy with Eq. (3), we define the bias parameter

χ = (β1 − β2)ωz ≥ 0. (40)

Assuming the oscillator is initialised in its ground state, af-
ter N engine cycles it is in a coherent state |αN〉, where αN is a
real random variable representing the distance travelled after
N steps of the random walk. Normal-ordered quantum expec-
tation values may thus be computed as 〈(â†)pâq〉 = E[αq+p

N ],
where E[•] represents an average over random-walk trajec-
tories. Such averages can be found systematically by tak-
ing derivatives of the moment generating function GN(s) =

E[esαN ] at s = 0. Since each step of the random walk is in-
dependent and identically distributed, we can write GN(s) =

[G1(s)]N , where the generating function for one cycle is

G1(s) = 1 + 2 sinh(ds)
(
p+eds − p−e−ds

)
. (41)

C. Thermodynamics of precision for the random walk

The stochastic nature of the flywheel dynamics implies the
existence of fluctuations in the engine’s work output, which
we now relate to the entropy production. The total energy

Im α

Re α

1 − p1

p2

p1

1 − p2

p1 1 − p1

d

|0⟩ |1⟩

FIG. 6. The flywheel dynamics can be modelled as a discrete-time
random walk in phase space, where each value of α represents a co-
herent state of the oscillator. The state of the qubit can be visualised
as a spin pointing up or down, whose orientation determines the di-
rection of the force on the oscillator (inset). If the spin flips its ori-
entation after half the cycle, the effective driving force is resonant
with the oscillatory motion, thus changing the displacement in phase
space by ±2d. If the spin’s orientation does not change, the effective
force is constant and the displacement is unaltered after a full cycle.

change of the flywheel after N cycles is WN = ω0〈n̂〉, where
n̂ = â†â, which can be found using Eq. (41). For large N, we
obtain to leading order

WN = 4ω0d2(p+ − p−)2N2 + O(N). (42)

This quadratic increase in energy with N follows from a linear
growth of displacement, i.e. 〈â〉 = 2d(p+ − p−)N, as expected
for a biased random walk over coherent states. We note that
the change in energy over a single cycle is therefore Wcyc =

WN+1 − WN ≈ 4ω0d(p+ − p−)〈â〉, in exact agreement with
Eq. (36). The fluctuations of the flywheel’s energy are given
by ∆WN = ω2

0〈n̂
2〉 −W2

N . Explicitly, we find that

∆WN = 64ω2
0d4(p+ − p−)2

[
p+ + p− − (p+ − p−)2

]
N3

+ O(N2). (43)

The entropy production after N cycles is given by ΣN =

−N(β1Q1 + β2Q2). Using Eqs. (34) and (35), this can be ap-
proximated to leading order by

ΣN ≈ (β1 − β2)(p+ − p−)ωzN, (44)

since the bare Zeeman energy ωz is assumed to dominate the
contribution from the oscillator displacement.

To obtain an expression connecting power fluctuations
and entropy production rate, we convert Eqs. (42)–(44) into
coarse-grained rates of change over an engine cycle, e.g.
Ẇ = (WN+1 − WN)/δt, with δt = 2π/ω0. We thus obtain the
TUR ratio for the flywheel at leading order for large N:

∆̇W

Ẇ2
Σ̇ = 3χ

[
coth(χ/2) − (p+ − p−)

]
+ O(N−1). (45)

This differs in two important respects from the analo-
gous expression χ coth(χ/2), which holds for the classical,
continuous-time random walk [14]. The second term inside
the square brackets of Eq. (45), which reduces the relative
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FIG. 7. Thermodynamics of precision for random walks. The TUR
ratio after a large number of steps N is plotted against the bias pa-
rameter χ, which quantifies the entropy production per step. The
result for the flywheel (blue dot-dashed line), corresponding to a
discrete-time (DT) random walk over coherent states, is compared to
a DT random walk over Fock states (grey dashed line) and a classical
continuous-time (CT) random walk (solid black line). The parame-
ters are chosen so that p0 = 0.6.

fluctuations, appears due to the discrete-time nature of the
evolution under consideration. This term vanishes in the limit
of a continuous-time process where p± ∼ dt → 0. This illus-
trates the fact that a continuous-time random walk exhibits
enhanced fluctuations because of the random timing of the
steps [33].

The other important feature in Eq. (45) is the overall fac-
tor of three multiplying the expression. The physical origin of
this factor is the fact that the random walk takes place over co-
herent states in phase space, rather than energy eigenstates in
Fock space. Even a pure coherent state |α〉 has a finite energy
uncertainty given by 〈α| n̂2 |α〉 − 〈α| n̂ |α〉2 = |α|2. The growth
of energetic fluctuations is thus faster than would be obtained
for a random walk between Fock states. This is easily shown
by interpreting the generating function (41) as describing a
single step in Fock space, |n〉 → |n ± 1〉, which leads to an ex-
pression precisely three times smaller than Eq. (45). The TUR
ratio for the flywheel is compared to a random walk over Fock
states in Fig. 7.

V. DISCUSSION

When considering heat engines at the smallest scales, the
fluctuations in output power may be as important as the aver-
age performance. Here we have derived explicit expressions
for these fluctuations, relating them to the average rate of en-
tropy production for several quantum heat engine models of
current interest. Our results exemplify the entropic penalty
associated with a reliable power output. In particular, just as
for many classical heat engines [18, 19, 48, 76–78], approach-
ing the Carnot efficiency (i.e. zero entropy production) at finite
power comes at the cost of catastrophically large fluctuations.

This conclusion holds for both autonomous (Secs. II and III)
and cyclic (Sec. IV) few-qubit engines.

Interestingly, however, quantum mechanics opens the pos-
sibility of reducing an engine’s relative power fluctuations be-
low the level allowed by classical stochastic thermodynam-
ics. In particular, Eq. (18) clarifies two different ways in
which autonomous few-qubit machines can surpass the clas-
sical TUR. Either one can reduce the occupation 〈N̂〉 of the
virtual qubit, or one can boost the coherent current 〈Ĉ〉. This
conclusion should apply quite generally to more complicated
multi-level machines, which can also be analysed in terms of
virtual qubits [61, 79, 80]. We demonstrated this principle ex-
plicitly by considering two variants of the two-qubit engine in
Secs. II C and III. Both of these exhibit smaller power fluctu-
ations because the effect of decoherence is reduced, either as
a consequence of the thermalisation model (Sec. II C) or the
geometry of the engine itself (Sec. III). This suggests a gen-
eral design principle for reducing fluctuations in autonomous
thermal machines by boosting coherent transport, e.g. via the
introduction of additional stages in the transport pathway be-
tween engine and load [24, 43]. According to Eq. (18), it may
also be possible to tame power fluctuations by designing the
engine so that the virtual qubit’s occupation is reduced, yet we
have not found explicit models where this occurs.

Nevertheless, quantum coherence can lead to drawbacks as
well as advantages. We showed in Sec. IV that an engine
which drives transitions between coherent states of the load
suffers from greater fluctuations, as compared to a machine
whose load remains incoherent in its local energy eigenba-
sis. This is simply because coherent superpositions of energy
eigenstates have an intrinsic energy uncertainty above and be-
yond the thermodynamic uncertainty introduced by coupling
to heat reservoirs. We note, however, that such coherences
do have some potential to be extracted as useful work with
an appropriate protocol [81]. A careful consideration of this
problem [65] would lead us to evaluate the ergotropy [82] or
the non-equilibrium free energy [83] of the load, as opposed
to its mere energy statistics, a question that we leave for future
work.

From a more foundational perspective, our findings high-
light the importance of fluctuations in certifying the non-
classical behaviour of quantum thermal machines [84–89]. In
contrast to an engine’s average performance [90], power fluc-
tuations that violate a classical TUR cannot be emulated by
any classical (Markovian) stochastic model and thus consti-
tute an unambiguous quantum advantage. We note that the
use of fluctuations to tease out the quantum character of dy-
namical processes has a distinguished history, e.g. in the field
of quantum optics [91, 92]. We therefore hope that our work
will stimulate further research on the general characterisation
and effective suppression of fluctuations in quantum thermal
machines.
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Appendix A: Solution for the two-qubit engine

1. Reset model

For completeness, in this Appendix we detail the solution
of the two-qubit engine modelled by the reset master equation.
The results are equivalent to those already obtained by Brun-
ner et al. [61], but it is convenient to recast them here in our
notation. Starting from the master equation [Eq. (4)] written
as dρ̂/dt = −i[Ĥ, ρ̂] +

∑
j=1,2D jρ̂, the dynamics of any opera-

tor Ô in the Heisenberg picture is determined by the equation
of motion dÔ/dt = i[Ĥ, Ô] +

∑
jD
†

jÔ, where the adjoint dis-

sipator is defined implicitly by Tr[ÔD jρ̂] = Tr[ρ̂D†jÔ]; see
Ref. [93] for details.

The Heisenberg equation for the load Hamiltonian is sim-
ply dŴ/dt = gEvĈ, where the current operator is defined in
Eq. (11). The state of the engine qubits is determined by the
bias [Eq. (7)] and occupation [Eq. (8)] of the virtual qubit, as
well as the total spin Ŝ = 1

2 (σ̂z
1 + σ̂z

2) (equivalent to the bias of
an “anti-virtual qubit” [61]). Together with the current, these
quantities obey the coupled equations

dĈ
dt

= 2gẐ − 2pĈ, (A1)

dẐ
dt

= p
(
〈Ẑ〉eq − Ẑ

)
− 2gĈ, (A2)

dN̂
dt

= p
(
1 − 2N̂ + 〈Ẑ〉eqẐ − 〈Ŝ 〉eqŜ

)
, (A3)

dŜ
dt

= p
(
〈Ŝ 〉eq − Ŝ

)
, (A4)

where the equilibrium averages denoted by, for example,
〈Ẑ〉eq = Tr(Ẑτ1 ⊗ τ2), can be evaluated using the formula
〈σ̂z

j〉eq = − tanh(E j/2T j). The quasi-stationary state is found
by setting the mean value of the above derivatives above to
zero, yielding the solutions 〈Ŝ 〉 = 〈Ŝ 〉eq and

〈Ĉ〉 =
gp

p2 + 2g2 〈Ẑ〉eq, (A5)

〈Ẑ〉 =
p2

p2 + 2g2 〈Ẑ〉eq, (A6)

〈N̂〉 = 〈N̂〉eq −
g2

p2 + 2g2 〈Ẑ〉
2
eq. (A7)

The mean rate of energy transfer to the load is then given by
Ẇ = Γ2Ev〈Z〉eq, with Γ2 = g2 p/(p2 +2g2), which is equivalent
to Eq. (12).

To find the fluctuations, we consider the equation of motion
for Ŵ2, which is dŴ2/dt = gEvK̂, with K̂ = {Ŵ, Ĉ}. We also
define the operator Ω̂ = ẐŴ in the Schrödinger picture, which

in the Heisenberg picture is coupled to K̂ via the equations

dK̂
dt

= 2g
(
2Ω̂ + EvN̂

)
− 2pK̂, (A8)

dΩ̂

dt
= p

(
〈Ẑ〉eqŴ − Ω̂

)
− gK̂. (A9)

After eliminating Ω̂ from the equations and focussing on
asymptotically long times where the solutions in Eqs. (A5)–
(A7) hold, we obtain[

d2

dt2 + 3p
d
dt

+ 2p2 + 4g2
]
〈K̂〉 = 2gpEv

(
2Γ2t〈Ẑ〉2eq + 〈N̂〉

)
.

(A10)

This describes a damped harmonic oscillator under a driving
force given by the right-hand side of the equation. Consid-
ering times long enough for transient oscillations to decay to
zero, i.e. pt � 1, the solution is easily found by using the
ansatz 〈K̂〉 = a+bt and solving for the constants a and b. This
procedure ultimately yields

d
dt
〈W2〉 =

d
dt
〈Ŵ〉2 + Γ2E2

v

[
〈N̂〉eq −

2g2(g2 + 2p2)
(p2 + 2g2)2 〈Ẑ〉

2
eq

]
,

(A11)
which is equivalent to Eq. (14).

Finally, we need the energy currents entering the system
from each bath, j = 1, 2, defined by Q̇ j = 〈D

†

j Ĥ〉. A simple
calculation reveals that

Q̇ j = pE j

(
〈σ̂z

j〉eq − 〈σ̂
z
j〉
)
− p〈Ĥint〉. (A12)

The Heisenberg equation for Ĥint is dĤint/dt = −2pĤint,
whose stationary solution is 〈Ĥint〉 = 0. Eq. (A12) there-
fore recovers the local energy current defined by Brunner et
al. [61], i.e. Q̇ j = 〈D

†

j Ĥ0〉. (Note that the mean interaction
energy vanishes only because of the assumption of resonant
interactions, i.e. [Ĥ0, Ĥint] = 0, which in the language of colli-
sional models means that the qubit resets do not perform work
on average [68–70].) It is then straightforward to verify from
the Heisenberg equations for 〈σ̂z

j〉 that the stationary heat cur-
rents are

Q̇1 = −gE1〈Ĉ〉, Q̇2 = gE2〈Ĉ〉. (A13)

2. Local Lindblad equation

We now carry out the same calculation for the local Lind-
blad dissipation model defined by Eq. (19), which differs from
the reset model of Eq. (4) by the absence of the dephasing
terms proportional to γz. These terms affect only off-diagonal
operators in the computational basis. Therefore, only the
equations of motion for Ĉ and K̂ are altered, being given by

dĈ
dt

= 2gẐ − pĈ, (A14)

dK̂
dt

= 2g
(
2Ω̂ + EvN̂

)
− pK̂. (A15)
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We see that the effective decoherence rate is cut in half. All
other equations of motion and manipulations proceed as in the
previous section. We find the solutions

〈Ĉ〉 =
2gp

p2 + 4g2 〈Ẑ〉eq, (A16)

〈Ẑ〉 =
p2

p2 + 4g2 〈Ẑ〉eq, (A17)

〈N̂〉 = 〈N̂〉eq −
2g2

p2 + 4g2 〈Ẑ〉
2
eq, (A18)

from which we obtain the power Ẇ = gEv〈Ĉ〉 = Γ′2Ev〈Ẑ〉eq,
with Γ′2 = 2g2 p/(p2 + 4g2). The heat currents are given by
Eq. (A13) together with Eq. (A16).

The above solutions are then used to find an effective equa-
tion of motion for 〈K̂〉, which reads as[

d2

dt2 + 2p
d
dt

+ p2 + 4g2
]
〈K̂〉 = 2gpEv

(
2Γ′2t〈Ẑ〉2eq + 〈N̂〉

)
.

(A19)

Postulating an asymptotic solution of the form 〈K̂〉 = a + bt,
we eventually find

∆̇W = Γ′2E2
v

[
〈N̂〉eq −

2g2(5p2 + 4g2)
(p2 + 4g2)2 〈Ẑ〉2eq

]
, (A20)

which is equivalent to Eq. (22).

Appendix B: Bounds for the TUR ratio

In this Appendix, we derive bounds for the TUR ratios
given in the main text. Let us begin with the two-qubit engine
described by a reset thermalisation model in Eq. (4), whose
TUR ratio is given in Eq. (16). We first note from Eqs. (9) and
(10) that 〈Ẑ〉eq ≥

1
2 tanh(χ/2), where equality is reached only

in the limit of vanishing bias and work output, i.e. β jE j → 0.
However, this simple inequality allows us to bound the TUR
ratio as

∆̇W

Ẇ2
Σ̇ ≥ χ coth(χ/2)

[
1 −

1
2

f (g/p) tanh2(χ/2)
]
, (B1)

where we defined the function

f (r) =
2r2(2 + r2)
(1 + 2r2)2 . (B2)

The above function is positive and has a maximum equal to
maxr f (r) = 2/3, which is attained at r = 1. It follows that

∆̇W

Ẇ2
Σ̇ ≥ χ coth(χ/2)

[
1 −

1
3

tanh2(χ/2)
]
≥ 2, (B3)

where the final equality is saturated only in the limit χ→ 0.
For the local Lindblad equation (19), we can write an ex-

pression analogous to Ineq. (B1) but with a different function

f (r) =
2r2(5 + 4r2)
(1 + 4r2)2 , (B4)

whose maximum value maxr f (r) = 25/32 is attained at r =√
5/12. This leads to the bound

∆̇W

Ẇ2
Σ̇ ≥ χ coth(χ/2)

[
1 −

25
64

tanh2(χ/2)
]
≥ 1.982 . . . , (B5)

which can be verified numerically. In practice, we find that
any violations of the classical bound are very small and occur
in a restricted region of the parameter space.

Finally, we move to the three-qubit engine model of
Sec. III. Here, we have an exact equality given by Eq. (32),
which is of the form of the right-hand side of Ineq. (B3) with

f (r) =
24r2

(1 + 8r2)2 . (B6)

This function is upper-bounded by maxr f (r) = 3/4, which
occurs when r = 1/2

√
2. As a result, we obtain the bound

∆̇W

Ẇ2
Σ̇ ≥ χ coth(χ/2)

[
1 −

3
4

tanh2(χ/2)
]
≥ 1.245 . . . . (B7)

Appendix C: Solution for the three-qubit engine

1. Master equation derivation

In this Appendix, we detail the solution of the three-qubit
engine model in the limit of fast thermalisation (i.e. weak co-
herent coupling). We begin by sketching the derivation of the
effective master equation. Let R̂(t) denote the total density
matrix of the three qubits and the load. We consider a reset
thermalisation model for the qubits, described by a dissipator
DR̂ =

∑2
j=1 p′[τ̂ j ⊗Tr j(R̂)− R̂] and thermalisation rate p′. We

also define the Hamiltonian superoperatorsH ′0,Hint andV in
terms of the commutators with the corresponding Hamiltoni-
ans in Eqs. (24)–(26), e.g.H ′0R̂ = −i[Ĥ′0, R̂]. The master equa-
tion can then be written in the form dR̂/dt = (L0 +V+Hint)R̂,
where L0 = H ′0 +D.

The assumption of fast thermalisation means that L0 �

V,Hint, so that the damped qubits mostly remain in thermal
equilibrium and are only weakly perturbed by the interaction
terms. This idea can be formalised using standard projection-
operator techniques [93, 94]. We define a projector by

PR̂ = τ̂1 ⊗ τ̂2 ⊗ Tr12(R̂), (C1)

which satisfies the easily verified properties and relations

[P,L0] = 0, [P,Hint] = 0, PVP = 0. (C2)

We also define the orthogonal projector Q = 1 − P, such that
P2 = P, Q2 = Q, and QP = PQ = 0. Let us move to an inter-
action picture via the transformation R̃(t) = e−L0tR̂(t), where
the dynamics is described by the master equation

dR̃
dt

= Ṽ(t)R̃(t) + H̃int(t)R̃(t). (C3)

Above, tildes denote superoperators in the interaction picture,
e.g. Ṽ(t) = e−L0tVeL0t. Applying projectors to both sides of
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the master equation, inserting appropriate factors of 1 = P+Q,
and using the properties (C2), we find that

d
dt
PR̃ = PṼ(t)QR̃(t) + H̃int(t)PR̃(t), (C4)

d
dt
QR̃ = QṼ(t)QR̃(t) + QṼ(t)PR̃(t) + H̃int(t)QR̃(t). (C5)

The solution of Eq. (C5) with initial condition QR̂(0) = 0 is

QR̃(t) =

∫ t

0
dt′ G(t, t′)Ṽ(t′)PR̃(t′), (C6)

G(t, t′) = T exp
[∫ t

t′
dt′′Q

(
Ṽ(t′′) + H̃int(t′′)

)
Q

]
, (C7)

where we have used Eq. (C2) to write QṼP = (1 − P)ṼP =

ṼP. Plugging the above solution back into Eq. (C4) yields

d
dt
PR̃ = H̃int(t)PR̃(t) +

∫ t

0
dt′ PṼ(t)G(t, t′)Ṽ(t′)PR̃(t′),

≈ H̃int(t)PR̃(t) +

∫ t

0
dt′ PṼ(t)Ṽ(t − t′)PR̃(t − t′),

≈ H̃int(t)PR̃(t) +

∫ ∞

0
dt′ PṼ(t)Ṽ(t − t′)PR̃(t). (C8)

On the second line, we have expanded G(t, t′) to lowest order
in the small quantitiesV andHint, and shifted the integration
variable as t′ → t − t′. On the third line, we have invoked
the Markov approximation by assuming that the integrand de-
cays on a timescale much shorter than the characteristic evo-
lution timescale of R̃(t). Since the former timescale is given
by (p′)−1 and the latter is determined by the inverse of k and g,
this approximation is consistent with our starting assumption
that p′ � g, k.

Finally, we trace over qubits 1 and 2 and transform back
to the Schrödinger picture to obtain the master equation (28),
with ρ̂(t) = Tr12[R̂(t)] and the rates given by

γ± =
k2e±χ/2

p′Z1Z2
. (C9)

The self-consistency of the above derivation requires that
γ+ + γ− = p � p′, hence the energy transfer dynamics de-
scribed by Eq. (28) is necessarily much slower than the un-
derlying thermalisation processes. We note that other choices
for the dissipator D that obey Dτ̂1 ⊗ τ̂2 = 0 would lead to a
master equation of the same form, but with different expres-
sions for the rates.

2. Asymptotic solution

The solution proceeds straightforwardly according to the
methods of Appendix A. The mean energy of the load follows
from the equation of motion dŴ/dt = gEv〈Ĉ〉, with the cur-
rent operator now given by

Ĉ = ig
(
σ̂+

3 Â − σ̂−3 Â†
)
. (C10)

The current and qubit bias obey the coupled differential equa-
tions

dĈ
dt

= 2gσ̂z
3 −

p
2

Ĉ, (C11)

dσ̂z
3

dt
= p

(
〈σ̂z

3〉eq − σ̂
z
3

)
− 2gĈ, (C12)

whose steady-state solution is

〈Ĉ〉 =
4gp

p2 + 8g2 〈σ̂
z
3〉eq, (C13)

〈σ̂z
3〉 =

p2

p2 + 8g2 〈σ̂
z
3〉eq, (C14)

from which Eq. (29) follows.
The power fluctuations follow from dŴ2/dt = gEv〈K̂〉,

with K̂ = {Ŵ, Ĉ}. Defining the Schrödinger-picture operator
Ω̂ = σ̂z

3Ŵ, the relevant Heisenberg equations read as

dK̂
dt

= 2g
(
2Ω̂ − Ev

)
−

p
2

K̂, (C15)

dΩ̂

dt
= p

(
〈σ̂z

3〉eqŴ − Ω̂
)
− gK̂. (C16)

Eliminating Ω̂ and taking the long-time limit, we obtain[
d2

dt2 +
3p
2

d
dt

+
p2

2
+ 4g2

]
〈K̂〉 = 2gpEv

(
2Γ3t〈Ẑ〉2eq + 1

)
.

(C17)
Seeking an asymptotic solution of the form 〈K̂〉 = a + bt, we
deduce Eq. (31).

Finally, the energy currents can be computed using the mas-
ter equation describing the three qubits together with the load,
as given in Appendix C 1. Considering the equation of mo-
tion for 〈σ̂z

j〉 separately for j = 1, 2, 3, and setting all deriva-
tives to zero, one can show that a relation of the same form as
Eq. (A13) holds, but with Ĉ given in Eq. (C10). Combining
this with the solution (C13), Eq. (30) follows.
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