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Tensor network methods have progressed from variational techniques based on matrix-product states able to
compute properties of one-dimensional condensed-matter lattice models into methods rooted in more elaborate
states such as projected entangled pair states aimed at simulating the physics of two-dimensional models. In this
work, we advocate the paradigm that for two-dimensional fermionic models, matrix-product states are still appli-
cable to significantly higher accuracy levels than direct embeddings into one-dimensional systems allow for. To
do so, we exploit schemes of fermionic mode transformations and overcome the prejudice that one-dimensional
embeddings need to be local. This approach takes the insight seriously that the suitable exploitation of both the
manifold of matrix-product states and the unitary manifold of mode transformations can more accurately capture
the natural correlation structure. By demonstrating the residual low levels of entanglement in emerging modes,
we show that matrix-product states can describe ground states strikingly well. The power of the approach is
exemplified by investigating a phase transition of spin-less fermions for lattice sizes up to 10 x 10.

Recent years have enjoyed a flourishing development of
tensor network methods, entanglement-based methods that al-
low to describe strongly correlated quantum many-body sys-
tems [1-5]. They originate from the powerful density-matrix
renormalization group (DMRG) [6-8], a variational method
building on matrix-product states (MPS) [9-11] that captures
the physics of one-dimensional local Hamiltonian systems
provably well [2, 12-14]. It has been applied to countless
physical systems (see the reviews [8, 15] and the compre-
hensive web page [16]) and extended to time-evolving sys-
tems [17-19], open systems [20, 21], and the study of excited
states [22]. Generalizing the variational set of matrix-product
states to projected entangled pair states in two spatial dimen-
sions, new avenues for the study of strongly correlated sys-
tems with tensor networks followed [1, 2, 23], including stud-
ies of fermionic models [24-27].

Interestingly, even if the DMRG approach has originally
been devised to capture one-dimensional systems only: There
are regimes in which it interestingly still performs competi-
tively well [28, 29] even in situations that at first seem alien
to that type of approach and in which area laws for entan-
glement entropies are violated [5]. Two-dimensional strongly
correlated systems can be naturally embedded in highly non-
local Hamiltonian models on a line. The high degree of entan-
glement that renders a variational approach based on matrix-
product states challenging are partially compensated by the
facts that contraction is efficient, and that very large bond di-
mensions are accessible. DMRG produces relevant data for
strongly correlated matter even in two spatial dimensions, and
for systems with fermionic degrees of freedom [30]. The sig-
nificance of this insight is even strengthened by the fact that
DMRG is strictly variational, so that all ground state energies
generated are precisely upper bounds. And yet, given that
the entanglement structure is not fully captured by matrix-
product states, there are strong limitations of direct DMRG
approaches.

In this work, we bring the idea of tackling two-dimensional
strongly correlated matter with one-dimensional matrix-
product states to a new level. We show that the potential of
using one-dimensional tensor network states for classically
simulating higher dimensional quantum systems — in what we
refer to as an effective dimension reduction in the description
— is significantly more powerful than anticipated. We do so
by systematically exploiting a degree of freedom that has not
sufficiently been appreciated in the study of strongly corre-
lated condensed-matter systems: This is the degree of freedom
to adaptively define suitable modes in a strongly correlated
fermionic system. Its significance is already manifest when
solving problems in either real or in momentum space [31—
38]. For n fermionic modes, however, there is an entire U (n)
freedom that can be made use of and exploited when devising
variational principles. In fact, a manifold structure emerges
that originates from the tensor network and mode transforma-
tion degrees of freedom. Only the joint optimization fully ex-
ploits the potential of matrix-product state approaches in the
study of strongly correlated fermionic condensed-matter sys-
tem. It is this serious gap in the literature that is closed in
this work: We overcome the prejudice that a one-dimensional
embedding necessarily has to be an embedding in real space.
We come to this conclusion not only based at hand of the
evidence of substantially improved energies. We also find
that the mode-optimized quantum states indeed feature one-
dimensional entanglement area laws.

Setting. The Hilbert space of interacting fermions in n
modes is the fermionic Fock space F,, originating from the ba-
sis constituted by all Slater determinants {|a1, .. ., ay,)} with
a; € {0,1}. We denote with ¢; the fermionic annihilation
operator of mode j satisfying the canonical anti-commutation
relations {¢;,c;} = 0 and {c;r, ¢;} = 6; ;. MPS vectors then



take the form
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We build upon ideas of adaptive fermionic mode transforma-
tions [39-41], here brought to the level of applicability to
condensed-matter lattice models in two spatial dimensions.
To be specific, and to exemplify the power of our approach,
the example of the spin-less interacting fermionic (spin-less
Fermi-Hubbard) model

H=> cle;+ > Vniny, 2)

(4,4) (4,4)

will be in the focus of attention, where V is the interac-
tion strength, the hopping amplitude is set to 1, n; = c;cj,
and (i, j) denotes nearest neighbours i,j € [n] on a two-
dimensional cubic N x N lattice with n = N?2. Periodic
boundary condition will be imposed along both spatial di-
mensions, which has been considered as a major bottleneck
for MPS-based approaches. This example will show-cast that
state-of-the-art energies can be reached. Having said that, in
the mindset of this work would be any translationally invariant
Hamiltonian of the form

H= Z tijele; + Z vijriclclack, ()

1,5=1 i,5,k,1=1

including local spin degrees of freedom. That is to say, the
Hamiltonian is treated as a long-ranged fermionic model on a
one-dimensional line equipped with a given ordering.
Methods. We optimize the single particle basis in con-
junction with the MPS tensors withing multiple successive
mode transformation iterations. We refer this prodecure lead-
ing to a state-of-the-art variational ground state approxima-
tion with one-dimensional tensor networks as an effective di-
mension reduction in the description of a higher-dimensional
fermionic system. In our implementation, a single mode trans-
formation iteration consists of a full forward and backward
DMRG sweep without basis rotations using the dynamically
extended active space (DEAS) procedure [4, 33], which is fol-
lowed by some number of additional sweeps with local mode
transformations that adapt the single particle basis (compare
Refs. [39, 40]) that also rotate the couplings in the Hamilto-
nian to general couplings ¢} ; and v, k1 Atthe end of the last
sweep, for the symmetric super-block conﬁguration, we have
calculated the site entropies s;, the two-site mutual informa-
tion I; ; = s;+sj — s; 5, the one-particle reduced density ma-
trix, pgl) and the occupation number distribution (n;) with
it € {1,...,n}. Here sn = —Tr(palnpy) for A C [n] is
the von-Neumann entropy of the reduced state obtained from
a partial trace of the full quantum state. The eigenvalues of
pﬁlj = (cl¢;) define the natural occupation (NO) numbers,
s, and its eigenvectors the NO-basis. Based on I; ; we have
calculated an optimized ordering using the Fiedler-vector ap-
proach [42], from {s, } a new complete active space vector for
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FIG. 1. (Left panel) convergence of the ground state energy for the
half-filled 6 x 6 spin-less fermion model for V' = 1 as a func-
tion of mode transformation iterations for fixed bond dimension of
Dope = 64 and 256 is shown by red and black curves, respectively.
In the inset, the scaling of the ground state energy with inverse bond
dimension obtained in the real space basis and in the optimized ba-
sis for Dopt = 64 and 256 are shown, respectively. (Right panel)
Charge density wave order parameter for the N x N half-filled spin-
less fermion model as a function of V' for various values of D ob-
tained in the real space basis. Black crosses indicate extrapolated
data to the N — oo limit obtained in the optimized basis and using
finite size scaling data shown for various interaction strengths in the
inset (curves correspond from bottom to top to V' = 0.25, 0.5, 1, 2,
4, and 8). The solid black line is a spline fit to the extrapolated data.
The error in the extrapolated data is indicated by the symbol sizes.

the DEAS procedure [33] and from (n;) a new Hartree-Fock
configuration. These together with the final rotated interac-
tion matrices are all used as inputs for the subsequent mode
transformation iteration.

The basis optimization has been carried out with fixed low
bond dimension D,y ~ 64 and 256 or with a systematic in-
crease of D¢ as will be discussed below. After convergence
is reached large scale DMRG calculations are performed with
increasing bond dimension or using the dynamic block state
selection (DBSS) approach with fixed truncation error thresh-
old [43, 44]. We denote these data as (Dgpt, D) or (Dept, €4r ),
respectively. In addition, a given quantity obtained from a cal-
culation in the optimized basis will be indicated with a tilde.
In the supplements, further results with D¢ up to 1024 are
also discussed.

Numerical results. Our systematic error and convergence
analysis will be given for the 6 x 6 two dimensional lattice,
since highly accurate reference data with the real space basis
can also be generated. For larger system sizes, namely for
8 x 8 and 10 x 10, only final results will be discussed (fur-
ther numerical aspects, data and figures are presented in the
supplements).

In the left panel of Fig. 1, we show the ground state energy
E(Dygpt) for V = 1 as a function of mode transformation it-
erations using fixed bond dimensions D, = 64 and 256.



Reference energies F(D) obtained in the real space basis are
indicated with dashed lines for various bond dimensions up
to D = 8192. It obvious indeed that exploiting mode trans-
formations, F(64) gets significantly below F(512) even af-
ter the fourth iteration step and FE(256) is below F(2048).
For further numerical results emphasizing how faithfully in-
formation beyond the ground state energy can be reproduced
and predicted in the optimized basis, we refer to Fig. 3 in the
supplements. In the inset of the left panel of Fig. 1, we de-
pict the ground state energy as an inverse of the bond dimen-
sion for the real space basis and for the optimized basis with
Dy = 64 and 256. In the latter case, E(Dopt, D) lie on the
top of each other, indicating that the optimal basis has been
found with D¢ = 64 already (red dots in black circles).

For larger system sizes, the improvements are even more
remarkable as is shown in Fig. 4 in the supplements for the
8 x 8 lattice for different values of D, and for V' = 1 and
8. Here, E(256) is already lower than F(8192). In addition,
reliable extrapolation with 1/D to the D — oo truncation free
limit would require even significantly larger bond dimensions
for the real space basis. In contrast to this, in case of the op-
timized basis, this is no longer an issue since E(256, D) is
basically a flat curve. Our very accurate results have been ob-
tained for a torus geometry. This reduces finite size effects
significantly and much smaller systems sizes could lead to a
reliable extrapolation to the thermodynamic limit (see Tab. I).

The remarkable superiority of the optimized basis over the
real space basis is due to the dramatic reduction of the en-
tanglement. As an indication of this, we depict the block en-
tropy s, [ € {1,...,n} in the left panel of Fig. 2 for vari-
ous selected mode transformation iterations. Here, the max-
imum of s(; reduced by a full order of magnitude, as can be
seen by comparing the blue (real space basis) and the black
(optimized basis) curves. In addition, artifacts of the snake-
like mapping of the two-dimensional lattice in real space into
the one-dimensional MPS topology apparent in the blue curve
are completely diminished by the basis optimization result-
ing in a smooth and highly symmetric profile (additional data
is available in the supplements). The iterative error norm of
the block entropy measured between two subsequent mode
transformation iterations, ||sﬁfr1 — 7|l converges to 107°-

10~* which can also be used as a criterion when to terminate
the basis optimization. For larger V' values, the reduction is
even more pronounced, leading to a state that is close to a
Slater determinant. In the right panel, the maximum of sy;; for
[ € {1,...,n} — which typically appears near the center of
the chain — is laid out for various D values for the real space
basis and for the optimized one. While a strong D depen-
dence for V' < 2 is clearly visible in the real space basis, the
curves basically fall on top of each other for the optimized
basis. The small peak for 0 < V < 2 signals the resid-
ual entanglement that cannot be removed by basis optimiza-
tion which also controls the required bond dimension and thus
the computational complexity. As a benchmark we have per-
formed DMRG calculations using the DBSS approach with
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FIG. 2. (Left panel) block entropy for the 6 x 6 half-filled spin-less
fermion model for V' = 1 for some selected mode transformation
iterations with Dopy = 256, i.e., for the 0, 1, 2 374 st qqth)
20", 40" iterations. (Right panel) maximum of the block entropy
as a function of V' for various D values and for the real space basis
(solid lines) and for the optimized basis (dashed lines). In the inset,
this is shown for various systems sizes obtained with the optimized
basis and DMRG with Dyyin = 1024 and e, = 107°. Here a spline
is fitted as guide for the eye trough the data points.

minimum bond dimension D,,;, = 1024 and a truncation er-
ror threshold e, = 10~7. An agreement up to four digits
has been obtained compared to the real space energy refer-
ence data calculated with D = 8192, but we have gained a
speedup by a full order of magnitude. Strikingly, as we dis-
cuss in great detail in the supplements, while there are com-
plexity theoretic obstructions against a mapping of the given
Hamiltonian to a local one-dimensional gapped Hamiltonian,
the mode-transformed states are numerically found to feature
an entanglement entropy that is upper bounded by a constant
in the system size and the bond dimension, providing further
strong evidence for the significance of the effective dimension
reduction in description as shown in Figs. 5 and 6.

Phase diagram. The power of our approach allows us to
attack the physical properties such as the phase diagram of
the system as well. In the limit of strong interactions, the
model maps onto the anti-ferromagnetic Ising model in two
dimensions and a charge density wave (CDW) phase devel-
ops. Since the hopping is restricted to nearest neighbours only,
the Fermi surface takes the form of a square and perfect nest-
ing together with Van Hove singularities providing strong ar-
guments for an Ising transition into the CDW-ordered phase
at V. = 0 [45, 46]. Furthermore, investigations within the
Hartree-Fock approximation lead to an exponentially small
order parameter in the weak coupling limit and the 1/d cor-
rections starting from the d = oo limit, where Hartree-Fock
theory becomes exact, provides only very small quantitative
corrections in d = 3 and even in d = 2 [47]. For d = 2
this indicates a transition at V. = 0 and that the charge den-
sity wave order parameter is an exponential function of V in



the weak coupling limit. Note, however, that these simple ar-
guments can break down as in the case of spin-less fermions
in one spatial dimension, d = 1, where the model reduces to
the integrable Heisenberg model and has a transition at finite
V. [47]. Ref. [48] has shown that there is a direct transition
between the homogeneous and the CDW phases governed by
phase separation, and a finite V, ~ 0.5 is suggested based
on their obtained phase diagram. Their underlying arguments,
however, have been derived for finite doping, thus an expo-
nentially closing phase boundary between the CDW and phase
separated phases together with V. = 0 cannot be ruled out.

In order to investigate the transition, we first analyze the
block entropy profiles for larger system sizes using the opti-
mized basis and find that the peak for V' < 1 remains and
its height increases with system size as is shown in the in-
set of the right panel of Fig. 2. The center of the peak ex-
tracted from the spline fits (V' = 0.83,0.65,0.36 for N =
6,8, 10) tends to shift to V' = 0 with 1/N? which indicates
a quantum phase transition [49] at V. = 0. We also com-
pute the CDW order parameter [50] as expectation value of
Ceaw = (1/N*) 32, 5 mi,j(ni—1/2)(n;—1/2) directly, where
n; = c;rci in the real space basis and 7); ; is a phase matrix
with elements +1 in a checker-board arrangement on the two-
dimensional lattice. The real-space simulations show that for
large values of V, (C.q4y ) takes a finite value while for V=0
it has to vanish as can be seen in the right panel of Fig. 1.
The apparent finite size and D dependencies do not allow
us to conclusively decide upon the behaviour of (Ceqy ) for
V < 1. Alternatively, the density-density correlation func-
tion can also be taken from the elements of the one- and two-
particle reduced density matrices. The latter one has entries
pz(.Qj) ol = (cjc}ckcﬁ which can also be calculated efficiently
b}; the DMRG method [51]. Measuring these in the optimized
basis and back-rotating to the real space basis, we have found
an agreement up to four digits between (C’de> and the real
space reference for N = 4 and 6. For N = 8and V < 1
the two data sets, however, began to deviate and (C‘de) pos-
sesses a much weaker D dependence. Finite size scaling of
the large scale DMRG data obtained with M,,;;, = 1024 and
¢ = 1075 is shown in the inset of Fig. 1 right panel for var-
ious V values. For large V' the curves scale to finite values in
the thermodynamic limit, while for V' < 1 they show a slight
downward curvature. After a rough extrapolation with 1/N
and a spline fit on the extrapolated data (black crosses in the
figure) an exponential opening of <écdw> at V, = 0 has been
obtained. This functional form agrees to the one reported in
Ref. [47] after some re-scaling and it is shown by a black curve
in the right panel of Fig. 1. Our approach hence pushes for-
ward the capacity of the MPS based approaches to capture two
dimensional strongly correlated systems significantly. Our re-
sults are in close agreement with analytic expectations (while
some details remain open).

Conclusion. In this work, we have demonstrated that MPS
approaches, extending known DMRG methods, are surpris-
ingly powerful for the simulation of two-dimensional quan-

tum many body systems even imposing periodic boundary
condition along both spatial dimensions. This is possible if
only the key insight is acknowledged that one is not forced
to do a local basis representation. Algorithmically, this is
achieved by adaptively finding the optimal basis via fermionic
mode transformation, optimizing over a larger manifold than
that of MPS, which leads to a dramatic reduction of the cor-
relations and entanglement in the system. A strongly inter-
acting model in the real space basis thus can be converted to
a weakly correlated problem in the optimized basis. Due to
the torus geometry, finite size dependence is significantly re-
duced and intermediate system sizes make it possible to carry
out more reliably extrapolations to the thermodynamic limit.
In fact, for the two-dimensional translationally invariant spin-
less fermion model, our results strongly suggest the presence
of a quantum phase transition at V;, ~ 0, but the very small
values of the charge density order parameter obtained numer-
ically in the weak coupling limit leaves an uncertainty in our
conclusion. The inclusion of a hopping between next nearest
neighbours, however, would distort the square Fermi-surface
and perfect nesting over an extended region of the momentum
space will be destroyed. This is expected to have a have ma-
jor effect, and divergencies in the susceptibilities might be re-
moved and a finite V, is even more likely. This behaviour also
shares features with the phase diagram of spin-less fermions
on the honeycomb lattice [52]. Then, physical properties of
the transformed basis are of key importance. In general, the
ground state energy cannot be written as a sum of energies of
quasi-particle states except for special cases. The V' = 0 and
large V' limits belong to the latter case (the ground state is a
product state), but the residual block entropy for 0 < V' < 2
reflects the general scenario.

Our basis optimization is very robust, it can be carried out
with low bond dimension, and calculations using the opti-
mized basis can easily lead to an order of magnitude speedup
in computational time. In addition, our method is stable for
weakly and strongly interacting systems, in general, while
standard approaches, like basis transformation based on natu-
ral orbitals, that have been attempted earlier [53] have major
limitations and drawbacks (for numerical data see Fig. 7). Re-
markably, the optimized basis for the spin-full Hubbard model
does not resemble the characteristics of natural orbitals which
reflects the existence of much stronger residual correlations in
the system (as forthcoming work will explore). Conceptually
most importantly, our work overcomes the deep misconcep-
tion that lower-dimensional embeddings necessarily have to
capture some kind of locality. Once this prejudice is over-
come, acknowledging that fermionic mode transformations
are not restricted to one-dimensional embeddings, mode trans-
formations and effective dimension reductions in description
can be brought to a new level. This is even more interest-
ing and surprising given that a full mapping on the level of
Hamiltonians and their accompanying ground states to poly-
nomial accuracy is in general not possible (as we elaborate
on in more detail in the supplementary material). Due to
the polynomial scaling of the non-local DMRG [54] effort as



O(D3n3) + O(D?n*), a reduction of D by one or two or-
ders of magnitude will render DMRG competitive for simu-
lating higher dimensional and complex problems as well. Our
approach has the potential to become a standard protocol for
tensor network methods.
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Supplemental material: Additional data for larger systems

In this supplementary material, we present additional nu-
merical data complementing the findings of the main text to-
gether with further scaling properties obtained for larger sys-
tem sizes as well as further conceptual considerations.

Error analysis of the one particle reduced density matrix

In order to investigate how faithfully information beyond
the ground state energy can be reproduced and predicted in
the optimized basis, we depict in Fig. 3 the operator norm
of the difference of the one particle reduced density matrix

pM)(Dept) over the mode transformation iterations and the
real space reference data p(*) (8192). Using the optimized ba-

sis, we also show the result for p(1)(D,p, D) with increasing
bond dimension D, using different symbols. These latter data
sets are basically the same for D,y = 64 and 256, thus the
optimal basis has already been obtained with the lower D
value (see Fig. 3). The error norms obtained with the real
space basis are again much larger as indicated by the dashed
lines. The error norm is less meaningful for very large bond
dimensions since £(256,4096) is below E/(8192) rendering

p(1)(256,4096) potentially more accurate than p(!)(8192).
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FIG. 3. Error norm of the one-particle reduced density matrix

with respect to the reference obtained with the real space basis
with D = 8192. Red and black symbols show result for D =
64, 256, 512,1024, 2048 but using the optimized basis for Dopt =
64 and 256, respectively. For both quantities reference data obtained
with the real space basis for various D values up to 8192 are shown
with dashed lines and labeled as rs(D).

Further numerical results for the ground state energy of the
half-filled N x N spin-less fermion model

In Fig. 4, we present further numerical results for the
ground state energy of the half-filled 8 x 8 spin-less fermion
model, and obtained bond energies are summarized up to lat-
tice sizes 10 x 10 in Tab. L.
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FIG. 4. Convergence of the ground state energy for the half-filled
8 x 8 spin-less fermion model as a function of mode transformation
iterations for fixed bond dimension of Dyt = 64, 256 and 512 is
shown by blue, red and black curves, respectively for V' = 1 (left
panel) and for V' = 8 (right panel). Reference data obtained in the
real space basis for D up to 8192 are shown with dashed lines. In
the inset, the scaling of E(D) and E(256, D) with the inverse bond
dimension is shown.

| (025 [ 05 [ T [ 2 [ 4 [ 8 |
4x4 |-0.6636|-0.5845(-0.4518 |-0.2878 |-0.1591 |-0.0823
6 x6 |-0.6847(-0.5992|-0.4583|-0.2911|-0.1601 |-0.0825
8 x 8 [-0.6947|-0.6059|-0.4606|-0.2912|-0.1601 |-0.0825
10 x 10-0.6994 |-0.6086 [-0.4607 [-0.2912|-0.1601 | -0.0825

TABLE 1. Convergence of the bond energy, E/N?, with system size
for various V' values. DMRG results were obtained using the op-
timized basis and the DBSS procedure with Mpyin = 1024, and
e = 1075

Complexity theoretic insights into dimensional reduction in
description

The main point of this work is to provide evidence for the
observation that an effective dimension reduction in descrip-
tion can lead to a substantially improved classical simulation
of strongly correlated quantum systems: A one-dimensional
tensor network ansatz can capture two-dimensional strongly
correlated models well, if the prejudice is overcome that the
mapping to one spatial dimension has to be spatially local.



The main text shows that such an effective dimension reduc-
tion on the level of description is possible, leading to substan-
tially improved descriptions over standard one-dimensional
embeddings. In the subsequent subsections, we provide fur-
ther evidence for this at hand of discussing entanglement en-
tropies and energies.

Having said that, we insist on an effective dimension re-
duction in description, that is, on the level of the variational
ansatz capturing the strongly correlated quantum system at
hand. On the level of Hamiltonians and concomitant ground
states to polynomial accuracy, a full efficient reduction to a
one-dimensional system is in general infeasible, as obstruc-
tions of computational complexity are in the way. In the light
of this observation, it is even more interesting that the effective
dimension reduction in description provides so convincing re-
sults. In the following, we elaborate more on this conceptual
obstruction.

Consider as input to the problem a family of general
strongly correlated fermionic systems with Hamiltonian

n n
H = Z tiijjCj + Z Ui,j,k,lCIC;Cle @

ij=1 ij k=1

as above. Under a mode transformation defined by a U €
U(n) such a Hamiltonian transforms to a new local (quartic)
Hamiltonian of the same form, albeit no longer necessarily a
geometrically local one even if the original Hamiltonian has
been geometrically local. It has been shown in Ref. [55] that
to approximate the ground state energy of such a model to
polynomial accuracy is QMA-hard, in a complexity-theoretic
language. This implies in particular that it is NP-hard, so no
polynomial time algorithm exists unless NP = P. If one could
find a mode transformation U € U (n) in polynomial time that
transforms the ground state to a quantum state that is approx-
imated by a matrix-product-state up to an error in trace norm
that scales suitably polynomially in n, then one could find an
polynomial time algorithm that provides an efficient classical
solution to a QMA-hard problem, which leads to a contradiction
unless QMA = P. Therefore, on the level of Hamiltonians and
accompanying exact ground states, a full dimension reduction
to one-dimensional problems is in general implausible.

Further numerical results for the ground state block entropy
profiles of the half-filled 8 x 8 spin-less fermion model

In this section, we elaborate in more detail on the entropy
reduction by means of mode transformations as discussed in
the main text, to further corroborate our main claims. Fig. 5
shows the (von Neumann) entanglement entropy of a half
chain for an N x N lattice for N = 6, so n = N2 fermionic
modes, as a function of the inverse bond dimension D, for
several values of the interaction U. Depicted are the raw data,
as well as a fit to the function z — y(z) defined as

1 1
y:a+b72+6747 (5)
T xT

for suitable real a, b, ¢, signifying the interesting regime for
large bond dimension D. The striking insight is that not only
is the entanglement entropy is drastically reduced, compared
to the values without mode transformation. But in fact, the
values for the entanglement entropy saturate for large bond di-
mensions D, instead of being divergent. This is a convincing
illustration of the power of mode transformations to reduce the
entanglement entropy in this dimension reduction in descrip-
tion. Fig. 6 shows the same plot for N = 8, with compatible
findings.
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FIG. 5. Half chain block entropy obtained for the 6 X 6 spin-less
fermion model as a function of inverse bond dimension for various
interaction strengths. The solid line is a fit defined by Eq. (5)

0.4 ;
e 025
035 | o 05
. % S
o2
03 F o4
8
0.25
N/2 02 |
0.15
0.1 i
0.05 N i
o
0 L i 1 i £
0.02 0.03 0.04 0.05 0.06

1/D

FIG. 6. Similar to Fig. 5, but for the 8 x 8 spin-less fermion model.

Further computational aspects

The reference real space DMRG data has been generated
by fixing the bond dimension D from the very beginning of
the DMRG calculations, the residual error threshold in the
Lanczos and Davidson diagonalization steps has been set to



be 102 and we have used some 13 — 15 sweeps. The max-
imum value of the truncation error has been in the range of
1076 — 10~7. The half-chain (von Neumann) entanglement
entropy data via mode optimization up to D = 1024 is shown
in Figs. 5 and 6, and it has been obtained with similar settings,
but using 7 — 9 sweeps and 60 iterations of mode transforma-
tions.

On the practical side, the effective Hamiltonian in the
DMRG treatment gets more dense, i.e., additional terms are
generated during the curse of mode optimization which re-
quire substantial more computational efforts. However, the
tremendous reduction in the block entropy and the bond di-
mension largely overcompensate this. In addition, the extra
terms that are generated can be applied independently during
the diagonalization step. Thus, the idea of effective dimen-
sion reduction by means of mode transformation constitutes
an ideal candidate for GPU based massive parallelization [56].

Mode transformation analysis using rotations based on natural
orbitals for the half-filled 8 x 8 spin-less fermion model

Through the course of basis optimization, the residual
quantum correlations that have to be captured by the tensor
network ansatz are significantly reduced. As a further proxy
for this behaviour, one may investigate the sum of the single
mode von-Neumann entropies it = Zi s; that is reduced
drastically, while pair-wise correlations reflected by I; ; get
very much localized (for additional numerical data see Fig. 8).
In addition, the investigation of the one-particle reduced den-
sity matrix shows that the optimized basis converges to the
natural orbital basis as \; and (n;) tend to lie on the top of
each other (Fig. 8). Therefore, here the final basis is the natu-
ral orbital basis, but the underlying basis has been systemati-
cally rotated by each mode transformation iterations.

Since the final basis is the natural orbital basis (see Fig. 8),
one might think that a natural step is to aim at identifying a
globally optimal single particle basis could be more directly
based on natural orbitals, i.e., by instead of using the local
updates to the single particle basis one could rotate to the nat-
ural orbitals at the end of each mode transformation iteration.
Such an approach has already been tested for quantum chem-
ical applications [53], but a very unstable performance has
been reported. In fact, we have also found that in the small-V'
limit such an approach works acceptably, but for larger V' val-
ues it breaks down (see Fig. 7). The reason is that for small
V' the optimal orbitals are Hartree-Fock like orbitals, while
for large V values localized orbitals seem to be more optimal.
Our novel method based on fermionic mode transformation
is, however, stable for all V' values. Importantly, it can also be
used in general for interacting quantum many body systems.
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FIG. 7. Convergence of the ground state energy for the half-filled
8 x 8 spin-less fermion model as a function of mode transforma-
tion iterations with fixed bond dimension of Dops = 256 for various
V values if we rotate to the natural orbitals after the 7" sweep of
each iteration instead of using the local updates and perform another
7 sweeps to obtain a converged ground state in the current rotated
basis in order to determine the optimal ordering for the next itera-
tion. Therefore, each iteration based on natural orbitals corresponds
to every second iteration based on fermionic mode transformation.



Monitoring various entropic quantities through the course of mode transformations
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FIG. 8. Site entropy profiles {s;}, sorted values of the natural orbital occupation numbers {)\;}, occupation numbers {(n;)} and mutual
informations {I; ; } for the real space basis (first row), and for the 274 and 40*™® mode transformation iterations for the half-filled 8 x 8 spin-
less fermion model for V' = 1 and D, = 256. The ground state energy, the sum of the site entropy Ii.¢, and the entanglement distance
Taist = 32, ; Lijli — j|?, are printed below the corresponding panels.




