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Summary 

 

Summary 

DFT calculations performed on MoF6 and WF6 revealed that the octahedral−trigonal 

prismatic−octahedral rearrangement (Oh−D3h−Oh) has a relatively low energy barrier    

(6−10 kcal mol
−1

).  Experimental evidence using dynamic 
19

F NMR spectroscopy on 

complexes of the type F5M−OR where M = Mo or W and R = −CH2CF3, −C6F5, and 

−C(CF3)3 confirmed these predictions.  At room temperature or below these complexes 

present in the 
19

F NMR spectroscopy an AB4-type spectrum typically for octahedral 

structures.  At higher temperatures the non-equivalent metal-bonded fluorine atoms 

undergo exchange.  Experimental evidence supports the intramolecular exchange for such 

species.  The 
19

F NMR spectra at different temperatures for all studied complexes were 

simulated successfully using the program gNMR.  Two intramolecular exchange 

mechanisms can be used for the simulations, namely a 3:3 process (Bailar twist) and the 

2:4 mechanism.  Both mechanisms are experimentally undistinguishable, from theoretical 

calculations the preferred mechanism is the Bailar twist. 

Theoretical calculations on species of the type F5M−C6X5 (M = Mo or W, X = H or F) 

predicted in most of the cases a trigonal prismatic geometry as the ground state.  

Attempts to synthesize such complexes, as well as species of the type F5M−SCF3           

(M = Mo or W) were undertaken.  From theoretical calculations on the latter even a lower 

energy barrier for the Oh−D3h−Oh rearrangement than for the corresponding alkoxy and 

phenoxy derivatives is predicted.  Attempts to synthesize such complexes were 

unsuccessful. 
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