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1. Motivation and Aim of the Thesis 

A Zika virus epidemic broke out in 2015 in Brazil1 causing microcephaly, a rare fetal 

malformation, in over 600 pregnant women.2 Due to this severe and rare complication 

of a Zika infection, the epidemic raised global interest. A concern emerged with the 

start of the 2016 Summer Olympics in Rio de Janeiro: the virus could spread all over 

the world together with tourists coming back to their homelands.3 The broad media 

awareness triggered a surge in research on the Zika virus (firstly described in 1952,4 

sic) and also other flaviviruses as shown in Figure 1B. 

 

 

Figure 1. A timeline presenting the surge in research on (A) the Zika virus (green) and (B) 

flaviviruses (green) after 2015 and coronaviruses (grey) after 2019. The data were obtained 

from PubMed by searching for keywords “Zika virus”, “flavivirus”, and “coronavirus” in the 

period from 2010 to 2020. 

 

A similar timeline development can be observed for members of the genus Coronavirus 

after 2019 (Figure 1B). In short, the research on viruses and antiviral substances 

undergoes a leapfrog development from one epidemic to another. Keeping this in 

mind, we decided to establish computational models and tools, which will allow 

efficient research on viral proteins independently from epidemiological trends. 

Here, the target choice for our in-silico models will be dependent on the availability of 

structural data. To validate our in-silico models in an experimental setup, we have 
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established collaborations with four laboratories specialized in biochemical and 

biological assays for the experimental characterization of antiviral compounds and 

therapeutic approaches. According to the expertise of the collaborating labs, we focus 

on (i) emerging viral species, such as the severe acute respiratory syndrome-related 

coronavirus 2, Dengue virus, and West Nile virus, and (ii) neglected viral species lacking 

broad scientific interest, such as the Zika virus and equine herpesvirus 1 and 4. 

The primary objectives of this thesis are establishing computational workflows for the 

identification of: 

1) novel small-molecule antiviral substances inhibiting the flaviviral NS2B-NS3 

proteases, 

2) a binding epitope of glycoprotein D to its receptor, the major histocompatibility 

complex I, and 

3) protein-protein interaction descriptors enabling prediction of species 

susceptibility to coronavirus disease 2019 (COVID-19). 

 

The biochemical and biological evaluation of our predictions is performed in close 

collaborations with the laboratories of: 

1) Dr. Christoph Nitsche, Prof. Jörg Rademann, and Dr. Mila Leuthold for the 

development of NS2B-NS3 protease inhibitors and 

2) Prof. Nikolaus Osterrieder for the prediction of binding epitopes for herpesviral 

glycoprotein D and development of molecular descriptors of animal 

susceptibility to COVID-19. 
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2. Theoretical Background 

2.1 Epidemiology and Replication of Viruses 

2.1.1 Viruses Represent a Global Health Threat 

Viral infections represent a global health threat, causing thousands of deaths and 

disabilities each year.5 Viral infections of plants and animals cause significant 

economic loss and damage to the environment.6 Viruses (from lat. virus- poison, 

noxious liquid) represent a long-known threat. Several pandemics of viral infections 

have been reported historically: smallpox, influenza, yellow fever, measles, Dengue 

fever, and more recently, acquired immunodeficiency syndrome (AIDS), Ebola fever,7 

and coronavirus disease 2019 (COVID-19).8 Despite the long-known history of viral 

infections, viruses were first discovered in the late 19th century.9, 10 

New viral diseases are emerging due to close human-animal contacts, the spread of 

viral vectors enhanced by global climate change, and international tourism,11 rendering 

the need for antiviral therapies an urgent challenge for mankind. 

 

 

Figure 2. Spread of Dengue, yellow fever, Zika, and West Nile viruses around the world 

indicated as the number of the flaviviral species present in each country (adapted after Collins 

et al.12 and Center for Disease Control and Prevention https://www.cdc.gov/). 
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Dengue, West Nile, Yellow Fever, and Zika Virus 

Due to the spread of tropical mosquito species into the northern hemisphere, 

arthropod-borne viruses (arboviruses) represent an increasing threat to all humans. 

The most prominent arboviruses are flaviviruses, which have caused several 

epidemics: West Nile virus (WNV, endemic distribution in Africa, North and South 

America, and South Europe12), Zika virus (ZIKV, an epidemic in Oceania and South 

America1), Dengue virus (DENV, endemic spread in Africa, South America, and South 

Asia12), and yellow fever virus (YFV, several epidemics in America and Africa13, Figure 

2). 

The mortality of flaviviral infections is moderate to high at around 5% for secondary 

Dengue fever infection,14 8% for neonatal Zika fever,15 10% for West Nile encephalitis,14 

and up to 50% for severe yellow fever.14 The fatal complication of Dengue fever and 

yellow fever is a hemorrhagic syndrome (Figure 3).14 West Nile virus leads to 

encephalitis resulting in a high mortality rate14 and Zika fever leads to microcephaly in 

newborns, which can be fatal.15 

Currently, no specific treatment against arboviral infections is available. In the cases 

of yellow fever,16 Japanese encephalitis,17 tick-borne encephalitis,18 and Dengue 

fever,19 protective vaccines are used. There is still no vaccine against the Zika virus 

and West Nile virus. Paradoxically, the Dengue virus vaccine increases the risk of 

severe Dengue infection in some populations due to antibody-dependent 

enhancement.20 Therefore, there is an urgent need for the development of small 

molecular antiarboviral substances. 

 

Severe Acute Respiratory Syndrome-Related Coronavirus 2 

The most recent outbreak of a viral infection is the COVID-19 pandemic, which 

originated in December 2019 in the Chinese city of Wuhan.8 The causative agent is a 

new coronavirus species, severe acute respiratory syndrome-related coronavirus 2 

(SARS-CoV-2). Until mid-2021, the COVID-19 pandemics took a toll of over 1 million 

fatalities registered in all countries worldwide.5 The fatality rate of the new disease is 

variable (0-15%21) and is significantly higher in older age, in the presence of 

comorbidities,22 and in male patients.23 COVID-19 causes damage to multiple organs, 

mainly the lungs and the digestive and cardiovascular systems (Figure 3).22 
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The ongoing COVID-19 vaccination campaign raises hope in stopping the viral spread. 

However, due to potential vaccine escape mutants,24 more research is needed. Here, 

novel animal infection models might support the understanding of COVID-19 and the 

development of novel vaccines.25 

 

Equine Herpesvirus 1 and 4 

Viral epidemics are also harmful to animals. Most recently, an outbreak of a 

neurological form of equine herpesvirus 1 (EHV-1) infection during jumping tours in 

Valencia (Spain) caused several fatalities.26 EHV-1 causes damage to the nervous 

system and urogenital and respiratory tracts (Figure 3). It has been also discussed that 

equid horse-borne herpesviruses represent a threat to the environment by causing 

fatalities in black bears.27 Zebra-borne EHV-1 can cause infections of alpaca or Indian 

rhinceros.27 

Currently, only limited treatment options transferred from human medicine are 

available.6 To prevent an EHV infection, attenuated virus vaccines are used.6 Their 

efficacy, however, is strongly limited.6 Hence, an understanding of immune system 

evasion by EHV is needed for the development of better vaccines. 

 

 

Figure 3. Symbolic representation of the organs and systems infected by the flaviviruses, 

coronaviruses, and equine herpesviruses. 
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2.1.2 The Viral Replication Cycle 

Viruses are submicroscopic particles containing nucleic acids embedded in a protein-

based capsid.28 They are obligate intracellular parasites and can only replicate when 

they infect a living cell.29 Hence, viruses are not classified as living organisms in the 

broad scientific consensus.29 

Their categorization as non-animated matter combined with heterogeneous and 

unclear evolutionary origin make the taxonomy of viruses a complex task.29, 30 

Therefore, a systematic grouping of viruses after common ancestors, as commonly 

practiced in the taxonomy of animals, plants, or bacteria, is pointless.29 The 

International Committee on Taxonomy of Viruses (ICTV) classifies viruses according 

to the type of contained nucleic acid and the similarity of their sequence, capsid 

structure, and replication cycle.31 The underlying concept of viral taxonomy30 is 

summarized within the Baltimore classification. David Baltimore, the inventor of this 

scheme,32 classified viruses according to their genetic systems, i.e. the type of nucleic 

acid and its transcription30. Currently, seven groups are known (I-VII, Table 1). 

 

Table 1. Baltimore classification of viruses depending on the type, polarity, and transcription 

of the nucleic acid. 

Class 
Genetic 
Material 

Simplified Transcription Scheme 
Family 

Examples 

I dsDNA 
 

Herpesviridae* 

II +ssDNA 
 

Parvoviridae 

III dsRNA 
 

Reoviridae 

IV +ssRNA 
 

Flaviviridae* 
Coronaviridae* 

V -ssRNA 
 

Filoviridae 

VI +ssRNA 
 

Retroviridae 

VII dsDNA 
 

Hepadnaviridae 

Viral families marked with an asterisk (*) are the subject of the following thesis. Abbreviations: ds- 

double-stranded nucleic acid, RT- reverse transcriptase, ss- single-stranded nucleic acid. 
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The design of directly acting antiviral drugs (DAAD) requires detailed knowledge about 

the replication cycle of the virus. Therefore, in the following section, the replication 

cycles of viruses subject to this thesis are sketched. In this thesis, only Baltimore 

groups I and IV will be described, as representatives of these groups were targeted. 

 

Replication of Baltimore Group I Viruses 

The replication cycle of the genus Herpesvirus starts with an entry step (Figure 4, I.). 

 

Figure 4. A schematic representation of a replication cycle of Baltimore group I viruses (except 

Poxviruses). Red roman numerals indicate replication steps: I. viral entry, II. uncoating, III. DNA 

replication, IV. transcription, V. translation, VI. assembly, and VII. release. 

 

Viral fusion proteins specifically interact with a viral receptor on the host cell surface. 

Equine herpesviruses 1 and 4 enter the host cells using glycoprotein D as a fusion 

protein.33, 34 The major histocompatibility complex I serves as the viral receptor.33, 34 

Next, the genetic material is transported to the nucleus where it is replicated by viral 

enzymes (pol catalytic unit in equine herpesviruses 1 and 435) and transcribed into 

mRNA (Figure 4, steps II., III., and IV.). The mRNA is then translated (Figure 4, V.) into 
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early and late proteins, which are subsequently processed by proteases, such as the 

herpesviral protease.36 The proteins are then transported back to the nucleus and are 

assembled with the replicated dsDNA to obtain new virions (Figure 4, VI.). Finally, the 

new virions leave the nucleus and exit the cell by exocytosis (Figure 4, VII.).37 

 

Replication of Baltimore Group IV Viruses. 

The replication cycles of the viral genera Flavivirus and Coronavirus are similar to each 

other (Figure 5).31, 38 In the beginning, the virus enters the cell (Figure 5, I.) using 

specific interactions between the viral fusion protein and the receptor (e.g. protein E - 

Gas6-AXL tyrosine kinase receptor complex for Zika virus39 and spike protein - 

angiotensin-converting enzyme 2 for SARS-CoV-28).  

 

 

Figure 5. A schematic representation of a replication cycle of Baltimore group IV viruses. Red 

roman numerals indicate replication steps: I. Viral entry, II. uncoating, III. RNA replication, IV. 

translation, V. processing, VI. assembly, and VII. release. 

 

Once it intrudes the cell, the virus releases its genetic material (+ssRNA) and non-

structural proteins (Figure 5, II. Uncoating). The +ssRNA serves as a template for 

replication of the viral genome via an -ssRNA intermediate (Figure 5, III.) and 
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translation (Figure 5, IV.).38 Due to the lack of RNA-dependent RNA polymerase in the 

human cells, this enzyme is provided by the virus (e.g. NS5 in Zika virus38). The 

translation is performed by cellular components to yield a polyprotein: a string of 

consecutively synthesized structural and non-structural protein units. The polyprotein 

is then autocatalytically processed by the viral protease (NS2B-NS3 in Zika virus38 and 

Mpro in SARS-CoV-240) and host proteases like furin41, 42 to generate functional proteins 

(Figure 5, V.). Finally, the replicated +ssRNA and the structural and non-structural 

proteins are assembled into new virions that are subsequently released from the cell 

(Figure 5, VI. and VII.). 

 

2.2 Antiviral Substances 

2.2.1 History of Antiviral Research 

As shown above, viruses can infect humans and other animals to cause life-

threatening diseases. Accordingly, there is an urgent unmet need for antiviral 

substances. The two most promising strategies in the development of antivirals are 

(i) targeting proteins (whether of viral or host origin) involved in the viral replication 

cycle or (ii) stimulation of the host’s immune response.43 The first approach will be 

followed in this thesis as it allows specific targeting of the pathogen, resulting in fewer 

toxic effects compared to the second approach that bears the danger of insufficient 

selectivity.43 

Research on antiviral substances started in the early 1950s with the accidental 

discovery of the antiviral activity of p-aminobenzaldehydethiosemicarbazone on 

vaccinia virus-infected eggs and mice (Figure 6).44 For the first time, it was shown that 

an antiviral substance is not necessarily cytotoxic. The next surge of antiviral research 

was caused in the early 1960s by the accidental observation of the antiviral activity of 

idoxuridine, a derivative of a cytostatic drug.45 The same team presented a novel cell-

based plaque-reduction testing system for potential antiviral substances, similar to 

that used in antibiotic development.46 Both discoveries triggered antiviral research on 

nucleotide analogs leading to a potent antiherpesviral drug, aciclovir.47 

In parallel, it has been shown that ammonium ions48 and primary amines49 inhibit 

influenza virus replication leading to the discovery of amantadine,50 an uncoating 

inhibitor. In the early 1970s, it was discovered that muramic acid derivatives can 

specifically inhibit the influenza virus neuraminidase, leading to a potent release 
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inhibitor.51 As the crystal structures of the enzyme were made available in the mid-

1980s, the first rationally designed neuraminidase inhibitor with antiviral in-vivo 

activity, zanamivir, was discovered.52 For the first time, a structure-based approach 

was used to successfully identify an antiviral drug. 

 

 

Figure 6. A representative timeline of antiviral research. Each time point represents a 

breakthrough innovation or the discovery of a first-in-class drug for the therapy of viral 

infections. 

 

In 1980, a mysterious infectious disease was causing the accumulation of patients 

with a rare cancer type, Kaposi sarcoma, and opportunistic infections. In 1983, the 

pathogen was identified53 and later named human immunodeficiency virus, HIV. Only 

two years later, in 1985, the first drug against the new virus, zidovudine, was discovered 

in a high-throughput screening campaign.54 In 1989, the first structures of HIV 

enzymes were solved, triggering structure-based development of antiretroviral 

substances. The first rationally discovered HIV protease inhibitor, saquinavir, was 

introduced in 1990,55 only seven years after the identification of the virus. The 

development of drugs against HIV is still ongoing. The newest antiretroviral drug 

introduced to the market in 2019 is fostemsavir,56 an entry inhibitor. 

The most recent antiviral drug class was developed against a virus firstly described in 

1989, hepatitis C virus (HCV).57 The treatment of hepatitis C was revolutionized with 

the introduction of the first protease inhibitors, boceprevir and telaprevir, in 2006.58, 59 
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Notably, these drugs were also discovered using structure-based approaches. The last 

breakthrough in the treatment of hepatitis C was the discovery of sofosbuvir, an NS5B 

RNA-polymerase inhibitor, in 2010, rendering combination therapy possible.60 

 

2.2.2 Experimental Structure Determination 

Structure determination methods play a crucial role in the current drug development 

process. Despite recent innovations in the field of ab initio protein structure 

prediction,61 experimentally obtained coordinates of macromolecules are still 

essential for structure-based drug design (SBDD). 

 

 

Figure 7. Structural data deposited in the Protein Data Bank (PDB)62 in the period 2000-2020 

after its launch (adapted from https://www.rcsb.org/stats/all-released-structures). Color 

code: light green- X-ray crystallography, light grey- nuclear magnetic resonance spectroscopy, 

dark green- cryogenic electron microscopy, dark grey- multiple methods. 

 

The structural data available for the research community is mainly stored in two non-

commercial databases: Protein Data Bank (PDB)62 and Electron Microscopy Data Bank 

(EMDB).63 The structural data deposited in these databases is obtained by researchers 

mostly using X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, 

or cryogenic electron microscopy (Cryo-EM, Figure 7). The most popular method 
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applied for structure determination is X-ray crystallography (Figure 7). Briefly, to obtain 

the three-dimensional data, the pure sample of a biomolecule is treated with chemicals 

such as salts and buffers to gain a protein crystal. This crystal is then irradiated with 

X-rays, delivering two-dimensional diffraction patterns depending on the wavelength, 

the distance between single crystal layers, angle of irradiation, and electronic and 

structural properties of the crystallized particles. For highly complex molecules like 

proteins, software (PHASER,64 PHENIX,65 or COOT66) is used to decipher the diffraction 

patterns and translate them into three-dimensional electron density maps, which are 

subsequently virtually filled with atoms and refined to obtain a final structure.67 

X-ray crystallography provides an attractive approach for structure determination with 

a relatively low sample size needed for the experiment, thousands of solved structures, 

and a long tradition of software and hardware development.68 The main drawbacks of 

X-ray crystallography are experimental settings (based on a trial and error approach),69 

non-physiological conditions of crystallization (high salt concentrations, usage of 

heavy metal ions or non-physiological pH values, and solid-state of the sample),69 and 

incorrect data handling (e.g. fitting atoms into poorly solved electron density clouds or 

negative difference density map).70, 71 

Hence, the preparation of the macromolecular structure for an in-silico experiment is 

an important step to become aware of crystallization artifacts, which may lead to 

wrong conclusions.72 

 

2.2.3 Computational Methods in Structure-Based Drug Design 

Computational methods in structure-based design support the understanding of 

mechanisms behind pharmacological actions of drugs or physiological functions of 

biomolecules.73 Their crucial role in drug discovery campaigns was underlined and 

reviewed several times.74, 75 In this thesis, the following computational methods were 

used and will be described in detail: homology modeling, ligand and protein-protein 

docking, 3D pharmacophore modeling, and molecular dynamics (MD) simulations. 

 

Prediction of Unknown Protein Structures: Homology Modeling 

When the protein 3D structure is unknown, homology modeling (or comparative 

modeling) can be used to obtain this information. There are two distinct approaches: 
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template-free and template-based modeling.76 Template-based homology modeling 

was used in this thesis and will be described herein in detail. 

In the first step, a template protein with an experimentally obtained structure and 

sequence similar to the target sequence must be found. The sequence alignment of 

the target protein and template can be performed with algorithms such as Clustal 

Omega77 or T-Coffee78 for multiple sequences and Needleman-Wunsch,79 Smith-

Waterman,80 FASTA,81 or BLAST82 algorithms for pairwise alignment. The algorithms 

differ in gap handling, whereby handling of mutations and similarity between the amino 

acids are common for all algorithms and mostly based on BLOSUM83 (Blocks 

Substitution Matrix). 

In the next step, the 3D structure of the target protein is built based on the coordinates 

of the template. Several software packages and web servers have been developed 

(Phyre2,84 iTasser,85 SWISS-MODEL,86 MOE) for this purpose. In this thesis, the MOE 

(Chemical Computing Group ULC, Montreal, Canada) homology model builder87 was 

used, hence the methodology will be briefly described here: when the alignment of the 

template and target sequences is complete, the algorithm constructs an initial model 

by copying identical residues. In the next step, the backbone is sampled from a 

database containing high-resolution protein structures. Subsequently, side chain 

rotamers are constructed and scored by a GB/IV function,88 which estimates the 

solvation energy of the side chains and allows prediction of whether a side chain is 

solvent-exposed or not. In the last step, the final model is selected based on the 

average structure of generated models and energy minimized. 

The final step of homology model building is validation. For this purpose, general 

quality features should be checked (Ramachandran outliers,89 global protein fold, 

atomic clashes, and, if applicable, positioning of disulfide bonds). Moreover, the 

homology model can be validated by docking known ligandss90 or incorporating 

knowledge from mutational studies.90 

 

Generation of Binding Hypotheses: Ligand and Protein-Protein Docking 

Docking is a method used to obtain 3D models of binding partners, such as a small 

molecule in a complex with a protein, or one protein bound to another protein. 

Molecular docking aims to place a small molecular ligand into a binding site of a 

macromolecule. Many strategies are implemented to reach this goal:91 the incremental 



24 

reconstruction approach (FlexX92), molecular- or surface-shape (DOCK,93 Surflex94), 

Monte Carlo search (Autodock95), systematic search (Glide96), and genetic algorithm 

(GOLD97). GOLD was used in this thesis due to comparably good performance.98, 99 In 

the following section, the genetic algorithm and implemented scoring functions will be 

briefly described. 

The genetic algorithm100 used by GOLD translates the information about 

conformations of ligand and protein (e.g. torsional angles) into a computer-readable 

number-string termed “chromosome”. In the next step, all possible interactions 

between ligand and protein are detected. The algorithm calculates the energy of the 

ligand-protein complex (hydrogen bonds, lipophilic contacts) and the internal energy 

of the ligand (indicating relaxed or restrained ligand conformations). The best-scored 

parental “chromosomes” are then combined or slightly changed by the software using 

evolutionary processes (mutations, cross-over, and migration of components of the 

number-strings) to result in offspring “chromosomes”. These are iteratively evaluated 

once more, undergoing the evolutionary processes to obtain final docking poses. 

Docking programs use scoring functions for the assessment of generated docking 

poses. In this thesis, the ASP101 and the Chemscore102 functions were used for scoring 

and re-scoring, respectively, as they are recommended by GOLD for protease docking. 

Both are empirical scoring functions, derived from calculations of the binding energy 

of reported ligand-protein complexes. 

In this thesis, the docking score was not included in the process of binding mode 

selection, as this value neither correlates with the binding affinities nor allows 

discrimination between native and virtual docking poses.103 Molecular docking was 

exclusively used to obtain plausible ligand conformations in the binding pocket. This 

task is reported to be the only well-performing functionality of docking algorithms.99 

To obtain a binding hypothesis of more complex partners, like proteins, an approach 

called protein-protein docking is used. In contrast to small molecule docking, de-novo 

determination of protein-protein binding interfaces (PPI) is a more complex task. Due 

to the high number of possible binding combinations between two macromolecules,104 

shallow and flat binding pockets, and large interaction areas,105 knowledge about the 

nature of the interaction is needed for plausible results. Several software packages 

were developed for the generation of atomistic protein-protein binding models 
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(Haddock,106 Rosetta107). In this thesis, Rosetta was used due to its efficient 

performance for the prediction of protein-protein binding conformations.108, 109 

In the first step, Rosetta107 utilizes a Monte Carlo algorithm to handle proteins as rigid 

bodies, attempting to adjust the coarse-grain surfaces of the binding partners to each 

other. In the next step, side chain rotamers are generated to refine the model. After 

each perturbation step, the algorithm verifies whether the energy of the generated side 

chain conformations is acceptable according to the Metropolis Criterion.107, 108 The 

implemented scoring function calculates lipophilic contacts, hydrogen bond energy, 

solvation and surface area, electrostatic force, and residue rotamer probability terms 

for all atoms to obtain energy-minimum protein-protein binding conformations.107 In 

total, several thousand docking runs are performed (at least 10,000 runs are 

recommended for global docking104) to sample conformational space. The output of 

Rosetta delivers several binding modes with their respective scoring values, where the 

lowest value (which represents the calculated binding energy) should represent the 

best docking pose. Due to the low accuracy of the scoring function, docking poses 

should be carefully analyzed using experimentally obtained knowledge to obtain the 

best result.107 

 

Essential Protein-Ligand Interaction Patterns: 3D Pharmacophore Modeling 

A pharmacophore is an aggregate of chemically defined interaction points and steric 

features, which determine the binding affinity and thus the biological activity of a small 

organic molecule.110 The following chemical features are considered to be essential 

for ligand binding:111 hydrogen bonds, lipophilic contacts, aromatic and ionic 

interactions, and exclusion volume spheres. A pharmacophore feature contains 

information about the geometry of the interactions as well as steric hindrance  

(Table 2).111 

To generate a pharmacophore, different software can be used (e.g. LigandScout,112, 113 

Catalyst,114 Pharmer,115 Phase,116 or MOE). All available software packages can create 

a 3D pharmacophore based on ligand structures, and most of them can also generate 

3D pharmacophores based on ligand-protein complexes or apo structures of proteins. 

These pharmacophores can be used for virtual screening117 to discriminate between 

potentially active and inactive molecules from compound libraries. 
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Table 2. Feature types (interactions or steric information) commonly used in pharmacophore 

modeling. 

Feature Type Interaction Geometry Interaction Partnersa 

Hydrogen Bond 
Distance: 2.6 - 3.2 Å 113, 118 

Angle: 127 - 135° 119 

 

Lipophilic Contact 
Distance: 1.0 - 5.0 Å 113 

Angle: 360° 113 

 

Aromatic Interaction 
Distance: 3.4 - 3.6 Å 118 

Angle: 0 - 20° 113 

 

Ionic Interaction 

Distance: explicit 

calculation up  

to 5.6 113 - 12 Å 120 

Angle: 360° 121 
 

Shape / Steric 
Hindrance 

Distance: depending on  

the structure 

Angle: 360° 117 

 
a Interaction partners are indicated in green for a macromolecular partner and grey for a ligand. Asterisk 

(*) indicates any atom. 

 

The applicability of the 3D pharmacophore modeling reaches far beyond classical 

virtual screening campaigns122-124 (as presented further in this thesis); 3D 

pharmacophores can be used to mechanistically explain why ligands can trigger 

different pharmacological actions125 or to validate homology models.90, 126 The novel 

applications of pharmacophore modeling were accompanied by the development of 

innovative concepts, as dynamic pharmacophores73, 127 or advanced interaction 
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sampling with water molecules as molecular probes.128 Both methods were used in 

this thesis and will be briefly discussed below. 

The dynamic pharmacophores (Dynophores)73, 127 application was developed in-house 

as a method for analyzing interactions between ligand and macromolecule over the 

course of an MD simulation. Dynophore-App generates interaction density clouds, a 

graphical representation of spatial interaction probability distribution. Moreover, the 

Dynophore application provides distance distribution and occurrence-frequency 

graphs. Dynamic pharmacophores overcome issues known from static 

pharmacophore modeling: underestimation of target and ligand flexibility and rigid 

geometrical boundaries of interactions. Dynophores were successfully used to 

demonstrate how the flexibility and multiple binding modes of a certain flaviviral 

protease inhibitor contribute to its superior activity over other ligands reported in this 

publication.124 A separate publication shows that Dynophores sufficiently explain 

activity cliffs between ligands sharing almost identical static interaction patterns;73 

analysis of interaction density clouds revealed differences in angle and distance 

distribution of a crucial hydrogen bond in correlation with ligand activity. 

PyRod128 is a software developed in-house that facilitates the detection of interaction 

points in a binding pocket by tracing water-protein interactions throughout MD 

simulations. This method takes into account target flexibility and allows prioritization 

of pharmacophore features by the duration and geometry of water-protein 

interactions. It has been shown in this thesis and the associated publication124 that 

PyRod can generate pharmacophore models that can be successfully used for the 

prospective identification of novel pan-flaviviral protease inhibitors. 

Regardless of how it is derived, a 3D pharmacophore model should be validated.117 

The validation of pharmacophore models is carried out using known active ligands 

targeting the binding site of interest as well as inactive molecules. The inactive 

molecules can be either reported as inactive in the literature or assumed to be inactive 

(in which case they are termed decoys). In this thesis, the decoy strategy was used 

due to scarce ligand data availability. Decoys can be obtained from web servers (e.g. 

DUD-E129). Briefly, DUD-E uses submitted active ligands to find molecules sharing 

similar physicochemical properties yet differing in structure (calculated as the 

difference in Tanimoto coefficient). Finally, the sets of active and decoy/ inactive 

molecules are screened against the pharmacophore model. The quality of the model 
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can be characterized based on (i) the absolute number of returned active molecules, 

(ii) receiver operating characteristic (ROC) curve, or (iii) early enrichment factors (e.g. 

EF1%).130 A well-performing pharmacophore model returns a high number of reportedly 

active molecules during validation. Moreover, the active molecules should show a 

better fit in the pharmacophore model than inactive molecules during the validation 

process (indicated as a high value of EF1%). A good model shows a large area under 

the ROC curve, indicating a high specificity and selectivity of the model. 

 

Criteria for Selecting Virtual Hits: Visual inspection 

Visual inspection is a process by which ligand binding hypotheses are manually 

selected based on rational empirical rules and the researcher’s experience on 

interactions with the target.131 Although not a computational method, the visual 

inspection of binding hypotheses and ligand structures inseparably accompanies 

virtual screening campaigns to allow the filtering of obtained hits.131 In this thesis, 

visual inspection was extensively employed for the selection of the final binding 

hypotheses of small molecular ligands and hence will be briefly described. 

A recently-published review by Fischer and colleagues131 presents statistics on the 

popularity of visual inspection criteria based on a survey and feedback from around 

100 experts in molecular modeling. The survey included 20 different criteria for visual 

inspection of docking poses illustrating a large number of views on the selection 

problem. In this thesis, the following four experience-based criteria were taken into 

account when inspecting binding modes and ligand structures: 

 

- fulfillment of specific ligand-protein interactions (pharmacophore fit),131 

- exclusion of binding modes exposing lipophilic moieties to the solvent (entropic 

penalty),131 

- exclusion of binding modes establishing hydrogen bonds via charged moieties 

but lacking an ionic interaction,131 and 

- exclusion of binding modes with strained ligand conformations (non-coplanar 

pi-bond systems, twisted alkyl chains, non-planar aromatic moieties).131 

 

The visual inspection criteria of the docking poses used in this thesis are completed 

by the following specific rules, which exclude non-drug-like structures and structures 
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that could potentially interfere with biochemical assays, including pan-assay 

interfering compounds132 (PAINS) and frequent hitters:133 

 

- exclusion of non-drug-like structures (e.g. polyfluorinated or polyaromatic 

compounds), 

- exclusion of reactive moieties (e.g. quinones, alkyl halides, peroxides, 

aziridines, Michael acceptors, aldehydes, known cytostatic drugs), and 

- exclusion of frequent hitters (e.g. flavonoids, curcumin134). 

 

Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations are calculations used to explore the motion of 

molecular models. Briefly, to perform an all-atom MD simulation, the system (protein, 

solvent, salts, ligands) is parameterized using a force field. During the 

parameterization step, partial charges and atom types (including connectivity, van der 

Waals radii, and atomic masses) are distributed on the particles.135 Subsequently, the 

system undergoes several equilibration steps. The coordinates obtained by X-ray 

diffraction or Cryo-EM only present an average probability of atom positions leading to 

non-equilibrium structures of biomolecules.136 The equilibration is necessary to obtain 

a system free of structural artifacts.136 In the main simulation run, random starting 

velocities based on Boltzmann distribution at a given temperature are assigned to all 

atoms of the parameterized system.137 Examples of engines for carrying out MD 

simulations are Desmond138 (extensively used in this thesis), Amber,139 and 

GROMACS.140 

During an MD simulation, new positions and velocities are recorded by integration of 

Newton’s law of motion for each time step, similar to a movie consisting of multiple 

consecutive frames.141 The potential energy of the system used for the force 

calculation is described within the force field (e.g. OPLS,142 GAFF,143 CHARMM144) as 

a sum of bonded and nonbonded interactions (Figure 8).145 

The calculation of forces for all bonds and non-bonded interactions is computationally 

expensive. Therefore, MD simulations are conducted in a nano- to microsecond range 

to observe the dynamics of a system. Due to the constant improvement of hardware 

and software, the average simulation time and complexity of the systems are rapidly 

increasing.146 



30 

 

Figure 8. Representative time steps of a molecular dynamics simulation of the West Nile virus 

protease (green and grey backbone representation) in complex with a substrate (sphere and 

stick representation). The upper panel presents the forces (blue arrows) calculated during an 

MD simulation and respective energy-function graphs. 

 

2.3 Proteases as Antiviral Drug Targets 

Viral proteases represent validated and valuable targets for directly acting antiviral 

drugs (DAAD). As of 2021, two protease inhibitor classes are approved for the 

treatment of human immunodeficiency virus147 (HIV) and hepatitis C virus148 (HCV) 

infections. Beyond these two examples, proteases represent promising drug targets 

for the treatment of infections with flaviviruses, coronaviruses, or  

herpesviruses.11, 149, 150 

 

2.3.1 Structures of Proteases 

Proteases are enzymes that catalyze the hydrolysis of an amide bond in protein 

substrates. They can either be classified by (i) structure of the active center and 
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hydrolysis mechanism or (ii) evolutionary origin151 as presented in the MEROPS 

database.152 In the following, the catalytic and general structural protease features 

according to the MEROPS database will be summarized. 

Currently, nine protease families are known.152 Each family is represented by a letter 

indicating the catalytic residue: A- aspartic, C- cysteine, G- glutamic, M- metallo, N- 

asparagine, P- mixed, S- serine, T- threonine, and U- unknown proteases. Viral 

proteases are represented in every family, except P and T.152 Families C, G, N, and S 

contain a cluster of catalytic residues, the catalytic dyad or triad, in the active center 

(Figure 9, e.g. the H-C dyad in coronaviral Mpro 40 or the D-H-S triad in flaviviral NS2B-

NS3153). The catalytic mechanism of all families can be classified according to the 

reaction intermediate (Figure 9), which can be either covalently bound (an ester in 

families S and T, a thioester in family C, or a hemiaminal in family N) or non-covalently 

bound (families A, G, and M).154 The catalytic activity of the proteases allows an 

increase in the protein hydrolysis rate by the order of 1010.154 This unique capability is 

supported by three main structural features: (i) the catalytic center, (ii) the oxyanion 

hole, and (iii) the polypeptide binding site (Figure 10).154 Since protease family S is the 

subject of this thesis, its structural features will be briefly elaborated in the following. 
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Figure 9. Examples of viral proteases40, 155, 156 (grey ribbon) from families A, C, and S. Residues 

of the catalytic center are indicated in stick and sphere representation. The right-hand panels 

show the proteolysis reaction mechanisms (green atoms- catalytic center, black- water 

molecules, blue- substrate). Residues marked with an asterisk are a part of protomer B in a 

homodimer. 
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Figure 10. (A) Structural features determining the catalytical activity of a protease (grey 

backbone, PDB-ID: 5IDK157): (i) catalytic triad (green ribbon, sphere and stick model), (ii) 

oxyanion hole (red ribbon, sphere and stick model), and (iii) polypeptide binding site (blue 

ribbon, sphere and stick model). (B) Alternating substrate subpockets (indicated with P) in the 

canonical conformation of the substrate (docking pose, dark grey sphere and stick model). 

 

On the one hand, the catalytic center (Figure 9, Figure 10A) enables a nucleophilic 

attack on the carbonyl C of the substrate, allowing the amine moiety, a bad leaving 

group, to detach from the reaction center.154 On the other hand, the catalytic center 

polarizes the O-H bond of a water molecule to make it more nucleophilic, which allows 

the hydrolysis of the covalent intermediate.154 As shown in Figure 9, all hydrolysis 

mechanisms include a negatively charged tetrahedral species derived from the 

carbonyl group of the substrate. This charge is stabilized by a protease feature called 

the oxyanion hole, which consists of partially positively charged N-H hydrogen atoms 

of the protease backbone adjacent to the catalytic residue (Figure 10A).154 This feature 

is essential for the catalytic activity of proteases.154 The last structural feature 

contributing to catalytic activity is the polypeptide binding site (Figure 10A), which 

facilitates positioning of the substrate on the protease and allows the scissile bond to 

be attacked by the catalytic center.154 The polypeptide binding site is mostly an 

antiparallel β-sheet establishing hydrogen bonds to the backbone of the substrate.154 
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This conformation is called the “canonical conformation”154 and forces the side chains 

of the substrate to occupy alternating protease subpockets (Figure 10B). According to 

the Schechter-Berger nomenclature,158 protease subpockets are indicated with the 

letter P and a number. The numbering starts on the residues adjacent to the scissile 

bond, the N-terminal part of the substrate is numbered with Arabic numerals 

(designating the non-prime site), and the C-terminal part is marked with an additional 

“ ‘ “ symbol (designated the prime site, Figure 10B). The first subpocket of the non-

prime site (P1) is called the specificity pocket.154 

In this thesis, three closely related proteases were targeted: the NS2B-NS3 proteases 

from Zika, West Nile, and Dengue virus 2. The NS2B-NS3 protease accepts substrates 

with basic side chains (R or K) in the P1 and P2 subpockets (Figure 11).159 

 

 

Figure 11. Substrate spectra of NS2B-NS3 proteases from Zika, West Nile, and Dengue 

virus 2.159 

 

The flaviviral NS2B-NS3 is a heterodimeric protein consisting of three structural 

features: 

 

- the helicase, a C-terminal NS3 domain160 responsible for the unpacking of 

double-stranded RNA intermediates produced during replication, 

- the N-terminal NS3 serine protease that processes the viral polyprotein into 

functional units.161 The protease is connected to the helicase via a short flexible 

loop; 
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- the NS2B is a cofactor spanning the protease domain of NS3. The NS2B subunit 

is essential for the protease activity enabling proper folding of the binding site 

and substrate binding.161, 162 

 

The substrate binding site of the NS2B-NS3 protease is flat and hydrophilic.163 All 

substrate binding pockets of flaviviral proteases are highly conserved (Figure 12A-

C).163 The non-prime site is divided into subpockets S1-S4. For the localization of the 

S3 and S4 subpockets only vague hypotheses exist: based on the X-ray crystal 

structures of peptidomimetic inhibitors (e.g. Bz-nKRR-H in PDB-ID: 2FP7162), Braun and 

colleagues164 place the S3 subpocket below the S2 subpocket, and contend that the 

S4 subpocket is solvent-exposed (Appendix Figure 1). The analysis conducted by 

Chappell and colleagues159 based on the docking studies of the substrate to the WNV 

protease renders the first hypothesis implausible: due to a crystallization artifact of 

the tetrapeptide inhibitor, the aromatic ring establishes a π-cation interaction to the 

guanidine group in the S1 subpocket, leading to a spiral-like inhibitor conformation 

(Appendix Figure 1). We support the second hypothesis that localizes the S3 and S4 

subpockets to alternating positions according to the canonical conformation (Figure 

12D).159 

The suggested binding mode of a substrate is briefly characterized based on the 

example of ASGKR↓SQ (scissile bond indicated by arrow) in complex with the WNV 

protease. The S2’ and S1’ subpockets are nonspecifically recognizing a variety of 

residues. Mutational studies on the closely related DENV2 protease suggest that NS3-

Y34 plays an important role in the binding of peptide inhibitors.165 The transition from 

the prime to the non-prime binding site is marked by the catalytic triad NS3-D75, H51, 

S135.166 The oxyanion hole is composed of NS3-S135, T134, and G133. The 

polypeptide binding site consists of NS3-G151, G153, and I155. The S1 subpocket 

establishes cationic interactions and hydrogen bonds between NS3-D129 and the 

arginine of the substrate. The residue NS3-D129 is crucial for enzymatic activity.159 In 

the S2 subpocket, NS3-D75 and NS2B-N84 interact with the amino group of the 

substrate.159 The S3 pocket is nonspecific and solvent-exposed. Docking studies 

suggest that lipophilic residues of the substrate establish lipophilic contacts to NS3-

Y161.159 Finally, the S4 subpocket is nonspecific and substrate binding is supported 

by multiple NS2B and NS3 residues. 
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Figure 12. Global view of the NS2B-NS3 protease of Zika virus (A) and focus on competitive 

binding sites of Dengue 2 (B) and West Nile virus (C). (D) A suggested binding mode of a 

substrate (ASGKR↓SQ) of the West Nile virus protease. Color code: green backbone- NS2B, 

white backbone- NS3, grey spheres- protein carbon atoms, orange sticks and spheres- 

substrate carbon atoms, red spheres and sticks- oxygen atoms, blue spheres and sticks- 

nitrogen atoms. 
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Known inhibitors of NS2B-NS3 protease mostly mimic the substrate structure, leading 

to peptidomimetic inhibitors such as cn-716153 or Bz-nKRR-H167, which display 

potencies in the high nanomolar range (Figure 13). Due to undesired pharmacokinetic 

properties of this chemotype, several non-peptidic inhibitors were developed, of which 

the most potent examples are compound 6168 and PanThera 166347169 (Figure 13). 

The small molecular inhibitors show moderate potency in the one- to two-digit 

micromolar range. The high molecular masses of the reported molecules (436 Da and 

611 Da for compound 6 and PanThera 166347, respectively) render them poor starting 

points for optimization campaigns. Hence, novel and more potent inhibitors are 

needed. 

 

 

Figure 13. Examples of competitive inhibitors of NS2B-NS3 protease from Zika (ZIKV),153 West 

Nile (WNV),168, 169 and Dengue 3 virus (DENV3).167 

 

2.3.2 Quantifying Inhibition: Available Protease Assays 

In order to biochemically characterize proteases, several assays were developed, e.g. 

absorption-, fluorescence polarization-, and Förster resonance energy transfer (FRET)-

based assays.170 The principle of these assays is the measurement of substrate 

hydrolysis rate using short peptide sequences marked with a chromophore. To 

characterize the inhibitory potency of the compounds discovered in the course of this 

thesis, a fluorescence polarization assay was used, hence it will be briefly described. 
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During a fluorescence polarization assay, the release of a fluorogenic dye (e.g. 7-

Amino-4-methylcoumarin, AMC) is measured (Figure 14). The protease cleaves an 

amide bond downstream of the specificity sequence (in the case of NS2B-NS3 

protease, this site is located after a dibasic peptide). The released dye can rotate faster 

in the solution due to its lower molecular weight. When irradiated with polarized light, 

the free fluorophore has a higher chance of light emission than the bound dye. 

Subsequently, the increasing fluorescence intensity over time is measured as a 

surrogate parameter for protease activity.170 

 

 

Figure 14. Principle of a fluorescence polarization assay shown using the example of the 

fluorogenic flaviviral NS2B-NS3 protease substrate Boc-GKR-AMC. 

 

Based on the fluorescence intensity graphs obtained from the described assay, the 

following parameters can be derived to characterize protease activity: KM (Michaelis-

Menten constant) and kcat (reaction rate, Figure 15A). According to Michaelis-Menten 

kinetics,171, 172 KM indicates the substrate affinity of the enzyme and kcat the reaction 

rate constant in a two-step reaction model (Figure 15A). 

Protease inhibitors modify either KM or vMAX (maximal reaction rate at infinite substrate 

concentration) values, depending on the inhibition mode (Figure 15B). Competitive 

inhibitors, which compete with the substrate for the binding site, increase the KM value. 

This means that a higher substrate concentration is needed to reverse inhibitor 

binding. Non-competitive inhibitors (inhibitors binding to an allosteric pocket) 

decrease the maximal reaction rate by binding to the enzyme and enzyme-substrate 

complex. Inhibitory activity can be described using IC50 (half-inhibitory concentration) 
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or Ki (inhibitory equilibrium constant) values for non-covalent or fast-reversible 

covalent inhibitors and with kinact (inactivation reaction rate) or kinact/Ki values for slow-

reversible or irreversible covalent inhibitors. 

 

 

Figure 15. (A) The Michaelis-Menten kinetics equation is based on a two-step reaction model 

and can be derived from the fluorescence curves obtained from protease assays. (B) Reaction 

model when an inhibitor is added to an enzyme-substrate mixture. 

 

The parameters describing inhibitory activity can be derived from the fluorescence 

curves obtained from the protease assays. To obtain a dose-response curve, the 

protease activity is measured under constant substrate concentration (usually around 

the KM value) and varying inhibitor concentrations, as indicated in Figure 16. 

The IC50 value describes the inhibitor concentration that causes 50% inhibition of the 

enzyme. This parameter is broadly used to report inhibitory activity. The IC50 value is 

strongly dependent on substrate concentration and therefore not comparable between 

two different assay setups. More comparable is the Ki value, which can be derived from 

IC50 values measured under varying substrate concentrations using the Cheng-Prusoff 

equation.173 
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Figure 16. Dose-response curves obtained from protease activity measurements under 

constant substrate concentrations for non-covalent or fast-reversible covalent inhibitors 

(upper panel) and slow-reversible or irreversible covalent inhibitors (lower panel). 

 

In order to characterize slow-reversible or irreversible covalent inhibitors, additional 

kinetic parameters are needed due to non-equilibrium binding kinetics. Commonly, the 

kinact/Ki value, which describes the inhibition reaction rate (kinact) and affinity of the 

enzyme to the inhibitor (Ki), is employed. This parameter can be calculated from dose-

response curves based on the pseudo-first-order kinetics equation and plotting the 

obtained kobs (pseudo-first-order reaction rate constant) against the inhibitor 

concentrations (Figure 16). 

 

2.4 Viral Fusion Proteins as Drug Targets 

Fusion proteins (FP) enable coalescence of the membrane of enveloped viruses with 

the host-cell membrane.174 It has been shown that the membrane fusion step (called 

entry) is pivotal for the infectious cycle.175 Hence, targeting viral FP represents a 

promising starting point for the development of novel antiviral substances. Currently, 

two drug classes targeting viral FP are present on the market. The first class includes 

the HIV entry inhibitors enfuvirtide175 and fostemsavir56 interfering with the HIV 

envelope glycoproteins 41 and 120, respectively, disrupting the fusion of viral 
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membrane with the human cell membranes effectively. The second group is 

represented by the hepatitis D virus (HDV) entry inhibitor bulevirtide.176 Bulevirtide 

allosterically binds to the sodium-bile acid cotransporter hindering HDV replication. 

Another application of mechanistic studies on FP is the possibility of antibody and 

vaccine development177 or prediction of the spectrum of hosts susceptible to viral 

infection.178 

In this thesis, computational studies were used to support potential equine herpesvirus 

vaccine development and prediction of potential hosts for coronaviral infections. The 

understanding of FP – receptor interactions requires detailed knowledge about the 

structures of the proteins. Therefore, in the following section, the general structural 

features of FP will be described. 

 

2.4.1 Structures of Viral Fusion Proteins 

The C-terminal part of viral FP is anchored in the viral envelope and the N-terminal part 

is exposed to the environment. Hence, viral FP are categorized as type I 

transmembrane proteins.177 Three classes of FP can be distinguished depending on 

the orientation towards the envelope, main fold features, and posttranslational 

processing (I-III, Table 3). 

 

Table 3. Classification of viral fusion proteins and their general features (adapted from White 

et al.174). 

Class Class I Class II Class III 

Major structural 
feature 

α Helix β Sheet α Helix and β sheet 

Orientation in 
native form 

Perpendicular to the 
envelope 

Parallel to the 
envelope 

Unknown or 
perpendicular to the 

envelope 

Priming Yes Yes No 

Examples SARS-CoV-2 spike ZIKV protein E EHV-1 glycoprotein D 

Abbreviations: EHV-1- equine herpesvirus 1, SARS-CoV-2- severe acute respiratory syndrome 

coronavirus 2, ZIKV- Zika virus. 
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Independently of the global fold of an FP, two functional regions can be distinguished: 

the receptor-binding domain (RBD) and the fusion subunit.174 The RBD recognizes and 

binds to the viral receptor on the host cell surface. RBD-receptor binding or low pH 

values induce174 subsequent large-scale conformational changes of the FP leading to 

the insertion of the fusion subunit into the host-cell membrane.179 In the next step, a 

transition state, termed hemifusion, is formed, where the single membrane layers of 

the virus and the host cell merge. Finally, both membrane layers fuse to build a pore, 

allowing the viral capsid to enter the host cell (Figure 17). 

An example of the class I FP and subject of this thesis is the spike protein (S)174 of 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 

 

 

Figure 17. Schematic membrane fusion process of class I fusion proteins (adapted from White 

et al.174). The principle of membrane fusion for classes II and III fusion proteins is similar and 

hence not explicitly depicted. The receptor-binding domain (RBD) and virus receptor are not 

shown after the triggering step for the sake of clarity. 

 

The name “spike protein” originates from the visible thorn-like form of the protein 

observed in images of whole coronaviruses. S contains a large α-helical core 

comprising the fusion subunit and the RBD consisting of β-sheets and flexible loops 

(Figure 18). S is processed by the host proteases furin and transmembrane protease 
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serine subtype 2 (TMPRSS2) to gain its fusogenic function.41 The RBD of S specifically 

binds to the angiotensin-converting enzyme 2 (ACE2), a protease present on the 

surface of host cells.8 It has been shown in an animal model that ACE2 binding is a 

crucial step for viral entry and is pivotal for the susceptibility of an animal species to 

SARS-CoV infection.180 Hence, investigation of the S-ACE2 binding interface 

represents a viable strategy for the prediction of species susceptibility to coronavirus 

disease 2019 (COVID-19). 

The structure of the ACE2-binding epitope of SARS-CoV-2 S is well characterized 

(Figure 19).181 Three binding pockets can be distinguished in the first published X-ray 

crystal structure of S in complex with human ACE2 (PDB-ID: 6M0J) called here A, B, 

and C. S binds to a non-competitive binding site localized in the subdomain I of ACE2.  

 

 

Figure 18. Extramembranous part of the spike protein from severe acute respiratory 

syndrome-related coronavirus 2 in its closed pre-fusion state (PDB-ID: 6VXX182). The protomer 

A is indicated with a white ghost molecular surface, other protomers (B and C) of the 

homotrimer are indicated with solid grey surfaces. Color code: dark blue ribbon- the α-helical 

core of the fusion subunit, pale blue ribbon- non-helical parts of the fusion subunit, green 

ribbon- receptor-binding domain. 
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Figure 19. The receptor-binding domain of the spike protein in complex with its ligand, human 

angiotensin-converting enzyme 2 (ACE2). Color code: green ribbon- receptor-binding domain, 

white ribbon- human ACE2, cyan sphere- catalytic zinc ion, gray spheres- carbon atoms, red 

spheres- oxygen atoms, blue spheres- nitrogen atoms, yellow sphere- sulfur atom. 

 

In binding pocket A, S is reported181 to establish hydrogen bonding via N501 to the 

ACE2 residue Y41. In binding pocket B, S residue Q493 interacts with ACE2 residues 

K31, H34, and E35 via a hydrogen bond network. Finally, in binding pocket C, F486 from 

S establishes lipophilic contacts to ACE2-L79, M82, and Y83. The mechanistic 

understanding of ACE2-S interactions and the role of single residues in the protein-

protein interface remain elusive. First insights into this matter are reported in this 

thesis and an accompanying paper.178 

The second example of an FP investigated in this thesis is glycoprotein D (gD) from 

equine herpesviruses 1 and 4 (EHV-1, EHV-4). This FP belongs presumably to class III, 

like its human herpesvirus 1 homolog,174 and is not yet extensively characterized. 

Currently, only the structure183 (Figure 20) and the function of the RBD are known. The 

EHV-1 and EHV-4 gD bind with low millimolar affinity183 to the equine major 

histocompatibility complex I (MHC-I)33, 34 and are essential for viral entry into the 

equine cells.33 Hence, investigating the gD-MHC-I binding interface might support the 

development of antiviral therapies, such as small molecule drugs or vaccines. 
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Figure 20. Structures of the receptor-binding domain of glycoprotein D from equine 

herpesvirus 1 (left panel, PDB-ID: 6SQJ) and 4 (right panel, PDB-ID: 6TM8).183 

 

2.4.2 Quantifying Ligand Association: Available Assays 

In order to biochemically characterize FP, parameters such as the dissociation 

constant of the receptor or ligand binding (KD), molecular mass, and glycosylation 

patterns can be used. In this thesis, KD data of EHV gD binding to its receptor MHC-I 

was analyzed to explain differences in predicted binding interfaces. The data was 

obtained by surface plasmon resonance (SPR) by Viviane Kremling under the 

supervision of Walid Azab in the Osterrieder Lab in Berlin (Germany), hence this 

method will be briefly described. 

During an SPR experiment, a protein or ligand of interest is rinsed over a metal surface 

with an immobilized protein binding partner. The surface is irradiated with polarized 

light, causing propagation of an electromagnetic wave on the metallic surface (called 

surface plasmon polarization) and reflection of the light.184 Due to the binding of 

protein or ligand to the immobilized partner protein, the thickness of the surface 

increases. This leads to a shift in the refractive index of the surface and therefore to a 

shift of the reflection angle of the light.184 Based on the obtained association and 

dissociation rate constants, the equilibrium constant can be calculated. 
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2.5 Classification and Architecture of Protein-Protein Interactions 

Protein-protein binding interfaces render highly interesting, yet challenging, targets for 

drug design campaigns due to their large size, topology, and restricted structural 

information.105 Several approved antiviral substances interfere with viral-host protein-

protein interactions. This strategy is valuable for rational drug design and is used to 

develop novel therapies. Currently, two drug classes are present on the market: entry 

inhibitors of HIV and HDV. Most recently, a peptidic entry inhibitor, bulevirtide,176 was 

initiated to the market, representing a breakthrough in the therapy of hepatitis D. The 

analysis of protein-protein interface (PPI) architecture and mechanistic studies was 

used in this thesis to support the identification of a potentially immunogenic epitope 

for a vaccine, and development of an animal model for viral infection introduced in the 

previous chapters. 

Protein-protein interactions can be classified based on their stability (obligate/ non-

obligate), affinity (permanent/ transient, strong/ weak), and composition 

(homooligomeric/ heterooligomeric, Figure 21).185 Despite large PPI areas consisting 

of a large number of residues, it has been shown that only a few crucial residues (called 

hot spots) contribute to the stability and affinity of a PPI.186 Several concepts 

describing the contribution of single residues in PPI to the total binding energy have 

been developed (e.g. O-ring theory,186 double water exclusion hypothesis187). In this 

thesis, the O-ring theory was extensively used and hence will be described in detail. 

 

 

Figure 21. Classification of protein-protein interactions. 
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The O-ring theory is based on a statistical evaluation of over 2000 published alanine 

mutations in protein-protein binding interfaces with known structural data. Bogan et al. 

have calculated the fold of enrichment of each proteogenic amino acid in the dataset 

of hot spots over the dataset of all alanine mutations. A hot spot residue was defined 

as a residue that contributes more than 2 kcal/mol to the total binding energy. Bogan 

et al. found out that only a small group of acidic (D), basic (K, R), aromatic (H, W, Y), 

and lipophilic residues (I, P) are statistically enriched in the hot spots. The authors 

assume that these residues suffer a lower entropic penalty due to short side chains (D 

or P) or fewer rotatable bonds (H, W, or Y) when placed in a PPI, compared to other 

lipophilic or ionic amino acids. Moreover, they observed that the hot spot residues are 

occluded by less relevant residues sealing the binding interface, the O-ring (Figure 22). 

The O-ring is presumed to prevent bulk solvent from protruding into the PPI and 

interacting with the hot spot residues. 

While the O-ring theory provides a relatively narrow set of residues enriched in PPI hot 

spots, more recent analysis suggests that lipophilic amino acids, in general, are 

enriched in obligate protein-protein contacts.187 This observation was included for the 

analysis of PPI architecture in addition to the O-ring theory. 

 

 

Figure 22. Scheme representing the O-ring theory (left) and a presumed O-ring178 in the severe 

acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) Spike – human angiotensin-

converting enzyme 2 (ACE2) binding interface (PDB-ID: 6M0J,181 residues in non-italic:  

SARS-CoV-2 spike, residues in italic: human ACE2). 

  



48 

3. Results 

In the following section, the computational work undertaken to understand the 

mechanisms behind virus-host cell interactions is described in detail. The biological 

and biochemical data supporting our models are shown and briefly described. In the 

first part (Chapter 3.1), the development of small molecular NS2B-NS3 protease 

inhibitors against the emerging flavivirus family is presented. In the next chapter (3.2), 

a binding epitope of glycoprotein D from equine herpesvirus 1 and 4 to its receptor, 

equine MHC-I, is predicted. The last chapter (3.3) presents the structure-based models 

of ACE2 orthologs in their respective complexes with the spike protein used for the 

prediction of animal susceptibility to coronavirus disease 2019. 

 

3.1 Development of Small Molecules Targeting NS2B-NS3 Proteases 

3.1.1 Molecular Dynamics-Based 3D Pharmacophores Enable Identification of 

Potential WNVPro and ZIKVPro Inhibitors 

In order to develop flaviviral inhibitors, we focused on the NS2B-NS3 protease as a 

promising target for directly acting antiviral drugs (DAAD).11 We decided to target the 

substrate binding site of NS2B-NS3 since competitive inhibitors bear a higher 

resistance barrier than allosteric inhibitors.188 

Due to a low number of reported inhibitors sharing a peptidomimetic character 

(Chapter 2.3.1 “Structures of Proteases”, page 33), we aimed to identify novel inhibitors 

of the Zika virus protease (ZIKVPro) with a small molecular structure. To validate our 

models, high-quality inhibitor data was needed. We therefore searched for comparable 

NS2B-NS3 proteases in closely related flaviviruses. Several small-molecular 

competitive inhibitors are reported for the closely related West Nile virus protease 

(WNVPro), which shares high sequence similarity and identity with ZIKVPro (NS2B: 82% 

and 62%, respectively, NS3: 82% and 69%, respectively, Appendix Figure 2). This 

renders WNVPro a perfect candidate for comparative modeling of ZIKVPro inhibitors. 

The substrate binding site of NS2B-NS3 is a challenging target for drug discovery, in 

literature even referred to as a featureless binding site.189 The high hydrophilicity, 

shallowness,163 and flexibility162 render the structure-based inhibitor design highly 

complicated. To address these issues, we used a novel application called PyRod.128  
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Figure 23. (A) Dynamic molecular interaction fields (dMIFs) generated with PyRod from 

molecular dynamics simulations of the apo-structure of the West Nile virus protease. (B) 

Generated focused pharmacophore B and (C) derived best-performing combinatorial 

pharmacophores (C_65, C_397, C_427). Color code: yellow clouds and spheres- lipophilic 

contacts, red clouds and arrows- hydrogen bond acceptors, blue clouds and rings- aromatic 

interactions, and purple clouds and stars- cationic contacts. 

 

PyRod counters high flexibility of the target by using conformations obtained through 

molecular dynamics (MD) simulations. The software samples dynamic molecular 

interaction fields (dMIFs) by tracing water molecules in the protein environment. The 
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generated dMIFs (Figure 23A) are automatically translated into interaction points that 

can be applied to a virtual screening campaign. 

Due to the large area of the binding pocket included in the workflow (1118 Å2 as 

calculated with POVME3190 as described in the Experimental section), the derived 

general 3D pharmacophore model contains too many interaction points covering a too 

large area to perform virtual screening. In order to rationally generate pharmacophore 

models suitable for a virtual screening campaign, we focused on the highly conserved 

S1 and S2 binding subpockets. This led to the focused pharmacophore B1 (Figure 

23B), which still contains too many interaction points for virtual screening. To reduce 

the number of interactions per pharmacophore, we prepared a combinatorial 

pharmacophore library using an integrated PyRod tool generating permutations of a 

given general pharmacophore. To limit the number of possible combinations, we 

decided to keep the crucial cationic interaction191 to the NS3-residue D129 in all 

combinations. In addition, we restrained the number of interaction points to 3-6 per 

combination (with a maximum of 3 hydrophobic contacts, 4 hydrogen bonds, 3 

aromatic interactions, and 3 cationic interactions in each combination). This resulted 

in a total of 3022 unique 3D pharmacophore models. In order to identify the best 

candidates for a virtual screening campaign, we validated all models using a manually 

curated set of active WNVPro inhibitors and generated decoy molecules. The set of 17 

active inhibitors168, 169, 192-194 (with reported IC50 or Ki values lower than 50 µM, Appendix 

Table 1) was obtained by a manual literature search and the set of 667 decoys was 

generated using DUD-E server129 based on the structure of active ligands. 

All 3022 pharmacophore models were automatically screened against the active and 

decoy libraries. We chose three combinatorial pharmacophore models (C_65, C_397, 

C_427, Figure 23C) according to their superior performance characterized by their 

highest early enrichment factors (EF1%) and largest absolute number of recovered 

active inhibitors. 

These three pharmacophore models were used for a virtual screening campaign of a 

database of 7.6 million commercially available compounds. The screening returned 

1079 hits (10 for C_65, 712 for C_397, and 357 for C_427). In order to filter the most 

promising potential NS2B-NS3 inhibitors, we docked the obtained hits into the 

substrate binding site of the WNVPro and obtained plausible binding poses. These 

poses were scored against the combinatorial pharmacophore models to retain 
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validated interaction patterns. In the next step, we visually inspected all selected hits 

to exclude implausible binding modes (such as lipophilic moieties pointing towards 

the solvent or ionized moieties not involved in a salt bridge) and non-drug-like 

moieties132 (such as quinones or alkyl halides). The remaining 15 compounds in 

complex with the WNVPro were simulated in a single 20 ns molecular dynamics (MD) 

simulation each, to ensure their capability of binding to the highly flexible NS2B-NS3 

protease. We visually inspected all MD simulations, determining whether the ligand 

performs large movements. The last filtering step yielded five final hits showing no 

dissociation events in the MD simulations (Figure 24). 

 

 

Figure 24. Potential flaviviral protease inhibitors obtained from virtual screening. Purple stars 

indicate cationic interactions, yellow lines lipophilic contacts, and red arrow hydrogen bonds 

with the protease according to the presented pharmacophore models. 
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In the next step, we aimed to confirm the ability of the identified ligands to inhibit 

ZIKVPro. The PyRod analysis of the substrate binding pocket of ZIKVPro resulted in the 

focused pharmacophore model B2 (Figure 25, right). The pharmacophore shared 

substantial interaction points with the focused WNVPro pharmacophore B1 (Figure 25, 

left), i.e. cationic interactions in the S1 and S2 subpockets, lipophilic interactions in the 

S1 subpocket, and hydrogen bond acceptor features in the polypeptide binding region 

and oxyanion hole. Due to the shared pharmacophoric properties, we predicted that 

our ligands would be active on both, ZIKVPro and WNVPro. 

 

 

Figure 25. Comparison of the focused pharmacophores for West Nile virus protease (B1) and 

Zika virus protease (B2). 

 

3.1.2 Biochemical Characterization of the Selected Compounds Confirms Inhibitory 

Activity 

The selected hits were biochemically characterized on ZIKVPro by Tim M. Sarter in the 

Nitsche Lab in Canberra (Australia), and on WNVPro by Rafe Yousef in the Rademann 

Lab in Berlin (Germany). In the first step, we measured the remaining NS2B-NS3 

activity under constant ligand concentration (500 µM for WNVPro and 100 µM for 

ZIKVPro). In the next step, the Ki values were measured for the two most promising 

compounds 397_2 and 427_1 (Table 4, Appendix Figure 3). 

 

3.1.3 Dynamic Pharmacophores Explain Determined Activity Cliffs 

While the Ki values for compound 397_2 remain in the same order of magnitude as 

predicted by our models, the activity of 427_1 shows an activity cliff of one order of 
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magnitude (25.5 µM on WNVPro and 2.3 µM on ZIKVPro). To explain this, we performed 

a series of 50 ns MD simulations of 427_1 in complex with ZIKVPro and WNVPro. 

 

Table 4. Measured inhibitory activity of compounds selected from the virtual screening 
workflow. 

Compound Ki on DENV2Pro [µM] Ki on WNVPro [µM] Ki on ZIKVPro [µM] 

397_2 n.d. 7.4 ± 1.3 11.5 ± 0.5 

397_6 n.d. n.d. n.d. 

397_12 n.d. n.d. n.d. 

427_1 0.09 ± 0.03 25.5 ± 11.8 2.3 ± 0.4 

427_2 n.d. n.d. n.d. 

n.d.: not determined; Ki values were only determined for compounds within a cutoff below 50 µM. 

Abbreviations: DENV2- Dengue 2 virus, Pro- protease, WNV- West Nile virus, ZIKV- Zika virus. 

 

We analyzed the interaction patterns occurring over the course of the MD simulations 

using the Dynophore application.73, 127 We observed that the inhibitor can adopt two 

binding modes in the binding pocket of ZIKVPro (Figure 26). In the alternative binding 

mode, 427_1 adopts a conformation occupying S2 and S4 subpockets. The primary 

amino group of 427_1 migrates from the S1 subpocket and loses the ionic contact to 

NS3-D129 in favor of a salt bridge to NS2B-D83 in the S4 subpocket. Furthermore, the 

inhibitor establishes new lipophilic contacts to NS3-V155 in addition to the lipophilic 

contacts to NS3-Y161 also present in the initial binding mode. We suggest that the 

additional interactions seen in the second binding mode provide an entropic gain, 

explaining the improved activity of 427_1 on ZIKVPro. 

The second binding mode of 427_1 can be also observed in the MD simulations of the 

inhibitor in complex with WNVPro. Due to the polymorphic mutation in the NS2B-unit 

(N84 in WNVPro versus D83 in ZIKVPro), no stabilizing salt bridge to the primary amino 

group in the S4 subpocket can be observed. In a single MD simulation, 427_1 leaves 

the binding pocket of WNVPro, which may correlate with a lower activity of the inhibitor 

on this protease. 
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Figure 26. Representative spatiotemporal interaction clouds (Dynophores) found in molecular 

dynamics simulations of 427_1 (stick model) in complex with Zika virus protease (ribbon, 

sphere and stick model). Color code: orange sticks- carbon atoms of 427_1, grey spheres- 

protein carbon atoms, blue sticks and spheres- nitrogen atoms, red sticks and spheres- oxygen 

atoms, pale grey sticks and spheres- hydrogen atoms, green ribbon- NS2B, white ribbon- NS3, 

purple point-clouds- cationic interactions, red or green point clouds- hydrogen bond acceptors 

or donors, respectively, yellow point clouds- lipophilic contacts. 

 

3.1.4 PyRod Predicts the Activity of Our WNVPro and ZIKVPro Inhibitors on Closely 

Related DENV2Pro 

After obtaining encouraging results at WNVPro and ZIKVPro, we investigated potential 

inhibitory activity on another test system available in the Rademann Lab: Dengue 2 

virus protease (DENV2Pro). Since no experimentally determined crystal structure of the 

DENV2Pro in the closed conformation was available, we developed a homology model 

using MOE (Chemical Computing Group ULC, Montreal, Canada). We chose the 

DENV3Pro X-ray structure (PDB-ID: 3U1J) as a template due to its high sequence 

similarity and identity (77% similarity and 54% identity for NS2B, 86% similarity and 

71% identity for NS3, Appendix Figure 2). The obtained DENV2Pro model shows no 

Ramachandran outliers89 (Appendix Figure 4), suggesting a plausible backbone 

geometry. The substrate binding pocket of the DENV2Pro model contains all typical 

features of the flaviviral proteases: the catalytic triad consisting of conserved residues 

NS3-D75, H51, and S135, and the polypeptide binding site (NS3-G151, G153). This 
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suggests that the obtained homology model of DENV2Pro is suitable for the modeling 

of competitive inhibitors. 

In the next step, we performed MD simulations of DENV2Pro in an aqueous environment 

sampling the substrate binding pocket using PyRod. The obtained focused 

pharmacophore B3 (Figure 27, right) is similar to the focused pharmacophore B1 of 

WNVPro (Figure 27, left). This suggests that the identified ligands could also inhibit 

DENV2Pro. 

 

 

Figure 27. Comparison of the focused pharmacophores for West Nile virus protease (B1) and 

Dengue 2 virus protease (B3). 

 

The two most active compounds, 397_2 and 427_1, were docked into the DENV2Pro 

model and the complexes were simulated to obtain dynamic pharmacophores. Visual 

inspection of the obtained trajectories of 427_1 in complex with DENV2Pro revealed 

that the NS2B-loop of the substrate binding pocket (Figure 28) adopts a conformation 

featuring a larger distance to the NS3 subunit than observed in WNVPro and ZIKVPro. 

This observation is in line with the findings reported by Christiane Schüler in her master 

thesis, performed in our group at an earlier date.195 In this study, it was shown that a 

single polymorphism, NS2B-F85M (WNVPro – DENV2Pro), might be responsible for the 

destabilization of NS2B-NS3 contacts, allowing the DENV2-NS2B-loop to strongly 

fluctuate in the MD simulations. The extent of the NS2B-loop fluctuation was 

characterized in this thesis by measuring the distance between the backbone Cα atom 

of the NS2B-residue 85 in DENV2Pro (M85) and WNVPro (F85) and the backbone Cα 

atom of NS3-G153 in DENV2Pro and WNVPro. We applied this distance descriptor to 

characterize the NS2B-loop – NS3 core distance fluctuation in our simulations (Figure 
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28). The measured distribution of the distance between NS2B-residue 85 and NS3-

G153 confirmed that the NS2B-loop in the 427_1-DENV2Pro complex is likely to adopt 

a larger distance to the NS3-core than in WNVPro and ZIKVPro, allowing the S2 

subpocket of DENV2Pro to be wider in comparison. We surmised that the positively 

charged N atom in the pyrrolidine moiety of 427_1 can establish closer ionic contacts 

to NS3-D75. To demonstrate this, we analyzed the distance between the positively 

charged N atom in the pyrrolidine moiety of the inhibitor to the carboxylate of DENV2Pro 

NS3-D75 obtained from the dynamic pharmacophores of 427_1. Indeed, the distance 

distribution shows a higher probability of closer ionic contact between the pyrrolidine 

moiety and NS3-D75 in DENV2Pro than in WNVPro and ZIKVPro (Figure 28). 

The analysis of the MD trajectories of 397_2 in complex with DENV2Pro did not reveal 

any differences compared to WNVPro or ZIKVPro. Based on the analysis of the 

trajectories, we predicted 427_1 to be more active at DENV2Pro than on ZIKVPro and 

397_2 to be active in the same order of magnitude as on WNVPro and ZIKVPro. 

In the next step, all final hits were biochemically characterized on DENV2Pro by Silke 

Bergmann and Christoph Arkona in the Rademann Lab, following a similar protocol to 

that for the WNVPro assay. According to our prediction, the most active compound 

427_1 showed higher inhibitory activity on DENV2Pro than on ZIKVPro (Table 4). 

Surprisingly, inhibitor 397_2 was detected as inactive in the assay. To explain this 

surprising result, we analyzed the DENV2Pro dMIFs obtained from PyRod. We observed 

that the S1 subpocket of DENV2Pro is more lipophilic than in ZIKVPro and WNVPro (Figure 

27). The comparison of 397_2 and 427_1 in complex with DENV2Pro reveals an 

important difference: inhibitor 397_2 exposes a methoxy moiety in the S1 subpocket 

compared to a more lipophilic methyl group of 427_1. The reduced lipophilicity of the 

methoxy group in 397_2 might contribute to the lower activity of the inhibitor. 

The two most promising candidates (397_2 and 427_1) were selected for in-vivo 

testing. The DENV2Pro-inhibition cell-based assays were performed by Mila Leuthold in 

Heidelberg (Germany). Briefly, the novel assay is performed on NS2B-NS3-expressing 

HeLa-cells with a luciferase reporting system.196 When active, the protease cleaves 

luciferase from the flaviviral polyprotein and enables the generation of a fluorescent 

reagent, luciferin. The measured EC50 values for 397_2 (47.8 µM) and 427_1 (26.8 µM) 

suggest cellular activity of the DENV2Pro inhibitors (Appendix Figure 5). 

 



57 

 

Figure 28. Distribution of the backbone-distances of the -NS2B-loop and NS3-core in Dengue 2, 

West Nile, and Zika virus proteases (upper histogram, 1). Distance distribution of the positively 

charged nitrogen atom in the pyrrolidine moiety of 427_1 and the carboxylate of NS3-D75 in 

Dengue 2, West Nile, and Zika virus proteases (lower histogram, 2). 
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3.2 Equine Herpesvirus: Targeting the MHC-I – Glycoprotein D 

Interface for Vaccine Development 

As described in the Theoretical Background section (Chapter 2.1.2 “The Viral 

Replication Cycle”, page 13), glycoproteins D (gD) from equine herpesvirus 1 and 4 

(EHV-1, -4) recognize the major histocompatibility complex I (MHC-I) on host cells. The 

gD – MHC-I binding represents the crucial step of EHV entry. Due to the importance of 

EHV-gD for the replication cycle, gD is a promising starting point for the development 

of novel vaccines. While the crystal structures of EHV-1 and 4 gD are available, the 

specific binding region of EHV gD to MHC-I is unknown. The aim of this thesis section 

is the development of plausible gD MHC-I complex binding geometries in order to 

identify plausible immunogenic epitopes. 

 

3.2.1 Crystal Structures of Equine MHC-I Lack Pivotal A173 Leading to the 

Construction of an MHC-I Homology Model 

The EHV-1 and -4 enter cells via the major histocompatibility complex I (MHC-I) that 

can be found in 27 variants (reported in the UniProt database) classified into 18 

characterized genotypes (Appendix Table 2).34 At the beginning of this project, only 

scarce data on gD-MHC-I binding was available. Sasaki et al. have described the 

importance of MHC-I-A173 for the EHV-1 gD using a gain-of-function MHC-I-mutant 

Q173A.197 Azab and colleagues extended these experiments to several MHC-I 

genotypes and EHV-4, confirming the pivotal role of MHC-I-A173 (Figure 29).34 

Surprisingly, genotypes 3.2 and 3.7 were inert to EHV-1-infection despite harboring an 

alanine at MHC-I-position 173. 

With this knowledge, we manually inspected all available equine MHC-I crystal 

structures (PDB-ID: 4ZUS, 4ZUT, 4ZUU, 4ZUV, 4ZUW198) to find one featuring EHV entry. 

Unfortunately, all the structures originate from the same genotype 1.18.7-6, which 

harbors a glutamic acid residue at position 173. This suggests a negligible binding to 

gD. Hence, we carefully developed a homology model of MHC-I genotype 3.1 as used 

in the experimental setup by our collaborators, Viviane Kremiling and Walid Azab from 

Osterrieder Lab in Berlin (Germany). Genotype 3.1 reportedly supports EHV entry34 and 

features an alanine residue at position A173. The homology model was developed 

based on the template with the best resolution (PDB-ID: 4ZUU198). 
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The MHC-I genotype 3.1 shares 85% identity and 88% similarity in the heavy chain 

(Appendix Figure 6) with the template genotype 1.18.7-6. This high sequence similarity 

allows construction of a high-quality homology model of the heavy chain of MHC-I. 

Subsequently, we built a homology model of the light chain of MHC-I called β2-

microglobulin. The X-ray crystal structure contains a murine β2-microglobulin sharing 

63% identity and 82% similarity with its equine ortholog, allowing the construction of a 

high-quality model. 

The obtained homology models of the heavy and light chains featured no 

Ramachandran outliers89 (Appendix Figure 7). Furthermore, the positions of the 

disulfide bridges characteristic for the MHC-I fold at positions 101-164, 203-259 (heavy 

chain), and 25-80 (light chain) were present and the geometry of the sulfur-sulfur 

bonds was correct. These characteristics suggest a high geometric quality of the 

obtained homology models. Both chains of the homology models were subsequently 

assembled to a full-length equine MHC-I genotype 3.1 structure. The assembled model 

was relaxed in a molecular dynamics (MD) simulation as described in the Experimental 

section. The coordinates for docking of the relaxed model were obtained after the root 

mean square deviation (RMSD) of the backbone had reached a stable plateau of 3 Å 

(Appendix Figure 8). 

In its physiological form, the MHC-I carries a short peptide 8-12 residues in length in a 

groove between the α-helices (Figure 29). Our collaborators used a nonapeptide 

(SDYVKVSNI) in their cell-based infection models, which is different from the 

nonapeptide co-crystallized in the template structure 4ZUU (CTSEEMNAF). Hence, we 

decided to model the nonapeptide SDYVKVSNI into our MHC-I genotype 3.1 homology 

model. 

Only scarce data on the interactions between MHC-I and peptide are available. The 

studies conducted by Yao and colleagues indicate that second and third residues as 

well as the C-terminus specifically establish interactions with MHC-I.198 The 

conformation of the complexed peptide is strongly dependent on its length.198 Hence, 

we manually fitted the SDYVKVSNI into the MHC-I homology model using the 

conformation of the co-crystallized nonapeptide CTSEEMNAF (Figure 29). 

Finally, to identify the gD binding epitope, we performed protein-protein docking using 

our MHC-I homology model and the EHV-1 gD crystal structure obtained by our 

collaborators (PDB-ID: 6SQJ183). Since the complexed nonapeptide might interfere 
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with a potential binding epitope due to its proximity to the residue A173, we decided to 

perform two docking experiments, one with and the other without the nonapeptide. 

Finally, the resulting binding modes were compared to evaluate the influence of the 

nonapeptide on gD binding. 

 

 

Figure 29. (A) Global structure of the equine major histocompatibility complex I (MHC-I) 

homology model with indicated A173, a residue crucial for equine herpesvirus entry. (B) The 

conformation of the co-crystallized template-peptide CTSEEMNAF (top) and modeled peptide 

SDYVKVSNI used in the cell-based infection model (bottom); for the sake of clarity, the α1 helix 

is not shown. Color code: golden ribbon – MHC-I α chain, orange ribbon- β2 microglobulin, and 

magenta ribbon- peptide. 
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3.2.2 Docking of EHV-1 gD onto the Peptide-Free MHC-I Model Reveals Proximity of 

the gD-Binding Interface to the Peptide-Binding Region 

Both docking experiments, peptide-free and peptide-bound, were performed using 

Rosetta by generating 10,000 docking runs. The peptide-free docking round of EHV-1 

gD on the MHC-I homology model yielded around 7,200 docking solutions. According 

to the Rosetta protocol,108 a collection of recommendations for the usage of Rosetta, 

the most energetically favored binding modes are scored with the lowest value of the 

Rosetta energy, a surrogate parameter for the free energy of binding. We picked the 

first ten best docking poses and applied heuristic filtering rules (Table 5) to choose the 

most plausible binding modes. 

 

Table 5. Heuristic filtering rules to find the most plausible docking pose. 

Filtering Rule Rationale 

Docking poses harboring the C-terminus of 
gD in the PPI are discarded. 

The C-terminal part of the gD is anchored in 
the viral envelope.199 

Docking poses without lipophilic contacts in 
the PPI are discarded. 

Residues with lipophilic side chains are 
enriched in PPI.187 

Docking poses containing residues D, H, I, K, 
P, R, W, Y in the PPI are accepted. 

According to the O-ring theory,186 these 
residues are statistically enriched in PPI. 

Abbreviations: gD- glycoprotein D, PPI- protein-protein interfaces. 

 

The four selected docking poses were prepared and simulated (see Experimental 

Details, Chapter 6.2 “Equine Herpesvirus: Targeting the MHC-I – Glycoprotein D 

Interface for Vaccine Development”) to examine the stability of the binding 

interfaces.105 Only one docking solution shows an RMSD of 6 Å during the MD 

simulations (Appendix Figure 9), indicating negligible global conformational changes 

throughout the trajectory. 

To characterize the obtained protein-protein interface (PPI), we analyzed steric 

contacts between the MHC-I and EHV-1 gD using the PyContact application (Table 

6).200 The role of all residues involved in the EHV-1 gD – MHC-I contact was assessed 

based on the O-ring theory186 described in the Theoretical Background section 

(Chapter 2.5 “Classification and Architecture of Protein-Protein Interactions”). 

The protein-protein interface (PPI) displays two main residue patches (Figure 30): The 

first patch consists of residues building three loops of the gD-core (loop 1: T161, 
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loop 2: I211, F213, and loop 3: W257, D261) and the α2-chain of MHC-I (Q165, I166, 

R168, R169). The second patch contains a single N-terminal R43 of gD contacting Y108 

placed in the α1-chain of MHC-I. 

 

 

Figure 30. The binding hypothesis of equine herpesvirus 1 glycoprotein D (EHV-1 gD) to the 

equine major histocompatibility complex I (MHC-I) genotype 3.1 in its peptide-free form. Color 

code: green ribbon and pale gray spheres- gD, golden, orange ribbon, and grey spheres-  

MHC-I. 

 

The binding hypothesis confirms our assumption of the proximity of the hypothetical 

binding epitope to the peptide-binding groove of MHC-I. Hence, we performed an 

additional docking round on the relaxed equine MHC-I genotype 3.1 homology model 

with the modeled peptide of sequence SDYVKVSNI.  
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Table 6. Frequencies of contacts between the EHV-1 gD and equine MHC-I genotype 3.1 in a 

peptide-free binding hypothesis. 

MHC-I residue 
Contact 

frequency [%] 
EHV-1 gD 

residue 
Hypothesized role 

Y108 90 R43 O-ring sealing I166-W257 contact 

Q165 100 T161 
O-ring sealing I166-W257, R169-

D261 contacts 

I166 100 W257 Hot spot contact 

R168 98 F213 
O-ring sealing I166-W257, R169-

D261 contacts 

R169 

100 I211 (backbone) 
Additional contact stabilizing the 

PPI 

100 F213 
Additional contact stabilizing the 

PPI 

100 W257 O-ring sealing R169-D261 contact 

100 D261 Hot spot contact 

Abbreviations: EHV-1- equine herpesvirus 1, gD- glycoprotein D, MHC-I- major histocompatibility 

complex I, PPI- protein-protein interface. 

 

3.2.3 Docking of EHV-1 and 4 gD onto the Peptide-Bound MHC-I Model Yields 

Plausible Binding Modes 

Protein-protein docking was performed using the Rosetta application followed by an 

MD simulation-based filtering as described for the peptide-free docking round in the 

previous section 3.2.2 on page 57. The docking yielded around 7,100 possible binding 

geometries. Among those, we searched for docking solutions containing the crucial 

contact gD-D261 – MHC-I-R169, indicated as a distance of 4.5 Å between Cγ atom of 

gD-D261 and Cζ atom of MHC-I-R169, using an MDAnalysis-based201, 202 script. The 

script was kindly provided by David Machalz from our group. 

The filtering revealed five docking solutions containing the steric proximity we 

searched for. Visual inspection and O-ring theory-based filtering (Table 5) yielded a 

single docking pose. The selected complex belongs to the top 3% of all docking poses 

according to the Rosetta energy score, suggesting a low-energy binding geometry 

(Figure 31). The peptide-bound docking pose of EHV-1 gD in complex with MHC-I was 
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simulated in a 100 ns MD simulation and the PPI was characterized with PyContact 

(Table 7), as described for the peptide-free docking. The complex showed a stable 

RMSD-plateau at 3.5 Å (Appendix Figure 10) suggesting negligible global 

conformational changes throughout the MD simulation. 

 

 

Figure 31. The binding hypothesis of equine herpesvirus 1 glycoprotein D (EHV-1 gD) to the 

equine major histocompatibility complex I (MHC-I) genotype 3.1 in its peptide-bound form. 

Color code: green ribbon and pale gray spheres- gD, golden, orange ribbon, grey spheres-  

MHC-I, and magenta ribbon- peptide. 
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Table 7. The frequencies of contacts between the EHV-1 gD and equine MHC-I genotype 3.1 

in the peptide-bound binding hypothesis. 

MHC-I residue 
Contact 

frequency [%]a 
EHV-1 gD 

residue 
Assumed role 

R103 100 ± 0 E242 
Additional contact stabilizing the 

PPI 

Y108 100 ± 0b A157 O-ring sealing I166-F213 contact 

N110 92 ± 5 R222 O-ring sealing I166- F213 contact 

E113 98 ± 3 R238 
Additional contact stabilizing the 

PPI 

I166 97 ± 4 F213 Hot spot contact 

R169 100 ± 0 D261 Hot spot contact 

A173 97 ± 1 W257 O-ring sealing R169-D261 contact 

a Molecular dynamics simulation was performed in triplicate, the value is given as average ± standard 

deviation. b The frequency of MHC-I-Y108 – EHV-1 gD-A157 summarizes lipophilic side chain contacts 

and hydrogen bonding between the Y108-OH group and the A157 backbone. Abbreviations: EHV-1- 

equine herpesvirus 1, gD- glycoprotein D, MHC-I- major histocompatibility complex I, PPI- protein-protein 

interface. 

 

The EHV-1 gD – MHC-I binding hypothesis in the peptide-bound form bears three 

residue patches (Figure 31): 

(i) the hot spot patch containing MHC-I residues placed in the α2-chain (I166, 

R169, and A173) and gD residues F213, W257, and D261, 

(ii) a small lipophilic patch with MHC-I residue Y108 of the α1-chain involved in 

the coordination of the nonapeptide and contacting gD residue A157, 

(iii) hydrogen bonding patch containing MHC-I residues placed in the α1-chain 

(R103) and loops (N110 and E113) contacting gD residues R222, R238, and 

E242. 

 

Interestingly, this binding hypothesis may explain why residues with larger side chains 

than alanine at position 173 of MHC-I hinder viral entry. MHC-I-A173 seals the crucial 

salt bridge MHC-I-R169 – gD-D261 via a lipophilic contact to gD-W257. Larger side 

chains at the MHC-I-position 173, such as threonine in genotype 3.4, glutamic acid in 
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3.5, or valine in 3.6 may represent a steric hindrance and prevent the sealing of the hot 

spot contact. Additionally, our binding hypothesis explains why the MHC-I genotype 

3.7 does not allow viral entry despite having an alanine at position 173. The MHC-I 

genotype 3.7 bears residue E174 (instead of A174 as in genotype 3.2) that points 

towards the lipophilic gD-residues W253 and W257 in our model. This potentially leads 

to an entropic penalty, preventing the sealing of the hot spot salt bridge. 

In the next step, we aimed to establish an EHV-4 gD binding hypothesis. At this time, 

our collaborators had successfully solved the crystal structure of EHV-4 gD (PDB-ID: 

6TM8183), which was subsequently docked onto peptide-bound MHC-I. Due to the 

homology of EHV-1 and -4 gD’s, we expected to find an EHV-4 gD binding pose 

exploiting identical patches to those in EHV-1 gD. The protein-protein docking yielded 

approximately 7,100 poses. The subsequent search for the crucial gD-D261 – MHC-I-

R169 contact yielded 21 complexes. Visual inspection and O-ring-based filtering (Table 

5) returned a single binding hypothesis (Figure 32) belonging to the top 11% docking 

poses, according to the Rosetta energy score. The peptide-bound EGV-4 gD – MHC-I 

complex was subsequently simulated in a 100 ns MD simulation and the PPI was 

characterized again using PyContact (Table 8). The complex showed a stable RMSD-

plateau at 6.5 Å (Appendix Figure 11) during the whole simulation, suggesting low 

conformational changes. 

The EHV-4 gD epitope contains the same residue patches as EHV-1 gD, confirming our 

hypothesis of homologous binding sites. We observed that the MHC-I-R103 – gD-E242 

contact frequently present in the EHV-1 complex was not present in the EHV-4 gD 

binding hypothesis. The lower number of interactions in the EHV-4 gD – MHC-I 

interface might explain the lower binding affinity of EHV-4 gD (KD= 4413 μM) compared 

to EHV-1 gD (KD= 3996 μM, as measured by Vivane Kremling).183 

Due to the peptide binding by MHC-I in its physiological state, we suggest the peptide-

bound gD-MHC-I docking poses as our final and valid models (Figure 32). Interestingly, 

no contacts between the peptide and gD were observed, suggesting that the peptide 

sequence might not influence the gD binding. 

 

 

 

 



67 

 

 

 

 

 

 

 

Figure 32. The binding hypothesis of equine herpesvirus 4 glycoprotein D (EHV-4 gD) to the 

equine major histocompatibility complex I (MHC-I) genotype 3.1 in its peptide-bound form. 

Color code: green ribbon and pale gray spheres- gD, golden, orange ribbon, grey spheres- MHC-

I, and magenta ribbon- peptide. 
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Table 8. The frequencies of contacts between the EHV-4 gD and equine MHC-I genotype 3.1 

in a peptide-bound binding hypothesis. 

MHC-I residue 
Contact 

frequency [%]a 
EHV-4 gD 

residue 
Assumed role 

Y108 92 ± 11 N157 O-ring sealing I166-F213 contact 

N110 41 ± 28 R222 O-ring sealing I166- F213 contact 

E113 28 ± 37 R238 
Additional contact stabilizing the 

PPI 

I166 96 ± 4 F213 Hot spot contact 

R169 99 ± 1 D261 Hot spot contact 

A173 86 ± 14 W257 O-ring sealing R169-D261 contact 

a Molecular dynamics simulation was performed in triplicate, the value is given as average ± standard 

deviation. Abbreviations: EHV-1- equine herpesvirus 1, gD- glycoprotein D, MHC-I- major 

histocompatibility complex I, PPI- protein-protein interface. 

 

3.2.4 Mutational Studies Confirm Predicted gD-F213 and D261 as Hot Spot 

Residues 

Based on these binding hypotheses, we suggested two loss-of-function mutations of 

gD: F213A disrupting the van-der-Waals contacts and D261N disrupting the salt bridge 

but preserving the side chain size. 

The proposed gD-mutants were successfully produced and characterized in a multi-

step growth kinetics assay by Viviane Kremling under the supervision of Walid Azab in 

Osterrieder Lab. As predicted by our computational models, both gD-mutants F213A 

and D261N led to growth defects in the assay.183 The EHV-1 gDF213A showed a 

reduction of growth by two logarithmic units and reduced virus titers in the cell 

supernatant. The EHV-1 gDD261N, EHV-4 gDF213A, and EHV-4 gDD261N displayed no growth 

in the cell culture, hence the growth kinetic assay could not be performed. Notably, the 

mutant EHV-1 gDD261N reverted to the wild-type sequence in the cell culture. This 

indicates that gD-residue D261 is vital for the EHV-1 replication. As a control 

experiment, the EHV gD-mutants were reverted to their wild-type sequences, fully 

restoring growth in the cell culture. 
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3.3 Predicting the Susceptibility of Animal Species to COVID-19 

Due to the ongoing coronavirus disease 2019 (COVID-19) pandemic starting in early 

2020, research on the causative agent, severe acute respiratory syndrome-related 

coronavirus 2 (SARS-CoV-2), was urgently needed. Early reports203 suggest that the 

susceptibility of animal species to SARS-CoV-2 contributes to the dynamics of the 

COVID-19 pandemic. Our close collaboration with the Osterrieder Lab in Berlin 

(Germany), which is specialized in the virology of animal infections, allowed us to focus 

on animal susceptibility to COVID-19 in our last study. 

It has been shown for a closely related severe acute respiratory syndrome-related 

coronavirus 1 (SARS-CoV-1) that polymorphisms in angiotensin-converting enzyme 2 

(ACE2) correlate with species susceptibility to SARS.180 Analogously, we compared 

ACE2 orthologs from different animal species to identify polymorphic mutations 

contributing to animal susceptibility to COVID-19. This led to molecular descriptors 

predicting species susceptibility to this novel disease. 

 

3.3.1 Sequence Analysis Reveals no Relevant Differences in the Spike-ACE2 

Interface for Different Animal Species 

In order to get an overview of animal susceptibility to SARS-CoV-2, we performed a 

literature search for reports describing COVID-19 infections in animals (Table 9). All 

case studies investigated domesticated animals and livestock with a high potential to 

transmit the virus to humans. 

At the beginning of the project, we compared the primary structures of ACE2 orthologs 

in the most prominent domesticated animal species: dog (Canis lupus familiaris) and 

cat (Felis catus) with the human sequence as a positive control (Figure 33A, Appendix 

Figure 12). Firstly, we investigated the residues reported as hot spots for the binding 

of the receptor-binding domain (RBD) of SARS-CoV-2 (31, 34, 35, 41, 79, 82, and 83, 

referring to the human sequence).181 We identified two polymorphic mutations in the 

canine sequence; H34/33Y and M82/81T (canine residues are offset by one value 

compared to other sequences). Mutation M82T is also present in cats, which are 

susceptible to COVID-19. Hence, we focused on the polymorphism H34/33Y only 

present in dogs, a virtually asymptomatic species. To determine whether the H34/33Y 

mutation is unique for dogs, we compared the ACE2 sequences of other animals with 

reported COVID-19 susceptibility (Table 9, Figure 33B). We found this polymorphism in 
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the ACE2 sequence of the ferret (Mustela putorius), a species prone to COVID-19. 

Therefore, we assumed that the mutation H34/33Y does not hinder viral entry. The sole 

comparison of ACE2 sequences did not provide any correlation between hot spot 

polymorphisms and COVID-19 susceptibility of animal species. 

 

Table 9. Reported species susceptibility to COVID-19 included in this study. 

Animal species 
Reported susceptibility to 

COVID-19 
Reference 

Cat (Felis catus) Yes Shi et al.203 

Dog (Canis lupus familiaris) 
Virtually asymptomatic, unable 

to transfer SARS-CoV-2 
Sit et al.204 

Ferret (Mustela putorius) Yes Shi et al.203 

Mouse (Mus musculus) No Munoz-Fontela et al.205 

Rat (Rattus norvegicus) No Munoz-Fontela et al.205 

Syrian hamster 
(Mesocricetus auratus) 

Yes Munoz-Fontela et al.205 

Abbreviations: COVID-19- coronavirus disease 2019, SARS-CoV-2- severe acute respiratory syndrome-

related coronavirus 2. 

 

To investigate the influence of ACE2-mutations outside the binding hot spots, we 

decided to compare the dynamics of three-dimensional models of ACE2-orthologs in 

complex with the spike (S) RBD of SARS-CoV-2. At the beginning of the project, no 

animal ACE2 structures were available, eventually leading to the construction of 

homology models. 

All homology models were built based on the first available human ACE2 X-ray 

structure in complex with S RBD from SARS-CoV-2 (PDB-ID: 6M0J181). The high 

sequence identity of ACE2-orthologs to the human sequence (ranging from 83% for 

the ferret to 87% for the Syrian hamster, Appendix Figure 12) allowed us to build high-

quality models with maximally one Ramachandran outlier89 in the dog and mouse 

ACE2 (Appendix Figure 13). The single Ramachandran outlier results from a 

polymorphic mutation (G337/336S in dog and G337A in mouse) and is located distally 

to the S RBD binding site. The backbone RMSD of the homology models compared to 
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the human ACE2 template were in the range from 0.6 to 0.9 Å, suggesting only 

negligible deviations from the global fold. 

 

 

Figure 33. Sequence comparison of the epitope residues of (A) human, dog, and cat ACE2 

orthologs and (B) extended comparison with ferret, mouse, rat, and Syrian hamster ACE2 

orthologs. (C) Sequences of ACE2 orthologs in species, coronavirus disease 2019 

susceptibility being predicted (Chinese hamster, Campbell’s dwarf hamster, and red squirrel). 

Residues marked in orange are reported as hot spots181 for the binding of the residue binding 

domain of severe acute respiratory syndrome-related coronavirus 2. 

 

All ACE2 homology models were subsequently assembled together with the S RBD 

from the template structure (PDB-ID: 6M0J). We observed only isolated side chain 

clashes. They were manually relaxed using the rotamer tool integrated into MOE and 

energy minimized using the OPLS-AA force field.142 

The prepared homology complexes of human and animal ACE2-orthologs in complex 

with SARS-CoV-2 S RBD were simulated over 100 ns in five replicates each, generating 

in total 3 µs of molecular dynamics (MD) trajectory. The visual inspection of all 

trajectories revealed that the RBD-loop coordinating the binding pocket C in the dog 

and rat ACE2-complexes performs a movement to a larger extent than in other species 

(Figure 34). 

 



72 

 

Figure 34. Conformations of the receptor-binding domain (RBD) of severe acute respiratory 

syndrome-related coronavirus 2 in complex with angiotensin-converting enzyme 2 (ACE2) 

orthologs observed in molecular dynamics simulations. Color code: green ribbon and pale grey 

atoms- RBD, cyan ribbon and grey atoms- ACE2. 
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3.3.2 The Conformations of the Lipophilic Binding Pocket C of ACE2 Restrict 

Lipophilic Contacts to the RBD-Loop of Spike 

To find a plausible explanation for the recurring dissociation events of the RBD-loop, 

we analyzed the distance between the RBD hot spot residue F486 and canine ACE2-

Y82. We chose the distance between Cζ of RBD-F486 and Cβ of ACE2-Y82 as a 

surrogate parameter for lipophilic contacts in the binding pocket C (Figure 34). This is 

the closest possible distance between those two residues. The MDAnalysis201, 202 

scripts used for the calculation of all molecular descriptors were provided by Trung 

Ngoc Nguyen from our research group. 

In Syrian hamster and human ACE2 simulations, we observed a single peak at around 

5-7 Å in the RBD-F486 – ACE2-Y83 distance distribution (Figure 35). This suggests 

frequent and close contacts between RBD-F486 and ACE2-Y83, as expected for the 

susceptible species. We call this conformation the “bound state”. Surprisingly, the 

close RBD-F486 – ACE2-F83 contacts in the binding pocket C were also detected in 

mouse, a non-susceptible species. We assume that murine ACE2 does not allow RBD 

binding in binding pockets A or B. 

In cat, ferret, and dog simulations, we observed two peaks at around 5 and 7 Å 

suggesting the existence of two possible RBD-F486 conformations. Both peaks are 

identical, with the “bound state” indicating frequent and close lipophilic contacts 

between RBD-F486 and ACE2-Y83 (82 in dog). This is surprising for the dog since this 

species is virtually asymptomatic. A careful manual analysis of the binding pocket C 

conformations revealed that ACE2-Y82 rotates around the χ1 bond, displaying two 

rotamers (Figure 34). The first rotamer (χ1 angle around -70°, Figure 35) is present in 

all species and represents the binding rotamer with the phenyl ring rotated towards the 

RBD. The second rotamer can be only found in the dog (χ1 angle around -170°), with 

the phenyl ring rotated outwards of the binding pocket C. 
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Figure 35. Distribution of the distance between residues F486 (receptor-binding domain) and 

F/Y83/82 (angiotensin-converting enzyme 2) as a surrogate parameter for a lipophilic contact 

between these residues (x-axis). Distribution of the χ1 angle in residue F/Y83/82 of 

angiotensin-converting enzyme 2 (y-axis). 
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We term the state with the outwards rotated ACE2-residue Y83 the “deformed state” 

due to a distortion of the binding pocket C. The extent of binding pocket C deformation 

can be seen in the distance between Cβ of ACE2-Y82 in the upper and Cβ of ACE2-F27 

in the lower helix, which limits binding pocket C (Figure 36). The canine simulations 

show maximal distances between the upper and lower helix above 9 Å not observed in 

other species, confirming our observations. 

 

   

Figure 36. Distribution of the distance between angiotensin-converting enzyme 2 residues 

F28/27 and F/Y83/82 as a surrogate parameter for deformation of binding pocket C. 

 

The outward rotation of the ACE2-Y82 side chain suggests that the lipophilic contact 

to RBD-F486 is interrupted in the “deformed state”. This correlates nicely with the 

observation that dogs are virtually asymptomatic after a SARS-CoV-2 infection. 

In the next step, we searched for the reason for the deformation of binding pocket C in 

dog simulations. We focused on the direct environment of ACE2-Y82. Careful visual 

inspection of the canine simulations showed that the residue ACE2-V24 might be 

responsible for the outward rotation of ACE2-Y82. Compared to other species 

harboring an alanine at homologous position ACE2-25, the valine side chain in canine 
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ACE2 is bulkier, leading to steric hindrance and pushing the Y82 side chain out of 

binding pocket C. 

To confirm our assumption, we virtually generated a gain-of-function canine ACE2-

mutant V24A and simulated it under the same conditions as the wild-type sequences. 

Visual inspection of the obtained trajectories and the calculated molecular descriptors 

(distance RBD-F486 – ACE2-Y83, χ1 angle in ACE2-Y83/82, and distance ACE2-F28/27 

– ACE2-Y83/82) confirmed that the canine ACE2-V24A mutant does not display the 

“deformed state” of binding pocket C (Figure 37). This suggests that the polymorphism 

at ACE2-position 24 (in dogs, 25 in other species) might be responsible for the 

asymptomatic course of COVID-19 in dogs. 

Subsequently, we analyzed the occupation of binding pocket C in the rat ACE2 (Figure 

35). The simulations show two peaks in the distance distribution RBD-F486 – ACE2-

F83: one at 7 and the second at 10 Å. The first peak is identical to the “bound state” 

identified in other species. The second peak displays a comparably larger distance, 

suggesting a dissociation event of RBD-F486. The visual inspection of rat MD 

trajectories revealed that the RBD-F486 leaves binding pocket C. The phenyl ring of 

RBD-F486 establishes lipophilic contacts to the side chains of ACE2-residues flanking 

the binding pocket C (24, 81, or 87). In this state, RBD-F486 is fixed outside binding 

pocket C, hence we call this the “fixed state” (Figure 34). 

To explain the dissociation events of RBD-F486 in the rat simulation, we analyzed the 

previously calculated molecular descriptors. In contrast to the canine ACE2, the rat 

ACE2 does not display a “deformed state” of binding pocket C (Figure 35, Figure 36). 

The visual inspection of the rat simulations revealed that binding pocket C is slightly 

flatter than in other species. In order to characterize the depth of binding pocket C, we 

calculated distributions of the shortest distance per frame between Cβ of ACE2-

F/Y83/82 as the deepest point of binding pocket C and all side chain atoms flanking 

the binding pocket C (ACE2-residues 24, 78, and 81, Figure 38). 
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Figure 37. The molecular descriptors calculated for cat, dog, and dog ACE2-V24A mutant: (A) 

deformation of binding pocket C (distribution of the χ1 angle in ACE2-Y83/82 and distribution 

of the distance between residues F28/27 and Y83/82), (B) lipophilic contacts in binding pocket 

C (distribution of the distance between residues F486 in the receptor-binding domain and 

Y83/82 in angiotensin-converting enzyme 2, ACE2). 

 

The analysis of the calculated “depth” descriptors revealed two trends. Firstly, the 

distance between ACE2-F83 and ACE2-I79 in rat simulations is distributed around 6 Å, 

in contrast to other species, which adopt higher distance values around 7-8 Å. This is 

in line with our observation of the flat binding pocket C in the rat. The rat is the only 

species displaying isoleucine at ACE2-position 79. We assume that the branched chain 

of ACE2-I79 causes a steric hindrance and repels RBD-F486 from close contact to 

ACE2-F83 in the rat simulations. Interestingly, the mouse also displays a branched side 

chain at position 79 (threonine), but this does not flatten binding pocket C. We 

rationalize the greater impact of isoleucine on the flattening of binding pocket C 

through a bulkier side chain of this residue compared to threonine. 
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Figure 38. Distributions of shortest distance per frame between Cβ of angiotensin-converting 

enzyme 2 (ACE2) residue F/Y83/82 as the deepest point of binding pocket C and all side chain 

atoms flanking the binding pocket C (ACE2-residues (A) 24, (B) 78, and (C) 81). 

 

The second trend shows that the distance between ACE2-F/Y83/82 and ACE2-residue 

82 (or 81 in dog) displays a wider distribution in the dog, cat, ferret, and mouse 

simulations. All these species expose a residue with a short side chain at ACE2-
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position 82/81 (threonine in dogs, cats, ferrets, and serine in mice). This suggests that 

a long ACE2-residue 82/81 (methionine in humans or asparagine in Syrian hamsters) 

might support RBD-F486 binding by trapping the side chain in binding pocket C. 

To explain the non-susceptibility of the mouse, we analyzed the interactions in binding 

pockets A and B. In the first step, we focused on binding pocket A harboring a 

polymorphism K353H only present in the non-susceptible species mouse and rat. 

 

3.3.3 Spike Protein Binds to the Binding Pockets A and B of ACE2 via Extensive 

Hydrogen-Bond Networks 

In order to investigate the role of ACE2-polymorphism K353H, we visually inspected 

binding pocket A in the MD simulation of rodent ACE2 (mouse, rat, Syrian hamster). In 

the simulations of Syrian hamster ACE2, residue K353 establishes a salt bridge to 

ACE2-D38 that is coordinated by hydrogen bonds from RBD-Q498. This presumed 

binding hot spot is sealed by hydrogen bonding established by ACE2-residues 37, 41, 

42, and RBD-residues 449, 496, 501, and 505. In the simulations of mouse and rat 

ACE2-orthologs, H353 cannot establish a salt bridge to the counterpart ACE2-38 due 

to less basic properties and a shorter side chain. Hence, we assumed that the 

polymorphism K353H might lower the total number of hydrogen bonds in the binding 

pocket A, leading to weaker RBD binding. To validate this hypothesis, we counted the 

hydrogen bonds in the binding pocket A (Figure 39). The measurement confirmed our 

expectations, showing seven hydrogen bonds on average in the binding pocket A of 

the Syrian hamster compared to three and four hydrogen bonds in rats and mice, 

respectively. 

Finally, we analyzed binding pocket B showing two polymorphic mutations in ACE2 of 

the mouse (E/D30N, K31N) and the rat (T27S, E/D30N). We hypothesized that these 

mutations might also decrease the COVID-19 susceptibility of mice and rats. 

Initially, we investigated the mutation E/D30N present in both non-susceptible species. 

Visual inspection of simulation trajectories of mice, rats, and Syrian hamsters for 

comparison, revealed that acidic residues at ACE2-position 30 establish a salt bridge 

to RBD-K417 to support the binding between these proteins. To confirm this 

hypothesis, we measured the shortest distance per frame between the atoms of ACE2-

residue 30 and RBD-K417 (Figure 40). As expected, all species carrying an acidic 

residue at position 30/29 show a frequent distance of around 3 Å, indicating the 
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existence of a salt bridge present over the whole simulation time. Rats and mice with 

a neutral residue at ACE2-position 30 establish no interactions to the RBD-K417, with 

a dominant distance range of 6-8 Å. 

 

 

Figure 39. Hydrogen bond count in binding pocket A between angiotensin-converting 

enzyme 2 (ACE2) residues 37, 38, 41, 42, 353, and viral receptor-binding domain residues 449, 

496, 498, 501, and 505 in the simulations of (A) human, (B) Syrian hamster, (C) mouse, and (D) 

rat ACE2. 

 

In the next step, we investigated the neighboring K31N mutation present in mice only. 

We observed that ACE2-K31 in Syrian hamsters establishes a salt bridge to ACE2-E35. 

This ACE2-residue pair is coordinated by RBD-Q493, similar to the hydrogen bond 

network observed in the binding pocket A (ACE2-D38 – ACE2-K353 – RBD-Q498). In 

murine simulations, no building of a salt bridge between ACE2-N31 and ACE2-E35 is 

observed, hence no coordination of RBD-Q493 is possible. 
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Figure 40. Distributions of shortest distance per frame between residue 30 of angiotensin-

converting enzyme 2 (D30 in Syrian hamsters, N30 in mice, and rats) and residue K417 of the 

viral receptor-binding domain. 

 

We calculated the shortest distance per frame for the residue pairs (i) ACE2-31 – ACE-

35 and (ii) ACE2-31/30 – RBD-Q493 as surrogate parameters for the presence of 

hydrogen bonds (Figure 41). The measurements confirmed our observations, showing 

a dominant distance between the ACE2-residues N31-E35 and ACE2-N31 – RBD-Q493 

around 5-6 Å in murine simulations. This suggests that no hydrogen bonding sealing 

binding pocket B is present in the mouse simulations. 

The last polymorphic mutation T27S present in rats is buried in the lipophilic ACE2-

interface between binding pockets B and C. Visual inspection of the rat ACE2 

simulations did not reveal any large-scale conformational changes. Hence, we could 

not calculate any molecular descriptor characterizing the influence of the T27S 

mutation on RBD binding. The residue ACE2-S27 is surrounded by lipophilic residues 

RBD-F456, Y473, and Y489. We assume that the polymorphism T27S leads to a lower 

RBD binding affinity since a serine residue is less likely to establish lipophilic contacts 

to the RBD interface. 

 



82 

 

Figure 41. Distributions of shortest distance per frame (x-axis) between residues 31 and 35 of 

angiotensin-converting enzyme 2 (ACE2) in Syrian hamsters, mice, rats, and (y-axis) ACE2-31 

and residue Q493 of the viral receptor-binding domain. 

 

To confirm our observations, we virtually mutated ACE2 of mice (N30D, N31K, H353K- 

3-fold mutant) and rats (S27T, N30D, I79L, H353K- 4-fold mutant). The ACE2 mutants 

were simulated under the same conditions as the wild-type sequences to achieve 

comparability of the results. Subsequently, we calculated the molecular descriptors 

characterizing the depth of binding pocket C, hydrogen bond network in the binding 

pocket A and B (Figure 42, Figure 43). The measurements met our expectations. Both 

ACE2-mutants showed recurring interaction patterns present in the simulations of 

COVID-19-susceptible species. 
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Figure 42. Molecular descriptors characterizing the depth of and lipophilic contacts in binding 

pocket C and the hydrogen bond network in binding pockets A and B of mouse angiotensin-

converting enzyme 2 (ACE2) 3-fold mutant (N30D, N31K, H353K). 
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Figure 43. Molecular descriptors characterizing the depth of and lipophilic contacts in binding 

pocket C and the hydrogen bond network in binding pockets A and B of rat ACE2 4-fold mutant 

(S27T, N30D, I79L, H353K). 

 

According to our analysis, we propose gain-of-function mutations in ACE2 of non-

susceptible species as a validation for our models (Table 10). 

In the next step, we investigated, which wild-type animal species could be prone to 

COVID-19. We chose three species with unknown reported COVID-19 susceptibility (as 

of April 2020): red squirrel (Sciurus vulgaris), Chinese hamster (Cricteulus griseus), and 

Campbell's dwarf hamster (Phodopus campbelli). Red squirrels are broadly present in 

an urban environment representing a potential SARS-CoV-2 reservoir. The Chinese and 
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Campbell's dwarf hamsters could be used as animal models to investigate the  

COVID-19 course experimentally. 

 

Table 10. Proposed gain-of-function mutations in ACE2 of non-COVID-19-susceptible species. 

Non-susceptible animal species 
ACE2 mutation 
(in the binding 

pocket …) 

Comparable susceptible animal 
species 

Dog (Canis lupus familiaris) 

V24A (C) Cat (Felis catus) 

T81M (C) Human 

Mouse (Mus musculus) 

N30D (B) 

Syrian hamster (Mesocricetus 
auratus) 

N31K (B) 

H353K (A) 

Rat (Rattus norvegicus) 

S27T (B) 

Syrian hamster (Mesocricetus 
auratus) 

N30D (B) 

I79L (C) 

H353K (A) 

Abbreviations: ACE2- angiotensin-converting enzyme 2, COVID-19- coronavirus disease 2019. 

 

3.3.4 Geometric Interaction Descriptors Predict Susceptibility of Dwarf Hamster 

Species and Red Squirrel to COVID-19 

Similar to other investigated species, we built the homology models of ACE2 from red 

squirrel, Chinese, and Campbell's dwarf hamsters based on the first available human 

ACE2 X-ray structure in complex with S RBD from SARS-CoV-2 (PDB-ID: 6M0J181). The 

high sequence similarity and identity of ACE2-orthologs to the human sequence (93% 

and 86%, respectively, for the Campbell's dwarf hamster, 93% and 87%, respectively, 

for the Chinese hamster, and 93% and 88%, respectively, for the red squirrel, Appendix 

Figure 12) allowed us to build high-quality models. Solely the red squirrel model 

showed one Ramachandran outlier89 (Appendix Figure 13) resulting from a 

polymorphic mutation G337A located distally to the S RBD binding site. The backbone 
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root mean square deviation of the homology models compared to the human ACE2 

template amounted to 0.6-0.8 Å, suggesting only negligible deviations from the global 

fold. The obtained models were assembled with the SARS-CoV-2 RBD and simulated 

under the same conditions as the other ACE2-RBD complexes. Finally, to predict 

COVID-19 susceptibility of the red squirrel, Chinese, and Campbell's dwarf hamsters, 

we calculated the molecular descriptors characterizing the depth and lipophilic 

contacts in the binding pocket C, hydrogen bond networks in the binding pockets A 

and B (Figure 44, Figure 45, Figure 46). 

 

 

Figure 44. Descriptors characterizing binding pockets A, B, and C of angiotensin-converting 

enzyme 2 of red squirrel in complex with the viral receptor-binding domain. 
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Figure 45. Descriptors characterizing binding pockets A, B, and C of angiotensin-converting 

enzyme 2 of Chinese hamster in complex with the viral receptor-binding domain. 

 



88 

 

Figure 46. Descriptors characterizing binding pockets A, B, and C of angiotensin-converting 

enzyme 2 of Campbell's dwarf hamster in complex with the viral receptor-binding domain. 

 

The calculated molecular descriptors for ACE2 of the red squirrel, Chinese, and 

Campbell's dwarf hamsters suggest that all these species should be susceptible to 

COVID-19. Our findings were confirmed for the Chinese and Campbell's dwarf 

hamsters by our collaborators from the lab of Nikolaus Osterrieder.206, 207 
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4. Discussion 

Viral infections represent a global health concern that can emerge at any time, as the 

example of coronavirus disease 2019 (COVID-19) has shown. Systematic research on 

viruses independent from epidemics is needed to control existing infections and 

prevent the emergence of novel viruses. 

In this thesis, an overview and successful application of computational methods to 

target emerging viral infections were presented. Explicitly, substrate-protease and 

protein-protein interactions were investigated to mechanistically explain the 

recognition of virus receptors and identify small molecular inhibitors of viral proteases. 

Due to our focus on emerging and neglected viral species, we were working in the 

scenario of scarce data availability. We have shown that computational modeling is 

possible, even if there are only a few experimental starting points. Moreover, we show 

that computational modeling allows a quick generation of valid results and offers a 

platform for iterative knowledge exchange with experimental collaborators. In the 

following paragraphs, the novelty of each project, the gain of information for the 

experimental collaborators, and the limitations of the used approaches will be 

discussed in detail. 

 

Development of Small Molecules Targeting NS2B-NS3 Proteases 

Infections with emerging viruses as Zika or West Nile virus lead to thousands of 

fatalities annually.14 Despite intensive research, no vaccines or antiviral substances 

against these infections are available. The development of inhibitors of flaviviral NS2B-

NS3 proteases represents a viable strategy to combat infections with Zika and West 

Nile virus. 

In this study, we have discovered two completely novel non-covalent flaviviral protease 

inhibitors identified in a virtual screening campaign. To overcome the challenges of 

protease targeting, we used a novel software, PyRod.128 PyRod derives pharmacophore 

models by tracing water molecules in molecular dynamics (MD) simulations and takes 

into account protein flexibility. Despite using water as a molecular probe for 

interactions, PyRod identifies lipophilic contacts needed for binding to shallow binding 

pockets. Both novel inhibitors can serve as molecular references for protease assays 

and promising starting points for optimization campaigns. 



90 

Our compounds show several advantages rendering them suitable for optimization: 

activity in the low micromolar concentration range, molecular weight lower than 

500 Da, and lack of pan-assay interfering substructures. Recent reviews by our 

colleagues, Voss and Nitsche, show, how unique these properties are in the field of 

flaviviral protease inhibitors.208, 209 In contrast to our ligands, several inhibitors are 

either peptide derivatives with undesired pharmacokinetic properties, molecules with 

molecular masses above 500 Da (dideoxystreptamine ethers,169 

diaminoisoquinolones,168 or novobiocin210), molecules that could potentially interfere 

with assay readout due to fluorophore moieties, or structures that contain reactive 

substructures (Michael acceptors, thiazolidinones, catechols, and quinones). 

Furthermore, we show a hypothesized binding mode, allowing the prediction of 

derivatives for a structure-activity relationship study and facilitating an optimization 

campaign. 

Flaviviral proteases recognize positively charged proteins as substrates,159 hence the 

identified inhibitors of NS2B-NS3 are also positively charged. This presumably leads 

to low activity on Dengue 2 virus (DENV2) in-vitro. The measured EC50 value of 26.8 µM 

for 427_1 is in a different order of magnitude than the Ki value of 0.09 µM. The reason 

might be low cellular permeability due to the double positive charge on both aliphatic 

amino groups. Hence, we propose cellular studies combined with a hit optimization 

campaign that prioritizes derivatives with higher lipophilicity. 

Surprisingly, compound 397_2 shows an EC50 value of 47.8 µM, which is superior to 

the inhibition seen in the cell-free assay (no measured inhibition below 50 µM). This 

compound showed slight cellular toxicity at concentrations above 10 µM. Hence, we 

cannot exclude that 397_2 interferes with cellular protein biosynthesis mechanisms 

leading to apparent DENV2Pro inhibition. 

According to our dynamic binding hypotheses of inhibitor 427_1, it would be possible 

to develop a more lipophilic ligand by extending the structure towards the S4 binding 

pocket. Hence, we propose to design a T-shaped molecule preserving the contacts in 

the S1 and S2 subpockets and profiting from interactions in the S4 subpocket as 

described for the alternative binding mode of 427_1 in ZIKVPro (Figure 26). 
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Equine Herpesvirus: Targeting the MHC-I – Glycoprotein D Interface for Vaccine 

Development 

Viral infections in animals are both an important topic to improve animal welfare, and 

also an economic factor, as caused by canceling sports events.26 Equine 

herpesviruses 1 and 4 (EHV-1, -4) represent an important threat by infecting horses 

and other wildlife species, like bears.27 Currently available vaccines used for preventing 

EHV infections show low efficacy and do not prevent naturally occurring outbreaks.6 

In order to improve vaccines, more research on understanding viral entry into the host 

cells is needed. Here, studies on EHV-1 and 4 glycoprotein D (gD) essential for viral 

entry might support vaccine design. The gD binds to the equine major 

histocompatibility complex I (MHC-I), allowing the virus to evade the immune system. 

The mechanism of gD binding to MHC-I remains elusive. 

We present the first gD-MHC-I binding model and provide insights into the binding 

interface. Furthermore, we predict potential hot spot residues and prove their 

biological importance. The characterization of the predicted gD-MHC-I binding mode 

contributes to the understanding of how EHV evades the immune system and 

supports, therefore, the development of more effective and immunogenic vaccines. 

Moreover, our research might trigger the development of specific therapies, such as 

small molecular entry inhibitors. 

The main limitation of our study is the only partial validation of the model. Out of the 

whole binding interface, only two residues were subjected to a mutagenesis study. 

Furthermore, the structure of the gD transmembranous domain and the mechanism of 

interaction with other herpesviral glycoproteins are unknown, hence the impact of 

MHC-I binding on the viral entry could not be mechanistically investigated. Therefore, 

we suggest additional experiments to obtain a full gD-MHC-I structure as the ultimate 

validation of the binding hypothesis. Preferably, cryoscopic electron microscopy 

imaging should be used to obtain a holistic picture of all glycoproteins pivotal for viral 

entry. 

 

Predicting the Susceptibility of Animal Species to COVID-19 

COVID-19 pandemic is still ongoing resulting in several million casualties.5 Despite 

dynamic vaccine development, several people cannot be vaccinated, furthermore, 

potential escape variants might occur.24 COVID-19 is a new disease and more research 
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is needed for understanding aspects such as virus transmission or immune reaction 

to the virus. Here, novel animal models might provide additional insights. A rational 

approach for the identification of susceptible species would improve COVID-19 

research substantially. 

In this thesis, we have shown that the polymorphisms of angiotensin-converting 

enzyme 2 (ACE2) orthologs could explain the reported susceptibility differences of 

animal species to COVID-19. We describe an in-silico workflow identifying molecular 

descriptors in MD simulations of severe acute respiratory syndrome-related 

coronavirus 2 (SARS-CoV-2) spike protein (S) in complex with ACE2 orthologs to 

predict animal susceptibility to COVID-19. The workflow enables fast and rational 

identification of animal species that could serve as potential models of COVID-19 

imitating the human course of the disease. On the other hand, we propose gain-of-

function mutations in the ACE2 domain that could lead to new susceptible animal 

models (rat and mouse models). Our work highlights, however, the complexity of the 

mutational patterns needed for the enhancement of susceptibility. For example, in rats, 

four mutations (S27T, N30D, I79L, and H353K) are required to enhance the binding to 

S. We hypothesize that the detailed characterization of the protein-protein binding 

interface might contribute to the prediction of novel, more infectious SARS-CoV-2 

variants. 

Due to the highly dynamic nature of coronaviral research, several groups were working 

in parallel on similar approaches aiming to predict animal susceptibility to  

COVID-19.211-216 Most of these approaches are based on a simple sequence 

comparison of ACE2 orthologs between susceptible and non-susceptible species. 

Some of the works212, 213, 216 additionally presented static structure-based approaches 

using homology modeling. As a result, differences in the S-ACE2 binding interface were 

shown. The interactions between both proteins, however, have not been analyzed. We 

believe that an in-depth understanding of S-ACE2 interactions contributes to a more 

rational selection of COVID-19 susceptible species. Our work was the first to describe 

an extensive comparison of three-dimensional ACE2 models and to analyze the 

dynamics of the receptor-spike interface.217 This study contributes to a mechanistic 

understanding of ACE2 recognition by SARS-CoV-2 S. More than a half year after our 

publication, Rodrigues and colleagues independently published an analysis216 similar 
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to our work. Their results are comparable with our findings and appear to confirm our 

results. 

Mutations in the receptor-binding domain (RBD) of S remain a limiting factor for our 

study since they can change the interaction patterns in the ACE2-binding interface. 

This can lead to a reduction of the predictive power of our model. For example, the 

N501Y substitution in binding pocket A reported in novel SARS-CoV-2 mutants218 leads 

to an additional lipophilic contact between the phenyl rest of RBD-Y501 and the ACE2 

interface. We assume that this change diminishes the predictive power of the 

hydrogen bond count in binding pocket A as a descriptor for COVID-19 susceptibility. 

Hence, the descriptors should be constantly updated depending on novel reported 

SARS-CoV-2 mutants to retain the predictive power of our approach. Ideally, our 

models should be biophysically validated on ACE2 mutants to confirm our predictions. 
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5. Conclusions 

In this thesis, we provide in-depth insights into different stages of the development of 

antiviral substances: from the discovery of small molecular protease inhibitors, 

through the characterization of an epitope for a potential vaccine, to the prediction of 

suitable animal infection models. We have established easy-to-use and rapid 

computational workflows targeting biomolecules of emerging viruses in a scenario of 

scarce data availability. 

The importance of protein-protein interactions for the development of antiviral 

substances is emphasized in the introduced literature. Notably, the inhibition of viral 

proteases and fusion proteins bears potential for the discovery of highly active antiviral 

therapeutics. The substrate-protease and protein-protein interfaces selected in this 

thesis can be considered challenging targets, due to their high conformational 

flexibility, shallowness of the binding pocket, spatial separation of hot spot regions, 

and complexity of binding residue networks. In order to overcome these properties, we 

combined novel approaches such as PyRod, Dynophores, and PyContact with well-

established methods as pharmacophore modeling, protein-protein docking, and 

molecular dynamics simulations. 

The novel competitive NS2B-NS3 protease inhibitors presented in this work are the 

first well-characterized compounds targeting Zika virus protease discovered by 

pharmacophore modeling. The comparative modeling of closely related proteases of 

West Nile and Dengue virus 2 enabled us to identify inhibitors with broad antiflaviviral 

activity. Furthermore, these ligands represent promising starting points for an 

optimization campaign due to their drug-like properties such as low molecular weight 

and low micromolar activity. 

In the second part of this work, we established the first binding hypothesis of the 

equine herpesvirus 1 and 4 (EHV-1, 4) glycoprotein D (gD) and its receptor, equine 

major histocompatibility complex I (MHC-I). To our knowledge, this is the first 

computational study on this target. The derived binding epitope was extensively 

characterized and led to the identification of two hot spot residues of the EHV-1 and 4 

gD. 

In the last part of this thesis, we presented an extensive analysis of severe acute 

respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike protein (S) binding 

interface in complex with the angiotensin-converting enzyme 2 (ACE2) orthologs from 
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different animal species. The established molecular descriptors enable the prediction 

of species susceptibility to coronavirus disease 2019 (COVID-19). Our analysis of the 

S-ACE2 binding epitope represents the first structure-based study on this target. Our 

methodology is superior to other reported approaches that are based solely on the 

comparison of the sequences of ACE2 orthologs or static homology models neglecting 

the dynamic nature of S-ACE2 binding. The advantage of the dynamic approach was 

shown in the example of canine ACE2; we were able to explain how a buried ACE2 

polymorphism A24V (seen in dogs) influences the S binding, rendering dogs non-

susceptible to COVID-19 in contrast to ferrets and cats. 

We have shown that in-silico models support the development of antiviral substances, 

vaccines, and animal models needed for the research. We are confident that the gained 

knowledge can be transferred to other viral species, allowing efficient combat against 

existing and emerging infections. Furthermore, due to the universality of the employed 

methods, we encourage the application of our workflows to other pathogenic 

microorganisms, like bacteria or protozoa. 
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6. Experimental Details 

If not else stated, the in-silico experiments were performed on the local computational 

cluster in the Wolber Lab in Berlin (Germany). The molecular dynamics simulations 

were conducted on water-cooled GeForce RTX 2080 Ti graphics processing units 

(NVIDIA Corporation, Santa Clara, USA). All other calculations were performed on 

either AMD Ryzen Threadripper 1950X (Advanced Micro Devices, Santa Clara, USA) or 

Intel Core i5-8600K (Intel Corporation, Santa Clara, USA) central processing units. 

 

6.1 Development of Small Molecules Targeting NS2B-NS3 Proteases 

Homology Modeling and Protein Preparation 

Lacking a Dengue 2 virus protease (DENV2Pro) structure in its closed state, we 

constructed a homology model of this protein. The sequence of DENV2Pro consistent 

with the sequence used by our collaborators in the biochemical assay was obtained 

from UniProt219 (UniProt-ID: P29991). 

The homology model was built based on the DENV3Pro X-ray structure with the best 

resolution (PDB62-ID: 3U1J167) as a template. The sequence similarity was calculated 

with MOE 2018.0101 (Chemical Computing Group ULC, Montreal, Canada, Appendix 

Figure 2). The DENV2Pro homology model was constructed using MOE 2018.0101 with 

integrated GB/VI88 scoring and a maximum of ten main chain models. 

The X-ray crystal structures of the West Nile (WNVPro, PDB-ID: 5IDK157), Zika (ZIKVPro, 

PDB-ID: 5YOF156) proteases were selected for our workflow due to their closed 

conformation, best resolution, and PDB validation scores. 

All proteases were subsequently prepared for further experiments using 

MOE 2018.0101. The termini of the proteases were capped, and non-resolved residues, 

co-crystallized water, salt, and ligand molecules were deleted. The proteases were 

protonated at a pH of 7 and a temperature of 300 K using the Protonate3D220 function 

integrated into MOE 2018.0101. 

 

Calculation of Pocket Area 

The area of the binding pocket was calculated using POVME 3190 within a sphere of 

radius 15 Å centered on the point above the Cα atom of NS3-G153 (-1, 11, 0) to cover 

the whole competitive binding site of the WNVPro. 
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Molecular Dynamics Simulations 

The MD simulations of the proteases were prepared using Maestro 11.7 (Schrödinger, 

LLC: New York, USA) by solving with the TIP4P water221 model in a cubic box with 15 Å 

padding, neutralizing the net system charge with sodium ions, and adjusting the 

osmotic pressure with 0.15 M sodium chloride to achieve physiological conditions. 

The MD simulations were parameterized using the OPLS2005 force field222 and 

performed with Desmond 5.5138 on GeForce GTX 1080 Ti graphics processing units 

(NVIDIA Corporation, Santa Clara, USA). The systems were equilibrated according to 

the default Desmond protocol. The main simulation runs were performed under 

periodic boundary conditions as an NPT ensemble (constant particle number, 

pressure, and temperature). The constant temperature of 300 K was held using the 

Nose-Hoover thermostat223, 224 and the constant pressure of 1.01325 bar using 

Martyna-Tobias-Klein barostat.225  

The MD simulations were performed over 10 ns yielding 2000 time steps for each 

replicate. Each protease system was simulated in ten replicates. The trajectories were 

wrapped and aligned on the first simulation frame and the heavy atoms of the protein 

backbone using VMD 1.9.3.226 

 

Pharmacophore Generation (PyRod) 

The pharmacophore models were generated using PyRod128 (in version 0.7.1), a novel 

software developed in-house and described in detail in the Theoretical Background 

section. The first 5 ns of the MD simulations were used for the equilibration of the 

protease-conformations. For the interaction sampling, the last 5 ns (corresponding to 

1000 time steps) of the MD simulations were analyzed. The interactions were sampled 

in a rectangular box of size 22 x 17 x 30 Å with the center on the Oγ atom of the 

catalytic NS3-S135 to sufficiently cover the competitive binding pocket. The distance 

of grid points was set to 0.5 Å and the settings for the generation of exclusion volume 

features representing the binding pocket surface were kept default. The dynamic 

molecular interaction fields (dMIFs) were automatically transformed to a general 

pharmacophore model with 20 interaction points per feature type. 

The general pharmacophore was subsequently refined by removing interaction points 

outside the S1 and S2 subpockets and prioritizing the remaining features according to 

the dMIFs to yield the focused pharmacophore. Finally, a combinatorial 
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pharmacophore library was created, based on the focused pharmacophore. The 

combinatorial pharmacophores contained 3-6 independent features (including 

maximal 3 hydrophobic contacts, 3 aromatic interactions, 3 ionic interactions, and 4 

hydrogen bonds). To reduce the number of combinatorial pharmacophores, the 

cationic interaction to NS3-D129 was preserved in each model. All combinatorial 

pharmacophores were automatically validated using a Python-based227 script 

developed in-house. 

 

Preparation of Libraries Used for Pharmacophore Validation 

In order to validate the obtained pharmacophore models, a manually curated library of 

NS2B-NS3 inhibitors reported in the literature was prepared. The inhibitors included in 

the library were selected according to their activity (IC50 or KD value lower than 

50 µM11), competitive binding mode, and ability to establish a cationic interaction with 

the selectivity residue NS3-D129.157 All peptides and derivatives were excluded from 

the library due to lacking drug-likeness of such structures. In total, 17 inhibitors of 

WNVPro and no ZIKVPro inhibitors were identified. 

The library of presumably inactive molecules (decoys) was generated using the DUD-

E web application129 based on the structures of found active molecules. This yielded 

667 decoy molecules. 

All molecules were protonated using MOE 2018.0101. The starting conformations 

were generated using Corina 3 (Molecular Networks GmbH Computerchemie, 

Erlangen, Germany). Based on these starting conformations, the conformation 

libraries for pharmacophore validation were generated using iCon on “best settings” 

(maximally 200 conformations per structure, root mean square threshold of 0.8, and 

energy window of 20.0) implemented in LigandScout 4.2112, 113 

 

Virtual Screening and Hit Selection 

The validated and selected combinatorial pharmacophores C_65, C_397, and C_427 

were used for a virtual screening campaign of commercially available libraries 

containing around 7.6 million compounds (Asinex, Chembridge, ChemDiv, Enamine, 

Key Organics, LifeChemicals, Maybridge, SPECS, VitasM, each in version from the year 

2018). The virtual screening was performed using LigandScout 4.2. The obtained 

ligand candidates (hits) were subsequently filtered using molecular docking to obtain 
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plausible binding hypotheses. All hits were docked into the WNVPro and ZIKVPro (PDB-

IDs as listed above) using GOLD 5.6.397 to generate ten diverse docking poses per 

compound (root mean square deviation between the docking poses of more than 

1.5 Å) with 100% search efficiency. The ASP101 function was used for scoring and 

Chemscore102 for rescoring. The center of the binding sphere with a radius of 10 Å was 

placed on the Oγ atom of the catalytic NS3-S135. The generated docking poses were 

subsequently energy minimized in the presence of the protease using the Merck 

molecular force field (MMFF94)228-232 implemented in LigandScout 4.2. The minimized 

structures were scored according to the pharmacophore fit used for the virtual 

screening. The best-scored docking poses were visually inspected applying the rules 

described in the Theoretical Background section. The remaining structures were finally 

simulated using the settings described above in a single 20 ns MD simulation, each. 

Finally, the ligands showing no global conformational changes upon the visual 

inspection of the trajectories were selected for the biochemical characterization. 

 

Dynamic Pharmacophores (Dynophores) 

To extensively characterize the binding hypothesis of the most active inhibitor 427_1, 

a series of MD simulations of 427_1 in complex with WNVPro, ZIKVPro, and DENV2Pro 

was performed. The MD simulations were calculated with the settings described 

above over 50 ns in five replicates generating in total 25,000 ligand-protein 

conformations. 

The protease-inhibitor interactions were analyzed with Dynophore73, 127, a software 

developed in-house and described in the Theoretical Background section, to obtain the 

spatiotemporal interaction probability clouds and interaction distance. 

 

Compound Purity, Protein Expression, and Protease Assays 

The selected compounds were purchased from Enamine, Ukraine (397_12) and 

Chembridge, USA (397_2, 397_6, 427_1, 427_2). The purity of the compounds (>94%) 

was confirmed with an in-house developed method on an HPLC-MS by Lukas Harps in 

Parr Lab in Berlin (Germany). 

The biochemical characterization of the ligands obtained from the virtual screening 

was performed by our collaborators (ZIKVPro assay- Tim M. Sarter in the Nitsche Lab 

in Canberra (Australia); WNVPro assay- Rafe Yousef in the Rademann Lab in Berlin 
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(Germany); DENV2Pro assay- Silke Bergmann and Christoph Arkona in the Rademann 

Lab in Berlin (Germany). The ZIKVPro was expressed by Christoph Nitsche as described 

previously.233 The WNVPro and DENV2Pro were expressed by Christoph Arkona similar 

to the method described in the literature.234 

All measurements were conducted in triplicates. 

The ZIKVPro assay was performed by pipetting various concentrations of the selected 

compounds (10 mM stock solutions in DMSO) to the buffer mixture (10 mM Tris-HCl, 

pH 8.5, 20% v/v glycerol, 1 mM CHAPS) and incubating with ZIKVPro at a final 

concentration of 1 nM for 10 min. The measurement was started by adding the 

fluorescent substrate Bz-Nle-Lys-Lys-Arg-AMC (Biosyntan, Berlin, Germany). The 

release of the fluorescent label AMC (7-amino-4-methylcoumarin) was observed for 

70 s at 460 nm and an excitation wavelength of 360 nm using the fluorophotometer 

Spectramax M2e (Molecular Devices, San Jose, USA). 

The WNVPro and DENV2Pro assays were performed by pipetting various concentrations 

of the selected compounds (15 mM stock solutions in DMSO) to the buffer mixture 

(10 mM MOPS, pH 8, 20% v/v glycerol for WNVPro and 50 mM Tris-HCl, pH 8.5, 20% v/v 

glycerol for DENV2Pro) and adding the proteases at a final concentration of 20 nM 

(WNVPro) or 800 nM (DENV2Pro). The measurement was initiated by adding the 

fluorescent substrate Boc-Gly-Lys-Arg-AMC (Bachem, Bubendorf, Switzerland). The 

release of the fluorescent label AMC (7-amino-4-methylcoumarin) was observed for 

600 s at 465 nm and an excitation wavelength of 360 nm using the fluorophotometer 

infinite M1000 (Tecan, Männedorf, Switzerland). 

The initial velocities obtained from the protease assays were obtained from the linear 

part of the curve slope as a variation of the relative fluorescence per time unit. The IC50 

values were calculated with Prism 8.2 (GraphPad Prism, La Jolla, USA) using at least 

seven different inhibitor concentrations. To obtain the Ki values, the IC50 values were 

plotted against the substrate concentrations according to the Cheng-Prusoff 

equation,173 returning coefficients of determination (R2) of: 0.999, 0.951 for the 

inhibitor 397_2 on ZIKVPro and WNVPro, respectively, and 0.980, 0.961, and 0.931 for 

the inhibitor 427_1 on ZIKVPro, WNVPro, and DENV2Pro, respectively. 
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6.2 Equine Herpesvirus: Targeting the MHC-I – Glycoprotein D Interface 

for Vaccine Development 

Homology Modeling and Protein Preparation 

Lacking a structure of the equine major histocompatibility complex I (MHC-I) genotype 

3.1, we constructed a homology model of this protein. The sequence of the MHC-I 

genotype 3.1 consistent with the sequence used by our collaborators in the cell culture 

was obtained from UniProt (UniProt-ID: Q30483 for the α-chain and UniProt-ID: P30441 

for the equine β2-microglobulin). 

The homology model was built based on the X-ray structure of chimeric equine α-chain 

MHC-I genotype 1.18.7-6 and murine β2-microglobulin with the best resolution (PDB-

ID: 4ZUU198) as a template. The sequence similarity was calculated with 

MOE 2018.0101 (Appendix Figure 6). The equine MHC-I genotype 3.1 homology model 

was constructed using MOE 2018.0101 with integrated GB/VI scoring and a maximum 

of ten main chain models. The α-chain and β2-microglobulin models were assembled 

into the final homology model in MOE 2018.0101. 

The final homology model was subsequently prepared for further experiments using 

MOE 2018.0101. The termini were capped, and the homology model was protonated 

at a pH of 7 and a temperature of 300 K using the Protonate3D function integrated into 

MOE 2018.0101. The final homology model of MHC-I genotype 3.1 was relaxed in a 

molecular dynamics (MD) simulation as described below. 

In order to obtain a physiological state of the MHC-I homology model, a nonapeptide 

of sequence SDYVKVSNI used by our collaborators was manually fitted into the 

peptide-binding cleft of MHC-I. To yield the peptide-bound structure, the nonapeptide 

CTSEEMNAF co-crystallized with the template MHC-I structure (PDB-ID: 4ZUU) was 

superposed on the coordinates of the relaxed final MHC-I genotype 3.1 homology 

model. The residues in the template peptide were manually mutated using 

MOE 2018.0101. The conformations of the side chains were relaxed using the rotamer 

tool implemented into MOE and energy minimized using the OPLS-AA force field. 

 

Protein-Protein Docking 

In the first step, initial protein-protein complexes of glycoprotein D from the equine 

herpesviruses 1 and 4 (gD EHV-1, PDB-ID: 6SQJ183 and gD EHV-4, PDB-ID: 6TM8183) 

with peptide-free and peptide-bound MHC-I genotype 3.1 homology model were 
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prepared using MOE 2018.0101. The initial protein-protein complexes were 

subsequently used for the protein-protein docking performed with Rosetta 3 suite in 

version 2018-33.107, 235 At the beginning of the docking process, the positions of gD 

and MHC-I were randomized (flags -randomize 1 -randomize 2) and spun (flag -spin). 

The docking run was performed with default perturbation settings 3 Å for translation 

and 8° for rotation (flag -dock_pert 3 8).236 The side chains of both docking partners 

could rotate around the χ1 and χ2 angles (flags -ex1 -ex2). In order to sufficiently 

sample the conformational space,104 10,000 docking runs per protein-protein complex 

were performed (flag -nstruct 10000). To reduce the number of possible docking 

solutions, a flat harmonic distance constraint between the Cα of the key residue MHC-

I A17334, 197 and the gD backbone was applied. The distance between both proteins 

was set to a default104 of 0 Å with a standard deviation of 1 Å and a tolerance of 5 Å to 

force the closest possible contact between both docking partners. 

 

Molecular Dynamics Simulations 

The MD simulations of the final MHC-I genotype 3.1 homology model and the docking 

poses were prepared using Maestro 11.7 (Schrödinger, LLC: New York, USA) by 

solvating with the SPC water model237 in a cubic box with 12 Å padding, neutralizing 

the net system charge with sodium ions, and adjusting the osmotic pressure with 

0.15 M sodium chloride to achieve physiological conditions. The MD simulations were 

parameterized using the OPLS2005 force field and performed with Desmond 5.5. The 

systems were equilibrated according to the default Desmond protocol. The main 

simulation runs were performed under periodic boundary conditions as an NPT 

ensemble (constant particle number, pressure, and temperature). The constant 

temperature of 300 K was held using the Nose-Hoover thermostat and the constant 

pressure of 1.01325 bar using Martyna-Tobias-Klein barostat. 

The single MD simulation of the final MHC-I genotype 3.1 homology model was 

performed over 100 ns. The relaxed MHC-I structure was obtained after the root mean 

square deviation (RMSD) of the protein backbone had reached a stable plateau of 3 Å, 

suggesting equilibration of the protein. 

The docking poses of the gD from EHV-1 and -4 to the MHC-I homology model in the 

peptide-free and peptide-bound states were simulated over 100 ns, yielding 5000 time 

steps for each docking pose. A single simulation was performed for each pose for 
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efficient filtering. The finally selected peptide-bound EHV-1 and -4 gD docking poses 

were simulated in triplicate to sufficiently characterize the binding interface as 

described below. 

The trajectories of all simulations were wrapped and aligned on the first simulation 

frame and the heavy atoms of the protein backbone using VMD 1.9.3. 

 

Analysis of Protein-Protein Interactions 

The dynamics of protein-protein interfaces of the final gD – MHC-I binding hypotheses 

were analyzed using PyContact 1.0.1200 in a Python 2.7227 environment. The detection 

of the interactions was set to default with a distance cutoff of 5.0 Å, angle of 120.0 Å, 

and hydrogen bond distance cutoff of 2.5 Å. 

The final peptide-bound binding hypotheses were filtered out using an MDAnalysis-

based201, 202 script (in version 0.19.2) to identify docking poses containing the 

hypothesized crucial contact between gD-D261 and MHC-I-R169. The script was run in 

a Python 3.6227 environment. The salt bridge was indicated as a distance of maximal 

4.5 Å between the Cγ atom of gD-D261 and the Cζ atom of MHC-I-R169. The script was 

provided by David Machalz, a colleague from our group. 

 

Mutagenesis and Virus Growth Kinetics Assay 

The biological validation of the predicted binding modes was performed by Viviane 

Kremling under the supervision of Walid Azab in the Osterrieder Lab in Berlin 

(Germany). The proposed EHV-1 and -4 gD-mutants gDF213A and gDD261N were prepared 

using the bacterial artificial chromosome (BAC) mutagenesis similar to the described 

method.238 

The viral growth kinetics assay was performed as described previously.239 Briefly, the 

equine dermal cells were grown at 37°C, infected with the wild-type and gD-mutant 

variants, and incubated for one hour. The viral particles that did not enter the cells were 

washed out using citrate treatment and buffer (pH 3, 40 mM citric acid, 10 mM 

potassium chloride, 135 mM sodium chloride). Subsequently, the buffer was 

neutralized. The equine dermal cells were washed with phosphate-buffered saline. The 

cells and the supernatant were collected at 0, 6, 12, 24, 30, and 48 hours after 

incubation. Until the collection was finalized, the first samples were frozen at -80°C. 

The determination of the virus titers was performed by diluting the supernatant 
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samples, infecting the equine dermal cells, and counting plaques after one or two days 

of incubation. 

 

6.3 Predicting the Susceptibility of Animal Species to COVID-19 

Homology Modeling and Protein Preparation 

Lacking the structures of the animal orthologs of the angiotensin-converting enzyme 2 

(ACE2), we constructed homology models of these proteins. The sequences of the 

ACE2 orthologs were kindly provided by our collaborators from the Osterrieder Lab in 

Berlin (Germany) and can be found in the RefSeq240 or GenBank241 database (Table 11, 

Appendix Figure 12). 

 

Table 11. The UniProt-IDs of the protein sequences used for the homology modeling. 

Animal species RefSeq- or GenBank-ID 

Cat (Felis catus) XP_023104564.1 (RefSeq) 

Dog (Canis lupus familiaris) NP_001158732.1 (RefSeq) 

Ferret (Mustela putorius) NP_001297119.1 (RefSeq) 

Mouse (Mus musculus) NP_081562.2 (RefSeq) 

Rat (Rattus norvegicus) NP_001012006.1 (RefSeq) 

Syrian hamster (Mesocricetus auratus) XP_005074266.1 (RefSeq) 

Red squirrel (Sciurus vulgaris) -* 

Chinese hamster (Cricteulus griseus) XP_003503283.1 (RefSeq) 

Campbell's dwarf hamster (Phodopus 
campbelli) 

ACT66274.1 (GenBank) 

* The sequence marked with an asterisk is neither listed in the RefSeq nor GenBank database. 

 

The homology models were built based on the first available X-ray structure of the 

human ACE2 in complex with the residue binding domain (RBD) of severe acute 

respiratory syndrome-related coronavirus 2 (SARS-CoV-2) (PDB-ID: 6M0J181) as a 

template. The sequence similarity was calculated with MOE 2018.0101 (Appendix 

Figure 12). All homology models were constructed using MOE 2018.0101 with 

integrated GB/VI scoring and a maximum of ten main chain models. The ACE2 models 

were assembled with the RBD in MOE 2018.0101 to generate the final homology 

models. The catalytic center of ACE2 and atomic clashes between the ACE2 homology 
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models and RBD were relaxed using the rotamer tool integrated into MOE and energy 

minimized with the OPLS-AA force field. 

The final homology models were subsequently prepared for further experiments using 

MOE 2018.0101. The termini of the RBD were capped and the homology models were 

protonated at a pH of 7 and a temperature of 300 K using the Protonate3D function 

integrated into MOE 2018.0101. 

 

Molecular Dynamics Simulations 

The MD simulations of the ACE2 homology models and the ACE2-RBD complexes were 

prepared using Maestro 11.7 (Schrödinger, LLC: New York, USA) by solvating with the 

SPC water model in a cubic box with 12 Å padding, neutralizing the net system charge 

with sodium ions, and adjusting the osmotic pressure with 0.15 M sodium chloride to 

achieve physiological conditions. The MD simulations were parameterized using the 

OPLS2005 force field and performed with Desmond 5.5. The systems were 

equilibrated according to the default Desmond protocol. The main simulation runs 

were performed under periodic boundary conditions as an NPT ensemble (constant 

particle number, pressure, and temperature). The constant temperature of 300 K was 

held using the Nose-Hoover thermostat and the constant pressure of 1.01325 bar 

using Martyna-Tobias-Klein barostat. 

All MD simulations were performed in five replicates, over 100 ns each, yielding 

2000 time steps per replicate. The trajectories of all simulations were wrapped and 

aligned on the first simulation frame and heavy atoms of the protein backbone using 

VMD 1.9.3. 

 

Trajectory Analysis 

In the first step, all trajectories of the ACE2-RBD complexes were visually inspected to 

identify global conformational changes (e.g. backbone movements or dissociation 

events). Subsequently, all trajectories were analyzed using MDAnalysis-based scripts 

in a Python 3.7 environment provided by Trung Ngoc Nguyen, a colleague from our 

group. The first 10 ns of the simulations were used for the equilibration of the system. 

For the analysis, the last 90 ns of the simulations were processed using 

pandas 0.25.3.242 The data was plotted using matplotlib 3.1.1243 and seaborn 0.9.0.244 
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7. Summary 

Viral infections represent an old threat to global health, with multiple epidemics and 

pandemics in the history of mankind. Despite several advances in the development of 

antiviral substances and vaccines, many viral species are still not targeted. 

Additionally, new viral species emerge, posing a menace without precedent to humans 

and animals and causing fatalities, disabilities, environmental harm, and economic 

losses. 

In this thesis, we present rational modeling approaches for targeting specific protease-

substrate and protein-protein interactions pivotal for the viral replication cycle. Over 

the course of this work, antiviral research is supported beginning with the development 

of small molecular antiviral substances, going through the modeling of a potential 

immunogenic epitope for vaccine development, towards the establishment of 

descriptors for susceptibility of animals to a viral infection (Figure 47). Notably, all the 

research was done under scarce data availability, highlighting the predictive power of 

computational methods and complementarity between in-silico and in-vitro or in-vivo 

methods. 

In the first part of this thesis, the discovery of two novel chemotypes of small molecular 

competitive flaviviral NS2B-NS3 protease inhibitors is described. Despite several 

issues, such as shallowness, hydrophilicity, and large size of the binding pocket, it was 

possible to develop pharmacophore models suitable for a virtual screening campaign. 

To overcome these protease-specific challenges, we used a novel software, PyRod, to 

benefit from tracking interactions of water molecules over the course of molecular 

dynamics simulations. The inhibitory activity of suggested ligands was shown in a 

biochemical assay and the cell-based replicon model. 

In the next step, we characterized the binding epitope of equine herpesvirus 1 and 4 

(EHV-1, 4) glycoprotein D (gD) and equine major histocompatibility complex I (MHC-I). 

We provided the first insights into the binding interface and characterized two hot spot 

residues. It was shown by our collaborators that the predicted loss of function 

mutations hinder viral replication in a cell-based model. The identification of the pivotal 

gD epitope could contribute to the development of novel vaccines. 

Finally, we established molecular descriptors derived from molecular dynamics 

simulations of angiotensin-converting enzyme 2 (ACE2) orthologs from different 

animal species in complex with the spike protein (S) of a novel severe acute respiratory 
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syndrome-related coronavirus 2 (SARS-CoV-2). Due to a unique structure-based 

approach, we were able to rationally explain differences in the susceptibility of animal 

species to coronavirus disease 2019 (COVID-19) and successfully predict which 

animal species can serve as suitable models to study the infection. 

 

Figure 47. Graphical summary of the thesis. 
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Zusammenfassung 

Virusinfektionen stellen eine alte Bedrohung für die globale Gesundheit dar, mit 

unzähligen Epidemien und Pandemien in der Geschichte der Menschheit. Trotz 

zahlreicher Fortschritte bei der Entwicklung von antiviralen Substanzen und 

Impfstoffen werden viele Virusarten noch immer nicht bekämpft. Darüber hinaus 

tauchen immer wieder neue Virusarten auf, die eine noch nie dagewesene Bedrohung 

für Mensch und Tier darstellen und zu Todesfällen, Behinderungen, Umweltschäden 

und wirtschaftlichen Verlusten führen. 

In dieser Arbeit stellen wir rationale Modellierungsansätze für die gezielte 

Beeinflussung spezifischer Substrat-Protease und Protein-Protein-Interaktionen vor, 

die für den viralen Replikationszyklus entscheidend sind. Im Verlauf dieser Arbeit wird 

die antivirale Forschung unterstützt, beginnend mit der Entwicklung kleinmolekularer 

antiviraler Substanzen, über die Charakterisierung von einem potenziell immunogenen 

Epitop für die Entwicklung neuen Impfstoffen bis hin zur Etablierung von Deskriptoren 

für die Anfälligkeit von Tieren für eine virale Erkrankung (Abbildung 47). Dies betont 

die Vorhersagekraft von Berechnungsmethoden und die Komplementarität zwischen 

In-silico- und In-vitro- oder In-vivo-Methoden. 

Im ersten Teil dieser Arbeit wird die Entdeckung zweier neuartiger Chemotypen von 

kleinmolekularen, kompetitiven flaviviralen NS2B-NS3-Proteaseinhibitoren 

beschrieben. Trotz verschiedener Herausforderungen wie flacher Geometrie, 

Hydrophilie und Größe der Bindungstasche war es möglich, dreidimensionale 

Pharmakophormodelle zu entwickeln, die für virtuelles Screening geeignet waren. Um 

die spezifischen Eigenschaften von Proteasen adäquat zu adressieren, wurde eine 

neuartige Software, PyRod, verwendet, um die Solvatisierung im Verlauf der 

Molekulardynamiksimulationen zu verfolgen. Die inhibitorische Wirkung der 

vorgeschlagenen Liganden wurde in einem biochemischen Assay und im zellbasierten 

Replikonmodell nachgewiesen. 

Im nächsten Schritt charakterisierten wir das Bindungsepitop des Glykoproteins D (gD) 

des equinen Herpesvirus 1 und 4 (EHV-1, 4) und des equinen Haupthistokompatibili-

tätskomplexes I (MHC-I). Plausible Hypothesen zum Bindungsinterface zwischen den 

beiden Proteinen konnten gewonnen werden. Zwei wichtige Aminosäuren für diese 

Bindungen wurden vorhergesagt. Die daraus folgenden von uns vorgeschlagenen loss-

of-function Mutationen verhindern die virale Replikation in einem zellbasierten Modell 
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verhindern, wie experimentell von unseren Kooperationspartnern gezeigt werden 

konnte. Die Identifizierung des entscheidenden gD-Epitops könnte zur Entwicklung 

neuer Impfstoffe beitragen. 

Schließlich erstellten wir molekulare Deskriptoren, die aus Molekular-

dynamiksimulationen von Angiotensin-konvertierendem Enzym 2 (ACE2) -Orthologen 

aus verschiedenen Tierarten im Komplex mit dem Spike-Protein (S) eines neuartigen 

schweren akuten respiratorischen Syndroms – Coronavirus 2 (SARS-CoV-2) stammen. 

Dank eines neu entwickelten, strukturbasierten Ansatzes konnten wir Unterschiede in 

der Anfälligkeit von Tierarten für die Coronavirus-Krankheit 2019 (COVID-19) rational 

erklären und erfolgreich vorhersagen, welche Tierarten als geeignete Modelle zur 

Untersuchung der Infektion dienen können. 
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Abbildung 47. Grafische Zusammenfassung der Doktorarbeit. 
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11. Appendix 

 

11.1 List of Abbreviations 

In alphabetical order: 

ACE2- angiotensin-converting enzyme 2 

AIDS- acquired immunodeficiency syndrome 

AMC- 7-amino-4-methylcoumarin 

Arbovirus- arthropod-borne virus 

BAC- bacterial artificial chromosome 

CHIKV- Chikungunya virus 

COVID-19- coronavirus disease 2019 

Cryo-EM- cryogenic electron microscopy 

DAAD- directly acting antiviral drugs 

DENV- Dengue virus 

DENV2- Dengue 2 virus 

dMIF- dynamic molecular interaction field 

dsDNA- double-stranded deoxyribonucleic acid 

dsRNA- double-stranded ribonucleic acid 

E- envelope protein 

EC50- half-effective concentration 

EF1%- early enrichment factor 

EHV-1- equine herpesvirus 1 

EHV-4- equine herpesvirus 4 

EMDB- Electron Microscopy Data Bank 

FP- fusion protein 

FRET- Förster resonance energy transfer 

gD- glycoprotein D 

HCV- hepatitis C virus 

HIV- human immunodeficiency virus 

IC50- half-inhibitory concentration 

ICTV- International Committee on Taxonomy of Viruses 

Ki- inhibitory equilibrium constant 



138 

kinact- inactivation reaction rate 

KM- Michaelis-Menten constant 

MD- molecular dynamics 

MHC-I- major histocompatibility complex I 

MPro- major protease 

MXRA8- matrix remodeling associated 8 

NMR- nuclear magnetic resonance 

NS- non-structural protein 

nsP- non-structural protein 

PAINS- pan-assay interference compounds 

PDB- Protein Data Bank 

PPI- protein-protein interface 

Pro- protease 

RBD- residue binding domain 

RMSD- root mean square deviation 

ROC- receiver operating characteristic 

RT- reverse transcriptase 

S- spike protein 

SARS-CoV-1- severe acute respiratory syndrome-related coronavirus 1 

SARS-CoV-2- severe acute respiratory syndrome-related coronavirus 2 

SBDD- structure-based drug design 

SPR- surface plasmon resonance 

+ssDNA- positive-sense single-stranded deoxyribonucleic acid 

+ssRNA- positive-sense single-stranded ribonucleic acid 

-ssRNA- negative-sense single-stranded ribonucleic acid 

TMPRSS2- transmembrane protease serine subtype 2 

WNV- West Nile virus 

YFV- yellow fever virus 

ZIKV- Zika virus 
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11.2 Development of Small Molecules Targeting NS2B-NS3 Proteases 

 

 

Appendix Figure 1. Hypotheses of substrate binding to the NS2B-NS3 protease reported in the 

literature:159 (A) spiral-like conformation and (B) canonical conformation. 



140 

 

Appendix Figure 2. Sequence alignment and identity matrix for the NS2B and NS3 proteins 

from West Nile, Zika, Dengue 3, and Dengue 2 viruses. The catalytic triad is marked in green. 
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Appendix Figure 3. Inhibition curves of lead compounds 397_2 and 427_1 and the respective 

half-inhibitory concentration values. 
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Appendix Figure 4. Ramachandran plot of the Dengue 2 virus NS2B-NS3 homology model. 

Symbol code: green point- residue with favorable geometry, yellow point- residue with allowed 

geometry. 

 

 

Appendix Figure 5. Cellular activity curves of lead compounds 397_2 and 427_1 and the 

respective half-effective concentration values. The picture was prepared by Mila Leuthold. 
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Appendix Table 1. Set of reportedly active NS2B-NS3 inhibitors of West Nile virus (WNV) used 

for the validation of the pharmacophore model. 

Inhibitor structure 

Inhibitory 
activity on 

WNV NS2B-
NS3 

Reference 

 

IC50= 4 µM 
Cregar-

Hernandez et 
al.169 

 

IC50= 9 µM 
Cregar-

Hernandez et 
al.169 

 

IC50= 6 µM 
Cregar-

Hernandez et 
al.169 

 

IC50= 8 µM 
Cregar-

Hernandez et 
al.169 

 

IC50= 14 µM 
Cregar-

Hernandez et 
al.169 

 

IC50= 1.2 µM 
Cregar-

Hernandez et 
al.169 
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IC50= 13 µM 
Cregar-

Hernandez et 
al.169 

 

IC50= 8 µM 
Cregar-

Hernandez et 
al.169 

 

IC50= 16 µM 
Cregar-

Hernandez et 
al.169 

 

Ki= 13 µM 
Ganesh et 

al.194 

 

Ki= 16 µM 
Ganesh et 

al.194 

 

Ki= 35 µM 
Ganesh et 

al.194 

 

KD= 7 µM 
Bodenreider 

et al.168 

 

KD= 4.6 µM 
Bodenreider 

et al.168 
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KD= 21 µM 
Bodenreider 

et al.168 

 

IC50= 2.8 µM 
Ekonomiuk et 

al.192 

 

KD= 40 µM 
Ekonomiuk et 

al.193 

Abbreviations: WNV- West Nile virus. 
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11.3 Equine Herpesvirus: Targeting the MHC-I – Glycoprotein D 

Interface for Vaccine Development 

 

 

Appendix Figure 6. Sequence alignment and identity matrix for the major histocompatibility 

complex-I genotype 1.18.7-6 (template) and 3.1 (target). Residue 173 is highlighted in green. 

 



147 

 

Appendix Figure 7. Ramachandran plot of the major histocompatibility complex-I genotype 3.1 

homology model. Symbol code: green point- residue with favorable geometry, yellow point- 

residue with allowed geometry. 

 

 

Appendix Figure 8. Root mean square deviation plot obtained from a molecular dynamics 

simulation of the major histocompatibility complex-I genotype 3.1 homology model. 
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Appendix Figure 9. Root mean square deviation plot obtained from a molecular dynamics 

simulation of the major histocompatibility complex-I genotype 3.1 homology model in the 

peptide-free state in complex with the glycoprotein D from the equine herpesvirus 1. Color 

code: green- selected docking pose, grey- other docking poses. 

 

 

Appendix Figure 10. Root mean square deviation plot obtained from a molecular dynamics 

simulation of the major histocompatibility complex-I genotype 3.1 homology model in the 

peptide-bound state in complex with the glycoprotein D from the equine herpesvirus 1. 

Different shades of green indicate simulation replicates 1-3. 
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Appendix Figure 11. Root mean square deviation plot obtained from a molecular dynamics 

simulation of the major histocompatibility complex-I genotype 3.1 homology model in the 

peptide-bound state in complex with the glycoprotein D from the equine herpesvirus 4. 

Different shades of green indicate simulation replicates 1-3. 

  

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100R
o

o
t 
M

e
a

n
 S

q
u

a
re

 D
e

v
ia

ti
o

n
 

[Å
]

Simulation Time [ns]

Replicate 1 Replicate 2 Replicate 3



150 

Appendix Table 2. Genotypes of the equine major histocompatibility complex-I reported in the 

literature and their glycoprotein D binding. 

UniProt Code Genotype Residue 173 
EHV-4 gD binding reported 

(Wazab et al.34) 

M4PTG5 - E - 

Q38RB9 9.1 A Yes 

Q95480 2.16 (1-29) A Yes 

Q0R0D3 9.16 A Yes 

Q38RB8 3.2 A No 

M4PPR7 - E - 

Q38RB4 3.6 V No 

Q0R0B5 2.7 A - 

Q38RB3 3.7 A No 

Q860N6 1.18.7–6 E - 

D9MNN1 - E - 

Q95479 2.X (8-9) A Yes 

Q30483 3.1 A Yes 

Q30485 - E - 

Q30486 3.6 V No 

Q30482 - E - 

Q30484 - E - 

Q30488 3.5 E No 

C9K796 5.X (A68) A Yes 

Q38RB7 3.3 V No 

Q860N5 5.2 A Yes 

Q6UAL6 1.18.141 E - 

Q38RB6 3.4 T No 

Q860N9 - E - 

Q860N8 10.1 A Yes 

Q30481 - E - 

Q860N7 - D - 

Abbreviations: gD- glycoprotein D, EHV-4- equine herpesvirus 4. 
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11.4 Predicting the Susceptibility of Animal Species to COVID-19 
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Appendix Figure 12. Sequence alignment and identity matrix for the angiotensin-converting 

enzyme 2 from human and animal orthologs. (The subfigures are presented on the previous 

page) 
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Appendix Figure 13. Ramachandran plot of the orthologs of animal angiotensin-converting 

enzyme 2 homology models. Symbol code: green point- residue with favorable geometry, 

yellow point- residue with allowed geometry, red cross- outlier. (The subfigures are presented 

on the previous page) 

 


