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Zusammenfassung

Die vorliegende Arbeit behandelt zwei Aspekte der chemischen und thermischen Heterogenitit der
gegenwirtigen Erde: die Verteilung von Spurenelementen und die thermische Leitfdhigkeit des un-
teren Mantles. Elementverteilung und Wirmetransport sind makroskopische Phinomene, die sich z.B.
in Mineralen und Gesteinen oder auf noch groBeren Lingenskalen abspielen, wenn man die Erde als
ganze als chemisch differenzierten Korper mit einem geothermalen Temperaturgradienten auffasst. Diese
Phinomene leiten sich jedoch von mikroskopischen, atomaren Eigenschaften der beteiligten Materialien
ab: die Verteilung von Spurenelementen hingt von chemischen Affinitéten ab, die ihrerseits bestimmt
werden von der Verfiigbarkeit energetisch giinstiger lokaler Umgebungen fiir Spurenelementatome in
den verschiedenen Wirtsphasen. Der Gitterbeitrag zur Wirmeleitfahigkeit hangt von Schwingungseigen-
schaften des Kristallgitters ab, die den Wiarmefluss auf atomarer Ebene bestimmen. In dieser Arbeit ver-
wenden wir atomistische Computersimulationen, um erstens die mikroskopischen Mechanismen aufzuk-
laren, die den Einbau von Spurenelementen in Silikatschmelzen und ihr Verteilungsverhalten in Gegen-
wart von Silikatschmelzen steuern. Zum zweiten benutzen wir die Methode der atomistischen Mod-
ellierung, um den Gitterbeitrag zur Wirmeleitfihigkeit von Mineralen des unteren Mantels bei hohen
Driicken und Temperaturen zu erhalten. Dies erlaubt es, mit dem Warmefluss durch die Kern-Mantel-
Grenze einen wichtigen geophysikalischen Parameter zu bestimmen.

In Kapitel @ untersuchen wir die Struktur von Aluminosilikat-Schmelzen und -Glédsern mit 76 mol%
SiO, und unterschiedlichem Y- und La-Gehalt mit Hilfe sowohl von Ab-initio- und klassischer Mo-
lekulardynamik (MD) als auch von Rontgen- und Neutronenbeugung. Fiir die Simulation der Gliser,
die lange Laufzeiten erfordern, verwenden wir einen Satz klassischer Wechselwirkungspotentiale fiir
das System Y-Ca-Al-Si-O, der zu diesem Zweck um La ergédnzt wird. Das neue Potential wird va-
lidiert durch Vergleich der resultierenden Schmelzstrukturen mit Schmelzstrukturen, die wir aus Ab-
initio-MD-Simulationen erhalten, und durch Vergleich der resultierenden Glasstrukturen mit experi-
mentellen Daten. Sowohl die Ab-initio-Simulationen von Silikatschmelzen mit Seltenen Erden (REE,
engl. rare-earth elements) als auch die klassischen Simulationen der entsprechenden Gliser weisen fol-
gende Trends auf: Die durchschnittlichen Koordinationszahlen von Y und La nehmen mit zunehmendem
REE-Gehalt ab, ebenso die durchschnittliche Koordinationszahl von Al. AuBerdem ist die Verteilung
der Al-Koordinationszahlen in den La-haltigen Schmelzen im Vergleich zu den Y-haltigen Schmelzen
zu kleineren Werten verschoben. Diese Trends werden anhand der Feldstédrken der beteiligten Kationen
erklart. Ein weiteres Ergebnis der Ab-initio-Simulationen ist die Verletzung der Al-Vermeidungsregel
(Loewenstein-Regel) in den hier untersuchten REE-haltigen Aluminosilikatschmelzen.

Kapitel @ widmet sich dem Einbau von Y als Spurenelement in Calcium-Aluminosilikatschmelzen,
der mit Hilfe von von klassischen MD-Simulationen und EXAFS- (engl. Extended X-ray Absorption
Fine Structure)-Spektroskopie untersucht wird. Ziel ist es zu verstehen, wie die Schmelzzusammenset-
zung, insbesondere der Ca-Gehalt und die Polymerisierung der Schmelze, das Verteilungsverhalten von
Y zwischen Mineralen und Schmelzen oder zwischen verschiedenen Schmelzen beeinflusst. Zunichst
untersuchen wir die Verdnderung der lokalen Umgebung von Y in Abhingigkeit von der Schmelz-
zusammensetzung. Sowohl die Simulationen als auch die EXAFS-Messungen zeigen, dass die durch-
schnittliche Koordinationszahl von Y und der durchschnittliche Y-O-Abstand mit zunehmendem Ca-
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Zusammenfassung

Gehalt, d.h. mit wachsender Depolymerisierung, abnehmen. Auflerdem ergeben die Simulationen, dass
Y vorzugsweise mit Ca in der zweiten Koordinationsschale assoziiert ist. In einem weiteren Schritt
stellen wir einen Zusammenhang zwischen diesen strukturellen Informationen und der Energetik her:
die Technik der thermodynamischen Integration erlaubt es uns, die Gleichgewichtskonstante einer Aus-
tauschreaktion von Y und Al zwischen zwei unterschiedlichen Silikatschmelzen zu bestimmen. Die
Minimierung der freien Energie, so das Ergebnis, fiihrt zu einer Anreicherung von Y in der Ca-haltigen,
weniger polymerisierten Schmelze. Dieses Resultat steht im Einklang mit experimentellen Daten und
liefert eine Erkldrung der beoachteten Verteilungstendenzen durch Prozesse auf atomarer Ebene.

In Kapitel B verlassen wir das Gebiet der Spurenelemente in Silikatschmelzen und wenden uns dem
zweiten Aspekt der vorliegenden Arbeit zu, ndmlich der Warmeleitfahigkeit des unteren Erdmantels.
Diesen betrachten wir als ein Aggregat von Ferroperiklas, (Mg,Fe)O, und Magnesiumsilikat, (Mg,Fe)SiOs,
in der Perowskitstruktur (bzw. in der Postperowskitstruktur nahe der Kern-Mantel-Grenze). Wir bestim-
men den Gitterbeitrag zur Wirmeleitfahigkeit der drei Phasen mittels klassischer Gleichgewichts-MD-
Simulationen und der Green-Kubo-Methode in einem weiten Druck- und Temperaturbereich, der auch
die Bedingungen an der Kern-Mantel-Grenze abdeckt. Die Leitfdhigkeiten der einzelnen Phasen werden
dann als Funktion der Dichte und der Temperatur parametrisiert, und die Leitfdhigkeit des Mantelag-
gregats wird entlang einer Modellgeotherme berechnet. Unter der Annahme, dass der Eisengehalt der
Minerale ihre Warmeleitfahigkeit um 50% reduziert, wie es experimentelle Ergebnisse nahelegen, erhal-
ten wir den Gitterbeitrag zur Wirmeleitfahigkeit eines eisenhaltigen Aggregats mit der mineralogischen
Zusammensetzung des unteren Mantels bis hinunter zur Kern-Mantel-Grenze, wo er 8 W/(mK) betrigt.
Dies ist unseres Wissens die erste Bestimmung der thermischen Leitfidhigkeit des tiefen Mantels di-
rekt bei den entsprechenden Driicken und Temperaturen, ohne die sonst iiblichen Extrapolationen auf
Grundlage von Niederdruck- und Niedertemperatur-Daten. Wir schitzen den Gitterbeitrag zum globalen
Wirmefluss durch die Kern-Mantel-Grenze auf 11 Terawatt.
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Summary

The present thesis deals with two aspects which are related to the present Earth’s chemical and thermal
heterogeneity, namely trace element partitioning and the lattice thermal conductivity of the lower mantle.
Element partitioning and heat conduction are macroscopic phenomena occurring, e.g., within minerals
and rocks or on even larger scales, if the Earth as a whole is considered as a chemically differentiated
body with a geothermal temperature gradient. But these phenomena are rooted in the atomic-scale prop-
erties of the involved materials: trace element partitioning depends on chemical affinities which, in turn,
are governed by the availability of energetically favorable local environments for trace element atoms
in alternative host phases. The lattice thermal conductivity is determined by vibrational properties of
the crystal lattice which control the heat flux on an atomic scale. In this thesis, we use atomistic com-
puter simulations, first, to elucidate the microscopic mechanisms governing the incorporation of trace
elements into silicate melts and their partitioning behavior in the presence of silicate melts. Second, the
atomistic modeling approach is employed to obtain the lattice thermal conductivity of lower-mantle min-
erals at high pressures and temperatures. This allows us to constrain the heat flux across the core-mantle
boundary, an important geophysical parameter.

In chapter [, the structure of aluminosilicate melts and glasses with 76 mol% SiO; and varying
amounts of Y and La is studied by means of ab-initio and classical molecular dynamics (MD) simula-
tions as well as x-ray and neutron diffraction experiments. For the simulation of glasses, requiring long
simulation times, we use a set of classical interaction potentials for the system Y-Ca-Al-Si-O which is
extended to La for this purpose. The new potential is validated by comparing the resulting melt structures
to melt structures obtained from ab-initio MD simulations and by checking the resulting glass structures
against experimental data. Both the ab-initio simulations of rare earth element (REE)-bearing melts and
the classical simulations of the respective glasses reveal the following major structural trends: the aver-
age coordination numbers of Y and La decrease with increasing REE content, and so does the average
coordination number of Al. Furthermore, the distribution of Al coordination numbers is shifted to lower
values in La-bearing melts, as compared to Y-bearing melts. These trends are rationalized in terms of
cation field strengths. As another result, the ab-initio MD simulations show that the Al avoidance, or
Loewenstein, rule is not valid for the studied REE-bearing aluminosilicate melts.

Chapter B is devoted to the incorporation of Y as a trace element into calcium aluminosilicate melts,
which is investigated by means of classical MD simulations and extended x-ray absorption fine structure
(EXAFS) spectroscopy (on quenched melts). The aim is to understand how the melt composition, in
particular the Ca content and the degree of melt polymerization, influences the partitioning behavior
of Y between minerals and melts or between different melts. In a first step, the variation of the local
environment of Y in response to changes in melt composition is studied. Both simulations and EXAFS
measurements indicate that the average coordination number of Y decreases with increasing Ca content
of the melt, i.e. with increasing depolymerization, and so does the average Y-O distance. Moreover,
the simulations show that Y is preferentially associated with Ca in the second coordination shell. In a
second step, this structural information is related to energetics: using the technique of thermodynamic
integration, we determine the equilibrium constant for an exchange reaction of Y and Al between two
different melts, and free energy minimization is found to drive Y into the Ca-bearing, less polymerized

ix



Summary

melt. This result is consistent with experimental data and provides an atomic-scale explanation of the
observed partitioning trends.

Leaving the field of trace elements in silicate melts and glasses, chapter B deals with the second
aspect of the present thesis, which is the thermal conductivity of the Earth’s lower mantle. The latter
is assumed to be an aggregate of (Mg,Fe)O ferropericlase and (Mg,Fe)SiO3; magnesium silicate in the
perovskite structure (or the post-perovskite structure close to the core-mantle boundary). We determine
the lattice thermal conductivities of the three iron-free phases by means of classical equilibrium MD
simulations, in conjunction with the Green-Kubo approach, over a wide pressure and temperature range,
reaching conditions representative of the core-mantle boundary. The conductivities of the individual
phases are then parameterized as a function of density and temperature, and the thermal conductivity
of the lower-mantle aggregate is calculated along a model geotherm. Assuming that the presence of
iron impurities in the minerals reduce their thermal conductivity by 50%, as suggested by experimental
results, we obtain the lattice thermal conductivity of an iron-bearing lower-mantle aggregate, down to the
core-mantle boundary, where it reaches 8 W/(mK). To our knowledge, this is the first determination of
the thermal conductivity of the deep mantle directly at the relevant pressures and temperatures, without
the otherwise common extrapolation from low-P, T data. The lattice contribution to the global heat flux
across the core-mantle boundary is estimated to be 11 terawatts.



Chapter 1

Introduction

1.1 Context of the thesis

The present Earth is a highly differentiated planetary body with both chemical and thermal inhomo-
geneities on large and short scales. Concerning the chemical heterogeneity, seismic data, geo- and cos-
mochemical considerations and results from mineral physics converge to the picture of an iron-rich core
surrounded by a silicate mantle and crust (Stacey and David, DO0R; Carlson, PO0Y). But chemical differ-
entiation is also ubiquitous on much smaller scales within rocks or mineral grains and constitutes a key
interest to petrologists and geochemists. The distribution of chemical elements in a mineral assemblage,
for example, allows far-reaching conclusions concerning the petrogenetic history and has applications
in geothermometry and geobarometry (Philpotts and Agud, PO09). Thermal inhomogeneities within the
Earth, on the other hand, are the driving force for planetary dynamics: the temperature gradient between
the hot core and the surface generates an outward heat flux which provides the energy for mantle con-
vection and plate tectonics. Thermochemical gradients also drive the convection of the liquid outer core
and therefore determine the energy available to the geodynamo which generates the magnetic field of our
planet. Hence knowledge of the Earth’s thermal budget and the heat transport through core and mantle
materials is essential for an understanding of the current state and the evolution of the planet (Cay et all,
DO0R).

Given the fundamental importance of chemical and thermal inhomogeneities within in the Earth, the
question arises how they could emerge from the more or less homogeneous solar nebula from which the
planet is believed to have formed. As for the chemical differentiation, one possible scenario for the core
formation that is currently discussed involves the segregation of iron-rich melt from a silicate magma
ocean in the early history of the Earth (Rubie"efall, O09). Once this segregation has occurred, fur-
ther differentiation is governed by gravitation which drives the denser metallic melt into the core. But
the segregation itself, starting probably on a sub-millimeter scale, is rooted in chemical affinities which
thermodynamically lead to a separation into a silicate and an iron-rich phase. Likewise, the concomitant
partitioning of lithophile elements into the silicate fraction and of the siderophile elements into the metal-
lic phase is governed by chemical affinities (Goldschmidi, T937). Apart from playing an important role
in this primordial differentiation event, the underlying chemical and thermodynamic principles equally
apply to differentiation processes at later stages of planetary evolution. They control, e.g., the element
partitioning during crystallization and fractional melting in magmatic systems (Shaw, DO0A) as well as
the partitioning between minerals and fluids during ore formation.

As for the origins of thermal inhomogeneities within the Earth, thermal conductivity plays a key
role. Heat is transported through Earth via convection and conduction, and in the absence of thermal
boundary layers, thermal transport is mostly convective (Stacey and David, POOR). However, heat transfer
across thermal boundary layers at the core-mantle boundary or at the Earth’s surface is dominated by
conduction. Hence for a given heat flux, the thermal conductivity of the materials present at the boundary




Chapter 1. Introduction

determines the temperature gradient across the boundary (and vice versa). Furthermore, the thermal
conductivity also impacts the convective regime of the Earth’s mantle via the Rayleigh number. To make
a connection to the chemical differentiation discussed above, we mention that based on geodynamic
simulations, [Naliboff and Kellogg (ZO07) suggest a link between the thermal conductivity and large-
scale heterogeneity of the mantle.

The preceding discussion sets the context for the present thesis, which is devoted to two particular
aspects of the broad subject outlined above. One concerns the atomic-scale processes that govern trace
element partitioning. On the atomic level, the distribution of a trace element between several coexisting
phases depends on how well (or how badly) it “fits” into the structural environment offered by the alter-
native host phases. For crystalline host phases, this informal statement can be expressed in more quan-
titative terms by the lattice strain model, which explains the observed trends in minor and trace element
partitioning as a function of crystal chemistry successfully and in many cases quantitatively (Blundy and
Woad, T994). However, the influence of melt or fluid composition (and structure) on partitioning is less
well understood, although it can strongly affect the conclusions drawn from the lattice strain model alone
(Schmudfefall, PO0OA). A complete picture of element partitioning between minerals and melts/fluids or
between different melts requires an understanding of the mechanisms by which melt/fluid composition
influences the distribution of trace elements. This thesis investigates the behavior of two trace elements,
Y and La, in silicate melts by means of atomistic simulation. We propose an atomic-scale explanation
of how melt composition affects the structural environments and thus the chemical affinities of trace
elements.

The second aspect of the thesis concerns the thermal conductivity of the Earth’s lower mantle.
The mineralogy of the latter is believed to be dominated by ferropericlase, (Mg,Fe)O, and perovskite,
(Mg,Fe)Si03, with respective volume fractions of approximately 80% and 20% (Piazzanief all, POT7).
Close to the core-mantle boundary, the (Mg,Fe)SiO3 fraction probably undergoes a phase transition to
the post-perovskite structure (Murakami ef all, PUO04; ODganov_and Ond, PO04). The thermal conductiv-
ity depends strongly on temperature and pressure, but no general, exact theory of this dependence is
currently available. Therefore, values of the conductivity at deep-mantle conditions either have to be
determined directly at the relevant temperatures and pressures or must be inferred from low-P, T values
and more or less heuristic extrapolation schemes to deep-mantle conditions. Conductivity measurements
have been performed at lower-mantle pressures and room temperature (OQhia_efall, DUTA) as well as at
intermediate pressures and temperatures (Manfhilake ef all, DOTTH), but no experimental data are cur-
rently available at both temperature and pressure conditions of the deep mantle. Computer simulations
are a valuable tool to probe conditions which are not accessible to experiments. To date, computational
techniques have been used to obtain the thermal conductivity of MgO up to pressures and temperatures
corresponding to the core-mantle boundary (He"Kaokes, POTT; Tang and Dong, ZOTA; Sfackhonse ef all,
DOTa), but no simulation results on the MgSiO3 phases are currently available, to our knowledge. In this
thesis, we use atomistic simulations to determine the thermal conductivities of MgO, MgSiO3 perovskite
and post-perovskite directly in the pressure and temperature range of the lower mantle.

1.2 The atomistic simulation approach to material modeling

Science is not only devoted to an accurate description of the world surrounding us but is also driven
to a large extent by the search for general underlying principles which explain seemingly unrelated
phenomena. Thermodynamics constitutes a good example for this reductionist approach, tracing back
highly manifold phenomena to more basic principles: its innumerable applications in physics, chemistry,
geoscience, biology, engineering and other fields are all governed by the same few laws. These ther-
modynamic laws, in turn, are themselves rooted in the even more fundamental principles of statistical
mechanics, i.e. in the statistical description of systems containing a large number of constituents such as
atoms or molecules (Called, TI8Y). The promise associated with the reductionist approach is appealing:
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Chapter 1. Introduction

once the fundamental laws are known which govern the behavior and the interactions of the constituents
of a large system (e.g., atoms), all macroscopic thermodynamic properties of arbitrary systems made up
of these constituents (e.g., a mineral) can be deduced, at least in principle.

This is the spirit in which the atomistic simulation approach to material modeling was developed
(AIlen_and Tildesley], TURA; Erenkel and Smif, DO0A). It makes use of computer algorithms in which
the system under study is represented as a collection of atoms or molecules in a simulation cell (the
name “molecular dynamics” or MD remains in use for historical reasons even if the constituent particles
are in fact atoms). For a given atomic configuration, the forces acting on the individual atoms due
to their interactions with each other are calculated, either on the basis of fundamental laws of nature
(quantum mechanics) or via a simpler parameterized interaction potential. The atoms are then moved
over a short distance according to these forces, typically in time steps of about 1 fs, and the procedure
is repeated for the new configuration and with new forces, and so on. Thus, MD simulations generate
numerically a collection of atomic trajectories through space and time which mimic the dynamics of
the real system. After a period of equilibration, the system will have lost its memory of the initial
configuration and velocities, and thermodynamic equilibrium is reached. Note, however, that there are
“pathological”, non-ergodic systems in which the configurational sampling during a simulation does not
represent thermodynamic equilibrium and the system is trapped in a configurational subspace determined
by the initial conditions (Erenkeland Smifl, PO07). This is the case in glasses, e.g., which have therefore
to be treated in a more subtle manner and will be discussed in detail in chapter D.

Most measurements on real systems are not designed to “see” individual atoms at a given moment
of time but probe sample volumes containing a great number of atoms over a time span which is large
compared to, e.g., the time scale of atomic vibrations in the system. The result of such a measurement
therefore represents an average over many atoms and configurations (Called, TY8Y). In MD simulations,
the extraction of macroscopic quantities such as temperature, pressure, stress, free energy, thermal con-
ductivity, and others, from a collection of atomic trajectories follows the same route, i.e. averaging over
the individual atoms and over the portion of the simulation time which represents thermodynamic equi-
librium. But atomistic simulations are not restricted to mimicking experimental measurements. Since
they provide a complete atomic-scale picture and the thermodynamic variables of the system at the same
time, they are very suitable in establishing structure-property relations. They also provide information
which is not easily accessible to experiments: they support, e.g., the assignment of peaks in experimental
spectra to atomic-scale processes (Spickermann et al], ZOT) or help to interpret diffraction data of disor-
dered phases by decomposing the total structure factor into partials (Drewiff ef afl, PZOTT). But atomistic
simulations also open a path to conditions under which experiments are currently impossible (Gilad
Efall, P00d). AT efall (TY99) used ab-initio MD simulations to compute the melting curve of iron up
to inner-core pressures. From the known pressure profile of the Earth and the calculated melting curve,
they obtained the temperature at the boundary between solid inner and liquid outer core, which was only
poorly constrained before. Another hallmark of atomistic simulation in geoscience is the discovery of the
high-pressure MgSiO3 post-perovskite phase in a joint computational and experimental effort (Oganoy
Bnd Ond, PO04).

MD simulations can be classified into ab-initio or classical approaches, according to the way in
which they compute interatomic forces. Ab-initio or first-principles MD simulations are based on fun-
damental laws of nature (quantum mechanics) and are therefore very accurate and predictive, which
makes them highly transferable, i.e. applicable to a wide temperature, pressure and composition range.
These advantages, however, come at the price of high computational costs. The usually applied Born-
Oppenheimer approximation (Born_and Oppenheimel, T977) to the general quantum mechanical prob-
lem (Cohen-Tannoudji and Lalod, M999) makes use of the dynamic decoupling of the fast electronic
and the much slower nuclear dynamics: only the (valence) electrons’ degrees of freedom are described
quantum-mechanically by the Schrodinger equation (or an equivalent equation, see below), which has
to be solved at each time step, i.e. for each atomic configuration. The nuclear coordinates, on the other
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hand, are treated as parameters which evolve in time according to classical Newtonian dynamics, subject
to the Born-Oppenheimer potential energy. The latter is defined by the (quantum mechanical) electronic
energy and by classical electrostatic interactions and conveys the genuinely quantum-mechanical infor-
mation. If one is only interested in the electronic ground state properties of the system, which is often the
case for electronic insulators, the Schrodinger equation for the electrons can be recast in a simpler form
using density functional theory (DFT) which makes larger systems computationally tractable in the first
place (Hohenberg and Kohi], [364; Kohn and Sham, T96Y). In DFT, the electronic ground state energy
does not depend on all electronic coordinates any more, but only on the electronic ground state density,
which is determined via the self-consistent DFT equations at every time step. However, the exact density
dependence of the ground state energy is not known and has to be approximated. For the present thesis,
we use the local density approximation (LDA, (I9BY)). In many cases, a computational
speed-up is achieved by Car-Parrinello dynamics (Carand Parrinelld, [98Y). With this method, the com-
putationally demanding DFT equations for the electronic ground state density are solved only once, for
the initial atomic configuration. Subsequently, the electronic degrees of freedom evolve in time accord-
ing to fictitious classical dynamics which are designed in a clever way such as to keep the system close
to the Born-Oppenheimer potential energy surface over long times.

DFT and DFT-based MD simulations have proven to be an accurate and predictive tool for a broad
range of applications, including the study of silicate melts (Muillenmier ef all, DO09). However, due to
the approximative nature of LDA (and alternative proposed approximations), the method faces serious
shortcomings in the treatment of systems with strong electronic correlations such as, e.g., transition
metal oxides ([Gori-Giorgi et al], PO09). Similarly, van der Waals interactions are not correctly described
in the standard DFT scheme (Ckaichenka ef all, DOT?), but these are of secondary importance in the
ionic systems studied in this thesis. Due to the high computational costs, ab-initio MD simulations are
currently restricted to simulation cells containing a few hundred atoms and to simulation times of several
tens of picoseconds.

Classical MD simulations, on the other hand, derive the interatomic forces from parameterized inter-
action potentials and do not treat the electronic degrees of freedom explicitly. This leads to much lower
computational costs and makes classical MD suitable for the simulation of large systems and in cases
where long run durations are needed, as in the case of glasses and in the calculation of thermal conduc-
tivities. However, the accuracy of classical interaction potentials has to be tested carefully. Furthermore,
since they are usually parameterized with respect to specific structures or chemical compositions and
for a certain range of temperatures and pressures, their transferability has to be checked before applying
them to different systems or under different physical conditions. For this thesis, we used two forms of
ionic interaction potentials for silicates with different degrees of sophistication which were parameter-
ized with respect to DFT reference calculations. The polarizable ion model (Wilson and Madded, T9973)
(PIM) improves on simple pair potentials by taking into account the electric polarizability of large ions.
The electric polarization of individual ions is determined self-consistently at each time step, mimicking
to some extent the variation of the environment-dependent electronic structure in ab-initio simulations.
For this thesis, we parameterized the polarizable ion model for the system La-Y-Ca-Al-Si-O, and used
it for the study of Y and La in silicate melts and glasses. More information on the functional form of
the potential as well as on the parameterization and validation is provided in the following two chap-
ters. The second set of interaction potentials has the form of an aspherical ion model (AIM) and adds
effects of ionic shape deformation to the polarizable ion model. This makes it more flexible but also
more expensive in terms of computation time. It was parameterized for the system Ca-Mg-Al-Si-O and
has been shown to yield accurate results in a wide range of compositions, pressures and temperatures
(Tahnand Madded, DOO7). In this thesis, the aspherical ion model is used for the calculation of thermal
conductivities.
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1.3 Outline of the thesis

In chapter D, the structure of Y- and La-bearing aluminosilicate melts and glasses is investigated by means
of ab-initio and classical MD simulations as well as neutron and x-ray diffraction experiments. The main
finding is a systematic variation of melt/glass structure with composition which can be rationalized in
terms of the field strength of the various cations. The classical interaction potential, in the form of PIM,
for the elements Y-Ca-Al-Si-O (Haigis et al], COT7R) is extended to La, and the chapter describes in de-
tail the form of the polarizable ion model. This work is in preparation for publication in a peer-reviewed
journal, in collaboration with the coauthors Louis Hennet and Marléne Leydier (CNRS-CEMHTI, 45071
Orleans CEDEX 2, France) and Sandro Jahn (GFZ German Research Centre for Geosciences, Tele-
grafenberg, 14473 Potsdam, Germany). VH performed the simulations and their analysis and wrote the
manuscript, Louis Hennet and Marléne Leydier carried out the diffraction experiments, and Sandro Jahn
supervised the research and commented on the manuscript.

Chapter B resumes the topic of the previous one, dealing with aluminosilicate melts with small
amounts of Y, now treated as a trace element. But it extends the subject in two respects: first, the Y-
bearing aluminosilicate melts in this study contain Ca as an additional cation, which acts as a network
modifier, and the role of Ca for Y incorporation into the melts is studied. Second, this work goes beyond
a description of the melt structure: the changes in melt structure around Y atoms upon variation of the
melt composition are related to energetics. By means of thermodynamic integration, it is shown that the
presence of Ca lowers the free energy of Y in the melt with respect to a Ca-free composition. This sheds
light on the role of melt composition in trace element partitioning. In terms of methodology, this chapter
also describes the parameterization of the new polarizable ion model for the system Y-Ca-Al-Si-O. It
has been published in Chemical Geology (Haigis et al], DOT?H), with the following contributions from
the authors: VH carried out the MD simulations, analyzed the results and wrote the article, whereas
Sebastian Simon and Max Wilke performed the EXAFS measurements and analyzed the data. Mathieu
Salanne, Max Wilke and Sandro Jahn supervised the research and also commented on the manuscript.

In chapter B, we leave the field of geochemistry and turn to a geophysical application of atomistic
modeling. This chapter investigates the thermal conductivity of the lower-mantle minerals periclase
(MgO) and MgSiOs in the perovskite and post-perovskite structure directly at lower-mantle conditions.
This is done by means of classical equilibrium MD simulations in conjunction with the Green-Kubo
approach, using the aspherical ion model of [Iahn-and Madden (Z007). The thermal conductivity of the
individual phases is parameterized as a function of density and pressure, and the thermal conductivity of a
lower-mantle model aggregate is calculated along the geotherm, down to the core-mantle boundary. This
chapter has been published in Earth and Planetary Science Letters (Haigis et al], ZIT24d) in collaboration
with Mathieu Salanne, who provided the computer code for the calculation of thermal conductivities, and
Sandro Jahn, who supervised the research. VH performed the simulations as well as the data analysis
and wrote the article, and the coauthors commented on the manuscript.

Finally, we give an outlook and discuss ongoing work in the field of thermal conductivity.
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Chapter 2

The structure of Y- and La-bearing
aluminosilicate glasses and melts: a
combined molecular dynamics and
diffraction study

2.1 Abstract

Compared to alkali- and alkaline earth-bearing aluminosilicate glasses, the properties of aluminosilicate
glasses and melts containing rare-earth elements is less well understood. We performed first-principles
and classical MD simulations of Y- and La-bearing aluminosilicate melts and glasses as well as neutron
and x-ray diffraction experiments on the glasses in order to elucidate the structure of these materials and
the way it changes if the rare-earth element concentration is changed or if Y is replaced by La. It is found
that the average coordination numbers of Al, Y and La decrease with increasing rare-earth content. This
behavior can be rationalized in terms of the field strengths of the various cations, which, moreover, is
seen to be correlated with the width of the coordination shells of oxygen around cations. Finally, we
found that, unlike in alkali- and alkaline earth-bearing aluminosilicates, the Al avoidance rule is not
satisfied by the melts studied here. This indicates that the traditional picture of charge balancing through
mono- and divalent cations in silicate glasses and melts might have to be modified when applied to high
field strength cations such as Y and La.

2.2 Introduction

Alkali and alkaline earth bearing (alumino)silicate glasses and melts have been studied extensively, due
to their broad range of technological applications and their importance in geoscience. Hence, their
structure and properties are relatively well understood (Kiehhins efall, T99; Mysen and Richel, ZO0T).
On the other hand, aluminosilicates containing rare earth elements (REE) are less well studied but have
recently attracted considerable interest owing to their remarkable properties and their use in various
applications. They exhibit high glass transition temperatures, hardness and refractive indices as well as
moderate thermal expansion coefficients (Shelby and Kohli, [U90; [iekhar ef all, POTT). REE-bearing
aluminosilicate glasses have been proposed for optical devices (Kohli and Shelby], [991; Manahd, T999),
and since rare-earth elements represent analogs for actinides, these glasses have also been studied for
applications in nuclear waste storage, and high corrosion resistance in the presence of aqueous fluids
was found (Bois"efall, DO0).

REE-bearing aluminosilicate glasses have been investigated by a range of experimental techniques,
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including nuclear magnetic resonance (NMR) (Schaller and Stebhind, T998; Clayden et al], [999; Marchi
Bfall, PO0Y; Florian ef all, PO07; [ffekhar ef all, PO09, DUT), infrared spectroscopy (Clayden et al], T999;
Marchiefall, PO03) as well as neutron and x-ray diffraction (Wilding et al], ZO07; Pozdnyakova et al),
O08). These techniques provide valuable insight into the local atomic structure of glasses such as co-
ordination environments of the probed elements, glass network structures and vibrational properties.
Often, the interpretation of experimental data relies on more or less heuristic assumptions about the
atomic structure of the probed material. For instance, [ffekhar ef all (P009) fitted a structural model to
the measured NMR peak shifts and were able to extract information about the glass network connec-
tivity from 2°Si signals alone. Another example is the interpretation of x-ray and neutron diffraction
data: a common approach to obtain bond lengths and coordination numbers is to fit Gaussian peaks
to the Fourier-transformed structure factor, i.e. to implicitly assume a specific structural model for the
quantitative analysis of experimental data (Wilding et al], ZO072; PozdnyaKova ef al], ZO0R).

Molecular dynamics (MD) simulations are a particularly powerful and predictive method to gen-
erate complete structural models for disordered systems and to link atomic-scale structure to material
properties ([Allen and Tildesley], [987). Apart from supporting the interpretation of experimental data,
MD simulations provide complete atomic-scale structures and therefore yield information which is not
directly accessible experimentally. To date, there are only a few classical MD studies on REE-bearing
aluminosilicate glasses: DO (ZO0Y) investigated low-silica (<40 mol%) yttrium aluminosilicates, and
[ffekhar ef all (ZOT2) performed MD simulations of Y- and Lu-bearing glasses, with compositions con-
taining less than 50 mol% SiO,. Very recently, [aworski ef all (COT) published results from classical
MD simulations on aluminosilicate glasses containing La.

Here, we present the results of a combined MD and neutron/x-ray diffraction study on yttrium- and
lanthanum-bearing aluminosilicate melts and glasses, RE>;03-Al,03-Si0; (RE =Y, La), with high silica
content (76 mol% SiO,). Keeping the molar fraction of SiO, fixed, the RE/Al ratio was varied between
0.09 and 0.5. We investigated the atomic-scale changes in the structure in response to 1) exchanging Y
by La and 2) varying the RE content, i.e. the RE/Al ratio, of the system. A particular focus lies on the
coordination environment of Y and La, since these are difficult to probe by the otherwise rather pow-
erful NMR technique (Dupree et al], [98Y; Schaller and Sfebbind, T99R) and by diffraction experiments
(Ceydiei, POT). Furthermore, we discuss the structural role of bridging oxygen in the aluminosilicate
network and the status of the Al avoidance rule (Coewensfeid, [954) in disordered phases.

Glasses pose a fundamental challenge to the MD method: the latter simulates the motion of the
individual atoms in the system over a certain time, and macroscopic quantities are then obtained by
averaging over these atomic trajectories. The statistical results are meaningful only to the extent that the
phase space available to the system is sufficiently sampled during the simulation, i.e. that all relevant
atomic configurations are visited during the MD run. However, structural relaxation in glasses is so slow
that it certainly cannot be captured by atomistic simulations, which cover time spans of some tens of
nanoseconds at best. Therefore, a simulated glass will be trapped in its initial configuration and will not
overcome the energy barriers which separate it from the remaining phase space within the simulation
time. In order to circumvent this difficulty, we used two complementary simulation approaches.

Ab-initio or first-principles MD is based on fundamental laws of nature (quantum mechanics) in
the form of density functional theory (DFT) (Hohenberg and Kohi, [964; Kohn and Sham, [963) and
yields a parameter-free description of arbitrary systems of atoms. Although, for practical purposes,
some approximations have to be made, it is accurate and highly predictive in many cases (see Gillad
Bfall (PO0M) for applications in geoscience). These qualities, however, come at the expense of high
computational costs, which limits simulation times to some tens of picoseconds and system sizes to a
few hundred atoms at most. For this study, we overcome the problem of insufficient sampling of glass
configurations in ab-initio MD simulations by raising the temperature, i.e. by simulating melts as analogs
for glasses. Melt structures are expected to represent a reasonable approximation to glass structures, but
the effect of temperature is discussed as well. To our knowledge, this is the first ab-initio MD study of
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REE-bearing aluminosilicate melts.

The ab-initio simulations not only provide accurate structural information on melts but also serve as
a benchmark for classical MD simulations, which constitute the second approach to modeling melt and
glass structures. They describe atomic interactions by a classical (as opposed to quantum-mechanical)
potential and are less demanding in terms of computation time, but their accuracy has to be tested care-
fully. Their computational efficiency allows simulated quenching of the melts to glasses at lower rates
than can be afforded with ab-initio techniques. The resulting glass structures can then be validated, e.g.
by comparison to results from neutron and x-ray diffraction experiments. Conversely, the simulations
assist the interpretation of experimental data and provide additional information not directly accessible
through experiments. In this study, we perform both ab-initio and classical simulations of REE-bearing
aluminosilicate melts and classical molecular dynamics for their glasses.

2.3 Simulation procedure

2.3.1 First-principles molecular dynamics for melts

We performed first-principles, Car-Parrinello molecular dynamics simulations, using the CPMD code
(Carand Parrinelld, [9RY; Marxand Huifed, DO00), of REE-bearing aluminosilicate melts of four dif-
ferent compositions, REAl;;Si190s¢ and RE4AlgSij90sg, where RE stands for either Y or La. Each
simulation cell contained 174 atoms and was repeated periodically in space. Since these melts are con-
sidered here, in an approximate way, as an analog for glasses, we chose the dimensions of the simulation
cells such as to obtain the experimentally determined density of the respective glass at room temperature,
i.e. 2.91 g/cm?, 2.97 g/cm?, 2.94 g/cm? and 3.09 g/cm?, respectively (Ceydiet, PIIT).

Interatomic forces were determined within the framework of DFT, and the exchange-correlation func-
tional was evaluated in the local density approximation (LDA). The interaction between ionic cores and
valence electrons was described by Troullier-Martins pseudopotentials (Ironllier and Marfind, [9YTI).
For Y, also the semi-core 4s and 4p electrons were treated explicitly as valence electrons, additionally to
the 4d and 5s orbitals. Similarly, for La, also the semi-core 5s and 5p electrons were treated as valence
electrons, additionally to the 5d and 6s orbitals. This allows for electric polarizability of the Y3+ and
La’* ionic cores. The cutoff for the expansion of the electronic wavefunctions into plane waves was 90
Ry, which was found sufficient to give converged results for the average melt structure. We also checked
that sampling the Brillouin zone at I" (i.e. the center) only yielded converged interatomic forces.

The four simulation cells were pre-equilibrated at 3000 K for 50 ps with a classical MD simulation
(see section Z37) and further equilibrated for 5 ps using DFT. Data were collected from the following
production runs of 10 ps to 15 ps duration. For the Car-Parrinello MD, the fictitious mass of the electronic
degrees of freedom was 400 a.u., and the equations of motion were solved with a time step of 0.1 fs. The
temperature of 3000 K and the kinetic energy of the fictitious degrees of freedom were controlled by
Nosé-Hoover thermostats (Nosd (TUR4); Hooved (TURT)).

2.3.2 Classical molecular dynamics for melts and glasses

For the classical MD simulations of RE-bearing aluminosilicate melts and glasses, the interactions be-
tween atoms were described by a polarizable ion model (Wilson and Madden, T993). Such a model
was parameterized for La-free compositions in a previous study (Haigis et al], DOT?H) and is extended
here to include La. It adds true many-body effects to a simple pair potential through the inclusion of
electronic polarization of oxygen, yttrium and lanthanum ions, determined self-consistently at each time
step. This improvement with respect to a pure pair potential has been shown to be crucial for an adequate
description of oxides (Rowley et al], T99R).
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In the polarizable ion model, the potential energy V depends on the set of the ionic coordinates {r}
and has the form

V{rh) =Y, @ + Y Aijexp(—aijrij) + Y Bijexp(—bijri))

i<j Tij i<j i<j

2.1)
-y 5 ’”u — + veel({r})
i<j rl]

The first term on the right side represents the Coulomb interaction, ¢; denoting the charge of ion i and r;;
the distance between ion i and ion j. At short distances, the overlap of electron shells of two ions leads
to a repulsive interaction, described by the second and third term, with model parameters A;;, a;;, B;; and
b;j. In fact, the third term is taken to be non-zero only for the La-O interaction and ensures that two ions
do not get trapped in an unphysical configuration with a very short distance. The fourth term accounts
for dispersion interactions and contains the adjustable parameters Cléj . The féj (rij) are Tang-Toennies
damping functions (Tang and Toennied, T384) which yield corrections to the asymptotic 1/ rfj behavior
at short distances and are defined as

ij i u (bijri ')k
f (rl]) - 1 —eXp( b]rli) Z 6k']

k=0

(2.2)

where the bg are parameters of the model. Finally, the last term on the right side of Eq. Il takes into ac-
count the polarizability of the ions and contains Coulombic charge-dipole and dipole-dipole interactions
as well as a self-energy term describing the energy cost to polarize an ion:

vrol = ) [Qiujqf[i)j(rij)_‘Ij“iafg(rji)} e

i<j,o

|
Z ,LLI nuj (xB +Z 205’

i<j,a,p

(2.3)

Here, p* is the Cartesian component of the electric dipole moment of ion i in direction ¢. The interac-
tions between ionic dipoles and charges ¢; are modified at short distances by damping functions fli)j (rij)
which account for additional dipoles induced by short-range interactions (Wilson and Madded, [993).
They are of the same form as in Eq. I, but now contain the parameters b} instead of b/. We also

use the short-hand notation T( " =V,V g1 /rijto denote the multipole interaction tensors, where the
superscript gives the order of the derivative (Sfong, [998).

The polarizable ion model for the system Y- Ca Al Si-O has been parameterized in a previous study
by force-, dipole- and stress-matching with respect to density functional theory (DFT) results and has
been applied successfully to silicate melts (Haigis et all, ZOT?H). For the present work, we extended the
model by adding interaction parameters for La while keeping the established parameters for Y, Al, Si
and O. Methodological details concerning the parameterization can be found in Salanneef all (POT2).
As a reference for the matching procedure for the La parameters, five configurations of LasAlgSij9Os¢
melt were chosen on which we performed static DFT calculations, using the same settings as described
in section 231, except for the higher plane-wave cutoff of 140 Ry, which ensures full convergence of
the DFT reference calculations. All parameters of the polarizable ion model are listed in Table 1.

The aim of the classical MD simulations is to generate structural models for four RE-bearing alumi-
nosilicate glasses instead of melts, which can then be validated by comparison to diffraction experiments.
In order to circumvent the problem of insufficient phase-space sampling, we first performed classical
high-temperature simulations of melts of the four compositions, which display sufficiently fast dynamics
to explore the entire phase space. Then 100 configurations were picked from each melt trajectory and
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i-j 0-0 Si-O Al-O La-O Y-O Lala  Y-Y
qi -2 +4 +3 +3 +3
A;j 53283 44.624 39.404 49.165 95.048
aij 3.1526 1.6513 1.6413 1.4658 1.6813
Bjj 10°
bij 4.2
c/ 52461 45.041 23.763 41213 12.504
bl 27370 1.0 1.4995 1.0 0.67066
o 10.754 7.3962 3.5475
b7 00  1.6489 1.5573 1.3460 (La—O)/ 1.5056 (Y-O)/
32197 (O-La) 3.3585 (O-Y)

Table 2.1: Interaction parameters, see eqs. (), () and (Z3), in atomic units. Interactions
not listed or left blank here, e.g., short-range repulsion for Si-Si, are taken to be absent in the
model. Since b}, # by, in general, both parameters are listed.

used as starting configurations for subsequent quenching to room temperature. For each composition,
we thus obtained a large set of different glass structures which were used for structural analysis.

In detail, we set up four simulation cells, each containing 174 atoms, with periodic boundary con-
ditions and the same compositions and densities as for the ab-initio MD (section Z3T). Starting from
final atomic configurations of ab-initio simulations, the cells were further equilibrated for 10 ps at 3000
K, with a time step of 1 fs. The temperature was controlled by means of a Nosé-Hoover thermostat
(Nosd, MIR4; Hooved, TYXY). Equilibration was followed by production runs of 50 ps duration with melts
at 3000 K, from which we picked 100 starting configurations for the quench runs. During each of the
latter, temperature was lowered by 100 K every 2 ps, down to 300 K, which corresponds to a quench rate
of 5-10'3 K/s. Analysis was based on the last 1 ps of each quench run, and for each composition, an
average over all the resulting glasses is taken. The duration of all the quench runs together amounts to
22.4 ns.

We also checked that the results of the analysis are not affected by the finite size of the simulation
cell: for the composition LasAlgSij9Os6, we simulated a glass using a simulation cell of eight times
the original volume, and no significant changes were observed in the parameters discussed in this study,
i.e. in the inter-atomic distances, coordination numbers and the widths of coordination shells. However,
we deliberately do not discuss the large-scale network structure of the glasses (e.g., rings formed by
tetrahedrally coordinated species), because these features are expected to be more heavily influenced by
the periodic boundary conditions used here, and probably also by the rather high quench rate (Drewifd
Bfall, DOT7).

2.4 Results

2.4.1 Ab-initio MD: first coordination shell in melts

From the trajectories of the ab-initio MD simulations for each composition, the coordination environment
of the cations has been extracted. Fig. I and Fig. 22 show the radial distribution functions gxo(r)
(X =Y/La, Al, Si, O) for the Y-bearing and the La-bearing melts, respectively. The average coordination
number of a cation X is calculated as the average number of oxygen ions around the cation within a cutoff
radius rX¢, which is given by the distance where the radial distribution function gyo(r) for the pair X-O
takes its first minimum. The minimum has been determined by a polynomial fit to the minimum region

and depends (weakly) on composition. This dependence results from the change in shape of the first
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coordination shell which accompanies variations in composition.

The average cation-oxygen bond length dy is calculated as the average distance between a cation
X and oxygen for pairs closer than rX¢. We also determined the first maximum dxo of the function
r’gxo(r), i.e. the most probable X — O bond length, using a polynomial fit to the maximum region. This
maximum does not coincide with the average bond length in general, and the difference between the
two quantities is a measure for the radial asymmetry of the first coordination shell. Finally, the standard
deviation o of the distribution of cation-oxygen bond lengths was determined, giving a measure for the
width of the coordination shell. In Table 2, we list the results characterizing the first coordination shell

of the different cations.

Table 2.2: Ab-initio MD results for the first coordination shell around cations in melts: cutoff
radius r¢, for cation-oxygen pairs, average coordination number CN, average bond length
d, most probable bond length d and standard deviation ¢ of cation-oxygen bond lengths (a
measure for the width of the coordination shell).

cation 7 (A) CN d(A) d(A) oA
YAIl;1S11905¢ melt

Si 2.32 41 1.69 163 0.151

Al 2.61 47 193 1.78 0.249

Y 3.25 7.9 253 226 0.359
Y 4AlgSi19Os6 melt

Si 2.31 41 169 1.63 0.150

Al 2.57 45 191 1.78 0.232

Y 3.22 7.1 250 225 0.348
LaAl;1Si190s¢ melt

Si 2.36 42 170 1.63 0.161

Al 2.60 47 193 178 0.243

La 341 82 272 245 0.376
LasAlgSi1905¢ melt

Si 2.38 41 169 1.63 0.153

Al 2.55 43 1.89 177 0.223

La 3.44 79 271 243 0.388

As aresult, it is found that the coordination shells of the different cations exhibit different sensitivities
to changes in melt composition: the first-shell environment of Si is virtually the same for all melts, with
a coordination number around 4.1, a Si-O average bond length around 1.69 A and a most probable bond
length of 1.63 A. On the other hand, the coordination of Al shows a slight, but systematic variation with
melt composition: for a given REE (Y or La), the coordination of Al by oxygen decreases for increasing
RE content, and so does the average Al-O bond length. Moreover, the Al coordination number is smaller
in the La-rich melt than in the corresponding Y-rich melt. Finally, also the coordination environments of
Y and La are clearly sensitive to compositional changes. Coordination numbers decrease with increasing
RE content, and for Y, this change is accompanied by a shortening of the bonds to the nearest oxygen
ions.

The average coordination numbers listed in Table 2 are the mean of a range of coordination num-
bers occurring in the melt structure. The distribution of different coordination environments of Y and
La for given glass compositions is shown in Fig. Z3. The coordination numbers span a wide range,
with significant contributions coming from 5- to 10-fold coordination of the RE cation by oxygen. With
increasing RE content, the distributions shift to lower coordination numbers. A similar plot for the coor-
dination of Al in the different melts is shown in Fig. 4. Most Al atoms are 4-, 5- or 6-fold coordinated
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Figure 2.1: Radial distribution functions g(r) for O-O and cation-O pairs in YAl;;Sij9Ose
melt (upper panel) and Y4AlgSij9Osg melt (lower panel), at 3000 K. Circles: ab-initio MD,
full lines: classical MD (see section ZZ43).
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Figure 2.2: Radial distribution functions g(r) for O-O and cation-O pairs in LaAl;;Sij9Ose
melt (upper panel) and LasAlgSij9Os6 melt (lower panel), at 3000 K. Circles: ab-initio MD,
full lines: classical MD (see section ZZ43).
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by oxygen, and two trends in the coordination distribution are observed: first, the distribution shifts to
lower coordination numbers for increasing RE content, and second, the distribution is shifted to lower
numbers if Y is replaced by La, especially for the RE-rich compositions.

2.4.2 Ab-initio MD: medium range order in melts

The medium range order of silicate melts and glasses is commonly discussed in terms of the tetrahedral
network formed by fourfold coordinated Si and Al, and its perturbation by network modifiers (Mysen and
Riched, PO03). In the analysis of our first-principles MD data, we follow this line, putting an emphasis on
the various oxygen species which link the building blocks of the structure. Tetrahedrally coordinated Si
and Al are counted as network formers (T), and oxygen is considered bridging (BO) if it links exactly two
such tetrahedra. A terminal oxygen, which is bonded to only one T species, is referred to as non-bridging
(NBO). Note that according to this terminology, an oxygen atom linking, for instance, a tetrahedrally
coordinated Si and a fivefold coordinated Al atom is counted as non-bridging. The ratio NBO/T is a
measure for the depolymerization of the melt or glass network. Finally, an oxygen atom which belongs
simultaneously to three coordination tetrahedra around T is termed an oxygen tricluster. Note that there
are oxygen atoms which do not fall into any of the mentioned categories, e.g. oxygen bonded to two
fivefold coordinated Al atoms. The results of this analysis are listed in table 3. Whereas Si occurs
predominantly as tetrahedrally coordinated network former 7, less than half of Al is in T configuration
in the RE-poor melts. NBO/T values are larger than 1 for all compositions, which indicates a substantial
depolymerization of the network. Small amounts of oxygen triclusters (<5%) are observed throughout.

In aluminosilicate minerals, the distribution of tetrahedrally coordinated Si and Al in the crystal
structure is subject to the Al avoidance or Loewenstein rule which states that due to their excess negative
charge, pairs of Al tetrahedra linked by BO are strongly unfavored, and instead alternation of Si and
Al tetrahedra occurs in the crystal structure (Coewensferd, T954). Since silicate melts and glasses are
composed of the same tetrahedral building blocks, it may be conjectured that they also obey this ordering
principle. We tested if the rule applies to the amorphous phases studied here by checking the distribution
of bridging oxygen, T-O-T, among the motifs Si-O-Si, Si-O-Al and Al-O-Al. It is instructive to compare
the BO distribution actually found in the melt to the random distribution, which would be expected
simply on the basis of the abundances of tetrahedral Si and Al, in the absence of any ordering rule.
This random distribution is found as follows: if there are Nr tetrahedrally coordinated species of type
T and Ny of type T' (T, T' € {Si, Al}) in the simulation cell, then the number pr,7 of possible pairs of
tetrahedra T, T’ linked by bridging oxygen is

1
prr = ENT (Npr — 6r77) (2.4)

where 677 is 1 for T = T’, i.e. for like pairs (Si-O-Si or Al-O-Al), and 0 otherwise. The factor 1/2
corrects for double counting of pairs, and the number of unlike pairs (Si-O-Al) is understood to be the
sum ps; a1 + Pa1si = 2psi,al = NsiNaj. For a random distribution, the fraction of BO linking T and T
would then be

(2—6rr)pr1

xad(r —0—-1') =
Bo ZT,T’ pr,1’

2.9

The results concerning the BO statistics are given in table I3, indicating a near-random distribution of
BO, i.e. a considerable Al/Si disorder.

2.4.3 Classical MD: first coordination shell in melts

The reliability of the classical interaction potential described in section can be assessed by com-
parison of its predictions either to ab-initio results or to experimental data. Here, we first check melt
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Figure 2.3: Ab-initio MD: distribution of coordination numbers of Y and La as a function of
melt composition, with low (black) and high (red) RE content.
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Table 2.3: Parameters concerning the melt network structure: the fractions [Si;y]/[Si] and
[Al;v]/[Al] of fourfold coordinated Si and Al, respectively, determine the abundance of tetra-
hedrally coordinated species, and NBO/T is the ratio of non-bridging oxygen to tetrahe-
drally coordinated species. The fraction of bridging oxygen linking T and T’ is denoted
by xgo(T-O-T’), and the BO fractions expected for a random distribution by xg‘gd(T—O-T’)

YAIUSi19056 Y4AlgSi1905(, LaAlllsi19056 La4Algsi19056

[SizyJ/ISi] 0.851 0.879 0.817 0.877
[AlyJ/[Al] 0.377 0.517 0.404 0.600
NBO/T 1.145 1.123 1.179 1.028
XBo(Si-O-Si) 0.633 0.617 0.598 0.551
XBo(Si-0-Al) 0.326 0.345 0.351 0.423
xpo(Al-O-Al) 0.041 0.038 0.052 0.025
X304 (S5-0-Si) 0.630 0.638 0.600 0.599
xiand (§i.0-Al) 0.333 0.326 0.355 0.355
xiand(A]LQ-Al) 0.038 0.036 0.045 0.046
[0ui]/[0] 0.022 0.024 0.024 0.046

structures derived from classical MD at 3000 K against the ones obtained from Car-Parrinello simula-
tions (see section IZZl). A comparison with diffraction data will be made in section IZZ4. The radial
distribution functions for X-O pairs (X = Y/La, Al, Si, O) are plotted along with the DFT results in
Figs. 1 and . In Table 24, we list structural parameters of the four melts as obtained from classical
MD, which can be compared to the ab-initio results in Table IZA. While for the Y-O parameters, fair
agreement is found with first-principles data, the drop of the most probable La-O distance by over 0.1 A
is not seen to this extent in the ab-initio simulations.

2.4.4 Classical MD and diffraction experiments on glasses

We turn now to the simulated glass structures obtained from multiple quenches of melt structures to
300 K. In order to compare simulation results to experiments, it is necessary to convert the structural
information contained in the classical MD trajectories to experimentally observable quantities, i.e. to
neutron end x-ray (static) structure factors Sy(Q) and Sx(Q), respectively. These can be written as a
weighted sum of Faber-Ziman partial structure factors S,(Q), each corresponding to a pair of elements
o, B € {RE, Al, Si, O} (Eaberand Zimad, [963):

S(0) = ———— ¥ cacy bal@)5(0) (Sup(Q) — 1) 2.6)

(Lo caba) a.p

where Q is the magnitude of the scattering vector Q, ¢ denotes the concentration of element ¢ and by,
its neutron or x-ray scattering length. The latter is Q-dependent. Scattering lengths are tabulated in Seatrd
(M) and [hersand Hamilfod ([974)). The partial structure factors are the Fourier transforms of the
partial radial distribution functions g4g(r), which in turn are obtained from the MD simulations:

Sep(Q)—1= no/dr (gap(r) —1)exp(—iQ-r) .7

with the atomic number density ng of the glass. The partial radial distribution functions for all glass com-
positions, obtained from classical MD simulations, have been converted to neutron and x-ray structure
factors by use of Eq. 71 and Eq. I8, and the structure factors are compared to the experimental ones
in Figs. 3 to Z8. The agreement between experiment and simulation is good in the case of neutron
diffraction, and the discrepancies in the x-ray structure factors for the RE-rich glasses will be discussed
in section 3.
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Figure 2.5: Neutron (upper panel) and x-ray (lower panel) structure factors S(Q) of
YAI;;Si1905¢ glass. Red circles: experiment (Ceydied, POTM), black lines: MD simulation.
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Figure 2.6: Neutron (upper panel) and x-ray (lower panel) structure factors S(Q) of
Y4AlgSij9Os¢ glass. Red circles: experiment (Ceydiel, ZOTM), black lines: MD simulation.
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Figure 2.7: Neutron (upper panel) and x-ray (lower panel) structure factors S(Q) of
LaAl;;Sij9Os¢ glass. Red circles: experiment (Ceydied, PZOTO), black lines: MD simulation.
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Figure 2.8: Neutron (upper panel) and x-ray (lower panel) structure factors S(Q) of
LasAlgSij9Ose glass. Red circles: experiment (Eeydieq, POIM), black lines: MD simula-
tion. The inset in the lower panel shows the weighted partial structure factors Sqg (Q), see
eqs. 8 and P72, obtained from simulation. It highlights the Si-La (red) and Al-La (blue)
correlations, which both peak around 4 AL
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Table 2.4: Classical MD results for the first coordination shell around cations in melts: cutoff
radius r¢, for cation-oxygen pairs, average coordination number CN, average bond length
d, most probable bond length d and standard deviation ¢ of cation-oxygen bond lengths (a
measure for the width of the coordination shell).

cation 7 (A) CN d(A) dA) oA
YAIl;1S11905¢ melt

Si 2.40 43 172 163 0.197

Al 2.72 51 200 1.80 0.294

Y 3.25 7.5 257 231 0.351
Y 4AlgSij9Os¢ melt

Si 2.40 42 1.71 1.63 0.188

Al 2.71 49 197 179 0.284

Y 3.27 73 255 229 0.357
LaAl;1Si19Os¢ melt

Si 2.37 43 172 1.63 0.191

Al 2.76 5.2 2.01 1.79  0.308

La 3.32 75 267 246 0.353
LasAlgSi1905¢ melt

Si 2.38 42 170 1.63 0.177

Al 2.72 48 196 1.78 0.285

La 3.33 7.0 265 235 0.367

2.4.5 Classical MD: first coordination shell in glasses

To conclude the results section, we give the parameters describing the first coordination shell around
cations for all four glass compositions in Table I3. Also listed are coordination numbers and bond
lengths extracted from the neutron diffraction experiments by fitting Gaussian peaks to the Fourier-
transformed structure factor (Ceydieq, POIM). This procedure yields coordination numbers for Si and
Al to within 0.5 only. Coordination numbers of Y and La could not be obtained from the diffraction
experiments because the first peaks in the respective partial radial distribution functions were superposed
by others and could not be unambiguously resolved.

2.5 Discussion

2.5.1 Assessment of the classical interaction potential

The accuracy of the melt and glass structures obtained from classical MD simulations is assessed by com-
parison to ab-initio-derived melt structures and to experimental diffraction data for the glasses. Figs. Il
and 4 demonstrate an overall good agreement between classical and DFT simulations for the partial
radial distribution functions in the four investigated melts. The peaks corresponding to the first coordina-
tion shells of oxygen around Si and Al come out somewhat lower in the classical MD for all compositions,
and they extend to a slightly higher distance (more so for Al-O than for Si-O). For the LajAlgSij9Osg
melt, the classically simulated La-O peak falls off faster on the high-distance side than the one obtained
from the ab-initio simulation. These slight deviations lead to some differences in the structural param-
eters describing the first coordination shells around cations, listed in Table (ab initio) and Table 4
(classical): coordination numbers for Si are overestimated by the classical simulations by up to 0.2, and
Al coordination numbers by up to 0.5, whereas in the LasAlgSi;9Os¢ melt, the La coordination number
is underestimated by 0.9 (13%) with respect to the ab-initio result. On the other hand, average cation-
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Table 2.5: Classical MD and neutron diffraction results for the first coordination shell around
cations in glasses: cutoff radius r.y for cation-oxygen pairs, average coordination numbers
CN, experimental CN®*P, average bond length d, most probable bond length d, peak position
de*P of rgqp(r) derived from experiments and standard deviation o of cation-oxygen bond
lengths.

cation rqy CN CN®*P  J(A) d@A) d*® @A) o)
YAI;1Si19056 glass

Si 223 42 40£05 1.68 1.64 1.62£0.03 0.109

Al 265 52 43£05 194 181 1.80=£0.03 0.210

Y 348 7.6 - 2,51 235 230+0.03 0.256
Y4AlgSi19056 glass

Si 225 42 414£05 167 1.64 1.62£0.03 0.104

Al 272 50 4105 192 180 1.81£0.03 0.219

Y 320 73 - 250 233 232+0.03 0.272
LaA1118119056 glass

Si 219 42 4.0£05 1.67 1.63 1.62£0.03 0.101

Al 263 51 43+£05 193 1.81 1.81+£0.03 0.205

La 333 79 - 265 246 2.51+0.03 0.309
La4A188119056 glass

Si 225 41 424£05 1.66 1.64 1.62+0.03 0.095

Al 258 48 41+£05 1.8 1.79 1.82+£0.03 0.180

La 332 73 - 2.62 242 25140.03 0.309

oxygen bond lengths agree well for both simulation methods, the largest deviation being 0.08 A for Al-O
bonds in LaAl;;Sij9Os¢ melt. Note, moreover, that classical and ab-initio simulations yield the same
trends for structural variations in response to compositional changes: RE and Al coordination numbers
decrease with increasing RE content, and in the case of Al, this decrease is even quantitatively the same
for both simulation methods.

As another test of the classical interaction potential, we compare neutron and x-ray structure factors
derived from simulated glass structures to experimental data in Figs. 3 to ®. The simulated and
the experimental neutron structure factors are found in good agreement in terms of peak positions, and
in most cases also with regard to peak intensities (upper panels). The overall agreement of the x-ray
structure factors (lower panels) is good as well for the RE-poor compositions, but less satisfactory for
Y4AlgSi]9056 (Fig. EI) and La4A185119056 (Fig. IZE)

In the case of LasAlgSij9Os¢ glass, a rather pronounced peak is observed in the simulated x-ray
structure factor at 4 A~ which is only visible as a shoulder in the experiment. By analysis of the partial
structure factors obtained from simulation, this peak is attributed to Si-La and Al-La correlations (inset
of Fig. I'R), which seem to be overestimated by the classical simulation. The reason why the discrepancy
between simulation and experiment shows up in the x-ray but not in the neutron structure factor is that
La has a large x-ray scattering length b(Q), due to the large number of electrons. Therefore, correlations
involving La make a large contribution to the total x-ray structure factor. An analogous analysis has
been performed for the simulated x-ray structure factor of Y4AlgSij9Os¢ (Fig. IZ8). Again, the greater
intensity of the peak around 4.3 A~ in the simulation can be explained by peaks in the simulated Si-Y
and Al-Y partial structure factors (not shown). For the same composition, there is another discrepancy
between simulation and experiment between 11 A~'and 14 A~'. In the Q range above 10 A1 all
simulated partial structure factors are essentially flat except for the one representing Si-O correlations,
which still exhibits oscillations. The additional features seen in the experiment in this Q region indicate
that there are additional structural features in the glass which are not seen in the simulation.
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From the preceding discussion, we conclude that the classical interaction potential yields overall reli-
able melt and glass structures, with the following caveats: the coordination numbers of Al seem too large
by up to 0.5, and those of La seem to be on the low side. Moreover, classically simulated glasses appear
to over-emphasize some structural features beyond the nearest-neighbor range (correlations between net-
work formers and RE cations). However, we stress that the first-shell environment of Y in melts and
glasses is described well, and so is the aluminosilicate network structure, as can be seen from the neutron
and x-ray structure factors of the RE-poor glasses. Also the cation-oxygen bond lengths in the glasses as
described by d agree with those derived from the diffraction data within the experimental uncertainty in
most cases. Moreover, structural trends in response to compositional changes are predicted correctly by
the model.

2.5.2 Melt vs. glass and simulated quenching

When using simulated melts as an analog for glasses, the effect of temperature on the structures has
to be discussed. The Al coordination numbers found in the ab-initio and classical MD simulations of
RE-bearing aluminosilicate melts are significantly larger than the ones extracted from the diffraction
experiments (Table 3) and from experiments using NMR or infrared spectroscopy on glasses of similar
compositions (Schaller and Sfebbind, [UY9R; Marchi ef all, PO0T; Elorian ef all, PO, [fekhar ef all, POTT).
In these studies, AlO4 was always found to be the most abundant Al species by far, although noticeable
amounts of 5- and 6-fold coordination were detected. This raises the question if the simulation results are
inaccurate or if the discrepancies reflect real structural differences between melts at 3000 K and glasses
at room temperature.

The effect of temperature on structure has been investigated experimentally: [Elorianef all (ZO07)
performed in-situ 2’ Al NMR measurements on melt samples with compositions very similar to ours and
found that fivefold coordinated Al is favored at high temperatures, without quantifying the extent to
which this happens. An increase of the Al coordination number with temperature was even observed
in nominally fully polymerized glasses, where AlO4 could theoretically be fully charge-balanced by
modifier cations: by extrapolation to high temperatures of NMR data obtained on CaAl,Si,Og glasses,
quenched with varying rates and hence representing varying fictive temperatures, (DO08)
predicted that at 2800 K, up to 39% of Al should be fivefold coordinated. In a temperature-dependent
NMR study on calcium aluminate liquid, Massiof ef all (T993) observed an increase of the average Al
coordination number above the glass transition temperature by 0.2 per 1000 K. In a neutron diffraction
study also on calcium aluminate, (Drewiff ef all, DUT?) report a significant decrease of Al coordination
and other structural rearrangements upon vitrification. These experimental findings lead us to the con-
clusion that the large Al coordination numbers found in our ab-initio simulations of melts do not indicate
a deficiency of the method but are due to the high temperature (3000 K) of the modeled systems. In
our classical MD simulations of melts, the even higher Al coordination numbers are explained by the
combined effect of high temperatures and the tendency of the interaction potential to over-coordinate Al
(see section Z3).

If the large Al coordination numbers in the simulated melts are explained by the high temperature,
so why are they still so large in the simulated glasses (table Z3)? The model glasses in this study have
been generated by cooling from high-temperature melts (see section ZZ32), with a quench rate of 5- 103
K/s. This exceeds experimental quench rates, which are typically below 10° K/s (see e.g.
Efall (O0R)), by many orders of magnitude. Since the fictive temperature, at which the melt structure
is frozen into the glass, increases with increasing quench rate (Mysen and Richei (Z00Y)), the preceding
argument for high Al coordination applies as well to rapidly quenched glasses. To assess the influence
of the quench rate, we also generated a glass structure of composition YAl;;Sij9Os¢ with a four times
slower simulated quench. No significant changes in the structural parameters were observed with respect
to the quickly cooled glass. However, this slower quench is still much faster than in experiments, and we
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suppose that lower rates are required to produce structural changes in the resulting glass.

Differences between modeled and measured glass structures do not disprove the simulation results,
since the two approaches actually probe different states of the glass resulting from different thermal
histories. In the following discussion, we focus on structural changes as a function of composition rather
than on absolute values of coordination numbers, in order to circumvent this ambiguity.

2.5.3 Relation between cation coordination and field strength

We suggest to rationalize the observed changes in cation coordination for different glass compositions
(classical MD simulations) in terms of cation field strength (CFS), which gives a simple measure of a
cation’s ability to force the surrounding oxygen anions into an energetically favorable configuration. It is
defined as CFS = ¢/r?, with nominal ionic charge ¢ and ionic radius r. The ionic radii were taken from
Bhannod (@7A), assuming 4-fold coordinated Si, 5-fold coordinated Al and 7- or 8-fold coordinated Y
and La, depending on composition (see table Z3). The resulting CES are, in descending order, 59 eA2
for Si** (with elementary charge e), 13 eA~2 for AP+, 3.3 ¢eA=2 and 2.9 ¢eA~2 for Y?* in 7-fold and
8-fold coordination, respectively, and 2.5 eA=2 and 2.2 eA~2 for La®* in 7-fold and 8-fold coordination,
respectively.

The increasing variability of cation coordination as a function of glass composition, in the order
Si, Al, Y, La, reflects their decreasing CFS. The fact that the Si coordination is virtually independent
of composition can be explained by its large CFS: in the competition for oxygen bonding among the
cations, the Si ions’ preference for tetrahedral coordination is satisfied foremost, be it at the expense of
more unfavorable coordination environments of the the other cations. The distribution of oxygen between
the coordination shells around Al and RE cations is determined by the “reaction”

between coordination polyhedra in the glass. Y has a larger field strength than La and therefore requires
a more compact coordination shell with less but shorter and stronger bonds to surrounding oxygen atoms.
Thus, the equilibrium in Eq. IR is shifted more to the right for the Y-bearing glasses, as compared to the
La-bearing compositions, which explains the higher Al coordination numbers in the former. This trend
in Al coordination number has also been observed in a number of experimental studies (Schaller and
Kfebbind, MI9R; Marchi ef all, PO0Y; Elorian ef all, PO07; [ffekharef all, DOTT).

Also the changes in Al coordination as a function of RE content (for a given REE) can be rationalized
in terms of field strength effects: in the RE-rich compositions, the environment of Al is richer in lower-
field-strength Y or La and contains less higher-field-strength Si and Al than in the RE-poor glasses,
so that Al readily forms a tighter coordination shell in the RE-rich glasses. Furthermore, the low-RE
glasses are peraluminous, [Al,O3]/[RE;O3] > 3, and full charge compensation for fourfold coordinated
Al is not possible. This also forces Al into higher coordination in these glasses. The same dependence
of Al coordination numbers on RE content is also confirmed experimentally by Schaller and Sfebbind
(YY) and Elorian-ef all (ZO07). The latter investigated glass compositions very similar to ours, and
they found that the average Al coordination number drops from 4.3 in the Y-poor to 4.1 in the Y-rich
glass, which is the same change by 0.2 as found with classical MD simulations. The decreasing RE
coordination with increasing RE content can be explained in the same way. It is consistent with the
findings in (ZOI72H), where the Y coordination number in Ca-bearing aluminosilicate melts
was shown to decrease with increasing Ca content, since Ca is a weaker competitor for oxygen bonding
than Si and Al

Not only the coordination numbers of cations can be linked to the field strength, but also the width
of the coordination shell formed by oxygen around the cations. Whereas high field strength cations
are expected to form a tight coordination shell with well defined bond lengths, less powerful cations
are anticipated to be forced into more disordered environments with a wider range of nearest-neighbor
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Figure 2.9: Classical MD on glasses: width of the oxygen coordination shell around cations,
given as the standard deviation of the distribution of cation-oxygen bond lengths, as a function
of inverse cation field strength. The coordination numbers used for the calculation of the field
strength are indicated as superscripts. Lines are a guide to the eye.
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distances. This behavior is confirmed by the simulation results shown in Fig. 9, where the standard
deviation of cation-oxygen bond lengths (a measure for the width of the coordination shell) is plotted
against the inverse cation field strength. For all four compositions, a (non-linear) correlation is clearly
visible. Moreover, the oxygen shell around Si and Al in the La-bearing glasses is found to be narrower,
i.e. less perturbed, than in the Y-based compositions. This further corroborates the interpretation of
coordination environments in terms of a competition for oxygen bonding between cations of different
field strengths.

Coordination shells of cations and their evolution upon compositional changes have been discussed
here in terms of the glass structures obtained from classical MD simulations, but the same trends are also
observed in the ab-initio MD simulations of melts (Table ). Therefore, the results appear to be robust
with respect to the simulation method and seem to hold for both melts and glasses.

2.5.4 Medium-range order: Al/Si ordering

To conclude this section, the distribution of bridging oxygen among the various pairs of tetrahedral
species is discussed. [FfeKharefall (ZY) investigated this distribution by means of 2Si NMR experi-
ments on La-bearing aluminosilicate glasses, which were, however, considerably richer in La than our
compositions. Their results are based on fitting several distribution models to the data and suggest a
nearly random distribution of BO between tetrahedrally coordinated Si and Al. But given the uncer-
tainty of their assumptions and structural models, they caution against over-interpreting this conclusion.
Our ab-initio MD simulations of aluminosilicate melts containing Y and La are a unique opportunity
to complement the experimental data and to address this question quantitatively and without further
assumptions.

In all four compositions studied here, the molar ratio [Al]/[Si] is considerably less than 1, so that
strict avoidance of Al-centered tetrahedra linked by BO could formally be achieved (Caoewensfein, TI54)).
However, the results presented in table I3 indicate that in all compositions except for the La-rich melt,
the BO partitioning between Si and Al is close to random. Only in LasAlgSij9Osg, the Al4-BO-A1¥
motif is less frequent than expected for a random distribution, in favor of an elevated amount of Sil*-BO-
Al but still a significant degree of randomness is observed. A priori, this structural disorder in simu-
lated RE-bearing aluminosilicates may be an effect of the high temperature, which favors configurations
of higher entropy. Recently, Iawarskief all (Z0T2) reported an essentially random Al/Si distribution in
La-bearing aluminosilicate glasses, which were, however, considerably richer in La than the composi-
tions studied here. They performed classical MD simulations with a simple pair potential. From our
ab-initio simulations in conjunction with the experimental data of [fekhar ef all (Z009) and the results
of [aworski ef all (KOTA), we conclude that the Al avoidance rule is not obeyed in the melts studied here
and that it probably does not (or at least not strictly) apply to the glasses either.

This may be attributed to the greater structural flexibility of amorphous structures as compared to
crystalline phases, which allows excess charges on BO between Al-centered tetrahedra to be compen-
sated more easily. On the other hand, in aluminosilicate glasses containing mono- and divalent network
modifiers, Al avoidance was found to be realized to a large extent, although not strictly (Cee_and Siehd
bmnd, PO0A). This indicates that also the higher charge and field strength of trivalent Y and La have a
share in the Al/Si disorder found in our study, by facilitating charge compensation of otherwise unfa-
vorable structural motifs. This suggests that the traditional picture of glasses, derived from alkali- and
alkaline earth-bearing aluminosilicates, should be used carefully when applied to REE-bearing glasses,
since trivalent elements may behave differently in terms of network modification and charge balancing.
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2.6 Conclusions

The atomic-scale structure of four Y- and La-bearing aluminosilicate glasses and melts with high SiO,
content (76 mol%) was investigated by ab-initio and classical MD simulations as well as neutron and
x-ray diffraction experiments. By combining information from all four approaches, we described the
coordination environments of the cations and found robust evidence for structural trends as a function
of composition: coordination numbers of RE cations decrease with increasing RE content, and so do Al
coordination numbers. Moreover, Al was found to be in a higher coordination state in Y-rich than in
La-rich composition. These trends can consistently be explained by the various cation field strengths:
they impose a hierarchy on the melts and glasses as to which cation’s coordination requirements are sat-
isfied preferentially, at the expense of the others’ bonding requirements. Furthermore, the Al avoidance
rule, obeyed by aluminosilicate minerals and approximately by glasses with mono- and divalent network
modifiers, was found to be almost completely invalidated in RE-bearing aluminosilicate melts.

Ab-initio and classical MD simulations consistently yield a coordination number of Y in RE-bearing
aluminosilicate melts and rapidly quenched glasses between 7 and 8, depending on composition. This is
larger than the values found in other classical MD studies on glasses, which lie below 7 (DOd, ZO09) or
even below 6 ([Hekhar ef all, POT). It is not clear if the discrepancies are due to the different composi-
tions or to the simple (non-polarizable) interaction potentials used in these studies, or to a combination
of both. Similarly, the La coordination numbers found in our ab-initio simulations give values close to
8, considerably larger than the ones obtained for systems richer in La by means of a non-polarizable pair
potential (6.0 to 6.6, [aworski ef all (POT7)). The new classical interaction potential for La was shown
to produce reasonable melt and glass structures but to form a slightly too tight coordination shell around
La, especially in La-rich compositions, which leads to underestimated coordination numbers.

For future classical MD studies, an improved description of La might be achieved by parameterizing
a more flexible form of the interaction potential (Iahn-and Madden, PO07), which allows for shape defor-
mations of the rather large La**. Furthermore, it would be desirable to test if increasingly lower quench
rates than the one used in this study lead to glass structures with lower Al coordination, closer to those
observed in the diffraction experiments.
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Chapter 3

Molecular dynamics simulations of Y in
silicate melts and implications for trace
element partitioning

3.1 Abstract

Element partitioning depends strongly on composition and structure of the involved phases. In this study,
we use molecular dynamics simulations to investigate the local environment of Y as an exemplary trace
element in four silicate melts with different compositions and thus varying degrees of polymerization.
Based on these structural results, we propose a mechanism which explains the observed partitioning
trends of Y and other rare-earth elements between crystals and melts or between two melts. With our
computational approach, we found a systematic correlation between melt composition and Y coordina-
tion as well as Y-O bond lengths, a result which was corroborated by EXAFS spectroscopy on glasses
with the same compositions as the simulated melts. Our simulations revealed, moreover, the affinity of Y
for network modifiers as second-nearest neighbors (Ca in this study) and the tendency to avoid network
formers (Si and Al). This is consistent with the observation that Y (and other rare-earth elements) in
general prefer depolymerized to polymerized melts in partitioning experiments (see, e.g.,
(I008)). Furthermore, we used the method of thermodynamic integration to calculate the Gibbs free
energy which governs Y partitioning between two exemplary melts. These more quantitative results, too,
are in line with the observed partitioning trends.

3.2 Introduction

In the presence of two or more coexisting phases in thermodynamic equilibrium, a minor or trace element
will, in general, not be distributed equally among these phases, but will be incorporated preferentially into
some chemical environments at the expense of others. The resulting distribution of an element i between
two phases a and 3 is quantified by the Nernst partition coefficient qu/ P c¥/ cll-3 , with ¢ denoting
the concentration (mass fraction) of element i in phase &. The molar partition coefficient Dg/ P _ x /)cf3
is defined in terms of mole fractions x instead of concentrations and can easily be converted to qu/ p
(see Beaffie ef al] (TY973), for terminology). The partition coefficient of element i depends, in general,
on temperature, pressure, chemical composition and structure of the involved phases. Conversely, if this
dependence is known, either from a compilation of experimental data or from a suitable theory, then
the distribution of trace elements in, e.g., rock samples can provide information about the petrogenetic
history, and hence constitute a valuable tool for petrologists and geochemists (e.g. Shawl (POUA)).
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Trace element partitioning between coexisting crystal and melt phases can be understood, at least
partially, in terms of the local environment of the incorporated cation in the crystal: if the trace element
fits available crystal sites well by size and charge, then it is enriched in the crystal, otherwise it partitions
into the melt. It has long been known that crystal-melt partition coefficients of a series of isovalent
cations, plotted logarithmically as a function of ionic radius, form near-parabolic patterns which peak at
an ideal radius (Onuma-efall (T96R)). These patterns have been described quantitatively by
(T94) by means of the lattice strain model, based on work by Bricd (TY73). It translates the strain
in the crystal lattice, induced by the mismatch of the incorporated cation, to a free energy penalty for
cation incorporation, which in turn governs the partitioning.

The lattice strain model, when suitably parameterized, successfully describes observed crystal-melt
partitioning behavior in terms of crystal chemistry alone, without explicitly taking into account melt
properties. If the latter are important, their influence on partitioning is hidden in the adjustable model pa-
rameters and cannot be predicted nor explained by the original model (although Wood and Blundy] (T9972)
extended the model by taking into account the Mg/(Mg+Fe) ratio in the melt). However, there is broad
evidence that melt composition can indeed have a strong effect on trace element partitioning. Prawafkd
(OO3), in a series of experiments, measured partition coefficients of several trace elements
between titanite (CaTiSiOs) and a range of coexisting silicate melts of different compositions. Although
the crystal chemistry was virtually constant in all experiments, partition coefficients varied by two orders
of magnitude for several rare-earth elements (REE) and Th. Moreover, the partition coefficients were
found to depend systematically on melt polymerization, quantified by the molar ratio of Al;O3/(NayO +
K0 + Ca0). In particular, all the REE probed in the study showed an increasing tendency to partition
into the melt the more the melt was depolymerized.

More evidence for the influence of melt composition (and thus melt structure) on element partition-
ing comes from experiments with immiscible silicate melts (MWafsand (I976); Ryerson and Hesq ([YZ8);
(DO08)). In the latter study, partition coefficients between coexisting gabbroic (highly
depolymerized) and granitic (highly polymerized) melts were determined for a large set of elements. A
strong preference of the REE for the depolymerized melt was found, with Dﬁaé’gro/ e 10, According
to the authors’ interpretation, the abundance of non-bridging oxygen in the depolymerized melt facil-
itates the formation of the preferred (i.e. energetically favorable) coordination polyhedra of REE and
thus favors the observed distribution. In a similar study, MeksIer ef all (Z00A) found the same partition-
ing trend between immiscible pairs of Fe-rich and Si-rich melt. (DO suggested to understand
the influence of melt composition on element partitioning in terms of Q" (0 < n < 4) species whose
abundance and proportions vary with bulk composition, thus offering varying amounts of energetically
favorable “sites” for trace element incorporation.

It is the aim of this computational study to elucidate the mechanisms by which melt composition in-
fluences the distribution of trace elements between crystal and melt or between two melts. We chose Y as
an exemplary REE whose partition behavior was shown to depend strongly on melt properties (Prowafkd
and KTemmd (PO0T); (Z00A)). From a computational point of view, Y is a more convenient
element than the (chemically similar) lanthanides whose strongly correlated 4 f electrons pose notorious
problems for theoretical descriptions. Our approach is based on molecular dynamics, a method which
provides simultaneous access to the atomic structure and dynamics and to the thermodynamic variables
of a system. Taking four different model silicate melts, we first investigated how melt composition in-
fluences the local coordination environment of Y ions in the melt. We then translated these structural
changes to differences in free energy, which in turn determine the partitioning behavior of Y.
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3.3 Methods

3.3.1 Interaction potential

We performed molecular dynamics (MD) simulations to investigate structural and thermodynamic prop-
erties of silicate melts. Given the considerable system sizes and simulation times required for our study,
we did not perform first-principles MD but used a polarizable ionic interaction potential (see Wilson and
(0X3) for a general discussion) which has been parameterized from first principles (i.e. from
fundamental laws of nature, without reference to experimental data), taking density functional theory
(DFT, Hohenberg and Kohn (I964); (T96T)) as a reference. The polarizable ion model
is of the form

V({r}) =V 4 yrer 4 ydisp p yrol (3.1)

where {r} represents the set of ionic positions. The first term on the right side describes charge-charge

interactions between pairs of ions at r; and r;, with distance r;; = |r; —r;| and nominal charges ¢; and ¢;

(g0 = =2, gsi =4, gca = 2, ga1 = qy = 3):

Z qiq
rij

Vi = 3.2)

i<j

The second term represents the repulsion between two ions due to the overlap of electron densities at
short distances:

Vrep = ZAijexp(—aijrij) (33)

i<j
The A;; and a;; are adjustable model parameters. With the third term, we model dispersion interactions:
" C L
Vi = Y ()-8 (3.4)

i<j 1/

Here, the Céj are calculated from condensed-phase ionic polarizabilities (see below) and the féj repre-

sent Tang-Toennies dispersion damping functions which describe deviations from the asymptotic Céj / r?j
behavior at short distances ([lang and Toennieq (UX4)) and are defined as

ij i 4 (bijri')k
f (rl])—l—exp( b]r,j)z 6k!1

k=0

3.5)

with adjustable parameters bgj . The last term in Eq. B takes into account the polarizability & of the
ions and comprises Coulombic charge-dipole and dipole-dipole interactions as well as a self-energy term
which describes the energy cost to polarize an ion:

vel= Y |anf A ) — gt £ )| 7o

i<j,o

|
- Y weulTy) Zza,

i<j,opB

3.6)

By u, we denote the Cartesian components of ionic dipole moments, and their interaction with ionic
charges ¢; is damped at short distances by means of Tang-Toennies dipole damping functions fD (rij)-
These have the same form as in Eq. B3, but now contain the adjustable parameters b l{ instead of b . Y Fi-

nally, we write 7! ﬁ) =V4,V ﬁ -1/r;; for the multipole interaction tensors, with the superscript denoting
the order of the derivative (Siond (T998)).
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We emphasize that the polarization term VP°! goes beyond a simple pairwise interaction and intro-
duces real many-body effects. This is because at each MD step, i.e. for given ionic positions {r}, all ionic
dipole moments are determined self-consistently by minimizing VP as a function of the dipole moments
(Malson and Madded ([993)), using a conjugate-gradient algorithm. The polarization term turned out to
be crucial for a transferable interaction potential for oxides (Kowley et al] (U9R)). In fact, polarizability
mimics a deformable electron density, which is an indispensable ingredient of formally ionic models if
they are to describe oxides (or silicates) correctly.

The interaction potential, Eqs. Bl to B, was parameterized by matching dipoles, forces, and stresses
derived from the potential to dipoles, forces, and stresses obtained from DFT, following the proce-
dure presented in (003) and MTahn—and Madded (PZO07). As reference configurations,
we chose four melt configurations with compositions SiO;, Al,O3, CaO, and Y,0s, generated by Born-
Oppenheimer MD with at least 80 atoms in the simulation cell. The equilibration runs and the static DFT
calculations on the four reference configurations were carried out with the CPMD code (Carand Pard
bmelld (TURY); Marxand Huffed (Z000)) within the local density approximation, using Troullier-Martins
pseudopotentials ([Cronllhier and Marfind (T991)). We found that a plane-wave cutoff of at least 180 Ry
(240 Ry for CaO) and a Brillouin zone sampling restricted to I" produced converged forces, dipoles and
stress tensors. The ionic dipoles were calculated from the configuration of maximally localized Wannier
functions (Marzari and Vanderhili (994)) around ion cores. The model parameters were determined by
a least-square fit in a two-step procedure. First, the condensed-phase ionic polarizabilities ; and all the
dipole damping parameters b}, were optimized. We treated only 0?~, Ca’>*, and Y3* as polarizable, and
neglected the polarizability of the small cations Si** and AI**. Second, keeping these values fixed, the
remaining parameters were fitted to DFT forces and stresses. The values of all model parameters are
listed in table Bl

i-j 0-0 Si-0 Al-O Ca-O Y-O CaCa Y-Y CaY
qi -2 +4 +3 +2 +3
A;; 53283 44.624 39.404 76.811 95.048
a;j 3.1526 16513 1.6413 1.7038 1.6813
C/ 52461 16.716 23.763 6.4724 12.504 8.9817
by 27370 1.7543 1.4995 2.8594 0.67066 1.0865
o 10.754 24116 3.5475

bg 0.0 1.6489 1.5573 1.4304 (Ca-O)/ 1.5056 (Y-O)/
3.4741 (O-Ca) 3.3585(0-Y)

Table 3.1: Interaction parameters, see Eqs. Bl to B8, in atomic units. Interactions not listed
or left blank here, e.g., short-range repulsion for Si—Si, are taken to be absent in the model.
Since b} # b}, in general, both parameters are listed.

To test the accuracy of the new interaction potential, we applied it to Caz(Al,Y)2(Si04)3 melt, with
one Y atom in the simulation cell, and compared the results to the outcome of a DFT MD run for this
system. Since this melt was not among the reference systems used for the fit, we hereby also checked
whether the potential is transferable to different chemical compositions. The radial distribution func-
tions for all the cation-oxygen pairs, plotted in Fig. B, are in excellent agreement with DFT. Melt
density constitutes another test of the interaction potential. In an MD simulation at 3000 K and ambient
pressure, the density was found to be 2.62 g/cm®. Unfortunately, no experimental data are available
at these conditions, so we resort to the expression given by [Cange and Carmichael] (IM87) for the den-
sity of multicomponent silicate melts, which is based on a large experimental data set. At 3000 K,
CazAlx(Si04)3 melt is predicted to have a density of 2.45 g/cmS, 6% lower than our simulation result.
This overestimation of density by our interaction potential can be explained by the fact that it has been

34



Chapter 3. Molecular dynamics simulations of Y in silicate melts and implications for trace
element partitioning

[E—
-
4

(r)

ion g

1stribution funct

radial d

radial distance r (A)

Figure 3.1: Radial distribution functions for cation-oxygen pairs in Caz(Al,Y)2(SiO4)3 melt

(grossular composition), at 3000 K and a density of 2.62 g/lcm?. Full lines represent data

obtained with the polarizable ion model and symbols are DFT results. The simulation with
the polarizable ion model was done with a simulation cell containing one Y atom and 1280
atoms in total. For the DFT-based MD, the simulation cell contained one Y atom and 160
atoms in total, and Born-Oppenheimer MD was performed in the local density approximation,
with a plane-wave cut-off of 80 Rydberg.
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parameterised with respect to the local density approximation to DFT, which is known to underestimate
lattice constants by about 1%-2%, i.e. to overestimate densities by 3%-6%. On the other hand,
and Carmichael (TYX7) caution against using their density formula at temperatures far above 1873 K and
indicate that it might underestimate the density of Al-bearing silicate melts at higher temperatures by
several percent, so that the difference to our simulated density would be even smaller. In conclusion, the
interaction potential has been shown to reproduce DFT-derived melt structures well and to predict melt
densities consistent with extrapolations of experimental data.

We close this part of the paper by commenting on the dispersion interaction, the contribution of
which to the total potential energy of our model is small, but not negligible. There is no obvious way
of obtaining the coefficients Cé] from DFT calculations, since dispersion is not well described by the
available approximate exchange-correlation functionals. However, the coefficients are related to the
polarizabilities via the Casimir-Polder integral (Casimir and Polded ([94R)) or, in an approximate way,
via the Slater-Kirkwood expression (SIafer and Kirkwoaod (T93T))

d == - (3.7
° 2\/u/Ni+\/oy/N;
where ; is a parameter which can be calculated from like-ions interactions and eq. B72 as
!4 ci ]’
Ni=|z (3.8)
3/2
3o

if Cg and @; are known. N; can then be used in the “combination rule” for unlike ions, Eq. BZ1. Un-

fortunately, we don’t know the value of Cg% ~0%" etc. in condensed phases. However, Konfselos and
©Masod ([URA) found empirically that N is nearly constant for ions of an isoelectronic sequence, i.e.
Ng2- =~ Nxe etc. Thus we chose the following procedure to determine the coefficients C¢': First we cal-
culated Nne, Nar, and Nk, from Eq. BR, with gas phase o’s and like-ions Cg’s obtained from high-level
calculations by [Chu_and Dalgarnd (Z004). Following Kanfselos and Masond ([U8dA), we then assumed
Np2- = Nne, N2+ = Nar, Nys+ = Nk;, and together with the condensed-phase polarizabilities resulting
from the dipole-fitting, these yield the required coefficients Céj , by Eq. BZA. These coefficients, like the
dipole parameters, are held constant during the subsequent optimization of the remaining model param-
eters. Although approximate, the procedure is physically justified and produces reasonable dispersion
coefficients.

3.3.2 Molecular dynamics

Once the interaction potential was parameterized, we performed MD simulations for four silicate melts,
of major-element composition Al,SiOs, CaAl,Si;Og, CazAl>(SiO4); and CaSiO3. The cubic simulation
cells, repeated periodically in space, contained 1152, 1664, 1280 and 1079 atoms, respectively, with one
AT replaced by Y (three CaO replaced by Y,Oj3 in the case of CaSiO3). The atoms were first placed
randomly into the cells, which were then equilibrated for at least 20 ps at 3000 K and ambient pressure.
Temperature and pressure were controlled by a Nosé-Hoover thermostat (Nasd (I[984)); Hooved ([98T))
and a barostat (Martyna et al] (TU94)), respectively. We then fixed the volume of the simulation cell to
the average volume of the last 10 ps and equilibrated the systems during another 10 ps, now at constant
volume and temperature 7 = 3000 K (NVT ensemble). Data were acquired during subsequent NVT
simulations of 100 ps duration, using a time step of 1 fs for the integration of the Newtonian equations of
motion. The structural results obtained from the MD simulations (coordination numbers, bond lengths)
are well-converged with respect to the run duration, since virtually the same values result from analysis
of the last 50 ps only of each simulation. For the first three compositions, since there was only one Y
atom per cell, the interaction with other Y atoms (periodic images in other cells) was very weak, given
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a minimum distance of 23.5 A. For CaSiOs3, we checked that the two Y atoms in the simulation cell
did not form a complex during the simulation. Hence, we expect Y to behave as a trace element in all
simulations.

3.3.3 Thermodynamic integration

Trace element partitioning is ultimately driven by the tendency of any thermodynamic system to mini-
mize its free energy. Whereas the internal energy U of a system is readily obtained from MD simulations,
free energies cannot be extracted directly from a single simulation (note that also in experiments, free
energies cannot be determined from a single measurement, in contrast to quantities like temperature or
pressure). However, the method of thermodynamic integration can be used to derive free energy differ-
ences from MD (Erenkel'and Smii (PZ0072)). We applied this method to calculate the change in Gibbs free
energy associated with an exchange reaction of Y and Al between two silicate melts:

Y3 in melt 1+ AI** in melt 2 (3.9)
= AP in melt 1 +Y>" in melt 2 '

The equilibrium constant K of this reaction is related to the molar exchange coefficient KB“Z{;“AI (see

a a XA1 X
K=AL ~ A e — KTl (3.10)
aylaxf R DRET ’

Here, m1 and m2 stand for the two melts, of different composition. The exchange coefficient is just the
partition coefficient of Y, normalized by the one of Al, and thus quantifies the fractionation of Y and Al
between the melts. We assumed that activities a can be replaced by mole fractions x in Eq. B10.

For computational purposes, we split the exchange reaction (B19) into two partial reactions, or “trans-
mutations”,

Yt inmelt1 = AP in melt 1

APt inmelt2 = Y3 in melt 2 (3.11)

The reason for this splitting is that we can compute the change in Gibbs free energy for each of the two
partial reactions by means of thermodynamic integration, following the procedure described by Balannd
Bfall (ZO0OR) and outlined in the next paragraph. With this method, the interaction parameters of Y
are gradually transformed into those of Al (or vice versa). Although the two reactions in Eq. BT do
not correspond to real physical processes, the associated free energy differences are well defined, and
taken together, they give the complete (physical) exchange reaction (B4). The total change in Gibbs free
energy, AG, for the reaction (B9) determines the equilibrium constant K = exp(—AG/(RT)) and thus the
exchange coefficient through eq. B10.

In more technical terms, in order to describe the transmutations, we introduce a hybrid potential
energy function, characterizing a system in which one Y atom is partially transmuted into Al. It is
defined as a linear mixture of two potential energy functions of the same form as in Eq. BI:

Va({r}) = (1 =)W ({r}) + AVai({r}) (3.12)

Here, Vy is the potential energy of the system (melt) containing one Y3*, and Vj is the potential energy
of a system where Y37 is replaced by AI**. The parameter A takes on values between O (the atom in
question is pure Y) and 1 (the atom is fully transmuted into Al). Now, following an idea of Kirtkwaod
(T933), we express the free energy change for the “reaction” Y3+ — AI** in a given melt (one of the
transmutations in Eq. BTTl) as

1 av/1 1
AG_/O <87L>;Ld/1_/o (Var — V), dA (3.13)
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where (...); denotes the average in a system governed by the hybrid potential energy function V;. The
crucial point of the method is that the difference V5 ({r}) — Vy({r}) is a known function of the atomic
coordinates, and hence its average can be computed directly from an MD trajectory, unlike AG itself. If
(Va1 — Vi), is evaluated by means of several MD simulations for a set of A values, the free energy of
reaction (transmutation) can be obtained by numerical integration according to Eq. B13.

The simulations were carried out by means of the CP2K code (http://cp2k.berlios.de/). As melt com-
positions m1 and m2, we chose Al;SiOs and CaAl,;Si;Osg, with supercells containing 22 formula units
in the case of Al;SiO5 and 16 formula units in the case of CaAl;Si;Og. Both systems were equilibrated
at 2500 K and ambient pressure, and data were acquired at constant volume (corresponding to ambient
pressure) and with a Nosé-Hoover thermostat maintaining the temperature at 2500 K. In each system, Al
was gradually transformed into Y in five steps, and at each intermediate step, we performed a full MD
of 12 ps duration, starting from the final configuration of the previous run. Of these 12 ps, the first 2 ps
served for equilibration after slightly changing the interaction potential V} , and the remaining 10 ps were
used for analysis. After a full transmutation from Al to Y, we also simulated the reverse transmutation
from Y to Al. The sum of free energy changes, AGforward + AGbackward, Of the forward and the backward
transmutation (which should ideally be zero since it represents a null reaction) was used to estimate the
error due to incomplete sampling of the phase space.

Since periodic boundary conditions were applied, the question arises how the finite size of the simu-
lation cell influences the calculated free energy differences. We expect that the respective error is below
5%, for the following reason: (DO0R) carefully studied the finite-size effect on the free
energy change associated with a redox reaction of a single metal cation in water, using thermodynamic
integration as well. They found that free energies were converged to < 5% with respect to the limit
of very large cells, for cell sizes comparable to ours. Now, in their study, the transmutation involves a
change of the cationic charge (Mt = M3*1), whereas in our case, only the short-range interaction and
the less significant polarizability and van der Waals parameters are changed (Y3* = AI’*). Therefore,
the effect of limited cell sizes should be even less important here than in the redox case, where changes
in strong, long-range Coulomb interactions occur.

3.4 Results and discussion

3.4.1 Atomic environment of Y in silicate melts from MD simulations

The four melt compositions, Al,SiOs, CaAl;Si;Og, CazAl>(SiO4)3 and CaSiO3, were selected in such
a way as to span a wide range of melt polymerization. As a simple compositional variable, we chose
the ratio of non-bridging oxygens to the total amount of Si and Al, NBO/(Si+Al), which was obtained
from the simulations. For the present study, we prefer this terminology to the more standard NBO/T (T =
tetrahedrally coordinated network former) because the average coordination of Al was found to be larger
than 4, even in nominally fully polymerized melts, and thus Al cannot always be classified as T. We
still suggest to view NBO/(Si+Al) as a measure of melt depolymerization, with Ca acting as a network
modifier. Non-bridging oxygen is defined here as oxygen which is not exclusively bonded to Si or Al,
according to the bonding criterion presented in the following paragraph.

Coordination numbers and average bond lengths were obtained from the simulations in the following
way: for a given pair of elements i, j, we calculated the radial pair distribution function g(r;;) by orga-
nizing the various i — j distances occurring during the simulation into bins and suitably normalizing the
resulting distribution (see, e.g., Fig. Bl). We then fixed the cut-off radius r¢ for this element pair at the
distance where g(r; j) adopts its first minimum, i.e. rqy represents the radial extent of the first coordina-
tion shell. The coordination of element i by element j is determined by averaging, over all i-atoms and
over the duration of the simulation, the number of j-atoms closer to a given i-atom than ry. Similarly,
the average i — j bond length is obtained as the average distance r;; of atom pairs with a distance less
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Figure 3.2: Coordination number of Y by O as a function of melt composition, NBO/(Si+Al)
from simulation. Lines are a guide to the eye.
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Figure 3.3: Average nearest-neighbor (NN) Y-O bond length as a function of melt composi-
tion, NBO/(Si+Al) from simulation. Lines are a guide to the eye.
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than r.,. Note that in general, . for a given element pair varies with melt composition, which reflects
changes in the shape of the first coordination shell.

As a first step towards understanding the atomistic mechanisms leading to trace element partitioning
between melts, we investigated how the local environment of Y changes as a function of melt composi-
tion. Fig. B2 shows that the coordination of Y by O drops from 7.7 in Al;SiOs (which has NBO/(Si+Al)
= 0.0) to 6.2 in CaSiO3 (NBO/(Si+Al) = 1.9). Concurrently, the average distance between Y and its
nearest-neighbor oxygen decreases from 2.56 A to 2.46 A, as can be seen from Fig. B3. Coordination
numbers and average Y-O distances are also listed in table B2 In Fig. B4, the radial distribution of oxy-
gen atoms around Y is plotted for the four different melt compositions. We observe that with increasing
NBO/(Si+Al), the distribution becomes narrower, or in other words, oxygen disorder around Y decreases.
The peak position does not exhibit systematic changes, except for the case of Al,SiOs, where it is shifted
to larger Y-O distances. For the other three compositions, the height of the peak increases with increasing
NBO/(Si+Al). These data imply that the observed decrease of coordination number and Y-O bond length
with decreasing polymerization is largely due to the reduction of the tail of the distribution at large Y-O
distances.
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radial distance "y 0 (A)

Figure 3.4: Distribution of O around Y in four silicate melts as obtained from MD simulation.
The area under a curve up to a certain distance ry_p gives the number Ny of oxygen atoms
within a sphere of radius ry_p around Y. Lines are a guide to the eye.

In order to gain further insight into structural differences resulting from changes in composition, we
also investigated the chemical composition of the second coordination shell around Y. In Fig. B3, we
plot the average number of cations bonded to one oxygen atom if the latter is itself bonded to Y. Oxygen-
cation bonding statistics were again based on cut-off radii obtained from the simulations. As expected
from the bulk melt composition, the amount of Ca in the second shell increases at the expense of Si
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and Al, when going to the more depolymerized, i.e. more Ca-rich compositions. The essential result,
however, is that for all Ca-bearing melts, the ratio Ca/(Si+Al) in the second coordination shell is larger
than the bulk ratio, i.e. Y tends to be associated with the network modifier Ca rather than with Si or Al.
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Figure 3.5: Distribution of O around Y in four silicate melts as obtained from MD simulation.
The area under a curve up to a certain distance ry_o gives the number Ny of oxygen atoms
within a sphere of radius ry_¢ around Y. Lines are a guide to the eye.

In the light of these structural findings, we put forward a qualitative explanation of the observed
partitioning of Y in terms of its bonding requirement. Whereas Si and Al form very strong bonds with
oxygen, the Ca-O bonds have a looser character, since Ca is less charged and has a greater ionic radius
than Si and Al. When trying to satisfy its bonding requirements, Y competes for oxygen bonds with other
cations. In a polymerized melt, many strong competitors (Si and Al) are present, and Y has to take what
is left, forming many weak (elongated) bonds. On the other hand, in the presence of weak competitors
like Ca, Y can shape its bonding environment according to its needs and forms less, but stronger (shorter)
bonds. The enhanced ability of Y to shape its environment is reflected by the reduced oxygen disorder
around Y, which is indicated by the narrower Y-O distribution shown in Fig. B4, as discussed above. This
picture explains the trends in coordination number and average Y-O distance seen in the simulations. The
fact that Y prefers to be associated with Ca instead of Si and Al in the second coordination shell indicates
that it is energetically more favorable for Y to be surrounded by weak competitors. This should lead to
the observed partitioning into the more depolymerized melts. In section B43, we will take a more
quantitative approach to the energetics of trace element partitioning.

3.4.2 Comparison to EXAFS experiments

To corroborate our structural findings obtained from MD simulations, we compared them to results from
extended x-ray absorption fine structure (EXAFS) spectroscopy at the Y K-edge on four glasses of the
same major-element composition as the four simulated silicate melts, doped with 5000 ppm of Y. EXAFS
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probes the local environment around a selected element and hence provides information about the first
coordination shell of O around Y, in particular about the average Y-O distance. Since the spectra taken
on Al>SiOs glass could not be interpreted satisfactorily, this composition was excluded from further
analysis. The details of synthesis, sample preparation, data acquisition and analysis are described by
Simon efall (ZOT2).

A difficulty arises from the fact that the experiments were performed on glasses at room temperature
whereas the simulations describe melts at 3000 K. Apart from one case (see below), we did not perform
extensive simulations of glasses at room temperature (which could be compared directly to the EXAFS
data) because MD averages are physically meaningful only to the extent that the simulated system sam-
ples all of the energetically relevant phase space. For a single Y atom in glassy silicates, this criterion is
not fulfilled at low temperatures and with tractable simulation box sizes and simulation lengths. On the
other hand, in situ EXAFS measurements on melts are experimentally very challenging (Paiverf ef all,
DOTd). We anticipate that absolute interatomic distances will be larger in the high-temperature melt than
in the glass, due to thermal expansion, but expect changes between different compositions to be similar
for melts and glasses.

simulation experiment

Al;SiO5
CN 7.7 -
Feut 3.24
d 2.56 -
CaAl,Si» O3
CN 6.9 6.9%
Feut 3.24
d 2.52 2.34 (0.01)
Ca3A12(SiO4)3
CN 6.6 6.6%*
Feut 3.25
d 2.49 2.31(0.01)
CaSiO3
CN 6.2 6.2%
Feut 3.22
d 2.46 2.28 (0.01)

Table 3.2: Structural parameters for Y in silicate melts (glasses): coordination number CN,
cut-off radius r¢y for CN in A and average Y-O distance d in A, with standard deviations in
parentheses. Simulations performed at 3000 K, EXAFS spectra taken on glasses at 300 K.
*CN fixed at simulation values, see text for explanation.

The Y-O distance resulting from the analysis of the EXAFS data are compared to the results from the
simulations in table B2 For the analysis of the EXAFS data, the coordination of Y was taken to be the
one found in the MD simulations (see Bimon ef all (COT7) in this issue for a discussion). As expected, we
find Y-O bonds systematically elongated by about 8% in the high-temperature simulation with respect
to the data extracted from EXAFS. But remarkably, the Y-O bond length decreases consistently by 0.06
A in both simulation and experiment, when going from the more polymerized CaAl,Si;Og to the more
depolymerized CaSiOs3. For the distribution of O around Y, the experimental data reveal the same trend
as the MD simulations: with increasing NBO/(Si+Al), the peak becomes narrower and higher, reflecting
increasing oxygen order around Y (Fig. Bf). As expected, these distributions, measured on glasses,
are significantly narrower and more pronounced than the ones obtained from the simulation of high-
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temperature melts (Fig. B4). Note, however, that they sum up to the same coordination numbers. The
agreement in change of Y-O bond length between simulation and experiment as well as the congruent
changes in the shape of the distribution suggest that our interaction model for MD correctly captures the
link between melt composition and local environment around Y.
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Figure 3.6: Distribution of O around Y in three silicate melts as obtained from EXAFS
spectroscopy (for details see Simon et al. in this issue). The area under a curve up to a
certain distance ry_p gives the number Np of oxygen atoms within a sphere of radius ry_¢
around Y. Note the change of scale of the ordinate axis with respect to Fig. B4. Lines are a
guide to the eye.

In order to confirm that the observed differences between simulation and experiment are largely due
to differences between melts and glasses, and not to deficiencies of our interaction potential, we also
simulated CazAl,(Si04)3 glass, containing a single Y atom, at 300 K. We circumvented the problem of
insufficient sampling of the phase space by running a simulation at 3000 K, picking 100 configurations
from this simulation and quenching them separately to 300 K. With this procedure, different Y envi-
ronments (sampled in the high-temperature run) are “frozen” into the glass structures, and the average
over the 100 resulting glass structures should yield a representative description of Y in CazAly(SiOy4)3
glass. Note however, that due to the limited simulation time, the quench rate in the simulation was
—2.5-10'"" K/s, much larger than in the experiments. This means that the simulated glass formed at
a higher fictive temperature and therefore probably still has a slightly different structure than the glass
analyzed by EXAFS spectroscopy. We found an average Y-O distance of 2.38 A in the simulated glass,
to be compared with 2.31 A obtained from experiment (and 2.49 A in the simulated melt at 3000 K). The
coordination number of Y was found to be 6.1 (compared to 6.6 in the melt). The satisfying agreement
with experiment further corroborates the adequacy of our interaction potential in predicting glass and
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melt structures.

3.4.3 Y partitioning between silicate melts

In section B4, we suggested a qualitative explanation for the preference of Y for less polymerized
melts in terms of competition for bonding. Now we turn to a more quantitative description of element
partitioning and consider the free energy balance which accompanies the process. For trace element
incorporation in crystals, the lattice strain model (Blundy_and Wood (@94)) provides a link between
the structural changes induced by the incorporation (strain) and the associated energy costs, and these
determine the influence of the crystal on partitioning. However, in melts, there is no such obvious link,
due to the lack of well-defined lattice sites. We therefore chose a more general approach and applied
the method of thermodynamic integration, by which we calculated the change in Gibbs free energy upon
replacing a major element cation in the melt (Al) by a trace element (Y), and like in crystals, this change
in Gibbs free energy governs partitioning. More precisely, we modeled the exchange reaction of Y+
and A" between Al,SiOs melt and CaAl,Si>Og melt, as described in section E33:

Y3* in AL SiOs + A’ in CaAl,Si,Og

(3.14)
= AI’* in AL, SiOs + YT in CaAl,Si,Og

By choosing this melt pair, we by no means want to suggest that these melts coexist as immiscible
phases in nature or experiment. Rather they serve as a simplified model system on which the mechanism
and the energetics of trace element distribution can be studied. Moreover, even hypothetical partitioning
between two melts provides information about partitioning between mineral and melt: if one is interested
in the relative change of trace element distribution between a mineral (with constant chemistry) and
melts of varying compositions (see, e.g., Prowafke and Klemmd (Z03)), the problem can be reduced
to partitioning between the different melts, because the contribution of the mineral cancels out. The
equilibrium constant of reaction (B14) is well-defined thermodynamically and reflects the fractionation
tendency of Y and Al between the two melts. We suggest to view Al»SiOs5 as highly polymerized in
the sense that the ratio NBO/(Si+Al) is 0, whereas for CaAl;Si,Og, we found NBO/(Si+Al) = 0.14
in the simulation and thus consider it less polymerized (although nominally fully polymerized). The
presence of a significant amount of NBO in glasses of this composition has also been confirmed by
NMR experiments (Sfebbins and X1, T997).

The thermodynamic integration was carried out numerically, interpolating the five data points, cor-
responding to five values of A, for each system with a 4th order polynomial (Fig. EZll). The change in
free energy for the transmutation Y>* — AI>* is given by the integral in Eq. BI3, i.e. the area between
a curve and the x axis, and is found to be negative in both Al,SiO5 and CaAl,;Si;Og (areas below the
x axis are counted as negative). This indicates that incorporation of Y is energetically less favorable in
both cases than incorporation of Al. However, in Al,SiOs, it is unfavorable to a higher degree, and thus
the overall minimization of the Gibbs free energy dictates partitioning of Y into CaAl;Si;Os.

Quantitatively, we obtained a total AG = (—66 =+ 2)kJ/mol for the reaction (BId). The negative
sign indicates that the equilibrium is shifted to the right side, with Al enriched in the highly polymer-
ized Al;SiOs5 melt and Y incorporated preferentially into the less polymerized, Ca-bearing CaAl,Si;Og.
For T' = 2500 K, the resulting equilibrium constant is K = 24 £2. According to Eq. B, it approxi-
mates the ratio of molar partition coefficients DFZ™! /DR2'm! with m1 and m2 representing Al,SiOs and
CaAl,Si»Og, respectively. If one assumes that AG does not vary a lot with temperature, the equilibrium
constant will be K = (200 + 30) at 1500 K, a temperature in the range usually covered in experiments.

Since the equilibrium constant of the exchange reaction (B14) is related to a ratio of partition co-
efficients, we are cautious with making statements about D%‘f’ml itself. However, Meksler ef all (PO0A)
found that the partition coefficients of Al between two immiscible silicate melts are not too far from 1
(and much closer to unity than the partition coefficients of REE). If we assume that this also holds for our
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Figure 3.7: Thermodynamic integration for the exchange reaction of Y and Al between
Al SiO5 and CaAl;Si;Og melt (Eq. B13). The data points represent the average potential
energy difference (Va; — Vy), for the two compositions as a function of the transmutation
parameter A. The curves are 4th order polynomial interpolations to the data. Either of the
curves represents one of the transmutations or partial reactions in eq. BET1. The area between
the two curves corresponds to the total change in Gibbs free energy, AG, for the complete

exchange reaction.
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system, then our result indicates D™ > 1. This finding is in agreement with the observed preference

of Y (and other REE) for more depolymerized melts. It is also in line with our interpretation of the struc-
tural data in section B-41l, where we argued that the presence of Ca (a “weak competitor”) facilitates the
incorporation of Y into the melt.

3.5 Conclusions

We combined MD simulations and EXAFS spectroscopy to investigate the structural environment of Y
as a trace element in silicate melts of varying composition. For the MD, a new interaction potential
including polarization was constructed for the system Y-Ca-Al-Si-O, which proved to be accurate, trans-
ferable and computationally efficient. The simulations revealed two structural trends: First, the average
coordination number of Y decreases when the melt polymerization decreases (i.e. when the Ca content
increases). This change is accompanied by a decrease of the average Y-O distance by about 4%, and at
the same time, oxygen disorder around Y is reduced. A very similar variation is also seen in EXAFS
experiments on glasses, which corroborates the reliability of the simulation results.

Second, the MD simulations for the three Ca-bearing melts indicate that the second (cationic) coor-
dination shell around Y exhibits a larger Ca/(Si+Al) ratio than the bulk composition. In other words, Y
tends to form clusters with the network modifier Ca, which implies that for a given melt, it is energeti-
cally more favorable for Y to share oxygen with Ca than with the network formers Si and Al. This, in
turn, suggests that, given two melts of different composition, Y should partition preferentially into the
one with larger Ca/(Si+Al) ratio, i.e. into the less polymerized melt. Indeed, modeling the exchange
reaction of Y and Al between a Ca-free and a Ca-bearing melt by means of thermodynamic integration,
we confirmed that minimization of Gibbs free energy drives Y into the Ca-bearing melt.

In summary, using simple systems, we presented computational and experimental evidence on how
the influence of melt composition on trace element partitioning can be rationalized in terms of atomic-
scale processes. We found a systematic influence of melt composition on the microscopic melt structure
around Y and investigated the energetic implications of structural changes. The exemplary result that Y
incorporation into melts is facilitated by the presence of network modifiers is consistent with the general
observation that REE prefer depolymerized melts to polymerized ones. Although most systems which
are studied experimentally, and Nature itself, are more complex than the melts investigated in this study,
we still hold that the underlying mechanisms are the same in both cases.
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Chapter 4

Thermal conductivity of MgO, MgSiOs;
perovskite and post-perovskite in the
Earth’s deep mantle

4.1 Abstract

We report lattice thermal conductivities of MgO and MgSiOs in the perovskite and post-perovskite struc-
tures at conditions of the Earth’s lower mantle, obtained from equilibrium molecular dynamics simula-
tions. Using an advanced ionic interaction potential, the full conductivity tensor was calculated by means
of the Green-Kubo method, and the conductivity of MgSiOj3 post-perovskite was found to be significantly
anisotropic. The thermal conductivities of all three phases were parameterized as a function of density
and temperature. Assuming a Fe-free lower-mantle composition with mole fractions xygsio, = 0.66 and
xmgo = 0.34, the conductivity of the two-phase aggregate was calculated along a model geotherm. It
was found to vary considerably with depth, rising from 9.5 W/(mK) at the top of the lower mantle to
20.5 W/(mK) at the top of the thermal boundary layer above the core-mantle boundary. Extrapolation of
experimental data suggests that at deep-mantle conditions, the presence of a realistic amount of iron im-
purities lowers the thermal conductivity of the aggregate by about 50% (Manthilake efall, POTTd). From
this result and our thermal conductivity model, we estimate the heat flux across the core-mantle bound-
ary to be 10.8 TW for a Fe-bearing MgO/MgSiOs perovskite aggregate and 10.6 TW for a Fe-bearing
MgO/MgSiOs post-perovskite aggregate.

4.2 Introduction

The thermal conductivity of minerals in the Earth’s mantle is an important geophysical parameter which
governs the heat flux from the core up to the surface and hence strongly influences mantle dynamics (Nald
[boff and Kellogg, POO7). Moreover, the thermal conductivity of minerals at the core-mantle boundary
(CMB) determines the amount of heat extracted from the core, driving the convection of the liquid outer
core and thus controlling the power available to the generation of the Earth’s magnetic field (Davied,
D007, Anberfef all, PO0Y). Yet, measuring thermal conductivities at mantle pressures and temperatures
is extremely challenging, and experimental data are scarce. Several schemes exist to extrapolate ther-
mal conductivities measured at lower pressures and temperatures to deep-mantle conditions (Kassefall,
[9R4); Hofmeisfed, [999), but they are plagued with large uncertainties. Hence a computational approach
is desirable to evaluate thermal conductivities directly at the relevant conditions. The aim of this study
is to provide reliable values for the lattice thermal conductivities of MgO, MgSiO3 perovskite (Pv) and
post-perovskite (PPv) at lower-mantle conditions and their variation with temperature and density (or
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pressure). These results can be directly applied to thermal transport in the lower mantle.

In deep-mantle minerals, heat is conducted by phonons and electromagnetic radiation. The impor-
tance of the radiative contribution to thermal transport in the Earth is under debate, and current estimates
span a considerable range: while Gancharov-ef all (P09) report a radiative thermal conductivity below
~ 0.5 W/(mK) across the lower mantle, Sfamenkavicef all (OTT) predict ~ 5 W/(mK) at the CMB, and
(ZOOR) even values of up to ~ 10 W/(mK), which is of the same order of magnitude as the
lattice contribution. Moreover, the radiative conductivity seems to depend strongly on crystal grain size
and on the iron content (Hofmeisfer and Yued, PO0O7). In view of these difficulties, we focus on the lattice
contribution in this study. If the radiative conductivity turns out to be significant it can simply be added
to the lattice part presented here.

Over the past years, different atomic-scale methods were developed to calculate lattice thermal con-
ductivities. Sfackhouse ef all (ZOI0) applied the non-equilibrium or “direct” method (Miiller-PTafhd,
[U97; Nieto-Draghi and Avalod, PO03) to derive the thermal conductivity of MgO, using molecular dy-
namics (MD) simulations based on density functional theory (DFT). In this approach, an energy current
from the cold to the hot side of the simulation cell is imposed. From this current and the steady-state
temperature gradient which builds up, the thermal conductivity is obtained via Fourier’s law. While com-
putationally rather efficient, the method suffers from strong finite-size effects, thus requiring extrapola-
tion to infinite system size and introducing considerable uncertainties (Sellanef all, COT). An approach
based on phonon lifetimes, obtained from DFT, was used by He Kokei (Z009, POTM) and by
(DO10) to calculate the thermal conductivity of MgO. Phonon lifetimes were either calculated from
line widths in the Fourier transform of the velocity autocorrelation function (HeKaoked, PO09) or from an-
harmonic lattice dynamics ([[ang and Dong, POT). Combined with the Boltzmann transport equation for
the phonon gas, they yield the thermal conductivity in the relaxation time approximation. This approach
treats the anharmonicity of lattice vibrations perturbatively and is thus limited to temperatures where
atomic displacements from the equilibrium positions are small enough for higher-order anharmonicity to
be neglected.

A third approach, the Green-Kubo method, uses the Green-Kubo relations (Kuibd, T957) to obtain
thermal conductivities from appropriate current correlation functions, which, in turn, are readily ex-
tracted from equilibrium MD trajectories. This method has been successfully applied to solids (e.g. MalIA
(DT); SelTan ef all (Z010); [EsTarjant and Chen (PII)) and liquids (e.g. Galamba ef all (P007);
(PO0YR); Salanne ef all (KOTT)). In contrast to the non-equilibrium method, no concerns
about leaving the linear-response regime arise for equilibrium MD. Moreover, the Green-Kubo method
exhibits a weaker finite-size effect (Sellan-ef all, POT), provides the full thermal conductivity tensor in
one simulation and takes into account thermoelectric effects which can contaminate results of the non-
equilibrium method for ionic conductors (Salanne ef all, DOTT). Unlike the lattice dynamics approach,
the Green-Kubo method takes into account anharmonicity to all orders. Thus its validity is not restricted
to low temperatures. In the light of these advantages, we decided to use the Green-Kubo approach to
calculate thermal conductivities of MgO, MgSiO3 Pv and MgSiOs PPv at conditions spanning a wide
pressure and temperature range. We also determined conductivities at conditions where experimental
data are available, and satisfactory agreement with these experiments makes us confident that our results
are equally reliable at CMB conditions. A drawback of the method is that it requires long run durations
(in the nanosecond range) to obtain reasonable statistical accuracy. Our calculations are based on clas-
sical MD simulations involving an interaction potential of first-principles accuracy ([lahn-and Madden,
pama).

4.3 Theory

The thermal conductivity tensor A is defined by Fourier’s law, jo = —A VT, under the constraint that no
mass or electric currents are present. This constraint is relevant to electronic or ionic conductors, where
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thermoelectric effects occur (Called, T9XY). Fourier’s law is of linear-response type and relates the heat
current density jo to the temperature gradient VT'. For cubic and orthorhombic crystals, A is diagonal if
the coordinate axes are along the crystal axes, and direction-dependent conductivities can be defined by

)L(X = _]g/VOCT’ UAS {x,y,z} (41)

In the framework of non-equilibrium thermodynamics (Called, [9%S; He Groof and Mazii, T984), the
thermal conductivity can be expressed in terms of kinetic coefficients Lp, as is done in equations B3 and
B4 below. They determine the linear response of the system to deviations from equilibrium, i.e. energy
and mass flows resulting from thermal and chemical gradients. The gist of the Green-Kubo method is that
the kinetic coefficients Lap, although representing non-equilibrium behavior, are linked to fluctuations
in thermodynamic equilibrium via the fluctuation-dissipation theorem. The kinetic coefficients, and
hence the thermal conductivity, can therefore be obtained from equilibrium MD by means of appropriate
Green-Kubo formulae, which relate the linear response of a system with volume V' to current correlation
functions in thermodynamic equilibrium:

T
1 tim | L [Can sz sfoy) @2
where kp is Boltzmann’s constant, and the J{ are Cartesian components of the energy current (A = U) or
of the mass currents (A =1,...,N — 1, where N is the number of chemical species in the system), with
respective dimensions of energy or mass times velocity. Angular brackets denote an ensemble average.
We assume that the center of mass is at rest, hence there are only N — 1 independent mass currents for a
system with N chemical species. Then, for a system with two species, the thermal conductivity is given
by (Galamba-ef all, PO07),
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and for a system with three species by (Salanne efall, DOTT)
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It is worth noting that equations B3 and B4 are written here in terms of mass currents, whereas they were
originally derived in terms of ionic currents.

4.4 Simulation details

We performed equilibrium molecular dynamics simulations in the NVT ensemble, with a time step of
1 fs for the integration of the equation of motion and a Nosé-Hoover thermostat (Nasd, T984; Hooved,
[@XY) maintaining the system at the desired temperature. The cell dimensions were chosen as the average
cell size in a previous NPT run at the desired pressure P, maintained by a barostat (Martyna et al], [994).
The interactions between atoms were described by an advanced ionic interaction potential which was
parameterized non-empirically, using DFT as a reference (Iahn-and Madded, PO07). This potential has
been shown to reliably predict properties of minerals of the system CaO-MgO-Al,03-SiO, over a wide
temperature and pressure range, with accuracy comparable to DFT. In particular, the ionic interaction
potential used in this study was shown to describe MgO and the MgSiO3 phases perovskite and post-
perovskite well, predicting lattice constants to within 1% and elastic constants mostly to within 10%,
compared to DFT results (lahn-and Madden, DO07). The elastic constants determine vibrational modes
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of the crystal in the limit of long wavelengths (Ashcroff and Mermin, T976). These modes close to the
Brillouin zone center, in turn, are expected to make the largest contribution to the thermal conductivity
of the crystal (Tang and Dong, POT0). Therefore, we expect the interaction potential to produce accurate
lattice dynamics and thermal transport properties. For MgO, MgSiO3 Pv, and MgSiO3z PPv, we used cu-
bic or orthorhombic supercells containing 512, 960, and 720 atoms, respectively. For each composition,
temperature, and pressure, we generated trajectories of at least 0.5 ns and up to 2.4 ns.
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Figure 4.1: Thermal conductivity of MgO at 300 K, 0 GPa as a function of correlation time
T, see eq. B2, averaged over 15 MD blocks of 100 ps each. Clearly, a plateau is reached at
30 ps.

At each time step of the MD run, the mass currents for each species and the energy current were
extracted for later calculation of the different current correlation functions needed in Eq. EZ1. An explicit
expression for the energy current for polarizable ions was derived by (ZOO9RH). The total
MD run was then divided into blocks of equal length (50 to 100 ps) which were analyzed independently
for current correlation functions and thermal conductivity. The correlation time 7 in Eq. B2 was chosen
large enough for the thermal conductivity A to reach convergence. In practice, A as a function of 7
oscillates around its limiting value, and for each MD block, we took a time average over the first plateau
of the cumulative A(7) (averaged over the A(7) from the individual MD blocks), see Fig. BTl Finally,
the thermal conductivity and its 16 uncertainty were obtained by averaging the results from all blocks.
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4.5 Results and discussion

45.1 MgO

For reference, we first calculated the thermal conductivity of isotopically pure MgO in the fcc structure
at 300 K and ambient pressure. At these conditions, the model predicts a density p = 3.602 g/cm?, which
is in excellent agreement with the experimental density at ambient conditions, 3.583 g/cm? (Speziald
Efall, DO0™). In Fig. BT, we show the computed thermal conductivity as a function of correlation time
T, see Eq. B2, The data contain a number of outliers, due to the second term on the right side of Eq. E3.
Both Ly and L;; are expected to be close to zero when no diffusion is present, thus the quotient may
take on very large positive or negative values occasionally, although it should be small in a crystal. Since
outliers tend to distort arithmetic averages, we calculated the conductivity for each MD block from the
median of the data over the plateau, which is a more representative measure for the expectation value in
such cases.

Our value of the thermal conductivity at ambient conditions is (111 & 16) W/(mK), significantly
larger than that found in other computational and experimental studies (table BE-1l). However, overesti-
mation with respect to experiments is to be expected, since we considered a perfect, isotopically pure
crystal, whereas the experiments were performed on real crystals with natural isotopic composition and
defects, which reduces the thermal conductivity considerably relative to its perfect-crystal value (Kremed
Bf all, D004, Tamurd, TI83). Therefore, our results should indeed be larger than the experimental ones.
(ZOT0) evaluated the isotope effect for MgO and found that at ambient conditions, the
thermal conductivity of an isotopically pure crystal exceeds the one of natural samples by as much as
46%. This correction for isotopic composition is already included in their results in table B, If we apply
the same correction to our data, we get Ane0(300K,0GPa) = (76 + 11)W/(mK). Defects, impurities and
grain boundaries in real crystals will further reduce the thermal conductivity, and thus our result is fully
compatible with the measured conductivity of (65 £ 15) W/(mK) (Kafsurd, [994). On the other hand,
the computed values given by de Kokei (POT0) and in particular by Sfackhonse ef all (PT0) seem to fall
at the low end of values reconcilable with experiments, as the computational data represent isotopically
pure, perfect crystals and therefore should not agree with conductivities measured on real samples. Fol-
lowing Bellan ef all (ZOT0), the relatively small value of Biackhonse ef all (ZOT) may be attributed to the
use of a linear extrapolation to account for finite-size effects in the non-equilibrium MD method, which
leads to a systematic underestimation of the thermal conductivity.

The thermal conductivity was evaluated at four more p, T points, up to lowermost-mantle conditions,
T =3000 K, p = 5.307 g/cm?, see table EI. These data allow us to parameterize the behavior of thermal
conductivity over a wide density and temperature range, including the conditions relevant to the lower
mantle. The temperature and density dependence of the thermal conductivity is a highly complex matter,
and no general theory is currently available (Ohforiefall, DOM9d). The dependence on density can be
described, in the framework of the Debye approximation, as A o< p“, where a is itself a function of density
and temperature in principle (deKaoked, DOTO). In a recent study, Manfhilake ef al] (ZOITH) tested the
validity of different models for a(p,T) by measuring the thermal conductivity of CaGeOj3 perovskite,
which is an analog phase for MgSiOs. They found subtle differences in the density dependence of a
compared to the case of MgO, which they attributed to the larger number of optical phonons in the
perovskite phase. However, in view of the limited number of data points in our present study, we take a to
be constant, as in Sfackhonseefall (PTA), which yields an effective a for the entire density range spanned
by our data points. Concerning the temperature dependence, thermal conductivity approximately follows
a power law A o< T~ at high temperatures (BShcroff and Mermim, [978). Following Be_Koken (DIIIT)
and Siackhouse ef all (ZOTI0), we write

son-n(2) (5)
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with a fixed reference point py = 3.602 g/cm’, Ty = 300 K, and free parameters Ag, a, and b. The result
of a least-square fit of Eq. B3 to the data points is given in table EZ1. The quality of the fit can be assessed
by means of Fig. E2.

At the high temperatures prevailing at the CMB, anharmonicity, i.e. phonon-phonon scattering, is
expected to be the dominant mechanism limiting the thermal conductivity, compared to other sources
of phonon scattering like isotopic disorder, point defects, and grain boundaries. This is because the
number of phonons present in the material increases with temperature and hence the mean free path
between phonon-phonon collisions becomes shorter than the mean free path imposed by other scattering
mechanisms. The reduction of the thermal conductivity due to isotopic disorder in MgO has been shown
to decrease from 46% at room temperature to only 4% at 4000 K (Tang and Dong, DOT0). Qualitatively
the same behavior has been observed in experiments on other materials, see e.g. Kremer ef all (DO04).
In MD simulations, anharmonicity, i.e. the dominant scattering mechanism at high temperatures, is
automatically included to all orders, and hence our conductivity results for a perfect crystal should be a
good approximation for real MgO at CMB conditions. The same argument applies to the MgSiO3 phases
to which we turn in the following paragraphs. Although the above reasoning is based on sound physical
considerations, we emphasize that more experimental or simulation data are needed to fully understand
and quantify the influence of different kinds of defects on the thermal conductivity at high pressure and
temperature.

4.5.2 MgSiO3 perovskite

MgSiOj3 in the orthorhombic perovskite structure Pbnm is generally accepted to be the most abundant
mineral in the Earth’s lower mantle (i.e. below a depth of 670 km). It consists of a three-dimensional
network of corner-sharing SiOg octahedra, with Mg occupying the larger inter-octahedral sites. The
calculated thermal conductivity of MgSiOs in the perovskite structure, averaged over all directions, at
four state points spanning a wide range of densities and temperatures, is given in table BEl, along with
available experimental data. The effect of isotopic disorder on the thermal conductivity is not known for
the MgSiO3 phases Pv and PPv. As in the case of MgO, it may be significant at low temperatures but
is expected to decrease rapidly with temperature. The density and temperature dependence of thermal
conductivity is well described by Eq. B3, and the respective fit parameters are listed in table E2. In
Fig. B2, the model conductivity is plotted along with the computed data points.

The available experimental data for perovskite scatter considerably (table ETl), and the effect of
grain boundaries, isotopic disorder and other defects like possible cracks in the samples is not known
quantitatively. Hence a comparison to our results is difficult. As expected, the results obtained from
perfect-crystal simulations are larger than the experimental values. Our results seem compatible with
those of Manfhilake ef all (POTTA) but more difficult to reconcile with the data of Dhfaefall (ZOT2). Note
that at 300 K and approximately 30 GPa, (DOT2) report a considerably lower conductivity than
Manfhilake efall (DOTT4d): the data, both derived from measurements, differ by a factor of almost 2. At
ambient conditions, (T9T) report the conductivity to be 5.1 W/(mK), which is in line with
the value of 5.8 W/(mK), derived from a fit to experimental data by (Car).

4.5.3 MgSiO; post-perovskite

The perovskite structure of MgSiO3 transforms to an orthorhombic post-perovskite phase (Cmcm) at ap-
proximately 125 GPa and 2500 K (Murakami ef all, PO04; Dganov and Ond, ZO04) which is believed to
be stable in the Earth’s lowermost mantle close to the core-mantle boundary and might be responsible for
the D” seismic discontinuity (Gfakaetall, DO04). It is characterized by layers of corner- and edge-sharing
SiOg octahedra perpendicular to the b axis, with Mg occupying inter-layer sites. This anisotropic struc-
ture exhibits strongly anisotropic elastic properties ([ifakaef all, P004), which should lead to direction-
dependent phonon velocities, and hence we expect anisotropic thermal transport properties. Therefore, in
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Table 4.1: Thermal conductivity of fcc MgO, MgSiOs Pv, and MgSiO3 PPv. Pyp is the
pressure resulting from our MD simulations with the indicated density and temperature, and
Pros the one obtained from an equation of state by Stixrude and Lithgow-Bertellonj (ZO0T).
Results are from this study if not otherwise indicated. For the last p,T point of PPv, the
three directional conductivities average to (15.3 £ 0.8) W/(mK), to be compared with the
calculated bulk A of (15.1 + 0.9) W/(mK). The difference, which is safely within the error
bars, results from slightly different averaging schemes: for the bulk value, we first averaged
over all directions and then over time (i.e. over the plateau, see Fig. El), whereas for the
direction-dependent conductivities, we averaged each direction individually over the plateau.

phase p (glem’) T (K) Pup (GPa) Pros (GPa) A (W/(mK))

MgO 3.602 300 0 1 111 £+ 16
76+ 112
620
59+6°¢
754
65+15°¢
5.410 300 134 151 1400 + 250
4.201 2000 41 45 40.0 £ 2.5
5.307 2000 133 148 141 £ 11
5.307 3000 138 155 76.8 + 4.4
MgSiO3 Py 4.544 300 26 31 27.0+22
26 19f
31 10.6 £ 0.6 ¢
5.332 300 107 111 61.3+79
108.4 23.7+4¢8
4.544 2000 40 42 9.7+ 1.0
5.401 3000 139 137 124 +2.0
300 - ambient 5.1h
300 - ambient 581
MgSiO3 PPy 5.631 298 135 138 167 + 25
141 65+ 14¢
5.482 2000 130 132 16.8+0.5
5.631 2000 150 150 20.6 + 1.7
5.482 3000 138 140 15.1+£0.9
A 180+ 1.8
Ay 137+ 1.0
A:141+£12

 This study, with isotope correction from (2oTa)

P_Tang and Dong (PIII0), DFT, with isotope correction

ESiackhonse ef afl (ZOTO), DFT, perfect crystal

E-de Koked (zOT0), DFT, perfect crystal

EKafsurd (I997), experiment at ambient conditions

L Manthilake et all (POTTA), experiment at 300 K

E"Ohfa ef all (ZOT7), experiment at 300 K, pressure determined experimentally

FOsako and Ttd (T99T), experiment at 300 K, metastable (quenched to ambient
pressure)

[_Ohta et all (PIII7), high-P experiments, extrapolated to ambient pressure
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Figure 4.2: Density and temperature dependence of the thermal conductivity for MgO, Pv
and PPv. Data points are results of our MD simulations. Lines are fits to eq. B3 (MgO, Pv)
or eq. EA (PPv), with colors representing different temperatures. Blue: 300 K, green: 2000
K, red: 3000 K. Inset: PPv at conditions relevant to the lower mantle.
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Table 4.2: Parameters for the density and temperature dependence of thermal conductivity
resulting from fits to our calculated data points, for MgO in fcc structure, MgSiO3 Pv (both
described by Eq. E3) and PPv, described by Eq. E8. Reference density pg and temperature
Ty are fixed during the fit.

po (glem’) Tp (K) A9 (W/(mK)) a b

MgO 3.602 300 129 542 1.10
MgSiO3 Pv 4.544 300 28.3 4.06 0.608
MgSiO3 PPv 5.482 3000 14.6 7.48 0.327

addition to the direction-averaged conductivity, we also calculated the thermal conductivities separately
along the three axes of the orthorhombic crystal for one data point, at conditions representative of the
lowermost mantle. The simulation time was extended to 2.35 ns in this case to ensure satisfying statistics
for each direction individually. The results for several p, T values are listed in table EI.

The calculated data points could not be fit satisfactorily with Eq. B3, due to the very weak tempera-
ture dependence of the thermal conductivity above 2000 K (compare the second and fourth data point of
PPv in table ETl). This flattening of the thermal conductivity as a function of temperature is consistent
with experimental observations which show a near-constant conductivity above a certain temperature,
depending on the material studied (Perfermann ef all, PO0R). In parameterizing the thermal conductiv-
ity of PPv, we therefore used an expression which reconciles a strong temperature dependence at lower
temperatures with a flat behavior at high temperatures. A good fit could be obtained with the following

functional form: b b
B P a To To — 295K
/I(P,T)—ﬁo<po> <T—295K> ( Ty ) 0

where po and Ty are fixed reference values and Ay, a, and b are fitting parameters, and the last (nor-
malizing) factor ensures that A(po,7Tp) = Ao. The results of a least-square fit are listed in table B2 and
compared to the data in Fig. B2. Due to the somewhat empirical nature of the assumed temperature de-
pendence, the validity of Eq. BA is restricted to the temperature range covered by our data points. It can
certainly not be applied below 298 K: in fact, the expression diverges at T = 295 K. However, we stress
that all data points are well fitted. In particular, the density and temperature dependence at conditions of
the lower mantle is well captured by the model, as can be seen from the inset in Fig. E7.

The calculated conductivity at conditions of the lowermost mantle is clearly anisotropic, and it is
lowest in the y direction (along the b axis of the crystal). This is consistent with the fact that the crystal
is softer along b (perpendicular to the layers formed by corner- and edge-sharing SiO¢ octahedra) than
along a and c (in the plane of the SiOg sheets). This leads to lower phonon velocities along b, at least
close to the Brillouin zone center, and a reduced conductivity.

The thermal conductivity of (167 £ 25) W/(mK), obtained at 300 K and p = 5.631 g/cm3, is con-
siderably higher than the value derived from experiments at similar conditions by [hia_ef all (ZOT7),
which is (65 + 14) W/(mK) (table Bl). Although we cannot quantify the effect of defect scattering in
their polycrystalline PPv sample of natural isotopic composition, the discrepancy seems too large to be
completely explained by this mechanism, and its origin remains unclear. We note however, that in the
case of perovskite, the thermal conductivity reported by Dhia_ef all (Z0I) was much lower than the
experimental value by Manfhilake ef all (ZOTT4d). Interestingly, the estimate of (DOT2) for the
thermal conductivity of PPv at 3000 K and 135 GPa, based on an assumed temperature dependence, is
close to and even slightly higher than our result at similar conditions (19.5 W/(mK) and 15.1 W/(mK),
respectively). This agreement at high 7 may partially be due to a fortuitous cancellation of discrepan-
cies, since Ohifa_efall (ZITA) assumed a different temperature dependence than the one we found. But
it also hints at the fact that differences between perfect-crystal simulations and real-sample experiments

55



Chapter 4. Thermal conductivity of MgO, MgSi03 perovskite and post-perovskite in the
Earth’s deep mantle

become less important with increasing temperature.

4.6 Implications for the thermal conductivity of the Earth’s lower mantle

When applying our results to heat transport in the Earth’s deep mantle, they should be considered upper
estimates for the lattice thermal conductivities of real minerals. Our calculations do not take into account
the natural isotopic composition, impurities, and defects of the minerals, all of which lower the conduc-
tivity. Manfhilake efall (ZTTd) measured the effect of realistic amounts of iron impurities on the thermal
conductivity of MgO and MgSiOj3 perovskite, at relatively low temperatures and pressures. By extrap-
olation, they estimate that 20 mol% and 3 mol% of iron in MgO and perovskite, respectively, reduce
the thermal conductivity of the aggregate at the CMB by about 50% relative to that of the chemically
pure aggregate. On the other hand, we did not take into account radiative heat transport as an additional
mechanism of thermal conduction.

To calculate the thermal conductivity in the lower mantle, we assumed a simplified mantle com-
position, derived from the pyrolitic composition given by Piazzonief all (E04), with molar fractions
XMgsio; = 0.66 (perovskite structure) and xvgo = 0.34. The conductivities were calculated along a man-
tle geotherm, with the depth-dependent pressure taken from the Preliminary Reference Earth Model
(Dziewaonski and Anderson, [9%T) and the temperature profile adopted from Sfacey and Davig (POUR).
Since our model for thermal conductivities was parameterized as a function of density and temperature,
the pressures along the geotherm had to be converted to densities. This was done by means of equations
of state for the mineral phases, described by Stixrude and Lithgow-Bertellonj (P00Y), with a revised set
of parameters for that model taken from Xiief all (CO0OR). The pressures resulting from the equations
of states for a given density and temperature agree well with the pressures obtained directly from our
MD simulations (table ETl). This further corroborates the adequacy of the interaction potential used in
the simulations in describing material properties over the p,T range of the lower mantle. By means of
the equations of state, the mole fractions of the individual mineral phases can be converted to volume
fractions, yielding about 82% Pv and 18% MgO by volume in the lower mantle. These numbers change
slightly with pressure and temperature, and the exact values resulting from the equations of state have
been used throughout the study.

The thermal conductivity of a two-phase aggregate, expressed in terms of the conductivities, A1, A,,
and volume fractions, f1, f2, (fi + f> = 1), of the individual phases, depends on the geometric details of
the assemblage. The extreme cases are realized by a structure of alternating parallel layers of the two
phases, with a heat flux parallel and perpendicular to the layers, respectively. For the former case (a
“parallel circuit”), the conductivity of the aggregate is maximum and given by the arithmetic or Voigt
average Amax = fiA1 + foA2. For the latter (a “series circuit”), the conductivity takes on its minimum
or Reuss average Amin = (fi/A1 + f2/ lz)_l. For other geometries, not necessarily built from layers, the
conductivity of the aggregate will lie within these bounds.

Fig. B3 shows the thermal conductivity of the MgSiO3(Pv)-MgO aggregate along the model geotherm
and, for comparison, of the MgSiO3(PPv)-MgO aggregate close to the CMB. Thermal conductivity in-
creases with pressure and decreases with increasing temperature, see Eq. E3. With increasing depth, the
pressure effect dominates over the concomitant temperature rise, resulting in a net increase of the thermal
conductivity. Only close to the CMB, the sharp rise in temperature in the thermal boundary layer reverses
this trend. At 2891 km depth, i.e. at the CMB, with P = 136 GPa and T = 3739 K, the conductivity of
a MgO/MgSiOs perovskite aggregate is predicted to lie between Ay, = 13.7 W/(mK) and A, = 19.1
W/(mK), depending on geometry, with average A = 16.4 W/(mK). With MgSiOj in the post-perovskite
structure instead, we obtain Ayin = 13.9 W/(mK), Amax = 19.3 W/(mK), and 2 = 16.6 W/(mK), i.e.
changes are not significant. The value for the PPv/MgO aggregate is in good agreement with
Bfall (ZOT7), who estimate the aggregate conductivity at 4000 K and 135 GPa to be approximately 16
W/(mK). Assuming that a realistic amount of iron impurities reduces the aggregate conductivities by
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Figure 4.3: Average thermal conductivity A along a model geotherm (Sfacey and Davig,
DO0R) for an aggregate with mole fractions xmgsio, = 0.66 (black circles: perovskite struc-
ture, red diamonds: post-perovskite strucutre) and xyvgo = 0.34. The dashed lines represent
Amin and Aqax, bracketing the geometry-dependent aggregate conductivity (see text). Lines
are a guide to the eye. The grey-shaded area indicates the range of the Pv/MgO aggregate
thermal conductivity under the assumption that iron in the Earth’s lower mantle reduces the
conductivity of the aggregate by 50% (Manthilake ef all, PDOTTH).
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50% (Manthilake efal], POTT4), the respective average conductivities at the CMB are 8.2 W/(mK) for
the MgO/perovskite and 8.3 W/(mK) for the MgO/post-perovskite aggregate. The influence of iron on
the thermal conductivity is treated approximatively here, and more data are needed to better quantify this
effect at high pressures and temperatures.

Our results for the thermal conductivity across the lower mantle for an iron-free composition are
in remarkable agreement with (albeit slightly larger than predicted by) the thermal conductivity model
by Manthilake ef al] ((IITT4d) which is based on an extrapolation of low-P, T experimental data to CMB
conditions, assuming an aggregate of 20% MgO and 80% Pv by volume. On the other hand, the model
used by Hofmeisfed (T999) to extrapolate available conductivity data to high P,T (including iron) yields
somewhat smaller values, ranging approximately between 4 W/(mK) and 7 W/(mK) across the lower
mantle. Also the estimate of the lower-mantle thermal conductivity by Gancharavefall (PO09) lies below
our data: for the lattice conductivity, they assumed an iron-free mantle composition (20% MgO and 80%
Pv by volume) and extrapolated experimental data, finding a maximum lattice thermal conductivity Amax
varying from approximately 3 W/(mK) to 11 W/(mK) across the lower mantle. Kiamenkovicef all
(DaT), using the Ross model (Rass_ef all, T984)) and approximative equations of state to derive high-
P, T lattice thermal conductivities from available data, also obtained values lower than ours, with A«
not exceeding 8 W/(mK) for an iron-free mantle composition (20% MgO and 80% Pv by volume). We
emphasize that our data are based on simulations directly at lower-mantle conditions and do not depend
on extrapolations.

Finally, an estimate for the heat flux across the CMB is presented. Given the temperatures 77 and
T, at two different depths z; and z» as boundary conditions, the steady-state heat current density jo is
determined by an integral form of Fourier’s law,

. 1 &
Jo=— dTA(p,T) 4.7
22— 21 JT

where the two concentric spheres corresponding to z; and z; are locally approximated as parallel planes.
Taking the temperature at the CMB and 120 km above from Stacey and Davig (Z008) and neglecting the
small density variation across this layer, we obtain an average CMB heat flux of 21.5 TW for a Pv/MgO
aggregate and of 21.2 TW for a PPv/MgO aggregate. This estimate is based on a specific thermal model
of the Earth, and a different temperature profile at the CMB would lead to a somewhat different estimate
of the CMB heat flux. Assuming that the presence of iron impurities reduces the heat flux by 50%
(Manthilake ef all, DOTTA), it is estimated to be 10.8 TW on average for an Fe-bearing Pv/MgO aggregate
and 10.6 TW for a Fe-bearing PPv/MgO aggregate, with possible variations by about +20%, depending
on the geometric details of the two-phase assemblage. These values for the CMB heat flux are consistent
with previous estimates, spanning a wide range from 5 TW to 15 TW (Cay et al], ZOOR).

4.7 Conclusions

We performed equilibrium MD simulations and used the Green-Kubo method to calculate lattice thermal
conductivities of MgO, MgSiOs perovskite, and MgSiO3 post-perovskite over a wide range of pressure
and temperature conditions relevant to the Earth’s deep mantle. To our knowledge, these are the first
simulation results for the MgSiO3; phases. Moreover, the thermal conductivity of the lowermost mantle
has been determined directly, without extrapolation from experimental or computational low-pressure or
low-temperature data and hence is free of the inherent uncertainties.

The data were used to construct a model for thermal conductivities as a function of density and
temperature, which was then applied to the Earth’s lower mantle. The thermal conductivity was found
to increase significantly with depth and to decrease steeply across the thermal boundary layer above the
CMB. These results may be used in geodynamic modeling to refine large-scale simulations of mantle
convection. In this field, one often assumes a constant thermal diffusivity A /(pcp) (p: densitity, cp:
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specific heat capacity) across the mantle (e.g., Tan-ef all (Z0TT)), which is poorly constrained, moreover.
Together with the approximation cp = const., this implies A o p, a rather restrictive assumption, to be
contrasted with the more flexible Eq. E3.

By combining our thermal conductivity results with a thermal model of the Earth (Stacey and Daviy,
PO0R), the lattice contribution to the CMB heat flux is estimated to be about 11 TW for a Fe-bearing
two-phase aggregate (virtually the same with MgSiO3 perovskite and post-perovskite). This relatively
high flux is consistent with recent estimates of the heat flux required to generate and maintain mantle
plumes (Cay et al], POR). Due to the large conductivity contrast between MgO and the MgSiO3 phases,
the conductivity of the two-phase aggregate depends strongly on the aggregate geometry. Thus, the CMB
heat flux may show large lateral variations by up to about £20%.
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Chapter 5

Outlook

In the present thesis, we have investigated two particular aspects of the chemical and thermal inhomo-
geneity of the Earth from an atomistic perspective. It was stated in the introduction that the “reductionist”
approach, inherent to the atomistic simulation of materials, allows us to derive all macroscopic thermo-
dynamic properties of a system from the behavior of its microscopic constituents, at least in principle.
The atomic-scale explanation of trace element partitioning and the calculation of thermal conductivities
from crystal lattice vibrations are two examples for the power of this method. It is clear, however, that
the Earth as a whole is far too big and too complex to be described directly in terms of the statistical
mechanics of individual atoms. Instead, a multi-scale approach has to be taken which bridges the many
orders of magnitude between atoms and planetary bodies. In this perspective, the role of atomistic mod-
eling is to provide material parameters for modeling and the theoretical description on the next-higher
scale. Thus, the observed relation between melt composition, melt structure and the chemical affinity
of trace elements may be used to design or to refine (large-scale) models for trace element partitioning
during crystallization processes in magmatic systems. The calculated thermal conductivities of lower-
mantle minerals and their variation with density and temperature can serve as an input for large-scale
hydrodynamic simulations of mantle convection, which depend on accurate material parameters.

The results on the thermal conductivity of lower-mantle phases are complemented by ongoing work
which investigates the effects of isotopic disorder and lattice imperfections on the lattice thermal con-
ductivity. In chapter B, it was suggested that these effects might explain, at least partially, the discrep-
ancies between simulated and experimental thermal conductivities at room temperature in MgO as well
as MgSiOs perovskite and post-perovskite. There is experimental (Kremer ef all, D004; [Chang et all,
00d) and computational (Tang and Dong, DOTJ; Cindsay et al], DOTA) evidence that isotopic disorder
can reduce thermal conductivities at low temperatures by up to an order of magnitude (e.g. for Si in the
diamond structure) but becomes rapidly less important with increasing temperature. We are currently ap-
plying the Green-Kubo equilibrium MD method to the lower mantle phases using simulation cells with a
random distribution of isotopes in order to determine this effect quantitatively. This will help to compare
simulation results more directly to experimental data, typically obtained from isotopically disordered
samples. Moreover, a similar simulation approach with randomly distributed lattice defects is envisaged
to evaluate their effect on the thermal conductivity.

Another study is underway which is devoted to the thermal conductivity of silicate melts. There is
strong evidence that the Earth went through a phase in its early history when it was molten to a significant
extent and at least parts of the mantle formed a silicate magma ocean (SEalomatfaou, DO09; Rihie ef all,
D009). The dynamical behavior of this large melt body is governed by the Rayleigh number, which de-
pends on the thermal conductivity, among other thermodynamical and geophysical parameters.
Bfall (Z01) studied different scenarios for the magma ocean, with depths reaching up to 2740 km. In
the absence of direct information about the thermal conductivity of silicate melts at these conditions, its
value is poorly constrained, and the authors assumed values between 1 W/(mK) and 3 W/(mK) which
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were inferred from ambient-pressure data and solid analogs.

As demonstrated in the previous chapter, equilibrium molecular dynamics simulations in conjunction
with the Green-Kubo formalism are a powerful tool to determine thermal conductivities of crystalline
solids even at conditions where experiments are not (yet) possible. However, the approach is rooted
directly in general principles of statistical mechanics and does not depend on the crystalline structure of
the studied system. Therefore, it can also be applied to liquids (see, e.g., (OM93)). This is
an advantage over the lattice-dynamics method ([Tang_and Dong (ZI0)) which relies on the existence
of well-defined phonons, i.e. vibrational modes of a harmonic crystal lattice, and treats anharmonic
effects via a low-order perturbation approach. Melting, however, is a paradigmatic manifestation of
strong anharmonicity, and hence the thermal conductivity of liquids cannot be obtained with the lattice-
dynamics method.

We are currently calculating the thermal conductivity of a magma ocean, approximated as Mg,>SiO4
melt, by means of the Green-Kubo method, at temperatures between 2600 K and 3000 K and pressures
varying between ambient conditions and 32 GPa. The results will complement previous computational
studies on this melt which explored thermodynamic properties and the viscosity (Adjaoud et al], DOOR,
DOTT), and the new data will contribute to constraining the thermal and dynamical state of a magma
ocean.
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