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Abstract

We propose a novel view of selection bias in longitudinal surveys.
Such bias may arise from initial nonresponse in a probability sample,
or it may be caused by self-selection in an internet survey. A contrac-
tion theorem from mathematical demography is used to show that
an initial bias can ”fade-away” in later panel waves, if the transition
laws in the observed sample and the population are identical. Panel
attrition is incorporated into the Markovian framework. Extensions
to Markov chains of higher order are given, and the limitations of our
approach under population heterogeneity are discussed. We use em-
pirical data from a German Labour Market Panel to demonstrate the
extend and speed of the fade-away effect. The implications of the new
approach on the treatment of nonresponse, and attrition weighting,
are discussed.

Keywords: Longitudinal survey, panel survey, internet recruitment,
panel attrition, nonresponse bias, self-selection bias, Markov chain,
Mover-Stayer model, weak ergodicity.

1 Introduction

In longitudinal surveys the members of an initial sample are observed over
some time span. In a panel survey the initial sample members are interviewed
in regular time intervals, for example. In many instances the initial sample
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is a probability sample with known inclusion probabilities. However, it may
be also obtained from the internet, where users are invited to participate in a
survey. For such ”River Sampling” there exists no nonresponse by definition
(cf. American Association for Public Opinion Research 2010). These online
participants are then collected in access panels of persons who agree to answer
questionnaires in the future.

The selection of the initial sample may be subject to nonresponse, if a
probability sample is intended (cf. Särndal and Lundström 2005). Or, there
may be informative self-selection (cf., Baker et al. 2013, Cornesse et al.
2020, Keiding and Louis 2016, Smyk, Tyrowicz and van der Velde 2021). In
both cases the estimation of the prevalence of an interesting characteristic in
the population may be biased. However, the characteristic of interest may
change over time according to some transitions law. If the transition law
in the population and in the observed initial sample is the same, the state
distributions in the two populations tend to become similar. In particular,
under a Markov chain model the eventual prevalences of different states may
be deduced from observed state transition probabilities, if they persist over
time (cf., Bishop, Fienberg and Holland 1975, ch. 7). But, Rendtel (2005)
noticed that this has implications for the study of selection biases. Using
register information he demonstrated that the results of the respondent sam-
ple and the initial gross sample could converge over time in terms of their
income characteristics, even though the samples were subject to initial selec-
tion bias. The bias was reduced during the follow-up. In Rendtel (2013) the
term ”fade away” was coined for this phenomenon.

Here we expand these early findings in three directions. First, we consider
non time-homogeneous transitions laws; this case is known as weak ergodicity
in mathematical demography. Second, we discuss panel attrition, the losses
of the initial sample after the start of the panel. Third, we investigate Markov
chains of higher order, and the effect of population heterogeneity in terms of
the Mover-Stayer model (cf., Singer and Spilerman 1974 and Heckman and
Singer 1982).

We analyse data from the German Panel on Labour Market and Social
Security (PASS) in 2006-2010. This panel was selected from a register of
persons in a special labour market program, and we were able to compute
the transition laws for the intended initial sample, the gross-sample, and the
much smaller realized sample. Despite the considerable initial nonresponse
rate of 71.4%, PASS did not exhibit a substantial bias for the labour market
status of interest. But, we use the transition and attrition probabilities
of PASS in a simulation to display the speed of the fade-away effect. We
investigate the effect of attrition, weighting compensation of attrition, and
the size of the fade-away effect under a Mover-Stayer model.
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In Section 2 we present a contraction theorem for non time-homogeneous
Markov chains. For ready perusal, a proof of the result is given in the Ap-
pendix. This provides an estimate of the speed of geometric convergence.
Section 3 discusses the effect of population heterogeneity and chains of higher
order. Section 4 incorporates attrition. We then present the PASS panel in
Section 5. After discussing empirical results we display the results of simula-
tion runs with a sizeable initial bias. We display the size and the speed of the
fade-away effect with and without attrition and under a Mover-Stayer model.
In the final discussion we draw conclusions for an alternative treatments of
nonresponse in longitudinal surveys.

2 Dynamic Changes of State

2.1 Time-inhomogeneous Markov Chain

We consider a finite set of states S = {1, . . . , S}. The states could be defined
in terms of social or economic characteristics, for example. In the application
of Section 5, we will have S = 2 and the states relate to unemployment
recipiency.

Let Yt be the state of an individual at time t = 0, 1, 2 . . . The state
transitions of the individual are assumed to be Markovian, or

P (Yt = j|Yt−1 = i, Yt−2 = st−2, . . . , Y0 = s0) = P (Yt = j|Yt−1 = i) (1)

The S × S matrix of transition probabilities from time t − 1 to time t is
P(t) = (pij(t)), where pij(t) = P (Yt = j|Yt−1 = i). In the case of panel
surveys t indexes the panel waves. Transition probabilities from time 0 to
time t are given by P(t) = P(1)P(2) . . .P(t).

2.2 Contraction Theorem

Consider two populations. One population will correspond to our observed
sample. Their members change states according to the same transition prob-
abilities pij(t). The initial state distributions of the two populations are the
S-dimensional vectors ν(0) = (ν1(0), . . . , νS(0))T , and π(0) = (π1(0), . . . , πS(0))T .
The subsequent expected state distributions satisfy the recursions ν(t) =
PT (t)ν(t− 1), and π(t) = PT (t)π(t− 1) for t = 1, 2, . . .

When all components of π(t) are strictly positive, we have the lower and
upper bounds

mt ≡ min
i

νi(t)

πi(t)
≤ νj(t)

πj(t)
≤ max

i

νi(t)

πi(t)
≡Mt, (2)
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for all j = 1, . . . , S. Then the following contraction theorem holds.
Theorem. Suppose there is a lower bound 0 < pL ≤ pij(t) for t = 1, 2, . . ..

Then ν(t) and π(t) converge uniformly in the sense that

Mt −mt → 0, as t→ +∞. (3)

A proof can be found in the Appendix.
The result is sometimes called weak ergodicity. The regularity conditions

can be stated in various ways. Essentially, the chain must be irreducible and
aperiodic (see, e.g., Çinlar 1975, for the definitions of these concepts). More
general statements are given, e.g., in Le Bras (1977) and Cohen (1979).

An important feature is the speed of convergence to the joint distribution
on the state space. In the case of a fixed transition matrix P there exists
a steady state distribution π∗. Then the second largest eigenvalue λ2 of P
determines the speed of the convergence to the steady state distribution. One
can prove |p(t)ij − π∗

j | = O(|λ2|t) for all i, j ∈ S., see Seneta (1980, Theorem
4.2) for a proof.

Example. Let S = 2, and consider a Markov chain with transition prob-
abilities of the form

P(t) =

[
1− a(t) a(t)
b(t) 1− b(t)

]
, (4)

where 0 < a(t) < 1 and 0 < b(t) < 1. The spectral decomposition of P(t)
yields P(t) = V(t)Λ(t)U(t)T . The dominant eigenvalue is λ1(t) = 1, and the
corresponding right eigenvector can be taken to be V1(t) = (1, 1)T for all t =

1, 2, . . .. Corresponding to this choice we have U1(t) = ( b(t)
a(t)+b(t)

, a(t)
a(t)+b(t)

)T .

The second eigenvalue is λ2(t) = 1 − (a(t) + b(t)). If it happens that
a(t) = c(t)a and b(t) = c(t)b for some constants a > 0, b > 0, then the
eigenvectors do not depend on time t, but λ2(t) does. Now if values c(t)
are bounded away from zero for two populations, then the two populations
will have the asymptotic state distribution given by U1(t) = ( b

a+b
, a
a+b

)T .
This shows that two populations with different time-varying values c(t) can
have the same asymptotic state distributions. In the general case, no asymp-
totic state distribution need to exist, but the two the state distributions still
become asymptotically equal.

3 Population Heterogeneity

A naive reading of the contraction theorem suggests that when dynamic
changes of state occur, we should expect – contrary to everyday observations!
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– similar state distributions in population sub-groups. By extending the
setting, we show that the tendency has limitations.

3.1 Markov Case

A simple form of population heterogeneity can be formally described by as-
suming that, in addition to states, the individuals belong to classes with
different transition probabilities. We assume that class membership is per-
manent, i.e., it does not change over time, but that it is unobservable, or
latent.

If the contraction theorem applies within each class, then the distribution
differences within the classes become negligible. However, it is no longer
guaranteed that the marginal differences become negligible.

3.2 Movers and Stayers

An important case with two latent classes is the Mover-Stayer model. In
social mobility studies it was observed early on (e.g., Singer and Spilerman
1974, and references therein) that state transitions do not always appear to
be Markovian. In the simplest case we would have movers who change state
as described in Section 2.2, and stayers who never change state at all. This is
a limiting case of the model discussed above, when the probabilities of state
changes converge to zero.

Suppose the fraction of stayers is 0 < q < 1 of the target population.
Then, the matrix of one-step transition probabilities can be written as

Pq = qI + (1− q)PM , (5)

where I is an S × S identity matrix and PM is the transition matrix of the
movers (cf., Singer and Spilerman 1974, 372). Unlike in the Markovian case,
the t-step transition probabilities are of the form

P(t)
q = qI + (1− q)P(t)

M , (6)

where P
(t)
M is as defined in Section 2.1. In order that the state distributions of

two such populations were to converge, they should have (i) the same value
q and (ii) equal state distributions of stayers at t = 0.

The presence of stayers or other forms of heterogeneity may be empirically
detected, if information about time spent in different states is available on
individual level (for an early discussion, see Alho 1990 , and for a more recent
one Dudel 2021).
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3.3 Markov chains of higher order

A special case of heterogeneity are Markov chains of higher order. Here the
transition behaviour depends not only on the previous state but earlier states
may also have an impact on the chances which state is reached in the next
step. For example, the chances to get out of poverty may deteriorate the
longer one has been in poverty before.

This case may be treated by an extension of the state space. For example,
for a second order Markov chain the state space becomes S ∗ = S × S ,
where the first component indicates the state at time t − 1 and the second
component indicates the state at time t. Of course, it is logically impossible
to reach all states S ∗ in one transition. For example, we cannot reach the
state (2, 2) from (1, 1) in one step. However, we may step from (1, 1) to (1, 2)
and then from (1, 2) to (2, 2). To show that the contraction theorem holds,
the transition matrix PS ∗ over the extended state space S ∗ must be strictly
positive, or become strictly positive upon multiplication (cf., Appendix).

Note, that in this case the states correspond to vectors of consecutive
states. But, this is merely a convention, and the states could just as well be
labeled in some other way.

4 Nonresponse in Panel Studies

LetRk,t be the response indicator, or for individual k withRk,t = 1 we observe
the value of Yk,t, but if Rk,t = 0 we don’t. Assume that attrition occurs
independently of state transitions, or the events {Yk,t = j} and {Rk,t = 1}
are independent given the event {Yk,t−1 = i, Rk,t−1 = 1}. Furthermore, being
a respondent is assumed to have no influence on state transitions. This means
that P (Yk,t = j | Yk,t−1 = i, Rk,t−1 = 1) = pij(t), where pij(t) is the (i, j)
element of the transition matrix P(t). Then, we have that

P (Yk,t = j, Rk,t = 1 | Yk,t−1 = i, Rk,t−1 = 1) = ri(t)pij(t), (7)

where ri(t) = P (Rk,t = 1 | Yk,t−1 = i, Rk,t−1 = 1) does depend only on
the previous state i . The corresponding attrition probabilities are 1− ri(t).
Note that equation (7) is equivalent to assuming that attrition is Missing At
Random in the sense of Rubin (1976).

We may estimate the state specific response probability ri(t) by the em-
pirical response ratio r̂i(t) =

∑
j ni,j(t)/ni(t − 1), where ni(t − 1) is the

number responding in state i at t − 1, and nij(t) is the number of them re-
sponding in j at t. Let wi,j(t) = nj(t−1)/

∑
j ni,j(t−1). With these weights

we can compute the attrition corrected number of units in state j at wave t
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recursively, as

Z̃j(t) =
S∑

i=1

Z̃i(t− 1)wi,j(t)/r̂i(t). (8)

5 Application to Unemployment Benefits

5.1 PASS: Aims and Data

The survey PASS started in 2006, with some 12,500 households interviewed
(cf., Trappman et al. 2013). The acronym stands for the German Panel
Arbeitsmarkt and Soziale Sicherung (Panel Labour market and social secu-
rity). It had broad aims of providing income information for social security
purposes in Germany. The specific subpanel we consider involves a follow-up
of a cohort of individuals who were unemployment recipients in 2006. The
recipiency rules had been changed in a major way in 2005 with the aim of ac-
tivating the unemployed as job-seekers. This was part of the so-called Hartz
Reforms, named after the chairman of the committee that made the propos-
als. A new means-tested benefit scheme, so-called Unemployment Benefit II,
or UBII was introduced. The primary goal of the follow-up was to see if
the new rules worked, i.e., that the prevalence of the recipiency in the cohort
would go down. Our focus will be on the changes in the sample estimates of
the prevalence π(t), based on an initial sample of size 23,773.

The key to our analyses is that the recipient cohort could be linked with
the so-called Integrated Employment Biographies register maintained by the
German Federal Employment Agency (http://fdz.iab.de/en.aspx). This sec-
ond, independent source of unemployment recipiency information was avail-
able from January 2005 until December 2011, permitting an analysis for the
five panel waves 2006-2010.

In PASS we will have benefit recipients and nonrecipients, or S = 2. In
estimation, we take the point of view of a researcher who does not have access
to the register information.

5.2 Initial nonresponse, Attrition and Transitions

Many persons in the target population of PASS had a low education or
migration background, so numerous measures to reduce nonresponse were
implemented. Despite these efforts, only 6,798 persons responded out of
the 23,773 benefit recipients initially selected, or a disappointing 28.6 %.
Attrition over time is detailed in Table 1. The increase from t = 1 to t = 2
was due to refusal conversion.
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Table 1: Size of Responding Sample, and the Fraction of Initial Respondents
Remaining in the Panel.

t Sample Size Fraction Remaining (%)
0 6,798 100.0
1 3,468 51.0
2 3,665 53.9
3 2,697 39.7
4 2,257 33.2

Top panel of Table 2 displays the estimated transition matrices for the
respondents. This would be available for a researcher. The bottom panel has
the same information, based on registry data, for the nonrespondents. There
is little difference between the two groups. Or, in this case the transition
probabilities of the sample and the target population are clearly approxi-
mately equal.

Focus on the top panel of Table 2. Let us take the transition matrices
presented there as estimates P̂(t), t = 1, 2, 3, 4 of (4), with elements depen-
dent on â(t) and b̂(t). The second eigenvalues of the estimated transition
matrices are λ̂2(t) = 1 − (â(t) + b̂(t)), and the estimates of the asymptotic
probability of UBII-recipiency are π̂1(t) = b̂(t)/(â(t) + b̂(t)). Starting from
the latter, for π̂1(t) we get the values 0.53, 0.44, 0.45, 0.36. We note that for
any substantive discussion of the success of the Hartz Reforms the outlook
painted by the consecutive estimates change in a major way. This shows
that the consideration of non time-homogeneity is important. The estimates
of the second eigenvalues λ̂2(t) are 0.62, 0.68, 0.71, 0.75. This says that the
fade away effect is slowing down.

Table 3 indicates that UBII-recipients tend to have a bit lower attrition
probability than nonrecipients. Or, there is some evidence that ri(t) depends
on i. While the difference is small in waves 1, 3 and 4, the attrition behaviour
between recipients and non-recipients amounts 7 percentage points for wave
2, where refusal conversion was practiced. As the topic of the survey was
UBII recipience it seems that the refusal conversion was especially successful
among the UBII recipients. As recipiency of UBII payments was the main
focus of the survey, persons who are still in this state could be more interested
in responding (cf., Groves et al. 2000).

Table 4 compares the fraction of UBII-recipients for the sample ini-
tially selected to the study (line FULL), the initial respondent sample (line
INITIAL) and the responding sample in later panel waves (line RESP ).
Despite an initial nonresponse rate of 71.5 %, the initial bias was only
2.3 percentage points. Comparing the percentages for FULL with those
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Table 2: UBII-Recipient State (yes, no) and Transition Probabilities for
Respondents and Nonrespondents in the Recipient Sample of PASS.

Respondents at Transition t→ t + 1
t = 0 0→ 1 1→ 2 2→ 3 3→ 4

yes no yes no yes no yes no
yes 0.82 0.18 0.82 0.18 0.84 0.16 0.84 0.16
no 0.20 0.80 0.14 0.86 0.13 0.87 0.09 0.91

Nonrespondents at Transition t→ t + 1
t = 0 0→ 1 1→ 2 2→ 3 3→ 4

yes no yes no yes no yes no
yes 0.82 0.18 0.83 0.17 0.85 0.15 0.83 0.17
no 0.19 0.81 0.15 0.85 0.14 0.86 0.10 0.90

Table 3: Attrition Probability at t + 1 Conditional on UBII-Participation
at t.

Transition UBII Attrition
t→ t+ 1 at t Probability

0→ 1 yes 0.460
no 0.475

1→ 2 yes 0.342
no 0.410

2→ 3 yes 0.282
no 0.284

3→ 4 yes 0.286
no 0.309

Table 4: UBII-Recipients Among the Complete Initial Sample (FULL),
the Initial Responding Sample (INITIAL) and the Responding Sample
(RESP ).

Sample t=0 t=1 t=2 t=3 t=4
FULL 0.790 0.689 0.616 0.576 0.523
INITIAL 0.813 0.706 0.619 0.572 0.519
RESP 0.813 0.732 0.636 0.602 0.548
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for INITIAL we see that the over-representation of persons with UBII-
payments fell from 2.3 at the start of the panel to 0.4 four waves later. This
is the pure fade-away effect without attrition. The reduction was, however,
compensated by panel attrition, since UBII recipients had somewhat higher
probability to stay in. Therefore, comparing FULL to RESP , the bias
remained at about 2.5 percentage points.

The initial bias in the PASS survey is too small to display the full power
of the contraction theorem. Therefore we demonstrate below the fade-away
effect by means of a simulation study with the same transition and attrition
probabilities as in the PASS.

5.3 Longitudinal profiles

It is plausible that persons with longer periods in UBII have a lower chance
to escape this state. Therefore Table 5 displays the empirical transition
probabilities of the PASS sample for longitudinal profiles of length two. As
before, transition of the respondents and nonrespondents are similar, and
omitted here for brevity. From Table 5 we read for the transition 0/1 to 1/2
that the probability to stay in the UBII state is 0.83 if one has been the
last two timepoints in UBII while it is only 0.70, if one comes from the state
(no,yes). This difference is displayed also for the transitions 1/2 to 2/3 and
2/3 to 3/4. If we compute the second eigenvalue for these transition matrices
we get the values 0.75, 0.79 and 0.81. Like in the Markov first order case the
speed of convergence slows down.

5.4 A simulation study in the PASS framework

We start our simulations with a sample size of 6,798, like the PASS at time
t = 0. However, we assume a substantial (counterfactual) over-representation
of UBII recipients at level 0.95, which is 16 percentage points over the true
level. As the receipt of UBII payments is an important topic of the survey,
persons who are still in this state at the start of the survey may be more
motivated to participate than persons who have already escaped this state.

We use the transition matrices of Table 2 and the attrition probabilities of
Table 3 to generate the states and response indicators at times t = 1, 2, 3, 4.
The UBII percentages on the basis of the original intended sample (line
FULL in Table 4) are displayed as ”True” prevalence. The simulation run is
repeated R = 100 times to display the variance due to the stochastic nature
of the transitions and the attrition. The displayed means are the means over
all replications.
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Transition 0/1 to 1/2
Start UBII
UBII yes,yes yes,no no,yes no,no

yes,yes 0.83 0.17 0.00 0.00
yes,no 0.00 0.00 0.19 0.81
no,yes 0.70 0.30 0.00 0.00
no,no 0.00 0.00 0.11 0.89

Transition 1/2 to 2/3
Start UBII
UBII yes,yes yes,no no,yes no,no

yes,yes 0.86 0.14 0.00 0.00
yes,no 0.00 0.00 0.21 0.79
no,yes 0.74 0.26 0.00 0.00
no,no 0.00 0.00 0.10 0.90

Transition 2/3 to 3/4
Start UBII
UBII yes,yes yes,no no,yes no,no

yes,yes 0.85 0.15 0.00 0.00
yes,no 0.00 0.00 0.20 0.80
no,yes 0.69 0.31 0.00 0.00
no,no 0.00 0.00 0.07 0.93

Table 5: Second order transition matrices on UBII profiles
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Figure 1 compares three estimates of the prevalence of UBII with the
true prevalence until time t = 4. By design, the initial bias at t = 0 is 16 %.
The upmost line (dotted line with stars) results from the simulated samples
with attrition. No correction for losses due to attrition was done here. For
this version the initial bias decreased substantially from 16 to 3 percentage
points, or by 4/5. The next line is from the sample with no attrition after
t = 0. It is located somewhat below the first line. Their difference displays
the additional bias due to attrition. These differences are small: t = 4
they amount only 1.1 percentage points. However, the losses with respect to
sample size are substantial: The sample size decreases from 6,798 to 1,197.
The difference to the PASS sample size in Table 1 are due to conversions of
earlier nonrespondents which is not reflected in the simulation design.

The last of the three lines is given by a sample with attrition, in which
the estimated prevalence is obtained by weighting. The weights work almost
perfectly in the simulation. There is no practical difference to the prevalence
values of the no-attrition case. Here the final bias at t = 4 amounts only 1.9
percentage points, which is 1/10 of the initial bias.

Figure 2 displays the 90 percent confidence bands under a binomial model
for the initial UBII state. Here we generated UBII at t = 0 from a binomial
distribution with parameters n = 6, 799 and p = 0.95. For the different
UBII starting values we generated the subsequent UBII states and attrition
indicators as in the previous simulation runs. For each of the 100 replications
with attrition we computed a separate weighting variable. The interval is
given by the 5 percent and the 95 percent point over the replications. The
length of the intervals matches those from the binomial model. For example,
at t = 4 we obtain for sample size n = 1, 197 and p = 0.55. The length
2 × 1.65 ×

√
p(1− p)/n = 0.046 can be compared with 0.044 in Figure 2.

Despite the substantial (counterfactual) initial bias of 16 percentage points,
the true value is already covered by confidence interval at time t = 4. This
demonstrates again the strength of the fade-away effect.

Above, we discussed the Mover-Stayer model as a departure from the
Markov model, for which the contraction theorem holds. In the case of UBII
recipients it seems plausible that a certain fraction of this population remains
permanently in the state UBII. We will adopt this scenario in our simulation
setting in order to study the decline of an initial nonresponse bias under this
setting.

The transition matrices for the PASS indicate steady state distributions
in UBII in the range of 30 to 40 percent. Thus, a proportion as high as
q = 0.3 of the stayers might be plausible. As the percentage of UBII recipi-
ents at t = 0 is 95 percent we assume that the stayer group consists entirely
of UBII recipients. For the mover group we have to select transition proba-
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Table 6: UBII State (yes, no) and transition probabilities for movers in the
simulation runs.

Respondents at Transition t→ t + 1
t = 0 0→ 1 1→ 2 2→ 3 3→ 4

yes no yes no yes no yes no
yes 0.743 0.257 0.743 0.257 0.771 0.229 0.771 0.229
no 0.20 0.80 0.14 0.86 0.13 0.87 0.09 0.91

bilities in equations (5) and (6). These values should be compatible with the
marginal transitions from PASS, which fix the left side of equations (5) and
(6). The resulting transition probabilities are given in Table 6. The attrition
probabilities of Table 3 remain unchanged.

Figure 3 compares the resulting prevalence of both cases: the homoge-
neous case (label Triangle) and the Mover-Stayer case (label Square). The
mover part of the sample, which comprises 70 percent of the initial sample,
still leads to a substantive reduction of the initial bias. Note, that the transi-
tion probabilities in Table 6 imply a higher transition intensity for the movers
than the transitions in the PASS. Until t = 4 the initial bias has decreased
from 16 percentage points to 8.2 percentage points (Sample with attrition).
This is a reduction by 1/2. However, after this point in time there is little
further bias reduction, as the lines of the true values and the mover stayer
values are almost parallel.
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6 Discussion

The driving force behind the contraction theorem is the frequency of changes
between the states. As discussed in Rendtel (2013), transitions between
poverty states and income quintiles are examples of situations, in which the
effects predicted by the contraction theorem are likely to appear. In our
simulations we could show, that an initial bias of a much higher magnitude
than a standard error can disappear in a few transitions, and the true value
is covered by the confidence interval.

An early hint of the possibility of the fade away phenomenon can be found
in Fitzgerald, Gottschalk and Moffitt (1998), who reported that distributions
in the Panel Study on Income Dynamics (PSID) became increasingly similar
to those from the U.S. microcensus without any additional weighting. The
contraction theorem applies, under regularity conditions, to any series of
transitions on a finite state space. By extending the state space to Markov
chains of higher order we may also show the fade-away of initial bias for
longitudinal profiles.

Temporal variability of the characteristic of interest is a relevant aspect
in the analysis of nonresponse. Traditionally, one has tried to estimate non-
response probabilities (see Särndal and Lundström 2005) in a design-based
setting, or to use predictions for the non-observed units in a model-based
approach (see Little and Rubin 2002 and Rao and Molina 2015 ). Here we
call upon the users of longitudinal data to have a look on the transition
matrices and their second eigenvalues. If these eigenvalues are small, then
there may be a substantial fade-away effect of a potential nonresponse bias,
which is independent of the mechanism generating the nonresponse at the
start of a panel. Besides, it is easy to estimate transition matrices from the
observed sample, while it is difficult to derive estimates of response proba-
bilities for the start of a panel. This is due to the simple fact that often, for
the nonrespondents, only limited information may be available.

The empirical results from PASS suggest that the receipt of social benefits
has only a minor impact on the attrition behaviour. As a consequence,
the impact of attrition on the nonresponse bias was small, and could be
controlled by weighting with inverse state-specific response rates. This result
is in line with the review of literature on panel attrition by Watson and
Wooden (2008). They concluded that ”income is relatively unimportant for
attrition”. Instead, variables linked to field work are often good predictors for
attrition (Behr et al. 2005). For example, in a panel with personal interview,
a change of the interviewer is a risk factor for drop-out (cf., Basic and Rendtel
2007), previous interview experience, such as providing a contact name at the
first wave, matters (Laurie, Smith and Scott, 1999), and staying in contact
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with panel members can be important (Iacovou and Lynn, 2017). In as
much as such characteristics are known, they can be accommodated using
propensities (Kreuter and Olsen 2011, Trappmann, Gramlich and Mosthaf
2015).

Attrition may decrease case numbers substantially; in our example from
6,798 to 1,197. This is often regarded as an argument to increase the sam-
ple size by a so-called refreshment sample, see Deng et al. (2013) and the
literature therein. Often the refreshment samples are simply taken to boost
the case numbers. But one should keep in mind, that each fresh new sample
could incur a fresh bias into the joint sample. Thus it may happen that the
estimates of the old panel and the refreshment sample differ systematically.
Often such a difference is interpreted as an attrition bias of the old panel.
However, there is also the possibility that a bias in the old panel fades away
while the refreshment samples suffer from a substantial initial wave bias.

Rotation schemes for panel surveys are an automated way of replacing
systematically parts of the old panel by a newly sampled rotation groups. Of-
ten there are systematic differences between estimates from different rotation
groups, called rotation group bias (see, e.g., Solon 1986). These differences
may have different causes like panel conditioning, or selective attrition (cf.,
Bailar 1975). In our context, these differences may also arise as a consequence
of the fade away of bias among the earlier respondents.

Inhomogeneity of transitions rates, which is not explicitly controlled by
observed variables can be a drawback of the approach discussed here. The
Mover-Stayer model is a worst case scenario in this context. We checked the
numerical effect of such a model deviation in our simulations. Because there
is no mobility in the stayer group, the mobility in the mover group is to be
higher than the marginal mobility. In our simulation setting the contraction
within the mover group turned out to be considerably high and resulted in
a reduction of the initial bias by 1/2 within the first four waves. However,
after this initial period there seems to be no further bias reduction, as the
Stayers limit the chances of change.

In order to reduce the effect of inhomogeneous transition laws we should
look for observed stable variables which stratify the transition laws. Within
these strata, the transitions should be almost homogeneous, so that the con-
traction theorem holds within each stratum. If we know the stratum sizes in
the population then we can estimate the prevalence of the characteristic of
interest within the strata using the fade-away effect. In the second stage, we
can weight the stratum estimators by stratum sizes. Note, that the argument
for the selection of stratum variables is different from classical approaches of
design-based sampling. There, the strata variables are chosen in order to
reduce the variance of the variable of interest within strata, see, for example,
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Särndal et al. (1992). Here, we look for variables which homogenize the
transition behaviour.

Internet surveys are a fast and cheap means to collect data from the
population of internet users. This is especially useful in domains, in which
the willingness to respond is low (e.g., Legleye 2018). The range of sam-
pling strategies is broad: selection from a frame of email addresses, stratified
sampling from a pool of self-selected volunteers, called access panel, or just
River sampling, which asks for participation by an easy to use voting gadget
in the internet, see AAPOR (2010), Cornesse et al. (2020), Lehdonvirta et al.
(2020) and Valliant and Dever (2011) for examples. While they may involve
elements of probability sampling, internet surveys are prone to self-selection
bias (Bethlehem 2010). Elliott and Valliant (2017) provide a formal overview
of inference for such samples. Our results add a temporal perspective which
suggests that for variables with turnover a bias may be reduced, over time.
There are numerous evaluation studies which compare the results of online
panels with figures from sample surveys or registers, see, for example, Cor-
nesse et al. (2020), Lehdonvirta et al. (2020). However, the comparisons we
have seen, have been cross-sectional. It would seem to be fruitful to have
assessments that include a longitudinal perspective, for example, from access
panels.

As we should safeguard against inhomogeneity in transition behaviour
we should use the above mentioned stratification approach with variables
whose’s population totals are known, such as gender, birth cohort, or parental
family status. This should be feasible for many access panels.

The approach we have introduced does not help with the initial bias at
the time of study. To address this, one would have to estimate initial re-
sponse probabilities, or use calibration information in a design-based setting,
(cf. Särndal and Lundström 2005 and Särndal 2007). In a model-based set-
ting we can use predictions for the missing observations under the Missing
At Random assumption or, if it does not hold, we have to switch to sample
selection or pattern mixture models (cf. Little and Rubin 2002). All these
approaches rely heavily on assumptions on the response process or the prob-
ability law of the outcome variables, or both. Typically, these assumptions
cannot be verified from the observed data alone. However, the application
of these approaches has implications for the estimation results in later panel
waves. For example, a weighting scheme of the initial panel wave should be
updated sequentially by attrition weights. Or, in a Bayesian framework we
may postulate a prior distribution on the prevalence parameter at time t = 0,
which is then updated for the next panel waves. If the underlying response
model for initial participation is not correctly specified, the resulting preva-
lence estimates are biased, see Enderle et al. (2013) for the case of an access
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panel. Here a new issue arises: is it better to trust in the fade-away effect
of the initial nonresponse without a model for initial nonresponse ,or should
one use a potentially wrong model for nonresponse compensation, which may
incur also biases in later panel waves? This question is addressed to future
research.
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Appendix

Proof of the Contraction Theorem

The proof below provides details for the Markov chain case, based on sketches
in Alho and Spencer (2005), and Le Bras (1977).

Let πF(t) be the distribution on the state space at wave t for the first
Markov chain which started as the FULL-sample, i.e. the gross sample
including respondents and nonrespondents. It’s components are denoted by
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πF,i(t). Similarly πR(t) denotes the distribution on the state space for the
second Markov chain for the sample of initial responders.

We assume that P (t) > 0, πF(0) > 0, and πR(0) > 0, so for all t the
minima mt and the maxima Mt of the ratios πF,i(t)/πR,i(t) are well defined.
Moreover, we assume that the elements of the transition matrices P (t) are
bounded from below by pij(t) > pL > 0, and as probabilities they satisfy
pij(t) ≤ 1. All these assumptions can be relaxed but those mathematical
details are not central for our applications, and we omit them.

Step 1. The ratios of the vector elements contract over time, i.e. for all t
we have:

mt ≤ πF,i(t+ 1)/πR,i(t+ 1) ≤Mt, i = 1, . . . , I. (9)

Because of πF,j(t+ 1) =
∑

i pi,j(t)πF,i(t) we have

πF,j(t+ 1)

πR,j(t+ 1)
=
∑
i

pi,j(t)πR,i(t)∑
h ph,j(t)πR,h(t)

πF,i(t)

πR,i(t)

Thus, for all j, the ratios πF,j(t + 1)/πR,j(t + 1) are convex combinations of
the ratios πF,i(t)/πR,i(t) with weights

wi,j(t) =
pi,j(t)πR,i(t)∑
h ph,j(t)πR,h(t)

.

Therefore it follows that

πF,j(t+ 1)

πR,j(t+ 1)
=

∑
i

wi,j
πF,i(t)

πR,i(t)

≤
∑
i

wi,j max
h

πF,h(t)

πR,h(t)

= max
h

πF,h(t)

πR,h(t)

∑
i

wi,j

= Mt

A similar argument holds for the minima. This proves Equation (9). As a
consequence we have mt ↑ and Mt ↓, and the task is to show that the limits
are the same.

Step 2. As an intermediate step, we show that the weights are bounded
from below,

wij(t) ≥ (pL)2/I i, j = 1, . . . , I. (10)
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We first show that the numerator of the weights is bounded from below:

pij(t)πR,j(t) ≥ pLπR,j(t)

= pL
∑
h

phj(t− 1)πR,h(t− 1)

≥ (pL)2
∑
h

πR,h(t− 1)

= (pL)2

The summands of the denominator can be bounded from above by 1. Hence
the sum is smaller than I×1. From both inequalities equation (10) is proven.

Step 3. To bound the difference Mt − mt, define first adjusted weights
w∗

ij(t) = wij(t) − (pL)2/I ≥ 0 , according to step 2. Their sum over i is less
than 1. We define adjusted ratios for time t + 1 which use these adjusted
weights. The minima and maxima with respect of the weighted ratios are
defined as:

m∗
t+1 = min

j
{

I∑
i=1

πF,i(t)

πR,i(t)
w∗

ij(t)}

and

M∗
t+1 = max

j
{

I∑
i=1

πF,i(t)

πR,i(t)
w∗

ij(t)}.

Nevertheless, Mt −mt = M∗
t −m∗

t as the same constant is subtracted from
both Mt and mt. Now we obtain,

m∗
t+1 = min

j
{

I∑
i=1

πF,i(t)

πR,i(t)
w∗

ij(t)}

= min
j
{

I∑
i=1

πF,i(t)

πR,i(t)
(wij(t)− (pL)2/I)}

≥
I∑

i=1

min
j
{πF,j(t)
πR,j(t)

}(wij(t)− (pL)2/I)

= mt(1− (pL)2)

Similarly it is shown that
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M∗
t+1 ≤Mt(1− (pL)2))

Therefore we obtain the inequalities

0 < Mt+1 −mt+1 ≤ (Mt −mt)(1− (pL)2)
...

≤ (M0 −m0)(1− (pL)2)t

As (1− (pl)
2)t converges to 0 as t→ +∞ we have completed the proof. This

also shows that the convergence is geometric, determined by the constant
1− (pL)2 < 1.

More generally a contraction theorem may be proven, if the matrices P (t)
have strictly positive elements in the same positions, there is some t0 ≥ 1 such
that the product P (1) · · ·P (t0) is strictly positive, and the positive elements
of matrices P (t) are uniformly bounded away from zero.
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