


Three-phase Majorana zero modes at tiny magnetic fields

Omri Lesser,1, ∗ Karsten Flensberg,2 Felix von Oppen,3 and Yuval Oreg1

1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel 7610001
2Center for Quantum Devices, Niels Bohr Institute,

University of Copenhagen, DK-2100 Copenhagen, Denmark
3Dahlem Center for Complex Quantum Systems and Fachbereich Physik,

Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

Proposals for realizing Majorana fermions in condensed matter systems typically rely on magnetic
fields, which degrade the proximitizing superconductor and plague the Majoranas’ detection. We
propose an alternative scheme to realize Majoranas based only on phase-biased superconductors.
The phases (at least three of them) can be biased by a tiny magnetic field threading macroscopic
superconducting loops, focusing and enhancing the effect of the magnetic field onto the junction,
or by supercurrents. We show how a combination of the superconducting phase winding and the
spin-orbit phase induced in closed loops (Aharonov-Casher effect) facilitates a topological supercon-
ducting state with Majorana end states. We demontrate this scheme by an analytically tractable
model as well as simulations of realistic setups comprising only conventional materials.

Introduction.—The realization of robust Majorana
zero modes (MZMs) at the ends of quasi-one-dimensional
(1D) p-wave superconductors (SCs) has been a long-
standing goal in contemporary condensed matter
physics [1]. These exotic quasiparticles, predicted to pos-
sess non-Abelian exchange statistics, signal the appear-
ance of a novel phase of matter: a topological super-
conductor. Interest in realizing MZMs has been stim-
ulated by the fundamental-physics quest of discovering
new phases of matter, as well as by potential applica-
tions to topological quantum computation [2, 3].

Following the canonical toy model of a spinless p-
wave SC chain [4], several proposals for experimen-
tally realizing MZMs have been put forward [5]. These
platforms include the surface of topological insula-
tors proximity coupled to a superconductor [6], hy-
brid semiconductor-superconductor nanowires [7, 8],
possibly current-biased [9], semiconductor-ferromagnet
heterostructures [10, 11], quantum wells with an in-
plane magnetic field [12], phase-biased Josephson junc-
tions [13–17], carbon nanotubes [18–20], chains of
magnetic adatoms on superconductors with strong
spin-orbit coupling [21–23], and full-shell proximitized
nanowires [24, 25].

Generally, three ingredients are needed to realize topo-
logical superconductivity in one dimension: proximity
coupling to a conventional s-wave superconductor (suf-
ficiently thick to be free of phase fluctuations), a spin-
rotation mechanism, most commonly spin-orbit coupling
(SOC), and a source of time-reversal-symmetry breaking.
With a proper combination of these ingredients, the low-
energy band becomes effectively spinless while remaining
susceptible to pairing, thus realizing a p-wave supercon-
ductor. Time-reversal symmetry is usually broken by an
external Zeeman field or by internal magnetic phenom-
ena, such as the exchange field of a nearby ferromagnet.

Realizations in which the proximitizing superconduc-
tor is subjected to a magnetic field have the drawback

of degrading superconductivity [26]. In particular, all
types of time-reversal-symmetry breakers – Zeeman field,
exchange field, magnetic flux in the presence of conven-
tional impurities, or magnetic impurities – lead to depair-
ing of Cooper pairs and the formation of in-gap states. In
extreme cases, a gapless superconductor is formed [27].
This makes MZMs fragile and renders their detection am-
biguous. Moreover, one may wonder why a Zeeman or ex-
change field is necessary at all. Indeed, several proposals
rely on controlling the phase of the SC order parameter
only [6, 28]. Other proposals include on top of that the
application of a weak magnetic field [9, 14, 15, 25, 29, 30].

In this manuscript, we show that in the presence of
a winding superconducting phase, topological supercon-
ductivity arises without any Zeeman field or magnetic
flux penetrating the sample, using a conventional (non-
topological) semiconducting substrate with strong spin-
orbit coupling. The distinction between opposite spins
is generated by closed electron trajectories (loops) hav-
ing gauge-invariant Aharonov-Casher phases [31]. Such
gauge-invariant phases arise when the loops encircle a
net charge [31]. The winding can be obtained when the
phases of at least three superconductors form a poly-
gon on the unit circle surrounding the origin [32] [see
Fig. 1(b)]. This alleviates the need for a Zeeman field,
an exchange field, magnetic fluxes [25], or relatively large
supercurrents [29]. The superconducting phases can be
controlled by macroscopic superconducting loops, which
focus the time-reversal-breaking element on the junction.
Therefore, a tiny magnetic field, of less than a micro-tesla
for a micron-size loop, can be used to achieve topological
superconductivity. In this method, the superconductors
remain free of pair-breaking perturbations, in-gap states,
and flux trapping, thereby allowing even the use of type-
II superconductors such as Nb.

Fu and Kane [6] studied the 2D surface of a 3D topo-
logical insulator in proximity to a conventional s-wave
superconductor, showing that a discrete vortex associ-
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ated with three phase-biased superconductors binds a
MZM. This MZM emerges as a result of two topological
phases accumulated by the surface Dirac fermions along
loops encircling the vortex center. In addition to the π
phase associated with the vortex, there is a π Aharonov-
Casher (or Berry) phase [31], which originates from spin-
momentum locking in the language of surface Dirac elec-
trons. Importantly, both phases are required for inducing
Majorana zero modes, even though the system is already
topological without the vortex. It would be very attrac-
tive to implement a similar scheme in 1D using conven-
tional materials, as inducing a discrete vortex requires
only minimal magnetic fields or supercurrents. How-
ever, it is not evident whether this is possible. First, the
1D system will not already be topological by proximity
coupling to the conventional superconductor, and MZMs
are in one-to-one correspondence with the formation of a
topological superconducting state. Second, phase biasing
does not directly introduce a Zeeman splitting, which is
typically required. Here, we show for explicit examples
that Aharonov-Casher phases in conjunction with a dis-
crete vortex can stabilize topological superconductivity
in 1D systems using conventional materials. We believe
that this design principle can be highly beneficial in re-
alizing topological superconductivity, as it eliminates the
severely detrimental effects of large magnetic fields.

Our main result is the phase diagram in Fig. 1(b) for
the three-phase system depicted in Fig. 1(a). The phase
diagram depends on the two phase differences φ1 and φ2
(φ3 is set to zero), and periodically repeats the unit cell
indicated by the black square [33]. To highlight the role
of time-reversal symmetry, we plot the phase diagram as
a function of θ = (φ1 − φ2) /2 and φ = (φ1 + φ2) /2.
Then, similar to a single phase-biased planar Joseph-
son junction [14, 15], φ = π and θ = 0 is a time-
reversal-symmetric point (as are φ = π/2, θ = π/2 and
φ = 3π/2, θ = π/2). In contrast to conventional Joseph-
son junctions where a Zeeman field is needed to break
time-reversal symmetry and to drive the system into a
topological state, here this effect is achieved by the phase
difference θ between the superconductors.

Coupled-wires model.—To demonstrate our approach
in a tractable model, we consider three spin-orbit-coupled
wires in proximity to three s-wave superconductors with
pair potentials of magnitude ∆ and phases φ1, φ2, φ3, as
illustrated in Fig. 1(a).

In the continuum limit, the topological properties are
already encoded in the spectrum for zero momentum
along the wires, k‖ = 0 [4]. In this case, the Hamilto-

(a) (b)

FIG. 1. Coupled-wires model for topological superconductiv-
ity induced by phase bias only. (a) Illustration of the system
under study: three spin-orbit-coupled wires, proximity cou-
pled to SCs with three different phases. (b) Topological phase
diagram as a function of the SC phases φ1 and φ2, with φ3 set
to 0 (see inset). The square in solid bold lines repeats periodi-
cally. The solid thin lines correspond to the phase boundaries
at the optimal manifold where the critical value required for
a topological phase is fcrit = −1, whereas the dashed lines
correspond to fcrit = −1.1, away from the optimal manifold.
The phase windings in the central triangles realize a vortex
(+) and an anti-vortex (−). Time-reversal-invariant points
are shown as red squares. Notice that the phase diagram is
mirror symmetric about the line θ = 0.

nian of the three-wire model takes the form

H
(
k‖ = 0

)
=

N∑
n=1

∑
s,s′=±

[
−µδss

′
c†n,scn,s′

+
(
t⊥
(
eiλnσz

)ss′
c†n,scn+1,s′ + H.c.

)]
+

N∑
n=1

(
∆eiφnc†n,↑c

†
n,↓ + H.c.

)
,

(1)

where cn,s annihilates an electron in wire n with k‖ = 0
and spin projection s along z, t⊥ is the inter-wire hopping
amplitude, µ is the chemical potential, ∆ is the induced
SC pair potential, and λn is the SOC angle accumulated
between the neighboring wires n and n+ 1. Here, we as-
sume periodic boundary conditions, cN+1,s = c1,s. As we
will see, it is crucial that electrons acquire an Aharonov-
Casher phase [31], which will conspire with the SC phase
winding to eliminate one spin species at the Fermi level.
Equation (1) is written for a general number of wires
N ; for simplicity, we will focus on the minimal value
to create a phase winding, N = 3. Notice that the
gauge transformation cn,s → cn,se

iφn/2 eliminates the
phases from the SC terms and changes the hopping term

to t⊥ → t⊥ exp
(
iφn+1−φn

2

)
. This resembles but is not

equivalent to magnetic flux: unlike magnetic flux, the
phases φn can be gauged away when ∆ = 0.

To identify phase transitions in the parameter space
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of our model, we search for gap closures by equating the
determinant of the Hamiltonian Eq. (1) to zero:

detH
(
k‖ = 0

)
= 6µ2t2⊥

(
∆2 + µ2

)
−
(
∆2 + µ2

)3
− 3t4⊥

(
∆2 + 3µ2

)
− 2f∆2t2⊥

(
∆2 + µ2 + t2⊥

)
− 4µt3⊥Λ

(
f∆2 − µ2 + 3t2⊥

)
− 4t6⊥Λ2 = 0,

(2)

where f = cos (φ1 − φ2) + cos (φ2 − φ3) + cos (φ3 − φ1)
and Λ = cos (λ1 + λ2 + λ3).

The SC phases appear in the determinant through a
single parameter −3/2 ≤ f ≤ 3, which has a simple geo-
metric interpretation: for −3/2 ≤ f ≤ −1 the phases
wind, i.e., when plotted as complex numbers

{
eiφn

}
on the unit circle, the triangle connecting them con-
tains the origin [34]. Solving the quadratic equation
detH

(
k‖ = 0

)
= 0 for Λ, we find that a real solution is

possible only for f ≤ −1 [34], and therefore phase wind-
ing is a necessary condition for the existence of a zero-
energy state, in agreement with the results of Ref. [32].

Assuming that the SC phase winds, we still have to
determine the regions in the three-dimensional parame-
ter space spanned by µ, ∆, and Λ (choosing units such
that t⊥ = 1) for which the system is topological. An
optimal situation occurs when the values of the three pa-
rameters are such that the determinant Eq. (2) is zero
already for f = −1. Then, the system is topological for
the maximal range of −3/2 ≤ f < −1. Setting f = −1
in Eq. (2) we find that the optimal situation occurs
when (µ,∆,Λ) are points on a circle C parametrized by(
µ,
√

1− µ2, µ
)

, see [34] and Fig. S1. Setting f = fcrit

with −3/2 ≤ fcrit < −1 in Eq. (2) defines a surface in the
parameter space; when (µ,∆,Λ) lie on this surface, topo-
logical superconductivity occurs for −3/2 ≤ f < fcrit, see
Fig. 1(b). Hence we conclude that topological supercon-
ductivity is obtained for all (µ,∆,Λ) points within the
bulk of the shape defined at fcrit = −3/2 (see Fig. S1 of
the Supplemental Material [34]), with optimal values on
the circle C.

To find the energy gap in the topological state, we an-
alyze the full spectrum of the system away from k‖ = 0.
Belonging to symmetry class D [35–37], the full Hamil-
tonian is characterized by the Z2 topological invari-
ant [4, 38]

Q = sign
[
Pf
(
PH(k‖ = 0)

)
Pf
(
PH(k‖ = π)

)]
, (3)

where Pf is the Pfaffian and P is the particle-hole op-
erator. Q = 1 indicates the trivial phase, whereas
Q = −1 in the topological phase, where the system sup-
ports MZMs [39]. The energy gap must be calculated for
all values of k‖.

The numerically calculated [40] topological phase di-
agram of the system is shown in Fig. 2(a), for param-
eters chosen on the optimal manifold. Remarkably, the
model supports a topological phase with an excitation
gap of about 0.3∆, with the application of only a phase

difference and without any applied Zeeman or orbital
field in the sample. We note that at

(
θ = π

3 , φ = π
)

and(
θ = 2π

3 , φ = 0
)

– perfect vortices with equal phase dif-
ferences forming an equilateral triangle – the system be-
comes C3-symmetric and turns out to be gapless, due to
a non-topological gap closure at finite k‖, see Fig. 2(b).
In Fig. 2(c), we demonstrate that the gap opens when
the C3 symmetry is broken [41]. In addition, the topo-
logical gap is bounded from above by the minimum of
∆ (the induced SC gap) and ∆SO ∼ t⊥ sin2

(
1

2N

∑
n λn

)
(the SOC splitting energy).

Further confirmation for the existence of the topologi-
cal phase is given in Fig. 2(d), where we show the Majo-
rana wavefunctions deep in the topological phase. These
are obtained by diagonalizing the Hamiltonian on a fi-
nite lattice. The appearance of two localized Majorana
modes with near zero energy at the edges of the system
signals its topological nature.

Quantum-well model.—Having established the possi-
bility of realizing a 1D topological superconductor based
on phase bias alone, we now turn to exemplifying this
concept in a realistic system comprising readily available
ingredients. Specifically, our proposal relies on a spin-
orbit-coupled 2DEG proximitized by three thick SCs.
As we have seen, the topological transition requires an
Aharonov-Casher phase and thus, our proposal does not
easily lend itself to an all-planar geometry. Instead, we
propose to use a 2DEG with two (or more) layers giv-
ing rise to several subbands, see Fig. 3(a). If the Rashba
SOC parameter α is different in the two subbands, there
are closed loops in which electrons acquire a non-zero
Aharonov-Casher phase, mimicking the periodic bound-
ary conditions in the simplified model we previously stud-
ied.

The system is described by the continuum Hamiltonian

H =

[
− 1

2m∗
(
∂2x + ∂2y

)
− t⊥ρx − µ

]
τz (4)

+ iα (σx∂y − σy∂x) τzρz + [∆ (x) τ+ + ∆∗ (x) τ−] ρ↑,

where the Pauli matrices τ , ρ act in particle-hole and
layer space, respectively, t⊥ is the interlayer hopping
amplitude, τ± = (τx ± iτy) /2, and ρ↑ = (ρ0 + ρz)/2..
We assume that the Rashba SOC parameter is opposite
in the two layers. To be specific, we consider an InSb
2DEG with m∗ = 0.014me and α = 15 meV nm [42], cor-
responding to a SOC length `SO ≈ 360 nm. We take
an induced SC gap of ∆ = 1 meV, appropriate for, e.g.,
Nb and Pb [43], in only one layer. The widths of the
SCs (normal regions between them) are chosen to be
WSC = 70 nm (WN = 40 nm.) The typical length W is
chosen roughly according to the relation `SO∆SO = W∆.
This rule of thumb, which is derived in the Supplemental
Material [34], provides a way to approximate favorable
dimensions of the system given the material’s parame-
ters [44].
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FIG. 2. (a) Topological phase diagram of the coupled-
wires model as a function of the SC phase differences θ =
(φ1 − φ2) /2 and φ = (φ1 + φ2) /2 (we set φ3 = 0). The color
scale shows the Z2 invariant Q, which is +1 (−1) in the trivial
(topological) phase, multiplied by the energy gap (normalized
by ∆) . The dark blue regions correspond to a robust large-
gap topological phase. The phase boundaries (dashed lines)
and Brillouin zone boundaries (solid lines) are marked. The
inset shows a cut at φ = π. The parameters are t⊥ = 1,
∆ = 0.1, µ = 0.995, λ = 0.033 (on the optimal manifold),
m = 0.01, u = 1. (b) At the C3-symmetric point θ = π

3
,

φ = π, the system becomes gapless at finite k‖. (c) The
gap closing becomes an avoided crossing when the C3 sym-
metry is broken, done here by changing the phases away from
the C3-symmetric point. (d) Wavefunctions of (near) zero-
energy Majorana states in the topological phase, calculated
for an open system discretized with L = 600 sites per wire,
at

(
θ = 5π

6
, φ = 0

)
.

The Hamiltonian Eq. (4) was investigated by discretiz-
ing it on a lattice of spacing a = 10 nm. The topological
phase diagram, calculated by the Pfaffian formula Eq. (3)
(now with k‖ =̂ ky), is shown in Fig. 3(b). The system
indeed becomes a topological superconductor in the rel-
evant region of phases. The topological phase consti-
tutes 17% of the displayed θ–φ section, compared to 25%
on the optimal manifold of the coupled-wires model [cf.

(a)

x

yz

(b)

-1

-0.5

0

0.5

1

FIG. 3. Quantum-well model for topological superconductiv-
ity induced by phase bias only. (a) Schematic of the exper-
imentally available proposal: a spin-orbit-coupled two-layer
2DEG is contacted by three SCs of width WSC, separated by
normal regions of width WN. The Rashba SOC parameter α
is assumed to be opposite in the two layers, and pairing is only
induced in one layer. The dashed gray line shows an exam-
ple of a closed trajectory that encircles an Aharonov-Casher
phase and is affected by the SC phase winding. (b) Topo-
logical phase diagram of the InSb quantum-well model as a
function of the SC phase differences θ = (φ1 − φ2) /2 and
φ = (φ1 + φ2) /2 (setting φ3 = 0). The color scale shows
the product of the Z2 invariant Q, which is +1 (−1) in the
trivial (topological) phase, and the energy gap (normalized
by the SOC energy ∆SO). Significant regions of Q = −1
with a large energy gap appear (dark blue), implying a ro-
bust topological phase. The phase boundaries (dashed black
lines), Brillouin zone boundaries (solid black lines), and opti-
mal phase boundaries (gray lines) are marked. Parameters
used: µ = 108.9 meV, t⊥ = 0.4 meV, corresponding to a
density of n = 6.4 × 1011 cm−2 and a Fermi wavelength of
λF = 31 nm.

Fig. 1(b)], implying that further optimization is possible.
The maximal topological gap is of order ∆SO, which is
reasonable: for the chosen materials ∆SO is the smallest
energy scale. Using materials with larger ∆SO will lead
to a larger topological gap.

As seen in Fig. 3(b), the gap is small compared to ∆SO

in some parts of the topological region. By inspecting the
Bogoliubov-de-Gennes spectrum, we find that the small
gap originates from the presence of low-energy high-k‖
modes. Semiclassically, these modes result from long
trajectories that hardly encounter the SCs, which is a
common problem in such systems [29]. Perturbations
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that eliminate these trajectories, such as non-standard
geometries [28, 29] or disorder [45], lead to an increased
topological gap. We have verified that adding a chemical
potential modulation along the x, y directions may signif-
icantly increase the topological gap. Furthermore, in the
Supplemental Material [34] we show that the topological
phase is robust to various perturbations in the model’s
parameters.

Discussion.—In contrast to the vast majority of pre-
vious schemes, the topological phase in our proposal is
induced solely by phase winding in the SC, which is prox-
imity coupled to semiconductors with strong spin-orbit
coupling such as InAs, InSb, or HgTe. SC phases can be
manipulated using large external loops, through which
magnetic flux is threaded, or by application of super-
current. The applied magnetic field (or the supercur-
rent), being very small and removed from the sample
itself, should have only a mild effect on the parent SC.
Therefore in-gap states, which may mask the MZMs, are
unlikely to appear.

We illustrated our scheme by an analytically accessible
toy model and introduced a realistic setup in which these
ideas can be implemented. Beyond these settings, we ex-
pect that the concept presented here – relying exclusively
on SC phase bias and on the spin-dependent phase ac-
quired in closed loops (the Aharonov-Casher phase [31])
– may be harnessed in other systems, as well. For ex-
ample, it might be possible to realize the wire model
experimentally by contacting three of the six facets of an
InAs nanowire with three thick phase-biased SCs. The
role of disorder deserves a separate treatment. Disorder
eliminates trajectories that do not encounter the super-
conductors [45–48] and therefore increases the topological
gap. We expect that under the right conditions it also
gives rise to non-retro Andreev reflection, thereby facili-
tating the existence of the relevant closed trajectories.

Finally, a desirable goal for all Majorana platforms is
an extension to networks to implement quantum informa-
tion processing or a two-dimensional chiral phase [49]. In
our proposal, the experimental challenge is to establish
control over a larger number of superconducting phases.
At the same time, engineering aspects may be signifi-
cantly simplified by the absence of a need for a Zeeman
field, which requires careful alignment and induces harm-
ful in-gap states.
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Supplemental Material
RELATION BETWEEN f AND WINDING

Here we prove the relation between f (φ1, φ2, φ3), that
appears in Eq. (2) of the main text, and phase winding.
Without loss of generality, let us set φ3 = 0 and φ2 > φ1,
and examine

f (φ1, φ2, 0) = cos (φ1) + cos (φ2) + cos (φ2 − φ1) . (S1)

It is instructive to factor this expression using trigono-
metric identities:

f (φ1, φ2, 0) = 2 cos

(
φ1 + φ2

2

)
cos

(
φ2 − φ1

2

)
+ 2 cos2

(
φ2 − φ1

2

)
− 1

= 2 cos

(
φ2 − φ1

2

)[
cos

(
φ1 + φ1

2

)
+ cos

(
φ2 − φ1

2

)]
− 1

= 4 cos

(
φ2 − φ1

2

)
cos

(
φ1
2

)
cos

(
φ2
2

)
− 1.

(S2)

The phases wind, i.e., the triangle connecting them en-
circles the origin, if and only if

0 ≤ φ1 ≤ π, π ≤ φ2 ≤ π + φ1. (S3)

It follows that

cos

(
φ1
2

)
> 0, cos

(
φ2
2

)
< 0, cos

(
φ2 − φ1

2

)
> 0.

(S4)
Therefore, the first term in Eq. (S2) is non-positive, and
thus f ≤ −1. In addition, it is straightforward to show

that along the boundaries defined by Eq. (S3), f = −1
exactly, and that f (φ1, φ2, 0) has extrema only at the
points (φ1, φ2) =

(
2π
3 ,

4π
3

)
, (0, π) , (π, π) , (π, 2π). This

concludes the proof that phase winding occurs if and only
if f ≤ −1.
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FURTHER ANALYSIS OF THE PHASE
DIAGRAM

In this section we provide further details of the phase
diagram in the coupled-wires model. The derivations are

based on Eq. (2) of the main text, which determines the
phase boundaries.

We begin by setting t⊥ = 1, and writing the solution
of Eq. (2) which is a quadratic equation for Λ:

Λ± =
1

2

[
µ
(
∆2f + 3− µ2

)
± |∆|

√
µ2 [f (∆2f + 4) + 6− 3∆2]− [∆2(∆2 + 2f) + (2f + 3) (1 + µ4)]

]
. (S5)

In order to have a real solution, the argument of the
square root must be non-negative. Treating the argument
of the square root as a second-order polynomial in µ2, we
find that the condition for a real solution is

(f − 3)(f + 1)
(
∆2(f + 1)2 + 8f + 12

)
≥ 0. (S6)

Since −3/2 ≤ f ≤ 3, the first factor is negative whereas
the last factor is positive. Therefore, this inequality is
fulfilled only when f ≤ −1. This result, combined with
our previous proof that f ≤ −1 corresponds to phase
winding, is in agreement with Ref. [32].

The manifold in µ, ∆, Λ parameter space defined by
Eq. (S5) is shown in Fig. S1 for several values of f . As
explained in the main text, the parameters µ,∆,Λ are
said to be “optimal” if they support a solution of Eq. (2)
for f = −1, i.e., if the necessary condition f ≤ −1 is also
sufficient. Solving again for Λ, we obtain

Λ± =
1

2

[
µ
(
3−∆2 − µ2

)
±
√
−∆2 (1−∆2 − µ2)

2

]
.

(S7)
The only way to make this expression real is demanding
µ2 + ∆2 = 1. In this case the two solutions Λ± are
identical and equal to µ/t⊥. This gives us the optimal

curve C – the circle
(
µ,
√

1− µ2, µ
)

.

It is worth noting that along this circle, one can make
a simple connection to the continuum description, thus
finding an optimal condition for topological superconduc-
tivity in experimental system parameters. If we take
∆/t⊥ to be small (which means µ ≈ t⊥), we obtain
λ ≈ ∆/t⊥ (assuming λ1 = λ2 = λ3 = λ). In our
minimal three-wires tight-binding description, the effec-
tive lattice spacing is the typical distance between two
superconductors W . Using a continuum description of
the tight-binding model along the circumference, we get
∆SO ≈ t⊥λ

2. Since λ is the spin-dependent angle accu-
mulated when hopping between nearest neighbors, and
`SO is the distance where a phase of 2π is accumulated,
we have W/`SO ≈ λ. Therefore, we obtain the condition

W

`SO
≈ ∆SO

∆
, (S8)

which expresses the ideal geometry as a function of the
continuum parameters only.

Let us exemplify the practical use of this relation. In
the main text, we assumed a superconducting gap of
∆ = 1 meV, which is appropriate for e.g. Nb and Pb [43].
Let us now take ∆ = 0.5 meV, which is appropriate for
e.g. Sn and V [43]. Using the relation Eq. (S8) above, we
simulate a larger system compared to that of Fig. 3(b),
with WSC = 100 nm, WN = 100 nm. Fig. S2 shows the re-
sulting topological phase diagram, which indeed exhibits
topological regions with a topological gap comparable to
∆SO, but the topological region is smaller, indicating that
further optimization might be necessary.

BOUNDS ON THE TOPOLOGICAL GAP

Here we discuss the bounds limiting the topological
gap, in order to justify the choice of comparing it to ∆SO,
which we made in Fig. 3(b) of the main text.

To set the stage, we study the topological nanowire
model [7, 8]

H =

(
k2

2m∗
+ ukσz − µ

)
τz −Bσx + ∆τx, (S9)

where B is the applied Zeeman field and u is the SOC
parameter. For simplicity, we focus on µ = 0 where the
condition for a topological phase is B > ∆. The two
relevant energy scales are ∆ and ∆SO = mu2/2, and the
question is whether or not they both set a bound on the
energy gap in the topological phase.

At finite B and ∆ there are two minima of the gap
in the spectrum as a function of the momentum k, one
at k = 0 and the other near the Fermi momentum.
The topological gap of the system is determined by the
smallest of the two, when B > ∆. It is maximized at
B = B∗ > ∆, for which the gap at k = 0 is equal to the
gap near the Fermi momentum. A closed-form expression
for B∗ is hard to obtain, but it is straightforward to find
it numerically given the values of the other parameters.

Fig. S3(a) shows the maximal topological gap as a
function of ∆/∆SO, normalized by ∆ and by ∆SO. For
InAs/InSb nanowires proximitized by Al, ∆ and ∆SO

are of the same order of magnitude. However, for a
InAs/InSb 2DEG such as the one we studied, ∆� ∆SO

and therefore we analyze the asymptotic behavior of the
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FIG. S1. Critical manifold, marking the topological phase boundaries, in µ/t⊥, ∆/t⊥, Λ space for (a) fcrit = −1, (b) fcrit = −1.1,
(c) fcrit = −1.5, determined by the solution given in Eq. (S5). As fcrit becomes more negative, the manifold’s area increases.
For a given value of fcrit, the system is topological at all points contained in the volume surrounded by the surface. For
fcrit = −1 the manifold shrinks into a circle, as seen from Eq. (S7). Alternatively, fixing a point in the parameter space, we
can contain it within the volume surrounded by the surface by changing f , leading to a topological state.

-0.5

0

0.5

FIG. S2. Topological phase diagram of the quantum-well model, same as in Fig. 3(b), with ∆ = 0.5 meV and WSC = 100 nm,
WN = 100 nm, µ = 109.5 meV, t⊥ = 0.28 meV.

maximal topological gap in this limit—see the dashed
lines in Fig. S3(a). By fitting the asymptotes, which
can be obtained numerically or analytically, we find that
the maximal topological gap in this limit is ∼

√
2∆SO∆.

Therefore, the gap can be parametrically larger than
∆SO. However, it is evident and also seen in Fig. S3(a)
that the gap cannot exceed ∆.

The situation is qualitatively different for the
quantum-well model studied here, see Eq. (4) and Fig. 3.
We demonstrate this by using the same parameters as
in Fig. 3(b), with the phases optimally chosen, and vary
the ratio ∆/∆SO. The results are shown in Fig. S3(b).
It is clear from this figure that for our system, the maxi-
mal gap in the topological region is of order ∆SO (at the
optimal configuration), but it is much smaller than ∆.

STABILITY TO PERTURBATIONS

In this section, we analyze the stability of the topolog-
ical phase in the quantum-well model to perturbations in
the model’s parameters. We demonstrate the robustness
of the topological gap to various realistic imperfections,
which makes our proposal favorable for experiments.

The parameters used in Fig. S4 are the same as those
of Fig. 3(b) of the main text, with θ = 0.55π, φ = 0.88π,
a representative point inside the topological region. On
top of these, we add perturbations as listed below. We
plot the topological invariant Q multiplied by the energy
gap, without even changing the SC phases at all (which
is probably the simplest experimental knob).

In Fig. S4(a), the perturbation is a variation in the
inter-layer hopping amplitude t⊥. In Fig. S4(b), the
chemical potential in the two layers is different: µtop =
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FIG. S3. (a) Maximal topological gap for the nanowire model Eq. (S9) (see also Refs. [7, 8]), as a function of ∆/∆SO. The
topological gap is normalized by ∆ (blue) and by ∆SO (orange), and plotted in a log-log scale. The dashed lines are the
asymptotic forms at ∆� ∆SO, which is

√
2∆SO∆, i.e., the topological gap may be parametrically larger than ∆SO. (b) Same

for the quantum-well model Eq. (4), using the same parameters of Fig. 3(b). The maximal topological gap is of order ∆SO,
and since ∆� ∆SO for the parameters we used, it is much smaller than ∆.

µ+δµ, µbottom = µ−δµ. In Fig. S4(c), the pair potential
in the two layers is different: in the main text we took
∆top = ∆, ∆bottom = 0, and now we take ∆top = ∆+δ∆,
∆bottom = −δ∆. Finally, in Fig. S4(d) we add an inter-
layer pair potential ∆interτxρx.

Under all these perturbations, the topological phase is

robust in an appreciable range of parameters. The im-
portant implication of this finding is that no fine-tuning
is required to drive the system into the topological phase.
We stress again that these reassuring results are obtained
without further tuning of the SC phases, which will likely
increase the stability even more.
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(a)

(c)

(b)

(d)

FIG. S4. Stability of the topological phase in the quantum-well model to perturbations in (a) the inter-layer hopping t⊥, (b) a
difference δµ in the chemical potential between the two layers, (c) a difference δ∆ in the pair potential between the two layers,
and (d) inter-layer pair potential ∆inter. Plotted is the topological invariant Q multiplied by the energy gap in units of the
SOC energy. The dashed red line marks the topological phase boundaries.


