Appendix

List of figures

Figure 1. Mechanoreceptors of mouse skin innervated by the saphenous nerve	7
Figure 2. Schematic drawing of different molecules involved in transduction and modulation of	
nociceptive stimuli	10
Figure 3. Overview of the Affymetrix experimental procedure	42
Figure 4. Overview of the anti-NGF production	48
Figure 5. Overview of the skin-nerve preparation	49
Figure 6. Overview of the patch perfusion system used to record Iheat	51
Figure 7. Schematic drawing of the mechanical parameters studied for evaluating	
mechanoreceptor function in mice	55
Figure 8. Standardized stimulus response protocol	57
Figure 9. Stimulus response function of high and low threshold mechanoreceptors	59
Figure 10. Mechanical latency	61
Figure 11. Von Frey threshold of mechanically sensitive receptors	63
Figure 12. Standardized stimulus response protocol used to record velocity response function	64
Figure 13. Velocity response function of low threshold mechanoreceptors	65
Figure 14. Mechanical latency for characteristic displacement at 1.4 and 2.9 m/s velocity of	
moving probe for all types of cutaneous mechanoreceptors	65
Figure 15. Determination of the effective dose of anti-NGF	67
Figure 16. anti-NGF treatment during the early postnatal development induce permanent chan	ge
in proportion of cutaneous sensory fibers	69
Figure 17. Mechanosensitivity of A δ fibers after anti-NGF treatment	70
Figure 18. Mechanosensitivity of A eta fibers after anti-NGF treatment	70
Figure 19. Mechanosensitivity of C fibers after anti-NGF treatment	71
Figure 20. Mechanical threshold of C-fibers after the anti-NGF treatment	72
Figure 21. The comaparison of the stimulus response function of CMH and CM fibers - CM we	re
more sensitive to mechanical stimuli compared to the CMH	72
Figure 22. Standardized heating protocol	73
Figure 23. Effect of anti-NGF treatment on heat sensitivity of CMH	74
Figure 24. Electron microscopy of the saphenous nerve	76

Figure 25. anti-NGF treatment led to behavioral thermal hypoalgesia	77
Figure 26. Schematic diagram of changes in cell population in DRG after the anti-NGF treatment.	ent81
Figure 27. Specific expression pattern of transmembrane channel genes with altered gene	
expression after anti-NGF treatment	83
Figure 28. Specific expression pattern of transmembrane receptor genes with altered gene	
expression after anti-NGF treatment	84
Figure 29. Specific expression pattern of transmembrane protein genes with altered gene	
expression after anti-NGF treatment	85
Figure 30. Specific expression pattern of transmembrane protein gene with altered gene	
expression after anti-NGF treatment	86
Figure 31. Specific expression pattern of neurotransmitter related gene with altered gene	
expression after anti-NGF treatment	87
Figure 32. Specific expression pattern of cytoskeletal binding genes with altered gene	
expression after anti-NGF treatment	87
Figure 33. Specific expression pattern of GPCR gene with altered gene expression after anti-	
NGF treatment	88
Figure 34. Detailed view of Gpr177 coding region and the position of the gene trap	89
Figure 35. Specific expression pattern of G protein signaling related genes with altered gene	
expression after anti-NGF treatment	90
Figure 36. Specific expression pattern of signaling protein genes with altered gene expression	7
after anti-NGF treatment	91
Figure 37. Specific expression pattern of kinase receptor gene with altered gene expression a	ıfter
anti-NGF treatment	92
Figure 38. Specific expression pattern of transferase genes with altered gene expression after	r
anti-NGF treatment	93
Figure 39. Specific expression pattern of transcription factor gene with altered gene expression	on
after anti-NGF treatment	94
Figure 40. Gene expression change in anti-NGF treated mice relative to control	95
Figure 41. Mice expressing the c-Kit null mutation have an altered proportion of cutaneous	
sensory fibers	98
Figure 42. Mechanosensitivity of D-hairs in c-Kit ^{/-} mice	100
Figure 43. Mechanosensitivity of SAMs in c-Kit ^{/-} mice	101
Figure 44. Mechanosensitivity of mechanonociceptors in c-Kit ^{/-} mice	102
Figure 45. Von Frey threshold of mechanically sensitive receptors in c-Kit ^{/-} mice	103
Figure 46. Electrophysiological analysis of sensory neurons in control and c-Kit ^{/-} mice	103
Figure 47. Effect of c-Kit null mutation on heat sensitivity of CMH	104
Figure 48. c-Kit null mutation led to behavioral thermal hypoalgesia and mechanical hyperalge	sia105
Figure 49. Effect of c-Kit haploinsufficiency on heat sensitivity of CMH	106
Figure 50 Potentiation of I _{boot} in DRG neurons by c-Kit ligand SCF	107

Figure 51. Approximately 50% of heat sensitive cultivated DRG cells were affected by SCF	
application	108
Figure 52. SCF alters the threshold temperature of I _{heat}	109
Figure 53. Schematic diagram of the changes in the phenotype of DRG primary sensory neuro	ns
and alternations in gene expression levels after temporal neonatal NGF deprivation	119
Figure 54. Schematic diagram of the abundance of distinct DRG neuron subtypes after the	
temporal neonatal NGF deprivation and in c-Kit null mutant.	126

List of tables

Table 1. Detailed breakdown of the single fibre recordings from C57BL/6 mice at 32°C and	124°C
	56
Table 2. Detailed breakdown of the single fiber recordings from control and anti-NGF trete	ed mice
	75
Table 3. List of transcripts whose expression level changed after anti-NGF treatment during	g the
critical period of postnatal development	80
Table 4. Tabular overview of transcripts expressed in DRG	82
Table 5. Detailed breakdown of the single fiber recordings from c-Kit $^{\prime-}$ and control c-Kit $^{\prime+}$	mice 99
Table 6. Similarities and differences between the phenotype of the neonatally NGF deprive	ed mice
and SorL1, calca and c-Kit null mutants.	124