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Motivated by recent experiments searching for Majorana zero modes in tripartite semiconductor
nanowires with epitaxial superconductor and ferromagnetic-insulator layers, we explore the emer-
gence of topological superconductivity in such devices for paradigmatic arrangements of the three
constituents. Accounting for the competition between magnetism and superconductivity, we treat
superconductivity self consistently and describe the electronic properties, including the supercon-
ducting and ferromagnetic proximity effects, within a direct wave-function approach. We con-
clude that the most viable mechanism for topological superconductivity relies on a superconductor-
semiconductor-ferromagnet arrangement of the constituents, in which spin splitting and supercon-
ductivity are independently induced in the semiconductor by proximity and superconductivity is
only weakly affected by the ferromagnetic insulator.

I. INTRODUCTION

Topological superconductors can be engineered
through a combination of spin-orbit coupling, con-
ventional superconductivity, and Zeeman splitting
[1-3]. A candidate platform are hybrid semiconductor-
superconductor nanowires pierced by an external
magnetic field [4, 5]. The semiconductor, typically InAs
or InSb, provides the spin-orbit coupling, while the
superconductor and the magnetic field contribute the
conventional superconductivity and the Zeeman split-
ting, respectively. Experiments using this scheme have
reported the observation of zero-bias peaks, consistent
with the presence of Majorana zero modes [3, 6-19].
Even if this blueprint proved consistently successful for
the engineering of topological superconductivity, the
use of an external magnetic field might be inconvenient
for engineering more involved devices underlying a
Majorana-based quantum computer [20]. In particular,
the magnetic field should ideally be applied parallel to
the nanowire, requiring all nanowires to be aligned.

In an effort to alleviate this constraint, recent experi-
ments [17-19] have explored the possibility of replacing
the external magnetic field by a proximity-induced ex-
change field exerted by an epitaxial ferromagnetic insu-
lator grown directly on the nanowire. One set of experi-
ments [18, 19] uses semiconductor nanowires (InAs) with
epitaxial superconducting (Al) and ferromagnetic (EuS)
layers. Another experiment [17] grows Au wires on top
of a superconducting substrate (V) and covers them by
a FuS layer. Motivated by these experiments, we study
the emergence of topological superconductivity in such
tripartite nanowires, which combine a semiconducting or
metallic core (N) with epitaxial superconducting (SC)
and ferromagnetic (F) layers, from a theoretical perspec-
tive, complementing a series of concurrent studies [21-
24].

A schematic section through the experimental
nanowires in Refs. [18, 19] is shown in Fig. 1. A semicon-
ducting nanowire with hexagonal cross section is covered

by a ferromagnetic insulator on one facet. The super-
conducting layer covers both a neighboring facet as well
as the ferromagnetic layer. Band bending at the normal-
superconductor interface is expected to lead to electron
accumulation near that interface, presumably making the
region where all three layers meet particularly pertinent
for the potential emergence of topological superconduc-
tivity. As seen from the enlarged rendering in Fig. 1,
this region includes interfaces between all three layers.
Exemplifying the experimental geometries by stacks of
three layers, we thus study the emergence of topologi-
cal superconductivity for the three possible stackings as
shown in Fig. 1. Such a stacked structure also closely
resembles the experimental setup in Ref. [17].

We describe both the ferromagnetic and the supercon-
ducting proximity effects underlying the emergence of
topological superconductivity in these structures within
a direct wave-function approach. For stackings involving
an interface between the superconductor and the ferro-
magnetic insulator, the superconducting pairing will be
substantially suppressed. We account for this compe-
tition by determining the superconducting pairing self-
consistently. The ferromagnetic proximity effect on a
thin superconducting layer resembles, but is not identical
to the effect of an external Zeeman field [25-29], and is
uniform across the entire superconducting layer as long
as its thickness is small compared to the superconducting
coherence length [30, 31]. We find that all three possible
layer arrangements can support topological superconduc-
tivity. However, the effects of the ferromagnet on the su-
perconductor greatly limit the extent of the topological
phase in parameter space, when a direct SC-F interface is
present. Moreover, a ferromagnetic insulator sandwiched
between superconductor and semiconductor will tend to
decouple the semiconductor from the superconductor, so
that a possible topological superconducting phase occurs
only for very thin F layers. We thus find that the topo-
logical superconducting phase has the largest extent in
parameter space for the SC-N-F arrangement, where the
emergence of the topological phase closely parallels the



FIG. 1. Top left: Schematic representation of the nanowire
geometry (cross section) employed in the experiments in Refs.
[18, 19]. Bottom left: Enlarged view of the region, presum-
ably most important for the emergence of topological super-
condutivity, where the semiconductor (N), the superconduc-
tor (SC), and the ferromagnetic insulator (F) meet. Right:
Three paradigmatic stackings of N, SC,; and F, which we in-
vestigate to explore the emergence of topological supercon-
ductivity: (a) SC-N-F, (b) N-SC-F, and (c¢) N-F-SC. In ex-
periment, the diameter of the nanowire is of the order of 100
nm, with epitaxial SC and F layers of thickness ~ 5nm.

familiar blueprint [4, 5].

We begin with a physical discussion in Sec. II, where
we provide semiclassical estimates and present the main
results of our work. In Sec. III, we detail our model and
the numerical calculations, including the self-consistent
treatment of superconductivity. In Sec. IV, we elaborate
on the phase diagrams, which we obtain numerically. Fi-
nally, we conclude in Sec. V.

II. PHYSICAL PICTURE

This section provides a summary of our principal re-
sults on the basis of physical arguments. We begin with
a brief discussion of the proximity effect induced by a
ferromagnetic insulator. When a ferromagnetic insulator
is brought into contact with a normal metal or a super-
conductor, it induces a spin polarization of the carriers.
Carriers impinging on the interface with the ferromag-
net are reflected, with the penetration depth into the
ferromagnet depending on their spin state. This spin-
dependent penetration reflects the different band gaps
for the two spin projections and is reflected in spin-
dependent scattering phases. In a semiclassical picture
(Bohr-Sommerfeld quantization), it is evident that this
makes the subband energies spin dependent, effectively
inducing a spin splitting analogous to a Zeeman field.

While this proximity-induced spin splitting is closely
analogous to the effects of a Zeeman field, there are
also characteristic differences. To appreciate these dif-

ferences, compare the effects of a Zeeman field and a
proximitizing ferromagnetic insulator on a thin-film su-
perconductor. With increasing Zeeman field, the normal
state becomes magnetized and energetically more favor-
able. Beyond the Clogston-Chandrasekhar limit [32, 33],
the energy gain due to the magnetization is larger than
the superconducting condensation energy, resulting in a
first-order phase transition between the superconducting
and normal states. In contrast, when proximity coupling
the thin-film superconductor to a ferromagnetic insula-
tor, one expects a second-order phase transition when
increasing the exchange field exerted by the ferromagnet
[30]. The underlying reason is that the effect of the ferro-
magnet depends on the transverse mode in the supercon-
ductor, even when the thickness of the thin film is small
compared to the superconducting coherence length and
the superconductor becomes uniformly magnetized [29-
31]. Semiclassically, the transverse modes can be thought
of as electron trajectories impinging on the interface with
the ferromagnetic insulator at mode-specific angles. Due
to Andreev reflection, the overall length of the trajectory
in the superconductor is limited by the superconducting
coherence length & = hvg/Ag. (Here, vy is the Fermi
velocity in the superconductor and Ay the unperturbed
superconducting pairing). Thus, for a superconductor of
thickness dg, the trajectories reflect from the ferromagnet
~ (p-2)§/ds times, where Z denotes the normal to the in-
terface and p the direction of the electronic momentum.
Modes which propagate mostly parallel to the interface
(p- 2~ 0) are little affected by the exchange coupling of
the ferromagnet. This effectively smoothens the vanish-
ing of the superconducting gap with increasing exchange
coupling and results in a second-order transition.

A qualitative understanding of our results can be ob-
tained from semiclassical estimates of the proximity-
induced effective Zeeman field B.g and induced supercon-
ducting gap Ajnq. For these estimates, we assume a N-SC
interface with unit transparency. Even in the absence of
an interface potential, the transparency of the interface
depends on the velocity mismatch between the N and SC
layers. Unit transparency is only found for equal Fermi
velocities on both sides. For typical nanowire materials,
the Fermi velocities vy and vg of the two layers can indeed
be similar in magnitude, vy & vg, despite the large differ-
ence in Fermi wavevectors reflecting the widely different
electron densities in the semiconductor and the super-
conductor. The reason is that this difference in Fermi
wavevectors is offset by a comparable difference in ef-
fective masses. Thus assuming unit transparency of the
N-SC interface, the superconducting gap Ajn,q induced in
the normal region is proportional to the fraction of time
a mode spends in the superconductor [34],

Ts

Ajng =
Ts + Tn

A. (1)

Here 7; = d;/v;, with ¢ =N, S. Notice that the induced
superconducting gap depends on the z component v;_ of
the velocity and is thus specific for each mode in the
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FIG. 2. Phase diagram for the SC-N-F arrangement. The magnitude of the overall gap Egap, multiplied by the topological
invariant @ = =£1, is color coded as a function of the phase difference Ayx and the number kndnx /7 of occupied transverse
modes in the normal layer. The four panels (a)-(d) focus on those regions, where the first four modes of the N layer begin
to be populated. Phase-transition lines are indicated by blue dashed lines. The inset in panel (a) enlarges the apex of the
topological region, and includes the semiclassical estimate Eq. (3) for the minimal spin-dependent phase difference required to
enter the topological superconducting phase (red dashed line). The symbol in the top right corner of the panels indicates the
parameter choice as shown in Fig. 6. The number of transverse modes in S was fixed at ksds/m = 27.52 for all panels. For

other parameters, see Table I.

normal layer. (Due to the large mismatch in densities,
typical modes correspond to almost normal trajectories
in the superconductor, so that vs, ~ vs [34].)

Similarly, the effective Zeeman field induced by the
ferromagnetic insulator can be obtained from Bohr-
Sommerfeld quantization as

hAp

Bug = 2%
ff 4(7s + 7v)

(2)

where Ap = ¢y — ¢, is the difference between the spin-
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FIG. 3. Self-consistent approach to superconductivity in a
SC-F nanowire, including the self-consistent pairing corre-
lations A and the spectral gap Agpec as a function of the
scattering phase difference Ays. Agpec vanishes close to
Aps ~ 4ds /€, while the pairing correlations A remain finite.
The condensation energy AFE goes to zero before the pairing
correlations A vanish, corresponding to a weakly first-order
phase transition. Calculations were done for ksds/m = 27.13
and an F layer of infinite thickness. For other parameters, see
Table 1.

dependent scattering phases ¢,. In accordance with the
discussion above and as for the induced superconducting
gap, this effective Zeeman field is mode dependent.

We are now in a position to discuss the emergence
of topological superconductivity in the three geometries
shown in Fig. 1. The phase diagram for the SC-N-F ge-
ometry, obtained from our detailed theory described in
Sec. 111, is shown in Fig. 2. In this geometry, the super-
conducting and ferromagnetic layers are spatially sepa-
rated. This minimizes the detrimental effect of the spin
splitting induced by the ferromagnetic insulator on the
superconductor. As a result, we can deduce the phase
difference required for topological superconductivity di-
rectly from Egs. (1) and (2), with A equal to the unper-
turbed superconducting pairing Aq of the superconduc-
tor. For optimal chemical potential, modes are expected
to become topological when Beg > Aing [4, 5]. Thus,
using Egs. (1) and (2), the condition for topological su-
perconductivity becomes

4Ad 4
> o~ (3
Sz

In the last step, we used vs, =~ vy due to the large dif-
ference in Fermi wavevectors between semiconductor and
superconductor. We find that this minimal phase differ-
ence Ay is in good agreement with the phase diagram in
Fig. 2, see the red dashed line in panel (a). Away from the
optimal chemical potential, the effective Zeeman splitting
required to induce a topological superconducting phase
increases, cp. [4, 5], qualitatively explaining the shape
of the topological regions. The four panels detail the pa-
rameter ranges of the phase diagram, where the first four
transverse modes of the N layer become populated with
increasing ky. In agreement with expectations, it is these
regions where topological superconductivity emerges. We
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FIG. 4. Phase diagram for the N-SC-F arrangement. The magnitude of the overall gap FEgap, multiplied by the topological
invariant Q = =41, is color coded as a function of the phase difference Ags and the number kndx/7 of occupied transverse
modes in the normal layer. The four panels highlight the parameter ranges where the first four transverse modes in N become
populated. At the optimal chemical potentials, the onset of the topological phase takes place close to the semiclassical estimate
Aps = 4ds /€, as indicated by the red dashed line. The gray dashed line labels the magnitude of Aps, where the superconducting
condensation energy changes sign and superconductivity is fully suppressed by the adjacent ferromagnetic insulator. Phase
transitions are denoted by a blue dashed line. The symbol in the top right corner of the panels indicates the parameter choice
as shown in Fig. 6. The number of transverse modes in S was fixed at ksds/m = 27.16 for all panels. For other parameters, see

Table I.

find that the induced topological gap becomes smaller for
higher transverse modes. This reflects variations in the
ratio of the Fermi velocities in the semiconductor and the
superconductor.

For the other layer stackings, the direct proximity of
ferromagnetic insulator and superconductor suppresses
superconductivity, eventually driving the superconduct-
ing layer normal. According to Eq. (3), the scattering
phase difference necessary to overcome the superconduct-
ing gap of a mode with velocity vs, =~ vscos ¢ is

4dg
Ap = Eeosg’ (4)
where cos¢ = [1 — (ky/ks)?]'/2. Modes with a higher
longitudinal momentum k, impinge less often on the in-
terface with the ferromagnet, thus requiring larger ex-
change couplings to overcome their superconducting gap.
With increasing spin splitting in the ferromagnet, the
superconducting gaps of the modes successively close,
which in turn affects the overall pairing correlations. For
these stackings, we thus determine the pairing strength A
from a self-consistent treatment. Once the self-consistent
pairing strength is determined, we can again apply Egs.
(1) and (2) to estimate the minimal phase difference for
entering the topological phase.

The result of such a self-consistent calculation for the
superconducting gap is shown in Fig. 3 for a ferromag-
net of thickness dp — oo. We find that the spectral
gap closes with increasing spin-dependent phase differ-
ence. This occurs when Ay ~ 4ds/&, where the coher-
ence length is computed with the bare superconducting
pairing strength Ay in the absence of the ferromagnetic
layer. This is consistent with the fact that for the value
of Ay at which the spectral gap closes, the self-consistent
pairing strength A is only weakly suppressed. The self-
consistent pairing strength persists to stronger exchange

fields exerted by the ferromagnet. We find that the con-
densation energy AE drops to zero prior to a complete
suppression of the self-consistent pairing strength, pre-
dicting a phase transition into the normal state that is
weakly first order. (For a uniform exchange field, the
transition into the normal state is first order and takes
place before the spectral gap closes [32, 33]. The situ-
ation for a superconductor coupled to a ferromagnetic
insulator is different [30] and may reverse the order in
which the spectral gap closes and the order parameter
vanishes.)

The resulting phase diagram for N-SC-F stacking is
shown in Fig. 4. Also in this case, we find regions of
topological superconductivity whenever a new transverse
mode opens in the semiconductor. However, the topo-
logical regions not only have a smaller gap than in the
SC-N-F stacking, but are also limited to a much smaller
parameter range. This limitation is imposed by the small
values of Ay that are compatible with substantial super-
conducting correlations. It is also interesting to compare
this result to a recent result [35] that topological super-
conductivity requires Zeeman fields that locally exceed
the pairing strength of the superconductor. This result
precludes topological superconductivity in a bipartite N-
SC structure, which applies the Zeeman splitting to the
superconductor only. A N-SC-F structure can still sup-
port topological superconductivity since the ferromag-
netic proximity effect is not identical to the application
of a uniform Zeeman field to the superconductor.

Finally, the semiclassical considerations and estimates
performed in this section do not apply directly to the N-
F-SC arrangement. In this stacking, the ferromagnetic
insulator effectively acts as a potential barrier separat-
ing the N and SC layers. The superconductor affects the
semiconductor only when the ferromagnet is sufficiently
thin, satisfying kpdp < 1, with kp the wavevector char-
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FIG. 5. Phase diagram for the N-F-SC arrangement. The magnitude of the overall gap Egap, multiplied by the topological
invariant Q = =41, is color coded as a function of the phase difference Ags and the number kndx/7 of occupied transverse
modes in the normal layer. The four panels highlight the parameter ranges where the first four transverse modes in N become
populated. At the optimal chemical potentials, the onset of the topological phase takes place close to the semiclassical estimate
Aps = 4ds /€, as indicated by the red dashed line. The gray dashed line labels the magnitude of Aps, where the superconducting
condensation energy changes sign and superconductivity is fully suppressed by the adjacent ferromagnetic insulator. Due to
the finite thickness of F, this occurs at a higher Aps value than in Fig. 4. Phase transitions are denoted by a blue dashed line.
The symbol in the top right corner of the panels indicates the parameter choice as shown in Fig. 6. In all panels, the number
of transverse modes in S was fixed at ksds/m = 27.61 and the thickness of F was chosen to satisfy krdr = 1.22. For other

parameters, see Table I.

acterizing the wave-function decay in F. In this case, the
system can enter a topological superconducting phase,
albeit with a smaller gap than for the other two arrange-
ments due to the reduced mixing of superconductivity
and spin-orbit coupling. This arrangement is limited to
small scattering phase differences for the same reason as
for the N-SC-F stacking, as the superconductor and the
ferromagnet again share an interface. Numerically, the
limiting value of Ay is somewhat larger than in the N-
SC-F arrangement. This difference is a consequence of
the small thickness dy of the F region in the N-F-SC ar-
rangement, which reduces the detrimental effect of F on

SC.

IIT. MODEL AND CALCULATIONS

In our detailed calculations, we model nanowires,
which are infinitely extended in the z-direction and com-
posed of three layers stacked along the z-direction: a
semiconductor (N), a superconductor (SC) and an insu-
lating ferromagnet (F). The extent in the y-direction is
assumed small enough for a single mode to be occupied.
In the conventional Nambu basis U = (¢4, ¢, wL —wDT,
the BAG Hamiltonian takes the form

H = Ho(z)1. + A(2)Te + a(2)kp0,72, (5)

where T and o are Pauli matrices acting in particle-hole
and spin space, respectively. The superconducting pair-
ing A(z) and the strength a(z) of the Rashba spin-orbit
coupling are assumed piecewise constant and nonzero
only within their respective nanowire layers,

o AO z € SC
Alz) = {O else, (6)

and

Finally, Hy(z) is given by

=D pig-

1=x,Y,%

pz+Vo( ), (8)

with p; the momentum along the i-direction, m*(z) the
effective mass, and Vj(z) the band offset. For simplicity,
we assume equal effective masses for the SC and the F
layers,

e (2) = {mN e )

ms 2z € SC, F.

The band offset is expressed via the corresponding Fermi
wavevectors ky and kg in N and SC, respectively, and via
the inverse decay length kp in F,

fQI:jNN z€N
Vo(z) = 2’;% 2 €8C (10)
+0Vo, zeF,

2ms

where we have set i = 1. Thus, the ferromagnetic insu-
lator F is modeled as a spin-dependent potential barrier
characterized by the spin splitting §V. Previous studies
point out that the induced exchange coupling in a super-
conductor cannot be fully explained in terms of the large
optical band gap of the ferromagnetic insulator and may
also involve direct coupling of the electrons with atomic
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TABLE I. Parameters used in the numerical calculations.

exchange fields [30]. Still, we model the ferromagnet as a
spin-dependent potential barrier and use the spin split-
ting §V as a phenomenological parameter to parametrize
the ferromagnetic proximity effect.

The thicknesses of the layers are denoted by dy, ds,
and dr. We take dr to be infinite in the N-SC-F and
SC-N-F arrangements, which is appropriate as long as
the thickness of the ferromagnet is large compared to the
penetration depth into F. For the N-F-SC stacking, we
assume a small and finite dy to allow for coupling between
the N and SC regions. Finally, we note that the number
of occupied transverse modes in the N and SC layers can
be estimated as kydy /7 and ksds/m, respectively.

We summarize the parameters used for our numerical
calculations in Table I. These parameters are chosen to
resemble parameters in InAs, Al (Ap = 0.34meV), and
EusS.

A. Transverse modes

The eigenfunctions in the longitudinal direction are
plane waves for all three layers. The eigenfunctions in
the transverse direction (transverse modes) can thus be
obtained by matching piecewise solutions in the three
layers. For the N layer, the eigenfunctions separate into
the particle and hole sectors. The electron wave function
is

Yyelz,6) = &4 (cjeikﬁz(f)z 4 c:’e—ikgz(g)z)
+e (Ce—eikgz(s)z n Ce—/e—iklgz(e)z> .
while the hole wave function takes the form
Yyn(z,6) =&y (c;e“ﬁl(*s)*z + C}-l—'efikgz(fs)*z)
+é_ (c;e“ﬁ?z(—s)*z + C}:’e—iklgz(—s)*z) .
(12)

with é4 = %(1, +1)7 the eigenspinors of o,,. The overall

eigenfunction is
¢N(Z7E) :ée®¢N,e(rﬂ€) +éh®¢N,h(r75)7 (13)

where &, = (1,0)7 and &, = (0,1)7 are spinors in
particle-hole space. In the SC, the Hamiltonian splits

into two blocks that can be labeled by their o, eigen-
value v = £1,

oo (r6) = & (MO 4 af e H07)

+ (72€) (d;eikgz(s)z + d;/e_ikgz(s)z> ;
(14)

with € = (e, 1)T the eigenspinors of the 2 x 2 super-
conducting BdG Hamiltonian and 8 = arccos(e/A). The
overall SC eigenfunction then takes the form

'¢S(r, 6) = "ps,—i-(rv 5) ® &+ ws,—(ra 6) ®eé. (15)

The spinors &/, are (1,0)” and (0,1)” in spin space,
respectively. Note that &/, correspond to 1/ | electron
in the particle sector and to | / 1 holes in the hole sector.
Finally, the wave function in F does not mix particles and
holes or spin projections o,

P.(r,e) :Z é, ®é, (f7_7o_e’<“0'z (TE)Z_’_f_I’_’Ue*Kaz (Ts)z) 7
T=e,h
o=1/4
(16)
where 7 = e, h acts as £1 when not an index. The trans-
verse momenta ki, ki and k., are defined as

kL (e) = \/k§ — k2 F 2amuk, — k2 + 2mye,  (17)

kE(e) = \/kg — k2 — k2 £ 2mgV/e? — A2 (18)

Kkyyp(€) = \/KE + k2 + k2 — 2mg (e £ 6V). (19)

Throughout the paper, we set k, = 0, effectively render-
ing the nanowire two-dimensional. Extending the calcu-
lation to finite k, would be straightforward and amounts
to a redefinition of kg, ky, and k. Even in such a three-
dimensional calculation, low-k, modes are expected to
exhibit an enhanced mixing of superconductivity, spin-
orbit coupling, and spin-splitting as they scatter more
strongly between the three nanowire constituents.

B. Wave-function matching

We find the eigenfunctions and eigenenergies of the
nanowire by matching wave functions and ensuring cur-
rent conservation at the interfaces. One of the 3 - 8 free
coeflicients of the wave function sets the overall prefactor
which is ultimately fixed by the normalization condition.
The remaining coefficients as well as the energy e (for
fixed k) are determined by (i) the 2 -2 -4 equations
accounting for continuity of the wave functions and cur-
rent conservation at the two internal interfaces, and (ii)
the vanishing of the wave function at the outer interfaces
adds 2 - 4 equations.



C. Ferromagnetic proximity effect

We quantify the strength of the induced exchange cou-
pling by the difference in the scattering phases from
the interface with the ferromagnet for the two spin di-
rections. To this end, consider an interface between a
half-infinite ferromagnetic insulator and a normal region
without spin-orbit coupling or superconductivity. Match-
ing the wavefuncions at the interface yields a spin- and
momentum-dependent scattering phase of

©8,0(ky) = ™ — 2arctan (vg, /v, o) , (20)

where vg, = kg, /mg with 8 =N, S and vg, » = Ko, /Ms
and with the momenta evaluated at a = 0, ¢ = 0, and
A = 0. The scattering phase difference is then

App(ks) = op1(kz) — pp,y (k). (21)

In the N-SC-F and N-F-SC arrangements, where SC and
F share an interface, we use Aps = |Agps(0)| to quantify
the induced exchange coupling. For the SC-N-F arrange-
ment, where F only shares an interface with N, we use
Apy = |A§0N(O)|'

Within our model, Apy and Aypg are determined by
the Fermi velocities for the three types of layers. As
mentioned above, we take these to be comparable for the
three types of layers. We note, however, that this may
overestimate the correlations between Apy and Agg in
the experimental samples. In addition to the ferromag-
netic proximity effect involving atomic exchange fields,
band bending effects not included in our modeling may
modify the N-F and SC-F interfaces differently.

D. Self-consistent treatment of superconductivity

In the SC-N-F arrangement, there is no direct inter-
face between the SC and F layers. Since most modes in
the SC decay rapidly into N as a result of the large dis-
parity in electron densities, the ferromagnet affects the
superconducting pairing correlations only weakly. In con-
trast, effects of self-consistency become important for the
N-SC-F and N-F-SC arrangements. For these geome-
tries, the presence of N has only a small influence on the
strength of superconducting correlations. For this reason,
we consider the interplay between superconductivity and
magnetism within a reduced model of a bipartite SC-F
nanowire. In Fig. 3, we present results for an F layer,
which is infinitely extended in the z direction. Due to
the rapid decay of the mode wave functions into the fer-
romagnetic insulator, this is an accurate model for the
N-SC-F geometry, and provides an upper bound on the
suppression of superconductivity by the ferromagnet for
the N-F-SC arrangement. (We have also considered fi-
nite F slabs and find that the behavior is similar up to
changes in the spin-dependent phase difference by factors
of order unity.)

We obtain the self-consistent order parameter A of the
SC-F structure from the equation

A(r,0V) = g (r(r)ihy(r) sy, (22)

with g < 0 denoting the strength of the attractive inter-
action and making the dependence on the spin splitting
0V in F explicit. Using the modes obtained in Sec. 111,
we iteratively solve for A(r, dV) starting with an initial
superconducting pairing Ag. As a result of the strictly
local interaction g, Eq. (22) will yield a spatially oscillla-
tory A(r,dV). The physically relevant pairing strength
A(SV) is obtained by averaging over these oscillations
and it is this average A which is used as input in subse-
quent iteration steps. The value of g is chosen such that
A(0) = Ap. Convergence is attained once the difference
between the input A(§V') and the corresponding output
falls below a threshold.

The resulting self-consistent solutions for A(6V) are
presented in Fig. 3, showing a suppression of the gap
function as the spin-splitting in F increases. The spectral
gap Agpec is suppressed even more rapidly and vanishes
when A(V) is still finite. Modes with a larger transverse
momentum (and hence smaller k,) frequently scatter off
the ferromagnet, rapidly suppressing the excitation gap
in these modes. It is thus the effect of the spin splitting
on these modes, which causes the spectral gap Agpec to
vanish. More quantitatively, we find that Agpec vanishes
close to the estimated value of Agpg = 4ds/€ of the scat-
tering phase difference (with £ computed with Ag). In
contrast, modes with higher k, scatter less often off the
ferromagnet and effectively sustain nonzero pairing corre-
lations. The intermediate regime of zero Ay, and finite
A(S6V) corresponds to a gapless superconductor. Here,
inclusion of spin-orbit coupling may reopen the gap and
drive the system into a topological phase.

Eventually, as the spin-splitting increases further,
A(0V) decreases to zero. We also calculate the conden-
sation energy of the superconductor as the difference in
the ground state energies of the system with and with-
out superconductivity. We find that in our geometry, the
condensation energy vanishes when the superconducting
pairing is already strongly suppressed, but not yet zero.
This indicates a weakly first-order phase transition to the
normal state [27], with a finite, but small discontinuity
in the order parameter. This weakly first-order phase
transition is a consequence of the finite width dg and the
associated discrete mode structure in the superconduc-
tor. The transition is second order if the discreteness of
the transverse modes in SC can be neglected.

IV. PHASE DIAGRAMS

Performing the numerical calculations outlined in the
previous section, we extract topological phase diagrams
for the three layer arrangements. We first consider the
induced gap Ajnq of the system as a function of the num-
ber of propagating modes kydy/m and ksds/7 in the nor-
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FIG. 6. Induced gap Aing in the absence of spin splitting as a function of the mode occupations ksds/m and kndx/m in the N
and SC layers, respectively. The insets show linecuts along the dashed horizontal lines, with vertical dashed lines corresponding
between the main panels and the insets. Note that the position of the resonance peak in ksds /7 shifts slightly with kxdx /7. (a)
SC-N-F arrangement: Resonance at kndyx /7 = 1.78 and ksds/m = 27.52. (b) N-SC-F arrangement: Resonance at kndy /7 = 1.78
and ksds/m = 27.16. (c) SC-F-N arrangement: Resonance at kndn/7m = 2.23 and ksds/m = 27.61. The symbols marking the
topological regions indicate the choice of parameter values in the panels in Figs. 2, 4, and 5, which are labeled by corresponding

symbols. For other parameters, see Table I.

mal and the superconducting regions. (Ajnq is computed
in the absence of any spin splitting 6V.) Figure 6 shows
corresponding color-scale plots of Aj,q for the three layer
arrangements. Aj,q is found to be only weakly dependent
on ky, except when the first mode in N begins to be oc-
cupied. In contrast, there is an oscillatory dependence on
ks, which originates from resonances between the trans-
verse modes in N and SC [34, 36, 37]. This oscillatory
dependence is emphasized by the insets in Fig. 6, which
display line cuts of Ajnq as a function of kgdgs /.

The topological nature of the gap can be extracted by
computing the topological invariant @ = sgn(Pf (X)),
which corresponds to the fermion parity of the ground
state of the system [38-40]. Within our continuum
model, there is only one time-reversal invariant point
k, = 0, where this change of fermion parity can oc-
cur. The hatched regions superimposed on the color-scale
plots in Fig. 6 indicate the extent of the topological su-
perconducting regions in the presence of a nonzero spin-
dependent phase difference (with Ag equal to the largest
value included in Figs. 2, 4, and 5.) The region has a vis-
ible extent only for the SC-N-F arrangement, while it is
too small to be visible for the other two layer arrange-
ments. The phase transition lines are only weakly de-
pendent on kgds /7 away from the resonances and change
by one unit in kydy /7 around the resonances. This indi-
cates that a new mode becomes populated in the super-
conductor at these resonances. This behavior appears
most clearly in the N-F-SC arrangement, where N and
SC are separated by the potential barrier of F.

To display the dependence on the strength of the ferro-
magnetic proximity effect, we fix the number of occupied
modes in the superconducting layer to one of the reso-
nances and plot the spectral gap, multiplied by the topo-
logical invariant, as a function of both the mode num-
ber in the semiconducting layer and the spin-dependent
phase difference as shown in Figs. 2, 4, and 5 and dis-

cussed in Sec. IT above. The four panels in these phase
diagrams are labeled by symbols, which indicate the cor-
responding parameter choice in Fig. 6.

V. CONCLUSION

Tripartite nanowires proximity coupling a semi-
conducting core to epitaxial superconductor and
ferromagnetic-insulator layers may obviate the need for
applying an external magnetic field for realizing topo-
logical superconductivity and thereby open new design
opportunities for Majorana-based devices. At the same
time, the additional epitaxial ferromagnetic insulator
adds new material-science challenges. Our study aimed
at understanding the observation of zero-bias peaks in
a recent experiment [19] on such tripartite nanowires,
which may constitute evidence for topological supercon-
ductivity.

As shown schematically in Fig. 1, the relevant region
of the nanowire includes all three possible interfaces be-
tween the three constituents, N, SC, and F. To elucidate
and differentiate the mechanisms by which topological
superconductivity can emerge in this structure, we focus
on the three paradigmatic stackings SC-N-F, N-SC-F,
and N-F-SC (see also [23]). Our approach treats these
stackings within a microscopic wave-function approach,
but neglects band bending effects (which, however, would
be the underlying reason why the intersection region of
the three constituents is most relevant for the emergence
of topological superconductivity [21, 22, 24]). We also fo-
cus on clean structures in the absence of bulk or interface
disorder.

We find that the SC-N-F arrangement has by far the
largest topological superconducting region in parameter
space. In this arrangement, superconducting correlations
and spin splitting are induced in N by proximity from



the SC and F layers, respectively. At the same time,
the intermediate N region effectively shields the SC from
the detrimental influence of the ferromagnetic insulator,
as most modes in the SC are only weakly coupled to
the N region due to the much larger electron density in
SC than in N. In this arrangement, topological super-
conductivity therefore emerges by essentially the same
mechanism as previously considered for hybrid semicon-
ductor nanowires [4, 5], with spin splitting now emerging
by proximity rather than by applied Zeeman field. This
mechanism is also expected to be rather robust against
modifications of the model. In particular, we expect dis-
order in the superconductor to increase the strength and
the robustness of the superconducting proximity effect
[34].

The two other stackings involve direct SC-F cou-
plings, requiring a self-consistent treatment of super-
conducting correlations. The ferromagnet insulator has
a strongly detrimental effect on the superconductor,
thereby severely limiting the spin splitting that can be
induced in N without suppressing superconducting cor-
relations entirely. We still find that topological super-
conductivity can emerge for both, the N-SC-F and the
N-F-SC stackings, but only in very limited regions of pa-
rameter space.

For the N-SC-F stacking, disorder in the SC layer may
further limit the topological region in parameter space.
While the ferromagnetic proximity effect differentiates
between modes of the SC in the clean limit, this is no
longer the case when the SC layer is disordered. The

ferromagnetic proximity effect will then be essentially
equivalent to the application of a Zeeman field applied
to the SC layer, a situation for which a recent theorem
[35] precludes topological superconductivity.

For the N-F-SC stacking, the F layer effectively acts as
a potential barrier between the N and the SC layers. This
strongly limits the strength of the proximity-induced su-
perconductivity, unless the thickness of the F layer is
comparable to the penetration depth of the modes into
the ferromagnetic insulator. It appears unlikely that the
F layer in the experiment is sufficiently thin that this
mechanism would be operative.

Our approach neglects various aspects of the exper-
imental hybrid nanowires, such as the detailed device
geometry, disorder, or effects of band bending. Never-
theless, we find that it is the SC-N-F arrangement which
exhibits the most robust topological superconducting
phase and provides the most likely Majorana-based
explanation for the observation of zero-bias peaks in
Ref. [19].
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