5. Summary DFT calculations performed on MoF₆ and WF₆ revealed that the octahedral-trigonal prismatic-octahedral rearrangement (O_h – D_{3h} – O_h) has a relatively low energy barrier (6–10 kcal mol⁻¹). Experimental evidence using dynamic ¹⁹F NMR spectroscopy on complexes of the type F₅M–OR where M = Mo or W and R = -CH₂CF₃, -C₆F₅, and -C(CF₃)₃ confirmed these predictions. At room temperature or below these complexes present in the ¹⁹F NMR spectroscopy an AB₄-type spectrum typically for octahedral structures. At higher temperatures the non-equivalent metal-bonded fluorine atoms undergo exchange. Experimental evidence supports the intramolecular exchange for such species. The ¹⁹F NMR spectra at different temperatures for all studied complexes were simulated successfully using the program gNMR. Two intramolecular exchange mechanisms can be used for the simulations, namely a 3:3 process (Bailar twist) and the 2:4 mechanism. Both mechanisms are experimentally undistinguishable, from theoretical calculations the preferred mechanism is the Bailar twist. Theoretical calculations on species of the type $F_5M-C_6X_5$ (M = Mo or W, X = H or F) predicted in most of the cases a trigonal prismatic geometry as the ground state. Attempts to synthesize such complexes, as well as species of the type F_5M-SCF_3 (M = Mo or W) were undertaken. From theoretical calculations on the latter even a lower energy barrier for the $O_h-D_{3h}-O_h$ rearrangement than for the corresponding alkoxy and phenoxy derivatives is predicted. Attempts to synthesize such complexes were unsuccessful.