Supplementary Material

Ligand Effects on Structural, Protophilic and Reductive Features of Stannylated Dinuclear Iron Dithiolato Complexes

Hassan Abul-Futouh,*a Laith R. Almazahreh,^{b,c} Sara J. Abaalkhail,^a Helmar Görls,^c Sven T. Stripp^d and Wolfgang Weigand*^c

^a Department of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan. Email: <u>h.abulfutouh@zuj.edu.jo</u>.

^b ERCOSPLAN Ingenieurbu[¬]ro Anlagentechnik GmbH, Arnsta[¬]dter Straße 28, 99096 Erfurt, Germany.

^c Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany. E-mail: <u>wolfgang.weigand@uni-jena.de</u>.

^d Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495 Berlin, Germany

Figure S1. Overlay of the x-ray structures of compounds 1, 2 and 3.

Figure S2. IR spectra of **2** and **3** do not suggest S-protonation in the presence of HBF₄. Panels (A) and (C) depict the IR spectrum from $2800 - 1800 \text{ cm}^{-1}$ including the CN stretches of acetonitrile (solvent, very strong bands at 2295 cm⁻¹ and 2255 cm⁻¹) and the CO stretches of **2** and **3** between $2150 - 1850 \text{ cm}^{-1}$. The IR regime of the SH stretches ($2500 \pm 50 \text{ cm}^{-1}$) is highlighted. Panels (B) and (D) depict the IR regime of the SH stretches in greater details. Neither **2** (B) nor **3** (C) show a significant increase of signals around 2500 cm⁻¹ upon acidification in the presence of HBF₄ (red and blue traces, respectively). The SH stretching frequency is typically observed around 2500 cm⁻¹.

Figure S3. ¹H NMR spectrum (CD_2Cl_2) of 2 at 298 K.

Figure S4. ³¹P{¹H} NMR spectrum (CD_2Cl_2) of 2 at 298 K.

Figure S6. ¹H NMR spectrum (CDCl₃) of **3** at 298 K.

Figure S7. ${}^{31}P{}^{1}H$ NMR spectrum (CDCl₃) of **3** at 298 K.

Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum (CDCl₃) of 3 at 223 K.

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃) of **3** at 298 K.

Figure S10. In situ ¹H NMR spectrum (CD₂Cl₂) of complex 3 with HBF₄·Et₂O at 298 K

Figure S12. Cyclic voltammetry of 1.0 mM $Fe_2(CO)_5(PPh_3)\{\mu-(SCH_2)_2\}SnMe_2$ (2) in CH₂Cl₂-[*n*-Bu₄N][BF₄] (0.1 M) at various scan rates. Glassy carbon electrode. Potential *E* is given in volts (V) and referenced to Fc⁺/Fc couple. The arrows indicate the scan direction.

Figure S13. Cyclic voltammetry of 1.0 mM Fe₂(CO)₅(P(OMe)₃){ μ -(SCH₂)₂}SnMe₂ (**3**) in CH₂Cl₂-[*n*-Bu₄N][BF₄] (0.1 M) at ν = 0.2-1 V/s. Glassy carbon electrode. Potential *E* is given in volts (V) and referenced to Fc⁺/Fc couple. The arrows indicate the scan direction.

Figure S14. Cyclic voltammetry of 1.0 mM Fe₂(CO)₅(P(OMe)₃){ μ -(SCH₂)₂}SnMe₂ (**3**) in CH₂Cl₂-[*n*-Bu₄N][BF₄] (0.1 M) at ν = 2-10 V/s. Glassy carbon electrode. Potential *E* is given in volts (V) and referenced to Fc⁺/Fc couple. The arrows indicate the scan direction.

Figure S15. Cyclic voltammetry (0.2 V·s⁻¹) of 1.0 mM Fe₂(CO)₅(PPh₃){ μ -(SCH₂)₂}SnMe₂ (**2**) in CH₂Cl₂-[*n*-Bu₄N][BF₄] (0.1 M) at [HBF₄·Et₂O]/[**2**] = 0-4. Glassy carbon electrode (diameter = 1.6 mm). Potential *E* is given in volts (V) and referenced to Fc⁺/Fc couple.

