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The circadian system is composed of coupled endogenous oscillators that

allow living beings, including humans, to anticipate and adapt to daily

changes in their environment. In mammals, circadian clocks form a hierarchi-

cally organized network with a ‘master clock’ located in the suprachiasmatic

nucleus of the hypothalamus, which ensures entrainment of subsidiary oscilla-

tors to environmental cycles. Robust rhythmicity of body clocks is indispens-

able for temporally coordinating organ functions, and the disruption or

misalignment of circadian rhythms caused for instance by modern lifestyle is

strongly associated with various widespread diseases. This review aims to pro-

vide a comprehensive overview of our current knowledge about the molecular

architecture and system-level organization of mammalian circadian oscilla-

tors. Furthermore, we discuss the regulatory roles of peripheral clocks for cell

and organ physiology and their implication in the temporal coordination of

metabolism in human health and disease. Finally, we summarize methods for

assessing circadian rhythmicity in humans.
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Molecular architecture of mammalian
circadian systems

Virtually all living beings, including humans, possess

an endogenous time-keeping system, composed of hier-

archically organized body clocks, which governs bio-

logical and behavioral rhythms with a ca. 24-h period.

Almost every cell in the body possesses the molecular

machinery generating circadian oscillations. On the

tissue and systemic level, single-cell oscillators synchro-

nize with each other in order to maintain coherent net-

work rhythmicity. Circadian rhythms are distinguished

from other rhythmic biological processes by three

defining properties: (a) They cycle with an endogenous

free-running period of about 24 h, (b) they can entrain
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to rhythmic environmental signals (Zeitgebers), and (c)

their periods are temperature-compensated.

Evolutionary, circadian clocks are believed to have

manifested because they provide intrinsic and extrinsic

adaptive advantages. In particular, they allow organ-

ism to adapt to, as well as to anticipate daily environ-

mental changes, while at the same time temporally

coordinating incompatible endogenous processes (for

review, see Ref. [1]). Field studies have shown that per-

turbation of the circadian system results in reduced

survival due to increased vulnerability to predator

attacks or mistiming of hibernation [2–5]. Moreover,

laboratory species pass on circadian rhythmicity over

many generations despite the absence of rhythmic

environmental cues, suggesting that, indeed, circadian

clocks provide an intrinsic advantage worth maintain-

ing [6]. Thus, not surprisingly, both disruption of

internal clock’s synchrony and desynchronization

between endogenous circadian and environmental Zeit-

geber cycles are associated with various pathologies in

humans. Here, we review fundamental design princi-

ples of the mammalian circadian systems and implica-

tions of circadian disruption for human health and

disease. We further provide a glossary (Table 1),

attempting to reduce sematic misunderstandings and

to define terms commonly used in chronobiological

research, especially when studying human circadian

clock systems.

Table 1. Glossary of chronobiology.

Actogram Graphical representation of daily or circadian behavioral activity over several cycles

Amplitude Peak-to-trough distance (absolute amplitude) or ratio (relative amplitude) of a rhythmic variable

during a circadian cycle

Chronotype Behavioral manifestation of the phase of entrainment reflecting the phase angle of an endogenous

circadian variable (e.g., DLMO, biomarker expression, or sleep midpoint) with respect to a Zeitgeber

(e.g., light onset)

Circadian Lat. circa = about, dies = day

Circadian misalignment

(also disruption)

Disturbance of the circadian system due to desynchronization with exogenous Zeitgeber cycles; may

occur on organismal, system, tissue, and cellular levels

Circadian time (CT) Time defined by the endogenous circadian period in constant conditions; circadian day = one complete

circadian cycle

Constant conditions Absence of rhythmic environmental cues (Zeitgebers)

Coupling Mechanism, by which interacting oscillators cycle with stable phase and period relationships

Damping Decline of the amplitude over time

Desynchronization Process describing that previously synchronized oscillators gradually cease to cycle with stable phase

and period relationships

DLMO Dim light melatonin onset

Entrainment (Period) synchronization of circadian oscillations to a rhythmic Zeitgeber leading to a stable phase

relationship

Free-running period (s) Endogenous circadian period (in constant conditions)

Masking Acute response of an organism to an external Zeitgeber without involvement of the endogenous

circadian system

MCTQ Munich ChronoType Questionnaire

MEQ Horne-Ostberg Morningness-Eveningness Questionnaire

MSF Mid-sleep on free days: (Wakeup time – Sleep onset time)/2

MSFsc MSF corrected for sleep debt on workdays: MSF – (sleep duration on free days – average sleep

duration)/2

Period Duration of a complete circadian cycle (s)

Phase Reference time point of an oscillatory cycle, usually acrophase = peak time of a circadian variable

Phase of entrainment Stable phase relationship between endogenous circadian and entraining Zeitgeber cycle

Phase response curve

(PRC)

Graphical representation of phase shifts in response to Zeitgeber pulses over the course of a

circadian day

Phase resetting Zeitgeber stimulus-dependent shift of circadian oscillations, usually considered to induce

synchronization of oscillator networks

Photoperiod Duration of the light span within the course of the light–dark cycle

Range of entrainment Range of permissible Zeitgeber periods an oscillator can entrain to (given a fixed Zeitgeber strength)

Resonance Amplitude expansion of interacting weak oscillators when their periods approximate each other

Subjective day/night Refers to times in constant conditions that correspond to day/night in a light–dark cycle

Zeitgeber (‘time giver’) Rhythmic timing signal endogenous circadian oscillators can entrain to; cycles with the Zeitgeber period (T)

Zeitgeber time (ZT) Time defined by the Zeitgeber cycle, commonly the light–dark cycle
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Circadian organization at the system level

The suprachiasmatic nucleus, pacemaker clock

Circadian rhythms are endogenously generated and

not merely driven by environmental cycles: Oscillations

persist even in the absence of external Zeitgeber cycles.

However, life under natural conditions requires daily

synchronization to rhythmic environmental signals in

order to tune the period of circadian clocks to exactly

24 h, as well as to adapt circadian rhythms to season-

ally changing photoperiods. Already in the 1960s,

Colin Pittendrigh, one of the founding fathers of

chronobiology, postulated that circadian systems are

composed of a light-sensitive ‘pacemaker’ clock and

subordinate oscillators in the periphery [7]. Today, we

know that the suprachiasmatic nucleus (SCN), two

bilateral neuron clusters located in the anterior

hypothalamus, receives environmental photic informa-

tion and subsequently synchronizes peripheral tissue

clocks. Based on initial lesion and transplantation

experiments demonstrating that the SCN governs

behavioral and humoral rhythms with the period of

the donor [8–11], the SCN has been proposed as a dri-

ver of circadian rhythms in mammals. As mammalian

pacemaker clock, it ensures entrainment of the organ-

ism to the external light–dark cycle. Photic informa-

tion is received by visual and non-visual

photoreceptors of the retina and passed on the SCN

via the retinohypothalamic tract (RHT). Entrainment

signals appear to differ from visual information as the

circadian system can respond to photic information

despite visual blindness [12–14]. Melanopsin-express-

ing, intrinsically photosensitive retinal ganglion cells

(ipRGCs) are crucial for mediating light-dependent

phase resetting and entrainment [13,15–18]. Following
photic entrainment, the SCN transmits time informa-

tion to the periphery via direct efferent projections or

indirectly via the regulation of hormone production

and secretion, as well as of body temperature and

behavioral cycles (for review, see Ref. [19]).

Within recent years, network topology and function

of the SCN have become topics of increasing interest.

It is known that the SCN of humans consists of

roughly 100 000 neurons distributed across SCN core

and shell regions, characterized by distinct afferent

connections, neurotransmitter profiles, and phasing of

circadian rhythms (for review, see Ref. [20]). However,

the identity of distinct cell types and their distribution

throughout the SCN, as well as their functional roles

for circadian rhythm generation of the SCN as a

whole, remain unclear. Recently, eight major cell types

with distinct circadian gene expression patterns and

light responsiveness have been identified by single-cell

analysis of the SCN [21]. Night-active astrocytes rather

than day-active neurons have been demonstrated to

control and sustain molecular oscillations of the SCN

and rhythmic behavior via glutamatergic signaling

[22,23]. Moreover, it has been shown that the ampli-

tude ratio between light-sensitive ventrolateral and

light-insensitive dorsomedial regions determines the

entrainment range of the SCN [24,25].

Peripheral circadian clocks, slave oscillators

Almost 30 years following the discovery of the SCN,

autonomous circadian rhythms were detected in nearly

every tissue inside [26–28] and outside the brain [29–
33]. Genome-wide transcriptome profiling showed that,

depending on the tissue, 2–20% of genes are rhythmi-

cally regulated with little overlap between tissues

[31,34–37]. This suggests that key physiological func-

tions need to be temporally coordinated in order for

organs to fulfill their biological tasks properly. Such

functions include wound healing [38], detoxification

[39], female reproduction [40], blood pressure and

heart rate regulation [41], immune function [42], as

well as carbohydrate and lipid metabolism [43–45] (for
review, see Ref. [46,47]). However, despite tissue-speci-

fic circadian rhythmicity in the periphery, ex vivo and

in vivo experiments suggest that the SCN is required to

maintain correct phase relationships among body

clocks [29,48]. Thus, peripheral oscillators are com-

monly considered as slave oscillators, which require

orchestration by the pacemaker clock.

Besides SCN-derived signals, a multitude of exoge-

nous signals can phase-shift peripheral circadian oscil-

lators. Strong external Zeitgebers, predominantly

feeding cues, presented in antiphase to the usual feed-

ing–fasting cycle may even induce desynchronization

between the SCN pacemaker and peripheral clocks

[49–52]. Entrainment of peripheral clocks to feeding–
fasting cycles may depend on hormone signals upon

feeding. Especially, the liver, as major metabolic

organ, has been suggested to act as mediator of food-

driven entrainment of other peripheral oscillators.

Recently, angiopoietin-like 8 (Angptl8) and tight junc-

tion protein 1 (TJP1) have been reported to regulate

liver clocks in response to food by altering expression

levels and activity of the clock gene Per1 [53,54]. Sub-

sequently, the liver may feed back to other body

clocks via hormonal or metabolic routes. In addition,

glucocorticoids have been demonstrated to serve as

potent Zeitgeber signals for peripheral circadian

clocks. Rhythms in glucocorticoids, controlled by

SCN-derived signals and autonomous adrenal clocks,

as well as bursts of glucocorticoids, induced by stress
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or exercise, feed back to a number of peripheral and

brain circadian oscillators [55–57]. Since the SCN does

not express glucocorticoid receptors [58,59], glucocorti-

coids act as specific entrainment signals for extra-SCN

brain, as well as peripheral circadian oscillators in vitro

and in vivo [60,61]. Recently, the independence of

peripheral tissue clocks from other body clocks has

attracted attention. New mouse models allowed study-

ing skin and liver oscillations in otherwise clock-less

and thus behaviorally arrhythmic animals and have

yielded indications of sustained rhythmicity within

these tissues [44,62]. Such studies will lead to a better

understanding of how various body clocks interact

and may induce a paradigm shift redefining the role of

peripheral clocks within mammalian circadian systems.

Entrainment

Conceptual background

In addition to seasonal changes in the temperature

and light–dark cycle, modern lifestyle is often accom-

panied by large variations in environmental conditions,

that is, artificial lightening, shift work, physical activ-

ity, mealtimes, and travel across time zones. Entrain-

ment ensures daily alignment of endogenous circadian

rhythms with environmental cycles within permissible

period ranges [63]. The so-called range of entrainment

is defined by the period limits to which the endogenous

circadian system can still entrain. Entrainment range

depends on the robustness of the intrinsic circadian

oscillator, that is, its amplitude and relaxation rate fol-

lowing perturbation, as well as the strength of the

Zeitgeber [64,65]. Therefore, strong oscillators, like the

SCN, display narrow, and weak oscillators, like

peripheral clocks, display large entrainment ranges.

For example, lung explant oscillations can entrain to

20- and 28-h temperature cycles (2 °C temperature

change), while SCN oscillations cannot [64].

Within any given range of entrainment, the Zeitge-

ber cycle and endogenous circadian rhythm attain

stable phase relationships, which may range between

�6 h [65,66]. The so-called phase of entrainment, also

referred to as chronotype in the context of human

behavior, is governed by the period difference between

Zeitgeber cycle (e.g., the 24-h light–dark cycle) and the

endogenous circadian cycle, as well as by the Zeitgeber

strength relative to oscillator amplitude. This implies

that for a given Zeitgeber, the phase of entrainment

will approach +6 or �6 h as the period mismatch

between exogenous and circadian cycle becomes larger.

However, since permissible period differences are con-

fined by the range of entrainment, strong oscillators

(narrow entrainment range) are expected to display

stronger shifts in the phase of entrainment for a given

period mismatch than weak oscillators (broad entrain-

ment range) [66]. Theoretical concepts of entrainment

may explain how distinct body clocks react to SCN-

derived as well as external entrainment signals in a tis-

sue-specific fashion. On the organismal level, the

phases of entrainment of vertebrates are highly vari-

able compared to unicellular organisms, insects, and

plants [67]. Interestingly, human populations display

broad chronotype distributions even though under nat-

ural conditions both Zeitgeber and endogenous circa-

dian periods are relatively stable [68]. Thus, the human

circadian system likely constitutes a very strong oscil-

lator in order to display large variations in the phases

of entrainment (chronotype) in response to small mis-

matches between exogenous and endogenous period.

Besides rhythmic entrainment cues, Zeitgeber signals

may also occur as pulses, for example, when turning

on artificial light during the night. How circadian

oscillators respond to such pulsatile signals and in a

time-dependent manner can be represented by so-

called phase response curves (PRCs). Based on the

extent of the phase response to a Zeitgeber signal,

PRCs are distinguished into type-1 and type-0 PRCs.

Type-1 PRCs are characterized by relatively small

shifts and gradual transitions between phase delays

and phase advances, while type-0 PRCs show large

phase responses resulting in abrupt switches between

delaying and advancing part [69]. Due to their Zeitge-

ber- and tissue-specific profiles, PRCs can help to

deduce information about temporal gating and under-

lying mechanisms of phase adjustment.

Photic entrainment of the SCN

Intrinsically photosensitive retinal ganglion cells rather

than classical photoreceptor cells have been identified

as predominant mediators of photic entrainment in

mammals [12–14]. These ganglion cells depolarize in

response to 480 nm light and remain active even dur-

ing prolonged exposure to bright illumination due to

expression of the photopigment melanopsin, whose

knockout results in altered light responsiveness in mice

[16,17,70]. Moreover, ectopic expression of melanopsin

renders even peripheral cells photosensitive and

enables phase shifts of circadian oscillations in

response to light [71,72]. ipRGCs project to SCN neu-

rons via the RHT and release neurotransmitters at

synaptic clefts upon photic stimulation. Glutamate and

pituitary adenylate cyclase-activating polypeptide

(PACAP) are neurotransmitters mediating photic reset-

ting of the SCN. Release and activation of their
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respective G protein-coupled receptors result in the

rapid induction of immediate early genes including

components of the molecular clock machinery [73,74].

Most importantly, Ca2+ and cyclic AMP (cAMP)-de-

pendent kinase pathways mediate photic resetting by

inducing cAMP response element (CRE)-driven

expression of Per1 and Per2 ([75]; for review, see Ref.

[76]). In addition, Ca2+ and Ras-dependent activation

of MAP kinase (MAPK) pathways converge on the

transcriptional induction of CRE and serum response

element (SRE), another enhancer element driving the

immediate early expression of clock genes [73,77].

Moreover, phosphorylation and activation of CRE ele-

ment-binding proteins (CREBs) play an important role

for mediating downstream effects of photic signals

[78]. Recently, phosphorylation of CREB at Ser133, a

residue involved in binding of its transcriptional coreg-

ulator CBP (CREB-binding protein), has been shown

to be required for normal locomotor activity and

entrainment behavior in mice [79]. Due to the rhyth-

mic expression of clock genes, immediate early induc-

tion of molecular clock components constitutes a

temporally gated input pathway to the central pace-

maker, thereby mediating time-of-day-dependent light

responses of the mammalian circadian system. Photic

PRCs in mammals display phase delays in response to

light stimulation during the early subjective night,

phase advances during the late subjective night, and

no phase responses during the subjective day. Interest-

ingly, despite antiphasic locomotor activity rhythms,

photic PRCs are similar for nocturnal and diurnal

mammals. However, the underlying mechanisms of

this activity switch remain unknown (for review, see

Ref. [80]).

Non-photic entrainment of peripheral clocks

In order to align the mammalian circadian system

with the light–dark cycle and to coordinate biological

rhythms of various body clocks, the SCN forwards

timing information to the periphery. SCN outputs are

manifold and include neuronal innervations, as well

as regulation of endocrine signaling, body tempera-

ture, feeding, and behavior. Transplantation experi-

ments with encapsulated SCN grafts have shown that

efferent neuronal connections are not necessary to

drive rhythmic locomotor activity [81], suggesting that

paracrine molecules, secreted by the SCN, govern

activity rhythms. Several rhythmically secreted candi-

date molecules have been proposed to be involved in

the control of locomotor activity by the SCN, includ-

ing cardiotrophin-like cytokine (CLC) [82], proki-

neticin-2 (PK2) [83,84], and transforming growth

factor-alpha (TGF-a) [85]. Recently, neuronal/my-

ocyte-specific enhancer factor 2D (MEF2D) was

demonstrated to regulate free-running behavioral per-

iod without affecting SCN rhythmicity itself, suggest-

ing that this transcription factor controls SCN output

pathways linking to activity [86]. In turn, rhythmic

behavior, driven by the SCN, translates into indirect

entrainment cues for peripheral circadian clocks by

regulating feeding–fasting and body temperature

cycles. In addition to behavior, ambient temperature

cycles are able to sustain and entrain peripheral tissue

oscillations independently of the SCN in vivo [50,87].

Heat-shock factor 1 (HSF1) and cold-inducible RNA-

binding protein (CIRBP) are involved in temperature

entrainment and responses of peripheral clocks to

temperature pulses [88–92].
Moreover, peripheral circadian clocks are exposed

to SCN-independent internal and external Zeitgeber

information. Feeding–fasting cycles are dominant Zeit-

gebers for peripheral circadian clocks. Under normal

conditions, feeding–fasting and rest–activity cycles are

oscillating in phase with each other. However, if both

Zeitgebers are presented in antiphase, peripheral oscil-

lators entrain to feeding rather than SCN-derived sig-

nals, leading to internal desynchrony between body

clocks [49,51,52]. Interestingly, arrhythmic feeding has

been demonstrated to disrupt rhythms in hepatic sig-

naling and metabolic pathways without altering the

core clock machinery [93], suggesting that feeding

rather than cell-autonomous molecular clocks governs

rhythms in liver functions. Precise mechanisms of

food-dependent entrainment are still under investiga-

tion. However, feeding-associated hormones and

metabolites, as well as metabolic and redox states,

have been suggested to convey nutritional information

to circadian clocks. For example, fluctuations in

nicotinamide adenine dinucleotide (NAD+) cofactors

and endogenous H2O2 are sensed by the molecular

clock machinery, thereby regulating circadian rhyth-

micity [94,95]. Moreover, the NAD+ sensing protein

deacetylase SIRT1 regulates the magnitude of clock

gene expression in the periphery [96–98]. In addition

to redox oscillations, insulin and gastrointestinal hor-

mones can influence peripheral tissue clocks, in partic-

ular the liver clock (for review, see Ref. [99]). Insulin

alters circadian rhythms by inducing protein kinase B

(AKT), mitogen-activated protein kinase (MAPK),

and phosphatidylinositol 3-kinase (PI3K) pathways

[100,101]. Various gastrointestinal hormones are rhyth-

mically secreted and can act as regulators of peripheral

circadian clocks, including glucagon-like peptide 1

(GLP-1), vasoactive intestinal peptide (VIP), oxynto-

modulin (OXM), gastrin, ghrelin, cholecystokinin
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(CCK), and others [102–104]. Recently, the mechanis-

tic target of rapamycin (mTOR) pathway has been

implicated as important link between feeding, meta-

bolic state, and peripheral circadian clock function

[105,106].

Neuronal innervation by the SCN appears to be

required for the control of peripheral oscillators via

hormone and humoral systems [10,107,108]. The SCN

forms efferent projections to other brain areas, which

in turn regulate body clocks via the autonomic ner-

vous system [109,110]. Importantly, the SCN pace-

maker controls rhythmic glucocorticoid release from

the adrenal gland via the hypothalamic–pituitary–
adrenal axis (HPA axis) [111–113]. As mentioned

before, glucocorticoid rhythms constitute one of the

most potent entrainment signals for peripheral circa-

dian clocks. Adrenalectomy was shown to attenuate

amplitudes of clock gene expression in a number of

peripheral tissues, including liver, kidney, visceral adi-

pose tissue, and jejunum [114]. Independent of the

SCN, the adrenal clock itself, as well as stress and

exercise, can drive rhythms in glucocorticoid release

via activation of the sympathetic nervous system (for

review, see Ref. [115]). Both physical activity and

stress are entrainment signals for peripheral clocks

[57,116–119]. Besides glucocorticoid secretion, the

SCN, via the autonomic nervous system, also controls

rhythms in blood pressure, body temperature, glucose

production and sensitivity, feeding and drinking

behavior, and the female reproductive cycle (for

review, see Ref. [120]).

Feedback to the SCN

In a complex network like the mammalian circadian

system, it appears likely that systemic and mutual

feedback regulations adjust circadian rhythms of body

clocks. While precise mechanisms are still under inves-

tigation, SCN neuronal activity has been demonstrated

to be altered by feeding-dependent signals, for exam-

ple, ghrelin and leptin [121,122], blood pressure [123],

or the immune system [124]. Adipocyte circadian

clocks, via an adipocyte–hypothalamic axis and fatty

acid secretion, have been suggested to be involved in

the regulation of feeding–fasting cycles [125]. More-

over, cancerous tissues seem to be able to alter the

molecular clock machinery in remote healthy tissues

[126–128]. Recently, and with the help of a newly

developed mouse model expressing functional clock-

work only within a specific peripheral tissue, it was

shown that liver and skin clocks depend on feedback

of other body clocks in order to express their full

circadian function [44,62].

Cell-autonomous circadian clocks

Until the 1970s, the underlying molecular mechanisms

of circadian rhythm generation remained unknown.

However, with the discovery of so-called clock genes

driving oscillations and determining circadian period

[129–132] a common molecular design principle of cir-

cadian clocks started to emerge: Nearly all tissues

express the molecular clock machinery that generates

cell-autonomous, endogenous, and self-sustained oscil-

lations [133–135].

Molecular clock machinery

Circadian oscillations are generated by intertwined

transcriptional–translational feedback loops (TTFLs)

between genes and their protein products (Fig. 1). The

molecular clockwork within SCN and non-SCN tissues

is nearly identical consisting of the same clock genes

and proteins driving oscillations via positive and nega-

tive TTFLs. In brief, three interlocked delayed feed-

back loops generate circadian biological rhythms. In

the so-called core loop, BMAL1 and CLOCK proteins

form a heterodimeric transcription factor that drives

the expression of its target genes via the activation of

E-box enhancer elements. After a defined time delay,

important for the generation of ca. 24-h rhythms [136],

protein products of CLOCK/BMAL1 target genes,

such as Period (Per1,2,3) and Cryptochrome (Cry1,2)

genes, translocate back into the nucleus where they

repress their own transcription. For many years, CRY

and PER proteins have been assumed to function as

heterodimers; however, evidence for their association

with large macromolecular protein assemblies, includ-

ing all isoforms of PER and CRY, as well as casein

kinase 1d (CK1d), has been accumulated over the last

years ([137]; for review, see Ref. [138]). In two addi-

tional feedback loops, CLOCK/BMAL1 transcription

factor drives the expression of the retinoic acid-related

orphan nuclear receptor Rev-erba/b, the RAR-related

orphan receptor Rora/b, as well as the D-site albumin

promoter binding protein Dbp [139]. REV-ERBs and

RORs competitively regulate the expression of the core

loop component Bmal1 via RORE enhancer elements,

whereas DBP (as transcriptional activator) and its

opponent E4BP4 (as transcriptional repressor) com-

pete for binding to D-box sequences in the promoters

of their target genes Rev-erba/b, Ror/b, Per1,2,3, and
Cry1. While the core feedback loop is required for

rhythm generation per se, the additional loops have

been proposed to play a role for fine-tuning of period,

phase, and amplitude of circadian oscillations

[136,140]. Moreover, clock transcription factors drive
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the expression of clock-controlled output genes

(CCGs) in a time- and tissue-specific fashion. Thus, it

is not surprising that ca. 5–20% of transcripts, pro-

teins, and metabolites exhibit circadian rhythms [34–
36,141–144].

Although clock genes are constitutively expressed at

specific developmental stages, circadian oscillations

have not been detected in germline cells, zygotes, early

embryos, as well as embryonic and induced pluripotent

stem cells [145–149]. Nevertheless, circadian rhythms

gradually and cell-autonomously emerge during devel-

opment when cells start differentiating [148,149].

Reprogramming and disturbance of cellular differenti-

ation perturb the development of circadian oscilla-

tions, suggesting that both biological processes are

interconnected [148]. Nevertheless, precise mechanisms

remain unknown. Importin subunit alpha (Knap2) has

been described to be important for the development of

circadian rhythms by regulating PER2 subcellular

localization [150]. More recently, post-transcriptional

suppression of CLOCK, potentially via the endonucle-

ase–microprocessor complex Dicer/Dgcr8, has been

suggested to regulate circadian clock development

[151,152].

Non-TTFL rhythm generation

In addition to TTFLs, post-transcriptional, post-trans-

lational, and non-transcriptional mechanisms have

been described to regulate or even drive circadian

oscillations on the cellular level. Surprisingly, only 20–
30% of rhythmic mRNA transcripts appear to depend

Fig. 1. Organizational levels of mammalian circadian systems. Mammalian circadian clocks consist of cell-autonomous and self-sustained

oscillators that can be found in virtually all cell types. At the system level, a ‘master clock’ located in the SCN of the hypothalamus ensures

entrainment of subsidiary peripheral oscillators to the light–dark cycle, as well as alignment of body clocks with each other. At the tissue

level, rhythmicity is generated by ensembles of cell-autonomous oscillators. Since single-cell oscillators cycle with their own periods and

phases, desynchronization, caused by progressive dephasing, can be avoided by intercellular coupling. At the cellular level, circadian

oscillations are driven by interconnected feedback loops between core clock genes and their protein products. Tissue-specific circadian

outputs are generated by the combined effects of rhythmic transcriptional, post-transcriptional, translational, and post-translational

processes (CCE, clock-controlled enhancer element; CCG, clock-controlled gene). This figure was created with BioRender.
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on cyclic de novo transcription [153], suggesting an

important role of post-transcriptional regulation for

circadian rhythm generation (for review, see Ref.

[154]). For example, (a) mRNA stability of the clock

components Cry and Per has been demonstrated to

vary throughout the day due to 30-UTR and poly(A)-

tail regulation [155–157], (b) miRNAs have been sug-

gested to regulate circadian rhythms by targeting clock

or clock-controlled genes [158,159], and (c) nuclear

export dynamics of clock mRNAs has been indicated

in period determination of circadian rhythms [92,160].

Within recent years, advances in mass spectrometry

and associated bioinformatics analysis have enabled

large-scale proteomic studies, also on the level of post-

translational modifications. Only up to 50% of rhyth-

mic RNA transcripts translate into rhythmically

expressed proteins [141,142,161], further supporting

the importance of post-transcriptional or even post-

translational mechanisms for circadian rhythm genera-

tion (for review, see Ref. [162]). One of the first single-

gene mutations identified as circadian clock modula-

tor, the tau mutation in golden hamsters, constitutes a

missense mutation in the phosphate recognition

domain of casein kinase 1e [163], which targets many

clock proteins. Phosphorylation is the most prevalent

post-translational modification, and ca. 25% of phos-

phorylation sites oscillate in mouse liver [164,165].

Phosphorylation sites of core clock proteins have been

found to be rhythmically modified and to regulate pro-

tein activity [100,164,166]. In addition to phosphoryla-

tion, other post-translational modifications can

modulate circadian rhythmicity, including F-box/LRR-

repeat protein (FBXL)-dependent ubiquitination of

CRY proteins [167–170], sirtuin-1 (SIRT1)-dependent

deacetylation of PER2 and BMAL1 [96,98,171], or

SUMOylation of BMAL1 [172].

Lastly, redox cycles have been proposed to promote

or even drive circadian rhythms independently of tran-

scription and translation [173]. Peroxiredoxins (PRX)

appear to display ca. 24-h oxidation cycles that persist

under constant conditions, and are entrainable and

temperature-compensated [174]. PRX are highly con-

served antioxidant proteins required for the mainte-

nance of cellular redox homeostasis. Potentially,

transcriptional and redox cycles cooperatively regulate

circadian rhythms; however, precise mechanisms of

such a coupling remain elusive. Recently, endogenous

H2O2 has been shown to exhibit circadian oscillations

governing rhythmic oxidation of CLOCK proteins, as

well as circadian dynamics in mice [95]. Moreover,

PRX may be involved in circadian rhythm mainte-

nance in liver and skin of Bmal1-deficient (behaviorally

arrhythmic) mice [175].

Oscillator coupling

Virtually, every tissue in the human body is composed

of self-sustained and cell-autonomous circadian oscilla-

tors, which display a normal distribution of periods

and phases across cellular populations ranging from

about 20 to 28 h. If individual cells would cycle inde-

pendently of each other and with their own period,

phases of cellular oscillators would drift apart leading

to desynchronized tissue rhythms over time (Fig. 1).

Thus, single-cell oscillators within central and periph-

eral tissue clocks, for example, the SCN or the liver,

need to either couple with each other or be synchro-

nized to external or systemic Zeitgebers in order to

maintain synchronized network rhythms.

Coupling serves to phase- and period-lock individual

oscillators to maintain synchronized rhythms on the

population level (Fig. 1). Without coupling, additional

extrinsic or intrinsic Zeitgeber signals are required to

synchronize cell-autonomous oscillators and generate

coherent network oscillations; otherwise, period differ-

ences will result in oscillator desynchronization over

time (Fig. 1). In 2018, Schmal et al. [176] mathemati-

cally defined three qualitative coupling states based on

distributions of periods, phases, and amplitudes

observable for oscillator networks. According to their

study, coupling strength can be inferred from period

and phase distributions. Coupled oscillators have more

similar periods and phases and display larger ampli-

tudes. This is the case because (a) coupled oscillators

exert mutual phase- and period-pulling effects on

neighboring oscillators resulting in convergence of

these circadian parameters, and (b) resonance occurs

among low-amplitude oscillators with similar periods

leading to increased amplitudes (comparable to reso-

nance effects in physics).

Intuitively, coupling is expected to result in reduced

damping of ensemble rhythms since damping is caused

by desynchronization of self-sustained oscillators.

Moreover, Abraham et al. [64] reported that amplitude

relaxation of coupled networks, that is, how quickly

the population rhythm returns to its initial state fol-

lowing perturbation, accelerates with increasing cou-

pling strength, indicating that coupled networks are

more robust. As described above, entrainment proper-

ties are constrained by the robustness of the entrained

oscillator. Therefore, interoscillator coupling, by pro-

moting amplitude expansion and faster amplitude

relaxation, constitutes an important determinant of the

phase of entrainment, of the range of entrainment,

and of the response to Zeitgeber signals. For example,

more strongly coupled oscillator networks, like SCN

tissue, are more difficult to entrain and more robust
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against perturbation by Zeitgeber pulses than weakly

coupled networks, like lung tissue [64].

In summary, intercellular coupling constitutes an

integral feature of circadian clock systems, governing

response to Zeitgeber signals and entrainment. Consid-

ering that body clocks are constantly exposed to a

variety of extrinsic and intrinsic Zeitgeber signals that

must be properly integrated to generate tissue-specific

circadian outputs, coupling likely plays an important

role for the correct timing of rhythmic biological func-

tions. Studying coupling among circadian oscillators

on both tissue and system levels increases knowledge

about the multidimensional circadian clock system in

mammals and improves the understanding of mecha-

nisms leading to circadian disruption and associated

pathologies.

Coupling among cell-autonomous oscillators

Both SCN neurons and peripheral cells exhibit self-

sustained circadian oscillations [133,134,177]. When

cultured as nearly intact tissue explants, SCN neurons

display narrow distributions of periods and phases as

well as highly synchronized network oscillations with

periods close to the behavioral periods [178]. Periph-

eral tissue slice cultures display persistent, yet damp-

ened circadian rhythms for many days in culture [29],

indicating that cell-autonomous oscillators remain syn-

chronized with each other at least to some extent.

Upon dissociation, SCN neurons as well as fibroblasts

(a model for peripheral oscillators) exhibit desynchro-

nized circadian oscillations with a broad period distri-

bution [134,179]. Circadian rhythmicity of SCN

neurons and fibroblasts is attenuated under sparse cul-

ture conditions [179,180]. Application of conditioned

medium from densely cultured fibroblasts can rescue

weak rhythmicity of sparse cultures [179]. Moreover,

inhibition of interneuron communication by tetrodo-

toxin decreases rhythm amplitude of the SCN pace-

maker as well as induces desynchronization of

neuronal oscillators [181]. Together, these findings sug-

gest that cell-autonomous circadian oscillators couple

with each other via intercellular communication path-

ways. In addition, network interactions seem to pro-

mote robust circadian tissue rhythms. Nevertheless,

while coupling on the tissue level is well-characterized

for neuronal oscillators within the SCN, coupling

within peripheral clock networks is still debated.

Coupling within the SCN

Coupling among SCN neurons is strong enough to

maintain robust network rhythms over long durations

of time and even if single-cell oscillators are dysfunc-

tional [182,183]. Spatiotemporal regulation of circadian

dynamics across the SCN is complex with wave-like

spreading of phases and amplitudes across different

regions [181,184]. Thus, it appears that intercellular

coupling within the SCN depends on defined neuronal

circuits establishing interactions between distinct SCN

regions in a temporally controlled manner (for review,

see Ref. [185]). Interestingly, neuronal coupling in

neonatal SCN was reported to be stronger than in

adult SCN [186,187], suggesting that neuronal connec-

tions or involved neurotransmitters change throughout

development. Moreover, SCN coupling is altered by

abnormal lighting regimes, for example, during jetlag,

leading to changes in the distribution of phases and

neuronal firing rhythms (for review, see Ref. [185]).

Eventually, such light-induced ‘decoupling’ may be

beneficial to enhance plasticity of the circadian system

allowing for faster entrainment to new light–dark
cycles. Chronic perturbation of SCN coupling, how-

ever, for example, during social jetlag or shift work,

may promote circadian disruption and associated

pathologies. Synaptic release of neurotransmitters

[181,188,189], unknown paracrine communication

pathways [186,190], and direct communication via gap

junctions [191–193] are believed to mediate synchro-

nization among SCN neurons. Within the photic input

receiving core region, VIP is the most abundant neuro-

transmitter. VIP is released rhythmically from SCN

core neurons and binds to its respective receptor

(VPAC2) in both core and shell SCN regions

[194,195]. Functional studies have shown that VIP

plays an important role in interneuron coupling and

regulation of the behavioral period. Depletion of VIP

or VPAC2 alters excitability and firing of SCN neu-

rons [196,197], attenuates clock gene rhythms

[187,198,199], and results in desynchronization of cell-

autonomous oscillators [197,199,200]. Knockout of

VIP or VPAC2 disrupts rhythms of locomotor activity

and entrainment in mice [198,200,201], further suggest-

ing that intercellular coupling is crucial for regulating

rhythmic biological processes on the organismal level.

In addition to VIP, other neurotransmitters such

as vasopressin (AVP), gamma-aminobutyric acid

(GABA), and gastrin-releasing peptide (GRP) have

been described to modulate synaptic SCN coupling

and activity rhythms in mice (for review, see Ref.

[202]).

Coupling within peripheral tissues

In contrast to the SCN, peripheral clock rhythms have

been found to quickly dampen in vitro [32–34,203].
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Some studies have reported that fibroblasts do not dis-

play signs of intercellular coupling [133,135]. More-

over, clock gene mutations, which can be compensated

by coupling in the SCN, have been shown to disrupt

tissue rhythms in the periphery [183]. However, as

mentioned above, ex vivo slice cultures of peripheral

tissue clocks, although with some degree of damping,

have been found to display persistent network rhythms

for many days [29]. In vivo, non-SCN clocks have been

demonstrated to sustain coherent tissue rhythms inde-

pendently of the SCN or rhythmic external Zeitgebers

[48,204,205]. This suggests that cell-autonomous oscil-

lators stay at least partially synchronized, as long as

tissue integrity is intact. Moreover, mathematical mod-

els identified weak, intercellular coupling among

peripheral oscillator models in vitro. Clusters of neigh-

boring hepatocytes display more narrow phase and

period distributions than distant neighbors or cells

from uncoupled networks [206]. Fibroblasts exhibit

slight phase-pulling effects on adjacent cells, although

too weak to maintain synchronized network rhythms

given the variability of endogenous periods [207].

Moreover, weak rhythmicity of sparsely cultured

fibroblasts can be rescued by treating cells with condi-

tioned medium from densely cultured cells [179], indi-

cating that peripheral oscillators enhance network

rhythmicity by exchanging paracrine signals. Interest-

ingly, many proteins, including secreted ones, appear

to be rhythmically controlled with respect to expres-

sion and secretion [142,208]. Although paracrine com-

munication pathways likely contribute to intercellular

coupling in the periphery, no mechanism has been

identified so far. Therefore, coupling of cellular clocks

within peripheral tissues remains in dispute. One may

speculate that coupling within peripheral tissues is not

required since, under normal conditions, peripheral

clocks are exposed to strong synchronizing signals

originating from the SCN or the environment. How-

ever, a correct temporal coordination of rhythmic

biological functions appears to be crucial for an organ-

ism’s well-being. Thus, intercellular coupling may be

very important for the maintenance of peripheral

rhythms in the absence of SCN-derived or external

Zeitgeber, proper entrainment, and robustness toward

acute Zeitgeber signals.

Coupling among body clocks

Coupling within the circadian system may take place

on different organizational levels (for review, see Refs

[209,210]). Whether it occurs at the system level is still

an open question. Since the SCN is the master pace-

maker keeping body clocks in synchrony, the relevance

of systemic coupling may not be apparent. Neverthe-

less, mutual exchange of time information among dif-

ferent body clocks may provide synchronized feedback

from the periphery to the SCN or regulate organismic

responses to external entrainment signals. Several com-

munication pathways among body clocks have been

described (for review, see Ref. [211]). Yet, it remains

to be explored whether these pathways enable bidirec-

tional coupling rather than unidirectional clock

entrainment/resetting. Potentially, adjustment of the

mammalian clock system to feeding signals or to ener-

getic alterations constitutes a systemic coupling path-

way (for review, see Ref. [212]). Feeding–fasting cycles

act as dominant Zeitgebers for peripheral clocks

[49,51] but alter SCN activity, body temperature, and

rest–activity cycles via the release of feeding-related

hormones [213–216], which again leads to feedback

regulations of peripheral oscillators through neuronal

routes.

Recently developed mouse models aim at investigat-

ing interactions of various body clocks. In 2019, two

groups demonstrated that isolated peripheral tissue

clocks maintain—at least in part—rhythmic gene, pro-

tein, and metabolite expression under light–dark cycles

[44,62]. In constant darkness, however, tissue rhythms

appeared to be lost, suggesting that (a) rhythmic light

input is important to partially maintain tissue oscilla-

tions, but more importantly, that (b) full circadian

function of peripheral clocks requires rhythmic input

from other body clocks. Mouse models with various

combinations of functional body clocks will help to

elucidate systemic communication or coupling path-

ways within the mammalian circadian clock network.

Peripheral clocks control cell and
organ physiology: lessons from rodent
studies

Coupling of myriads of individual tissue clocks across

the body into a unified network, re-adjusted on the

daily basis by the master pacemaker, ensures temporal

coordination of physiology and metabolism [212,217–
221]. Indeed, peripheral clocks operative in the organs

play an essential role in temporal coordination of

metabolic reactions, from food processing to xenobi-

otic detoxification, by ensuring anticipation of rest–ac-
tivity cycles (reviewed in Refs [47,212,218,220,222–
228]). Large-scale transcriptomic studies indicate that a

significant fraction of the transcripts in liver, skeletal

muscle, white adipose tissue (WAT), and endocrine

pancreas is rhythmic in rodents [34,37,45,227,229–240].
In line with the transcriptomic data, proteins [142,161],

microRNAs [241,242], free fatty acids (FFAs), lipids,
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and other metabolites [44,243–245] are subject to circa-

dian variations. Noteworthy, the oscillatory pattern of

certain proteins and lipid metabolites was found to

persist in arrhythmic mice kept in constant darkness

under normal feeding–fasting cycles [161,243], suggest-

ing that rhythmic feeding is sufficient to drive a subset

of proteins/metabolites independent of the endogenous

clock machinery.

Concordantly with reported diurnal rhythmicity of

genes, proteins, and metabolites, physiological outputs

of the organs exhibit circadian variations. Indeed,

detoxification and metabolic function of the liver,

response to insulin by skeletal muscle or WAT, as well

as secretion of hormones and cytokines by pancreatic

islet a- and b-cells and by intestinal L cells exhibit diur-

nal rhythmicity [45,125,231,233,234,246–253]. As men-

tioned above, some rhythmic liver functions appear to

depend on the presence of other body clocks, while

others, like carbohydrate, amino acid, and redox-related

metabolic processes, are exclusively driven by liver

autonomous circadian clocks [44]. Taken together, these

studies provide compelling evidence for the circadian

system temporally coordinating metabolic physiology.

Consistently, genetic disruption of the core clock com-

ponents leads to perturbations of carbohydrate, lipid,

and protein metabolism, and such mouse models

develop hyperphagia, obesity, hyperglycemia, and glu-

cose intolerance [45,125,233,239,250,251,254–257].
Whereas whole-body BMAL1-KO animals develop

various pathologies, including hyperglycemia, hyper-

lipidemia, and premature aging [258], tissue-specific

knockout models of the key core clock element

BMAL1 exhibit distinct metabolic phenotypes. Liver-

specific BMAL1-KO mice are hypoglycemic [43]. They

display reduced lipid accumulation via increased

mRNA methylation, in particular of PPARa [259,260],

and alterations in the hedgehog pathway leading to

the steatosis development [249]. Muscle-specific

BMAL1-KO leads to metabolic inefficiency and

impairs muscle triacylglycerol biosynthesis [261].

BMAL1 directly regulates Myod, a master regulator

gene in the skeletal muscle [37,236]. In turn, MYOD

binds to enhancer elements in the Bmal1 promotor

and acts synergistically with BMAL1/CLOCK to regu-

late clock-controlled genes in the skeletal muscle [262].

Pancreatic islet-specific BMAL1-KO leads to develop-

ment of overt type 2 diabetes (T2D) [45], also when it

is induced in the adult age [233], and it reduces the

metabolic adaptation to HFD-induced obesity [254].

Finally, animals bearing an adipocyte-specific

BMAL1-KO become obese [125].

In addition to BMAL1-KO, mice with disrupted

nuclear receptor REV-ERBa exhibit perturbed lipid

and carbohydrate metabolism [263–269]. In the liver,

REV-ERBa couples glucocorticoid signaling to energy

metabolism via binding of the hepatocyte nuclear tran-

scription factors HNF4A/HNF6 [270]. Additionally,

ROR nuclear receptors were reported to enhance mito-

chondrial respiration and ATP production in skeletal

muscle, via transcriptional activation of the key regula-

tor genes [271]. Based on this conjunction, ROR

agonist nobiletin promoted healthy aging in mice sub-

jected to the high-fat diet regimen [271]. The core

clock component PER2, element of the negative feed-

back limb, coordinates lipid metabolism by regulating

key enzymes in the lipid biosynthesis and peroxisome

proliferator-activated receptor-gamma (PPARc)
[243,272,273]. PPARc signaling was also perturbed in

the WAT of mice deficient in the transcriptional

repressor DEC1, leading to disturbance of lipid turn-

over in WAT and to disrupted rhythmicity of FFAs in

serum [274]. Hepatic overexpression of another nega-

tive regulator, CRY1, inhibits glucagon-induced liver

gluconeogenesis, leading to lowered blood glucose

levels and improved insulin sensitivity in the insulin-re-

sistant db/db mice [250]. Furthermore, CRY1 levels are

decreased by autophagy in rodent liver [275]. In

CRY1-KO mice, reduced cystathionine b-synthase
(CBS) activity levels were reported that were rescued

by adding exogenous CRY1. CRY1-induced CBS acti-

vation led to post-translational switch that modulated

metabolism [276]. Interestingly, the circadian regulator

Nocturnin, a rhythmic gene encoding a deadenylase

thought to be involved in the removal of poly(A) tails,

controls glucose and lipid metabolism [277], as well as

metabolic adaptation in brown adipose tissue [278].

Another RNA-binding protein, NONO, couples the

rhythmic expression of metabolic genes in the liver

with nutrient levels. Its genetic disruption leads to

impaired glucose tolerance, lower hepatic glycogen,

and decreased lipid content [279].

In summary, these findings strongly support the cru-

cial importance of functional tissue clocks for cell and

organ physiology, suggesting that disruption of only a

single clock gene/protein can be associated with

adverse health effects. However, when interpreting the

impact of core clock transcriptional factors on meta-

bolic outputs stemming from the studies in genetic

mouse models of clock component disruption, one

must recognize that these transcriptional regulatory

proteins may also exert non-circadian functions.

Indeed, whereas BMAL1-KO mice are prone to early

aging [258], this is not the case for CLOCK mutant, as

well as PER1/2- or CRY1/2-double KO animals. This

might be explained by BMAL1’s inhibitory effect on

the mTORC1 pathway [280], resulting in increased
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mTORC1 activity in BMAL1-KO. Thus, premature

aging in BMAL1-KO is likely to be attributed to the

non-circadian function of BMAL1 rather than to its

role in the core clock machinery.

The connection between the circadian system and

rhythmic physiology is reciprocal, with diurnal physio-

logical alterations readjusting the peripheral oscillators

on the daily basis. Indeed, feeding–fasting and temper-

ature cycles, exercise, levels of oxygen, CO2, and

metabolites represent potent Zeitgebers for peripheral

clocks (reviewed in detail in Refs [47,281]). At the cel-

lular level, the core clock components can be adjusted

by the local concentrations of metabolites. Nicoti-

namide adenine dinucleotides (NADs) affect the activ-

ity of core clock components directly, or via NAD-

dependent enzymes, thus playing an essential role in

fine-tuning of the molecular clock to the metabolic

state [96–98,282–284]. Precursor of NAD+, nicoti-

namide riboside (NR), increases BMAL1 chromatin

binding via PER2 deacetylation that primes PER2

phosphorylation. This mechanism underlies beneficial

effects of NR that rescues dampened oscillations of

gene transcription and mitochondrial respiration in

aged mice. Thus, NAD+ drives reprogramming of

metabolic and stress–response pathways that decline

with aging [284,285].

Approaches for studying human
circadian clocks

Human circadian clocks drive rhythmic biological pro-

cesses that govern organ functions, metabolism, and

physiology, as well as behavioral rhythms such as

sleep–wake and feeding–fasting cycles. Inter- and

intra-individual differences in the endogenous rhythms

determine how humans entrain to periodically reoccur-

ring environmental conditions. This results in a wide

range of chronotypes, that is, phase relationships

between endogenous circadian and exogenous Zeitge-

ber cycles. People with short free-running periods are

more likely to be early chronotypes (‘morning larks’),

while people with long free-running periods are more

often late chronotypes (‘night owls’) when entrained to

the daily light–dark cycle [286,287]. When Zeitgeber

cycles are out of synchrony with the endogenous circa-

dian cycle, for example, upon shift work, travel across

time zones, social jetlag, or artificial lighting, serious

health consequences may develop (for review, see Ref.

[224]). Thus, studying circadian rhythms in humans in

normal,, as well as under varying environmental condi-

tions helps to uncover causes for circadian misalign-

ment and associated pathologies. In addition, the

endogenous circadian clock governs kinetics and

dynamics of many, especially short-lived drugs, as well

as outcomes of medical interventions or following

injury [38,288,289]. The goal of adapting treatment

times to endogenous circadian rhythms is to maximize

therapeutic responses while minimizing side effects

leading to an emerging field of medical research

(chronomedicine, chronotherapeutics, and chronophar-

macology) (for review, see Ref. [290,291]). However,

treatment of patients during the ‘right time of day’

requires knowledge about the status of their individual

circadian clocks, for example, their chronotype. Thus,

studying human circadian clocks in vivo and in vitro

has become a topic of increasing interest.

Studying circadian clocks in vivo

The SCN is located deep in the hypothalamus; thus,

quantification of the pacemaker oscillations in humans

is only possible by observing rhythmic outputs driven

by the underlying circadian system. Most commonly,

these outputs include periodic variations in activity,

sleep, body temperature, and hormone levels. In

pioneering studies, J€urgen Aschoff and others uncov-

ered the endogenous nature of the human circadian

clock by isolating individuals from their rhythmic envi-

ronments, while continuously measuring physiological

and behavioral parameters. Rhythms of peripheral

clocks may be quantified in vitro by sampling, for

example, blood, skin, saliva, hair, oral mucosa, WAT,

muscle, or urine in regular intervals over the course of

a day. However, elaborated, quick, and sensitive

molecular techniques for sample analysis are just now

starting to be developed. Therefore, laboratory proto-

cols are often still considered the gold standard for

assessing the endogenous human circadian rhythms

in vivo.

Chronotype (phase of entrainment)

Typically, and most simply, chronotype is estimated

using questionnaires such as the MEQ or the MCTQ.

While the MEQ is a self-assessment test scoring

whether subjects feel more active/alert during the

morning, the evening, or in between, the MCTQ asks

for sleep timing during workdays and free days

([292,293]; for review, see Ref. [294]). Self-reported

average mid-sleep time (MSF) or MSF corrected for

sleep debt during workdays (MFSsc) is assessed by the

MTCQ and is commonly accepted as useful indicator

of chronotype. MCTQ analysis of a large cohort of

subjects suggests that chronotypes are roughly nor-

mally distributed across populations from different

geographical areas. 2.5% of individuals at either end
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of the chronotype distribution were classified as

extreme morning types with MSF/MSFsc < 2.17 or

extreme evening types with MSF/MSFsc > 7.25 [295].

For the MEQ, individuals with scores above 58/86 are

considered morning types, while individuals with

scores below 41/86 are considered evening types.

As a more accurate readout of the phase of entrain-

ment, melatonin levels can be measured from saliva,

blood, or urine samples. Melatonin is a sleep–wake
cycle regulating hormone rhythmically secreted by the

pineal gland. Its secretion is controlled by the SCN

and starts 2–3 h before habitual sleep time. Interest-

ingly, melatonin levels are robust toward perturbation

by extrinsic or intrinsic cues, except light exposure,

which acutely suppresses melatonin secretion [296]. In

healthy individuals, timing of the dim light melatonin

onset (DLMO) accurately reflects human chronotype

when measured under constant conditions (dim light

and controlled posture) and is reasonably well corre-

lated with MSF/MSFsc and MEQ score [297,298].

However, laboratory assessment protocols of DLMO,

due to their 30-min sampling intervals in the early

night and controlled conditions, are expensive, time-

consuming, and unpleasant for subjects. Home assess-

ment kits allow individuals to collect saliva samples

conveniently at home and in dim light. Studies show

that home and laboratory DLMO measures display

good correlation if participants are compliant with

instructions [299] or may vary by up to 90 min when

compliance is not monitored [300].

To predict phase of entrainment (or chronotype),

biomarker (BM) approaches that require only one or a

few single time point measurement have recently been

developed. Pioneering work was performed by Ueda

et al. [301] by creating a ‘molecular timetable’ of

mouse livers, that is, circadian expression profiles of

more than 100 time-telling genes, which enables to pre-

dict endogenous clock time from a single sample. This

idea was adopted in human studies using cycling

metabolites in human blood samples taken at two

antiphasic time points [302] or from circadian tran-

scriptomes of peripheral blood mononuclear cells

(PBMCs) [303,304]. Today, BM prediction of circadian

clock time, with accuracy comparable to DLMO

assessment, is even possible by measuring only a small

set of time-telling genes from a single time point blood

sample, irrespective of the sampling time [304,305].

Despite advances in chronotype assessment, some

questions remain to be investigated. How does chrono-

type change under non-natural conditions, for example,

upon circadian disruption (shift work and travel across

time zones) or disease (sleep disorders and inflamma-

tion)? How stable are individuals’ chronotypes over

time? Can assays be developed that clearly distinguish

between phase of the central clock and peripheral

clocks to assess internal desynchronization? Circadian

misalignment may be inferred from phase relationships

between distinct phase measures (MSF/MSFsc, DLMO,

biomarkers from various tissues) or between predicted

phase and external Zeitgeber cycles, for example, light–
dark cycle (Fig. 2).

Endogenous period

Intrinsic or free-running period of the endogenous

clock system is only revealed in a non-entrained state.

To assess this, individuals need to either stay in con-

stant conditions (constant routine protocols) or in con-

ditions, to which they cannot entrain (forced

desynchrony protocols). Moreover, serial sampling for

at least 24 h is required to quantify clock-driven rhyth-

micity, for example, of melatonin, cortisol, body tem-

perature, or other biomarkers (Fig. 2). Constant

routine protocols measure endogenous circadian oscil-

lations independently of behavioral or exogenous influ-

ences, such as ambient temperature, light, meals, social

cues, activity, sleep, or even posture. Subjects are kept

in constant dim light, constant temperature, constant

posture, without sleep, and with evenly distributed iso-

caloric snacks (for review, see Ref. [306]). Such labora-

tory protocols are supposed to reduce masking effects

of environmental Zeitgebers. However, aftereffects

from entrainment signals prior to the study or masking

effects and phase shifts introduced by experimental

procedures themselves may confound the assessment

of the free-running period ([307]; for review, see Ref.

[308]). During forced desynchrony protocols partici-

pants are subjected to either 28- or 20-h Zeitgeber

cycles, usually light–dark cycles, to prevent entrain-

ment of the endogenous clock system and to be able

to record free-running periods of sleep–wake and body

temperature cycles [309,310]. Both constant routine

and forced desynchrony protocols are labor-intensive,

costly, and time-consuming. Thus, even though these

methods constitute the gold standard to assess the

endogenous circadian period, they are impractical and

do not reveal behavior of the circadian system under

changing environmental conditions. Alternatively,

serial BM sampling from blood, saliva, hair, or tissue

biopsies can provide information about an individual’s

endogenous circadian period when samples are col-

lected in regular intervals and under constant condi-

tions (Fig. 2) (for review, see Refs [311,312]). One

advantage of such sampling is that BM of peripheral

tissue clocks is likely insensitive to direct light expo-

sure (in contrast to melatonin). However, for some
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tissues, it is still not clear whether circadian clock

parameters correspond to those of the central pace-

maker, or whether they might be influenced by other

Zeitgeber cues (intrinsic or extrinsic).

Rest–activity and sleep–wake cycles

Measurements of human rest–activity and sleep–wake
cycles can be performed over long durations and with-

out large costs/effort by equipping subjects with so-

called Actiwatches (wrist actigraphs), which record

movement at 1- to 2-min intervals and sometimes also

light exposure over several days (Fig. 2) [313,314].

However, even though rest–activity cycles often corre-

late well with melatonin and body temperature

rhythms, they do not necessarily reflect the underlying

circadian clock system as they may be affected by

masking effects. Therefore, actimetry may be more

useful for assessing entrainment state under varying

exogenous or health conditions rather than an individ-

ual’s circadian rhythm per se (for review, see Ref.

[315]). In addition to actimetry, sleep–wake cycles can

be assessed by questionnaires, sleep logs, sleep elec-

troencephalography (EEG), or even more accurately

by polysomnography (PSG). Especially for patients

suffering from circadian rhythm sleep disorders, which

are often caused by disruption of the endogenous

clock system or misalignment between intrinsic and

extrinsic rhythms, sleep assessment in addition to

actimetry may be beneficial.

Amplitude

Amplitude of circadian rhythms is an important char-

acteristic as it can impact the entrainment range, phase

of entrainment (chronotype), and PRCs to Zeitgeber

stimuli. In vivo, amplitudes are difficult to determine

since they are easily altered by a number of

Fig. 2. Studying circadian rhythms in humans. (A) Schematic representation of human sleep–wake cycles under entrained and non-entrained

conditions. Distinct phase markers for the assessment of endogenous circadian rhythms (DLMO, dim light melatonin onset; BM, biomarker;

MSF, mid-sleep on free days) and their relative relationships to each other, as well as the light–dark cycle, are displayed. (B) Schematic

representation of the oscillatory behavior of endogenous circadian clock markers measured under constant routine protocols (saliva

melatonin and arbitrary biomarkers such as clock gene expression in blood). (C) Exemplary representation of actigraphy-based assessment

of human sleep–wake cycles. Actigraph adapted from Ref. [443].
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confounding effects, for example, feeding–fasting
cycles, activity, posture, or sleep. Studies have shown

that amplitudes of melatonin, cortisol, or body tem-

perature display interindividual differences and are

attenuated with age [316–319]. However, whether these

differences in amplitudes are governed by changes of

the endogenous oscillator, whether and how they

impact rhythmic biological processes, and how ampli-

tude changes may arise remain to be investigated.

Chronoepidemiology

Early epidemiological studies in chronobiology were

interested in the distribution of human chronotypes

across populations and how chronotype depends on,

for example, gender and age. According to Roen-

neberg et al. [294], chronotypes, across large cohorts

of German, Swiss, Dutch, and Austrian participants,

are nearly normally distributed with a slight skewness

toward later chronotypes. Chronotypes are both age-

and gender-dependent, with chronotypes getting pro-

gressively later until the age of 20 before getting earlier

again, and with males showing on average later

chronotypes than females [294,320–323].
Modern lifestyle poses many challenges for the

human circadian system and complicates synchroniza-

tion of the endogenous circadian with exogenous Zeit-

geber cycles. For example, artificial lightening and

continuous food excess reduce the Zeitgeber strength

of natural light–dark and feeding–fasting cycles. Travel

across time zones (jetlag), social responsibilities (social

jetlag), or shift work can lead to desynchronization of

internal and external time, as well as among body

clocks. Therefore, contemporary ‘chronoepidemiology’

often aims at identifying risk factors for the develop-

ment of diseases associated with or arising from circa-

dian misalignment.

With respect to chronotype, the discrepancy between

work or school schedules and the endogenous timing

system constitutes a problem that humans are facing

on a daily basis. Chronotype distributions display a

trend toward late types, especially during adolescence,

yet work and school schedules are constructed for a

population of morning types, promoting disruption of

the endogenous circadian system. Evening types are

more likely to suffer from social jetlag, that is, a sub-

stantial mismatch between sleep timing on workdays

versus free days resulting from social obligations

([324]; for review, see Ref. [325]). Social jetlag pro-

motes circadian misalignment and has been associated

with reduced academic performance [326], obesity

[327,328], unhealthy lifestyle [324,327,329], and

changes in dietary patterns with increased caloric

consumption during night shifts [330–332], decreased

sleep and health-related life quality [333], depression

[334,335], as well as metabolic diseases including T2D

[336–339]. Noteworthy, the effects of chronic circadian

misalignment on metabolic health are sex-dependent

[340].

Recently, a large cohort study with UK Biobank

volunteers identified associations between late chrono-

type and psychological, neurological, gastrointestinal/

abdominal, and respiratory disorders, T2D, as well as

with slightly increased mortality [341]. Notably, it has

been reported that an about 1-h delay in school start

time promotes longer sleep associated with higher

grades, increased well-being, reduced sleepiness, and

improved class attendance in teenagers [342,343], indi-

cating that effects of social jetlag may be attenuated

by adjusting daily life to the endogenous circadian sys-

tem. In addition to late chronotypes, morning or inter-

mediate types may be subjected to social jetlag and

circadian disruption under shift work schedules. Due

to light exposure at night, as well as disturbance of

feeding–fasting and sleep–wake cycles, shift work pro-

motes misalignment between external Zeitgeber and

endogenous circadian rhythms or among body clocks,

leading to adverse health consequences [344–346]. Not

surprisingly, shift work has been associated with sleep,

metabolic, and mental disorders, impaired alertness

and cognitive functions, or even death [347–352] (for
review, see Refs [353,354]). Recently, Hulsegge et al.

[355] reported that morning types, as well as elderly

workers (who tend to be earlier chronotypes), are

more prone to suffer from shift work-induced sleep

disturbances. In 2018, Stone et al. [356] reported that

circadian PRCs display substantial interindividual dif-

ference in shift work-induced phase responses, which

can be explained by differences in the amount of

nightly light exposure relative to individuals’ circadian

phases. Moreover, circadian misalignment has been

associated with non-24-h sleep–wake disorder

(N24SWD) attributed to the lack of synchronization

of the SCN to external Zeitgebers. N24SWD is mostly

observed in blind people, although it was also reported

in sighted individuals (reviewed in Ref. [354]). Thus,

identifying individual differences in shift work toler-

ance, for example, associated with chronotype or pho-

tosensitivity, may be beneficial for avoiding health

consequences from shift work-induced circadian dis-

ruption (for review, see Ref. [357]).

A topic of current interest in the field of chronoepi-

demiology is the impact of daylight saving time (DST)

on the human circadian system. In 2018, the European

Commission, based on an EU-wide online poll,

decided to abandon DST and standard time switching
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in EU member states, likely by 2021. DST during the

summer months advances social clocks by 1 h, while

the ‘sun clock’ remains the same. Thereby, work and

school schedules are shifted earlier relative to sunrise

and sunset, again promoting social jetlag, especially in

late chronotypes. Moreover, prolonged exposure to

high-intensity natural light in the evening may substan-

tially delay body clocks and increase social jetlag in

morning types (for review, see Refs [358,359]). Acute

effects of the DST switch have been associated with

reduced sleep duration and increased sleepiness, as well

as with higher numbers of accidents, myocardial

infarctions, ischemic strokes, and emergency room vis-

its [360–364]. Chronic effects are more difficult to

quantify. However, studies show that social jetlag is

worsened during DST [365], suggesting that health

consequences resemble those associated with social jet-

lag (see above). Additionally, previous attempts of

introducing perennial DST in the United States and

the United Kingdom have been abandoned due to

their large unpopularity [366–368]. Whether the EU

wants to introduce perennial DST or standard time, or

whether all member states have to adhere to the same

time standard is still under debate. However, in order

to minimize effects of social jetlag, it is advisable to

abandon DST and reassign regions to their natural

clock times (based on sunset and sunrise) (for review,

see Ref. [358]).

The circadian clock system and
human diseases

Molecular clocks drive human physiology

Chronoepidemiological studies summarized in

Approaches for studying human circadian clocks pin-

point that nearly all the aspects of human physiology

and behavior are subject to temporal coordination by

the circadian system. Similar to rodents (Peripheral

clocks control cell and organ physiology: lessons from

rodent studies), also in human individuals there is accu-

mulating evidence that metabolic, cardiovascular, endo-

crine, digestive, and immune functions follow diurnal

rhythms (Fig. 3) [47,222,224,225,227,228,281,369–

373,375]. Although molecular clock studies in humans

stay a challenging endeavor, analyses conducted in

human saliva, serum, and urine serial samples obtained

across 24 h revealed that large number of metabolites

exhibits circadian rhythmic profiles [143,221,376–378].
Such rhythmicity is predominantly driven by the rest–
activity cycle and not by SCN [379], and it is strongly

affected by sleep deprivation [380,381], meal timing, and

food type [382]. Similarly, temporal proteomics analyses

conducted in human plasma identified strongly oscillat-

ing proteins, whose oscillations were blunted when par-

ticipants had been subjected to acute circadian

misalignment protocol [383]. Noteworthy, proteins

involved in metabolic regulation comprising glucose

metabolism were affected [383], highlighting the tight

link between the circadian clock system and metabolism

in physiological conditions, as well as in the develop-

ment of metabolic diseases under perturbed clock condi-

tions (discussed in details below and illustrated in

Fig. 3). Recent studies conducted on serial ventral sub-

cutaneous white adipose tissue (SAT) samples collected

across 24 h under controlled conditions revealed that

above 8% of the genes in ventral SAT of healthy lean

individuals are circadian rhythmic, with the key regula-

tors of metabolism, in particularly of the lipid metabo-

lism, representing a major group among these genes

[384,385]. Similarly, transcriptomic studies of human

skeletal muscle biopsies collected from healthy volun-

teers revealed that genes involved in glucose and lipid

metabolism exhibited strongly rhythmic temporal pro-

files [386]. Concordantly, lipidomics analyses demon-

strated that above 20% of the lipid species including

phospholipids, sphingolipids, and diacylglycerols were

circadian rhythmic [387,388]. Moreover, lipid droplet

size and content showed diurnal rhythmicity in type 1

muscle fibers [388]. While highly informative and allow-

ing to unravel important insights into the human rhyth-

mic physiology, these approaches are also highly

invasive for the participant due to serial tissue biopsies,

have limited time resolution, and are not applicable to

most human tissues.

A highly instrumental and perhaps unique approach

for dissecting human molecular clocks employing

in vitro cultured human skin fibroblasts has been pio-

neered by Brown et al. [286,389]. Indeed, characteristics

of oscillators assessed in vitro in primary fibroblasts

derived from human skin biopsies and transduced with

circadian bioluminescence reporters provided a very

close estimation of the circadian system in vivo

[286,389]. Noteworthy, disruption of circadian clocks by

aging-related processes was mirrored in cultured fibrob-

lasts assayed in the presence of serum from aged individ-

uals [390]. Application of this powerful methodology to

primary cells established from various human tissues

paved the way to dissection of the molecular makeup of

human clocks in different organs [312]. Thus, cell-au-

tonomous circadian oscillations have been characterized

in intact human pancreatic islets and in dispersed islet

cells [391], human primary skeletal myotubes [392],

white adipocytes [393], and primary thyrocytes [394].

Furthermore, studies of cultured primary tissue

explants or primary cells synchronized in vitro allowed
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to gain significant insights into the transcriptional and

functional outputs of the cell-autonomous clocks oper-

ative in human tissues [395]. In human skeletal myo-

tubes, functional circadian oscillators were shown to

drive gene expression of key metabolic genes, lipid

homeostasis, myokine secretion, and glucose uptake

[386,387,392]. Moreover, comparison of datasets stem-

ming from experiments in primary cultured skeletal

myotubes synchronized in vitro to skeletal muscle

biopsies collected around the clock from healthy vol-

unteers in vivo further supported the concept that cul-

tured cells keep their transcriptional and metabolic

landscape to a large extent [386,387]. Studies con-

ducted in human pancreatic islets indicated that the

circadian clock controls the expression of genes

involved in the transport and secretion of insulin

Fig. 3. When the clockwork goes wrong: human pathologies associated with circadian misalignments. The circadian timing system

temporally orchestrates numerous aspects of body physiology and metabolism (left schema). When sleep or food intake occurs in

desynchrony with the internal circadian time of the organism, a condition called ‘circadian misalignment’, promoting metabolic disorders

comprising obesity, fatty liver disease, diabetes, cardiovascular diseases, hypertension, and cancer, can develop (right schema). Adapted

from Ref. [224] with permission.
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[233,391,396,397]. Concordantly, circadian secretion

profiles of insulin and glucagon by synchronized

human islet cells were recorded in vitro

[218,233,396,398]. The observed rhythmicity of insulin

secretion was disrupted upon CLOCK knockdown in

pancreatic islet cells [396], indicating that functional

circadian clocks are crucial for regulating pancreatic

endocrine function. Similarly, the expression of genes

encoding key regulators of insulin signaling and glu-

cose uptake was perturbed in human CLOCK-KO pri-

mary myotubes, concomitant with diminished glucose

uptake by the muscle cells [386]. Taken together, these

results consolidate the importance of the circadian sys-

tem for normal glucose homeostasis and other essen-

tial metabolic functions, as well as its potential

involvement in pathologies resulting from disruption

of these processes.

Circadian clock perturbation and human diseases

Growing evidence suggests that various human

pathologies are associated with circadian misalignment

between the internal clock system and external cues

(Fig. 3; reviewed in Ref. [281]). Alterations in the cir-

cadian clockwork or in individual core clock compo-

nents have been observed concomitantly with the

development of cardiovascular, metabolic, immune,

inflammatory, and mental diseases (Fig. 3) [228,370,

384,385,394,399–402]. Genetic and molecular studies

suggest that alterations in core clock components are

associated with depression, bipolar disease, mood dis-

orders, and intellectual disability [312,403–405], as

well as that chronic circadian misalignment may lead

to reduced cognitive performance [406]. Additionally,

clock disruption has been associated with cancer pro-

gression [217,407]. For example, studies in human

primary thyrocytes indicated that progression of pap-

illary thyroid carcinoma is paralleled with altered syn-

chronization properties of these cells [394]. Although

causality often remains unexplored in these studies,

changed expression levels of individual core clock

genes have clearly been linked to the progression of

oncogenic transformation, making them plausible

candidates for diagnostic biomarkers [228,312,

394,400,408–411].
Tight reciprocal connection between circadian sys-

tem and metabolic cycles ensures proper temporal

adaptation of metabolism to rest–activity and feeding–
fasting cycles. Concordantly, perturbations of the

clock system, due to aging or chronic misalignment,

are associated with disruption of metabolic regulation

and lead to the development of obesity and T2D

(Fig. 3; reviewed in Ref. [47,223]). Circadian systems

regulate resting energy expenditure and metabolism

[412], and even short-term circadian misalignment has

been demonstrated to promote reduced glucose toler-

ance by lowering insulin sensitivity [413]. The endo-

cannabinoid system regulates hedonic eating that plays

an important role in the etiology of obesity. Whereas

temporal profiles of the endocannabinoid 2-arachi-

donoylglycerol (2-AG) in the blood of lean subjects

exhibit pronounced circadian rhythmicity, it is signifi-

cantly dampened and delayed in obese individuals

[414]. In physiological conditions, circadian clocks

drive diurnal rhythmicity of the glucose-regulating hor-

mones insulin, glucagon, and GLP1 [218,222]. Strik-

ingly, human pancreatic islets obtained from T2D

donors displayed compromised molecular oscillations

[398], as demonstrated by single islet and single-cell

recordings, suggesting that the amplitude of islet cells

is flattened and synchronization capacity compromised

in T2D. Along with compromised cell-autonomous

islet clocks, temporal profiles of insulin and glucagon

secretion that display circadian rhythms in islets

derived from non-diabetic donors were perturbed in

synchronized T2D islets. Since in the model of clock

disruption, insulin and glucagon granule docking and

exocytosis have been found to be severely perturbed

[398], it appears plausible that functional pancreatic

islet oscillators influence islet hormone secretion via

exocytosis process. Concordantly, the clock amplitude

enhancing small molecule nobiletin [415] has been

shown to boost the amplitude of circadian oscillations

in T2D islets and to partly restore insulin secretory

capacity of these islets [398]. Additionally, Nobiletin

has been demonstrated to strongly counteract meta-

bolic disorders in rodent models of obesity by enhanc-

ing clock protein levels [415], further strengthening the

assumption that robust circadian rhythmicity is crucial

for normal metabolic functions and prevention of

metabolic diseases.

Glucose uptake by organs is rhythmic in healthy

individuals [251,386,402]. By contrast, studies in T2D

individuals report disruption of insulin sensitivity

[384,402,416,417], alterations in the regulatory gene

expression for glucose uptake in ventral SAT

[384,385], and perturbed rhythm of core clock gene

expression in leukocytes [418]. Consolidating the role

of circadian misalignment in development of metabolic

disease, chronic sleep deprivation and simulated

shifted work in healthy subjects have been shown to

cause reduced glucose tolerance [419–421] and insulin

resistance [402,422,423]. Moreover, induced circadian

misalignment resulted in perturbed glucose tolerance

and metabolite rhythms [402,424–427]. Noteworthy,

and in line with studies based on the laboratory
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protocols of sleep deprivation and shifted activity,

observational studies in shift workers reported signifi-

cantly increased risk of developing T2D that correlated

with the number of night shifts per month [428]. Inter-

estingly, whereas no differences in the clockwork of

primary skin fibroblasts and skeletal myotubes were

detected between groups of non-diabetic lean, obese,

and T2D individuals [399,429], BMAL1 oscillation per-

iod measured in primary skin fibroblasts has been

reported to be inversely correlated with HbA1c values

in the blood of individuals from the T2D group. This

conjunction further speaks for the interconnected rela-

tionship between T2D progression and the properties

of individual core clock components and highlights the

potential of the clockwork assessment not only for dis-

ease diagnostics, but also for assessment of disease

progression and clinical severity [399]. In line with

these findings, transcriptional analyses of T2D human

islets have been reported to altered expression of

PER2/3 and CRY2 [430,431].

Perspectives

Today, increasing numbers of immediate clinical appli-

cations emerge from recent studies of human clocks in

their physiological state, as well as under pathological

conditions. Utilizing individual clock properties as

molecular biomarkers holds promise for personalized

medicine approaches, as well as for diagnostic purposes

[372,408,432]. Chronopharmacology that takes into

account circadian pharmacokinetics and pharmacody-

namics already plays an important role for a number of

medications widely used for treating oncological, meta-

bolic, and respiratory diseases [433,434]. Additionally,

the rapidly developing field of chrononutrition empha-

sizes the importance of meal timing for prevention and

treatment of metabolic diseases [432,435–437] (for

review, see Ref. [438]). In addition, timely scheduled

exercise holds promise for the restoring misaligned cir-

cadian clocks [439]. Lastly, exploring the roles of the cir-

cadian clocks in host–pathogen interactions, especially

in view of unfolding epidemics [281,440,441], as well as

functions of small-molecule clock modulators

[271,398,442], bears significant potential for the develop-

ment of therapeutic strategies targeting diseases associ-

ated with circadian disruption and misalignment.
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