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Abstract
We investigatemaximal exceptional sequences of line bundles on (P1)r , i.e., those con-
sisting of 2r elements. For r = 3 we show that they are always full, meaning that they
generate the derived category. Everything is done in the discrete setup: Exceptional
sequences of line bundles appear as special finite subsets s of the Picard group Zr of
(P1)r , and the question of generation is understood like a process of contamination of
the whole Zr out of an infectious seed s.

Keywords Exceptional sequences · Line bundles · Derived category · Line
configurations

1 Introduction

The content of the paper can be understood in two different languages. While the
version of Sect. 1.1 presents everything as a challenging self-contained, combinatorial
task, like a game to play, the background motivation stems from the algebro geometric
scenario explained in Sect. 1.2. The paper sticks to the first language. That is, beyond
Sect. 2.1, no algebraic geometry will appear.

1.1 The combinatorial language

Let s = {s0, . . . , sm−1} ⊂ Z
3 be an ordered subset such that for each i < j there is an

index ν = ν(i, j) ∈ {1, 2, 3} satisfying s jν −siν = 1. Then, beginning with s, we start a
contamination procedure by declaring each affine line � ⊂ Z

3 parallel to a coordinate
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axis to be infected if it contains at least two adjacent infected points. See Definitions
2.2 and 2.3 for more details. Then, Theorem 2.4 states that s consists of at most eight
elements and, moreover, if |s| equals this maximal number, then it contaminates the
whole lattice Z3.

1.2 The algebro geometric language

To investigate the derived category of smooth, projective algebraic varieties X one
tries to mimic the methods of linear algebra by working with semiorthogonal decom-
positions and, more special, with so-called exceptional sequences, cf. Definition 2.1.
The latter can be understood as an analog to linearly independent sets. Moreover, by
definition, full exceptional sequences generate the entire derived category D(X) so
they correspond to bases of vector spaces in linear algebra.

However, this comparison has a flaw: While the cardinality of full exceptional
sequences s, if they exist at all, is known to be the rank of the Grothendieck group
K0(X), it is not clear whether exceptional sequences s with |s| = rk K0(X) are auto-
matically full. In [3], this problem was related to the existence of so-called phantom
categories, i.e., non-trivial triangulated categories with vanishing Hochschild homol-
ogy and trivial Grothendieck group. They may appear as orthogonal complements
of those exceptional sequences. See [10] and the citations therein for examples and a
general discussion of this subject.

A special situation for those questions appears with the class of smooth, projective
toric varieties X = TV(�) for fans � in some real vector space NR = R

n . Here, the
rank of K0(X) equals the number of full-dimensional cones inside �. Alternatively,
if � appears as the normal fanN (�) of a smooth lattice polytope � in the dual space
MR = (Rn)∗, then rk K0(X) equals the number of vertices of �. If one drops the
requirement of line bundles and asks for general complexes of coherent sheaves as
elements of full exceptional sequences instead, then their existence was guaranteed
by Kawamata’s papers [5–7]. On the other hand, if one insists on line bundles, then
Efimov has shown in [4] that full exceptional sequences cannot exist for all smooth,
projective toric varieties.

In the present paper, we do not address the question for which fans � those
sequences exist at all. Instead, we consider the very special situation of X = (P1)r

where � is the r -dimensional cube having 2r vertices. Here, the existence is guar-
anteed by the trivial example s = {O(a) | a ∈ {0, 1}r }. However, it is not trivial
at all whether all other exceptional sequences consisting of 2r line bundles generate
Pic(P1)r = Z

r which is generating D(P1)r . This was also the main problem in [9,
(4.2)]. For r = 2 the question is rather trivial and will be discussed in Sect. 3.2. Our
main result is an affirmative answer for the case r = 3:

Theorem 1.1 Every maximal exceptional sequence of line bundles on (P1)3, i.e., con-
sisting of eight elements, is full.

This theorem appears later, as Theorem 2.4 in Sect. 2.4, in a slightly different
form. There it is formulated in the combinatorial manner as it was already announced
in Sect. 1.1—that is, making use of the language of contaminations which will be
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introduced in Subsections (2.2) and (2.3). It should be mentioned that even in this
very special case of r = 3 we depend on the usage of computers.

1.3 Previous work

Related work into the direction of the above theorem is contained in the recent preprint
[8] dealing with the case of toric Fano varieties of Picard rank two and dimensions
3 or 4. This is going to be generalized to arbitrary smooth, projective toric varieties of
Picard rank two in [2]. The latter contains the case of X = P

d ×P
e, e.g., X = (P1)2.

The result of the present paper is the first step into the direction of a higher Picard
rank.

2 The basic setup

2.1 Basic definitions

Let us recall the basic definitions. We restrict ourselves to the case of line bundles.

Definition 2.1 1) A sequence s = [L0, . . . ,Lm−1] of line bundles on a smooth,
projective variety X is called exceptional if there are no backward homomor-
phisms, i.e., for each i < j we have HomD(X)(L j ,Li [∗]) = 0. Here we denote
byD(X) := Db(X) the bounded derived category, and ∗ refers to arbitrary shifts.
In other words, Hk(X ,Li ⊗ L−1

j ) = 0 for all k ∈ Z.
2) An exceptional sequence s is called maximal if m = |s| = n := rk K0(X).
3) An exceptional sequence s is called full if the set {L0, . . . ,Lm−1} generates the

derived category D(X). That is, the latter is the smallest triangulated category
containing these sheaves.

Note that, in contrast to (1), the properties (2) and (3) of the previous definition do
not depend on the particular ordering within the sequence s. For smooth, projective
toric varieties X = TV(�), we can identify Cl(X) = Z

r with r = #�(1) − dim X .
Then, the classes si = [Li ] correspond to certain points in Zr , and the exceptionality

condition asks for
−−→
si s j = s j − si ∈ − Imm(X) for i < j where Imm(X) ⊆ Z

r

denotes the immaculate locus, i.e., the set of those classes of line bundles carrying no
cohomology at all, including the 0-th one. See [1] for a discussion of this interesting
region.

2.2 Products of projective spaces

Assume now that X = P
d1 × · · · × P

dr . In contrast to arbitrary smooth, projec-
tive toric varieties, this special case provides a very explicit and clear description
of the immaculate locus. Since the invertible immaculate sheaves on P

d are
O(−1),O(−2), . . . ,O(−d), we know that

− Imm(X) = {a ∈ Z
r | 1 ≤ aν ≤ dν for some ν = 1, . . . , r}.
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Thus, everything can be described in a purely combinatorial language. According to
this, and besides a short motivating remark at the beginning of Sect. 2.3,

no algebraic geometry will appear beyond this point.

For any ordered subset s ⊆ Z
r wewill encode the particular position of its elements by

the upper index, i.e., s = [s0, . . . , sm−1]. In contrast, the coordinates of a single si =
(si1, . . . , s

i
r ) ∈ Z

r are indicated by lower indices. Now, the content of Definition 2.1
can be rewritten as follows:

Definition 2.2 Assume that we are given a dimension vector d = (d1, . . . , dr ) ∈ N
r

with r ≥ 1 and dν ≥ 1 for ν = 1, . . . , r .

1) A sequence s = [s0, . . . , sm−1] in Z
r is called d-exceptional if, for each i < j ,

there is an index ν = ν(i, j) ∈ {1, . . . , r} such that

(s j − si )ν = s jν − siν ∈ {1, 2, . . . , dν}.

2) A d-exceptional sequence s is calledmaximal ifm = |s| = n(d) := ∏r
ν=1(dν+1).

3) A d-exceptional sequence s is called full if it d-contaminates the whole lattice Zr

where the latter notion will be explained in Definition 2.3.

2.3 The contamination procedure

The following definition of the d-contamination process arises from theKoszul com-
plex on P

d

0 O O(1)d+1 O(2)(
d+1
2 ) . . . O(d + 1) 0

0 �0O(1)d+1 �1O(1)d+1 �2O(1)d+1 . . . �d+1O(1)d+1 0

showing that the successive sheaves O,O(1), . . . ,O(d) generate O(d + 1) and,
eventually, the whole line PicPd = Z.

Definition 2.3 Let d ∈ N
r and S ⊆ Z

r an arbitrary subset. Then, with eν denoting the
ν-th canonical basis vector of Zr , the elements of the set

cont(S) := S ∪
(⋃r

ν=1
⋃

p, p+eν ,..., p+dνeν ∈ S (p + Z · eν)
)

⊆ Z
r

are called directly d-contaminated from S. This gives rise to the inductive spreading
cont0(S) := S and

contk(S) := cont
(
contk−1(S)

)
for k ≥ 1

which contain the results of d-contamination in at most k steps. Finally, the elements
of the overall union cont∞(S) := ⋃

k≥0 cont
k(S) are simply called d-contaminated.
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Fig. 1 An infection spreading, contaminating Z
3 in four steps

2.4 The special case (P1)r

Now,we focus on the special cased = (1, . . . , 1) ∈ N
r . The notion of d-exceptionality

will simply be called exceptionality then. By Definition 2.2, it means that, for each
i < j , there is an index ν = ν(i, j) ∈ {1, . . . , r} such that

(s j − si )ν = s jν − siν = 1.

The size of a maximal exceptional sequence is n = 2r . The notion of d-contamination
fromSect. 2.2will simply be called contamination. The essential part ofDefinition 2.3,
i.e.,

cont(S) = S ∪
( ⋃r

ν=1
⋃

p, p+eν∈S (p + Z · eν)
)

⊆ Z
r

does now just mean that two adjacent lattice points of Zr infect the whole affine line
they span, cf. Fig. 1. And here is our main result using the contamination language; it
is equivalent to Theorem 1.1 from the introduction:

Theorem 2.4 Let r = 3. Then, every (1, 1, 1)-exceptional sequence s ⊂ Z
3 con-

sists of at most eight elements. Moreover, if |s| equals this maximal number, then s
contaminates the whole lattice Z3.

The proof is contained in Sect. 7.

2.5 The width of exceptional sequences

We conclude this setup section with another basic notion. For any finite subset S ⊆ Z
r

and ν ∈ {1, . . . , r}, we define the ν-width of S as

wν(S) := max
s∈S sν − min

s∈S sν + 1.

That is, wν(S) is the smallest number w ∈ N such that S fits into w consecutive
layers, i.e., integral hyperplanes [xν = const] in ν-direction. In [2] it was shown that
(maximal) exceptional sequences for X = P

d1 × P
d2 , i.e., in the case r = 2 of the
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Fig. 2 Plane exceptional
sequences

0 1
2 3

0

3
1 2

setting of Sect. 2.2, any exceptional sequence s satisfies either w1(s) ≤ 2d1 + 1 or
w2(s) ≤ 2d2 + 1. This was an essential step for proving that maximal sequences are
always full. However, as we already have seen in Fig. 1 and will see in Example 3.1,
this simple kind of bounds does not stay true for r ≥ 3.

3 Examples

3.1 The case of r = 1

There is not much to say in this case—maximal exceptional sequences consist of two
adjacent points in Z

1. And they contaminate the whole line immediately.

3.2 The case of r = 2

Up to a possible switch of the coordinates, there are two principal types of maximal
exceptional configurations—they are shown in Fig. 2.

In both cases, the pair of points on the central horizontal line � can be arbitrarily
shifted along �. In any case, the whole line � becomes infected first, causing further
“vertical contaminations” from the second pair of points.

In most cases, the numbering, i.e., the right “exceptional ordering” of the points
(indicated by the red labels 0, . . . , 3) is unique for both types—but for a few shifts along
�, there remains a choice. This classification result follows from simple combinatorial
arguments—or, alternatively, from the general theory developed later.

Note that the (unique) order of the right-hand example from Fig. 2 is horizontally
lexicographic but not vertically lexicographic.

3.3 The case of r = 3

We are looking for configurations of 8 points in Z
3. The standard full exceptional

sequence corresponds to the 3-dimensional (2×2×2)-grid. For this the contamination
of the whole lattice Z3 is immediate. However, there are more interesting and prettier
examples.

Example 3.1 A quite symmetric maximal exceptional sequence is depicted in Fig. 3.
In the proposed numbering of the eight points of s the order of the three vertices on

both of the tilted, regular triangles does not matter at all. The only mandatory ordering
that matters is

[triangle down left] < [lower-left red point] <

< [upper-right red point] < [triangle up right],
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Fig. 3 Symmetric 4× 4× 4 grid
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Fig. 4 Spanning the 5 × 5 × 5 grid

that is, {s0, s1, s2} < s3 < s4 < {s5, s6, s7}. The contamination process starts with
the three lines through the points s3 and s4, respectively. They infect all remaining six
vertices of the central yellow cube.

Example 3.2 An even larger, but less symmetric example inside a 5 × 5 × 5 grid is
presented in Fig. 4. One possible numbering of the vertices is

(1, 0, 0) (0, 1, 1) (1, 3, 1) (1, 4, 1) (3, 1, 2) (4, 1, 2) (2, 2, 3) (2, 2, 4)

where the last coordinate indicates the height. The contamination process begins with
the central vertical line and a red and a green line in the layers of height one and two,
respectively.

Thewhole process is illustrated in Fig. 5. Here, aswe have already done in Fig. 1, we
have used bright red color tomark recently infected points—afterward, in the following
steps, they will turn blue. Note that the present example, as it did Example 3.1, lacks
empty inner layers in any direction.
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Fig. 5 Contaminating the whole 5 × 5 × 5 grid (and Z3) in five steps

Example 3.3 According to Definition 2.3, the contamination process is an inductive
procedure, i.e., it consists of a number of successive steps. In Fig. 1, we had depicted
an example where the whole latticeZ3 becomes contaminated in four steps. Its starting
maximal exceptional sequence consisted of the points

(0, 0, 0), (0, 0, 1), (0, 1, 2), (4, 1, 3), (5, 1, 3), (1, 4, 4), (1, 5, 4), (1, 2, 5).

While, in Example 3.2, we had already presented a configuration leading to a contam-
ination process involving five steps, there are even longer examples: The sequences

[(0, 0, 0), (0, 0, 1), (0, 1, 4), (1, 2, 5), (1, 4, 4), (1, 5, 4), (4, 1, 3), (5, 1, 5)] and
[(0, 0, 0), (0, 1, 3), (1, 0, 4), (1, 4, 3), (1, 5, 5), (2, 2, 1), (4, 1, 4), (5, 1, 4)]

require six or even seven steps, respectively.

Example 3.4 Allowing empty layers, as we have already done in Example 3.3, leads
to maximal exceptional sequences that can stretch arbitrarily far in all directions. For
n ∈ N there is the maximal exceptional sequence

(0, 0, 0) (1, n, n) (1, n, n + 1) (1, n + 1, 0) (2, 1, 0)

(2, n, 1) (n, n + 1, 1) (n + 1, n + 1, 1)

which stretches n + 1 steps in every direction. That is, in the language of Sect. 2.5,
w1(s) = w2(s) = w3(s) = n + 2. However, compare with Proposition 6.6.

Example 3.5 Finally, we would like to point out another aspect where the 3-
dimensional situation is worse compared to the one from Sect. 3.2. Putting the
right-hand Example from Fig. 2, i.e., s = [(0, 0), (7, 1), (8, 1), (1, 2)], and its
transpose s′ = [(0, 0), (1, 7), (1, 8), (2, 1)] into adjacent layers, the resulting 3-
dimensional exceptional sequence does not allow any lexicographic, exceptional order.
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Fig. 6 A maximal subset (not a
sequence) of Z2 that is not full

4 Mapping to the cube

4.1 The labeling

Assume that s ⊂ Z
r is a maximal exceptional sequence, i.e., in particular, it consists

of 2r points. Then, we consider the map

� : s ↪→ Z
r →→ (Z/2Z)r .

Proposition 4.1 The map � is bijective.

Proof It suffices to check that � is injective. If si , s j ∈ s with i < j but �(si ) =
�(s j ), then s j − si ∈ 2 · Zr , i.e., (s j − si )ν ∈ 2Z for all coordinates ν = 1, . . . , r .
This contradicts the condition stated in Sect. 2.4 asking for (s j − si )ν = 1. �

Since s comes with a total ordering, it induces a labeling of the vertices of the
r -cube, i.e., of the elements of (Z/2Z)r , with the numbers 0, . . . , 2r −1. For example,
if the lower-left vertex of the cube from Fig. 3 is taken as the origin, then the full
exceptional sequence leads to the following ordering of the elements of (Z/2Z)3:

� = (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1), (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

Remark 4.2 Themap� stays bijective if we replace themaximal exceptional sequence
s by a subset {s0, . . . , s2r−1} of Zr , having the less restrictive property that for each
i �= j there is an index ν ∈ {1, . . . , r} satisfying |s jν − siν | = 1.

The subset of Z2 in Fig. 6 does not infect any other points of Z2, in particular, it is
not full. This shows that the requirement that s is ordered is essential.

Remark 4.3 Let s be an r -dimensional maximal exceptional sequence. Then, the
sequence s̃ defined by s̃ik := −s2

r−1−i
k is a maximal exceptional sequence, too. More-

over, s̃ is full if and only if s is full. The labeling of the vertices of the r -cube induced
by s̃ is the reverse of the one induced by s.

4.2 Symmetries

We have symmetries governed by the group (Z/2Z)r : A shift of s ⊆ Z
r by the unit

vector eν ∈ Z
r for some ν = 1, . . . , r does neither change the status of exceptionality,

maximality, or fullness, i.e., infectivity. Within the cube (Z/2Z)r , this operation is
still given by the map θν : x �→ x + eν , but it simply means the reflection along the
ν-th hyperplane.
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0 1
3 2

meaning
s0 s1
s3 s2

and 0 3
2 1

meaning
s0 s3
s2 s1

Fig. 7 Labelings for the full exceptional sequences of Fig. 2

4 5
6 2

and 7 1
0 3

becomes normalized to 0 3
7 1

and 6 2
4 5

Fig. 8 Labelings for the full exceptional sequence of Fig. 3

We may get rid of these symmetries by normalizing the labeling via putting the
first element s0 of s into the lower-left corner, i.e., asking for �(s0) = 0 ∈ (Z/2Z)r

or even s0 = 0. For instance, the two plane exceptional sequences from Fig. 2 lead to
the normalized labelings presented in Fig. 7. Doing the same for the full exceptional
sequence from Fig. 3 yields the labeled cube encoded as two squares (lower/upper
layer) in Fig. 8.

Finally, we should remark that, via permuting the coordinates, the symmetric group
Sr acts, too. This action is visible on both the exceptional subsets of Zr as well as on
the labelings of (Z/2Z)r . Altogether we have (2r )!/(2r · r !) = (2r − 1)!/r ! (that is
840 for r = 3) cosets of possible labelings of (Z/2Z)r . It might be interesting to know
which or how many of them can be induced from full exceptional sequences.

5 The configuration of layers

Let s be an r -dimensional exceptional sequence. In the present section we choose and
fix some ν ∈ {1, . . . , r} and denote by πν : Z

r →→ Z the associated coordinate.
Moreover, we denote by qν : Zr →→ Z

r−1 the projection forgetting the chosen ν-th
component. Accordingly, we obtain a decomposition of s into layers Lc = s∩π−1

ν (c).
When it simplifies the notation, we may always assume, w.l.o.g., that ν = r is the last
coordinate.

5.1 Reduction to (r− 1)-dimensional sequences

We start with the key lemma for reducing the dimension from r to r −1. At this point,
no maximality of s is assumed.

Lemma 5.1 Let C ⊂ Z be such that no two elements of C are adjacent to each other,
i.e., 1 /∈ C−C. Then, the map qν is injective when restricted to

⋃
c∈C Lc.Moreover, its

image qν(
⋃

c∈C Lc) ⊂ Z
r−1 with the inherited total order is an (r − 1)-dimensional

exceptional sequence.

Proof Consider si , s j ∈ ⋃
c∈C Lc for some i < j . Since the ν-th coordinate of these

elements belong to C , we know for sure that (s j − si )ν = s jν − siν �= 1. Thus, by

Sect. 2.4, there has to be another index μ �= ν such that s jμ − siμ = 1, i.e., that
qν(s j )μ − qν(si )μ = 1 (if μ < ν) or qν(s j )μ−1 − qν(si )μ−1 = 1 (μ > ν). This
implies both thatqν(si ) �= qν(s j ) and that these two elements satisfy the exceptionality
condition in Z

r−1. �
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Corollary 5.2 Assume that A, B ⊂ Z are disjoint subsets fulfilling the assumptions of
C fromLemma 5.1. Then, if s ⊂ Z

r is amaximal exceptional sequence being contained
in

⋃
c∈A∪B Lc (for instance, if A ∪ B = Z), both images s A := qν(

⋃
c∈A Lc) and

sB := qν(
⋃

c∈B Lc) are maximal exceptional sequences in Z
r−1.

Proof On the one hand, it follows from Lemma 5.1 that s A and sB are exceptional in
Z
r−1, implying that |s A|, |sB | ≤ 2r−1. On the other, we do also know that

|s A| + |sB | = |s| = 2r .

Hence, |s A| = |sB | = 2r−1, i.e., both s A and sB are maximal exceptional. �
The main example for Corollary 5.2 is A = 2Z and B = 2Z + 1. Thus, we obtain

two (r − 1)-dimensional maximal exceptional sequences seven and sodd arising as the
projections from the even and odd layers of s, respectively. Via the labeling map �

established in Sect. 4.1, the sequences s even and sodd correspond to facets, i.e., to
(r − 1)-dimensional slices of the cube (Z/2Z)r .

Note that a kind of an opposite implication is also true: If sA and sB are two (r −1)-
dimensional maximal or even full exceptional sequences, then we obtain by

s := (
sA × {0}) � (

sB × {1})

an r -dimensional one of the same quality. Moreover, proceeding with s, we recover
sA = seven and sB = sodd we have started with.

5.2 Thin sequences andmaximal layers

Since we have still fixed a coordinate ν ∈ {1, . . . , r}, we will callw(s) := wν(s) from
Sect. 2.5 simply the width of s. Then, for example, the maximal exceptional sequence
s just built from the lower-dimensional sA, sB at the end of Sect. 5.1 has width 2.
And both layers are maximal, meaning that they contain the maximal number of 2r−1

points.

Proposition 5.3 Let s be a maximal exceptional sequence in Z
r . Then, its width is

bounded by w(s) ≤ 3 if and only if s contains a maximal layer.
Moreover, if this is the case, then s is full, i.e., contaminating the whole lattice

Z
r—provided that we already know that maximality implies fullness in dimension

r − 1.

Proof Assume thatw(s) ≤ 3 and denote by A0, B1, A2 the three layers of s. Then,with
A = 2Z and B = 2Z+ 1 as in Sect. 5.1, the layer B1 equals the (r − 1)-dimensional
maximal exceptional sequence sB from Corollary 5.2.

Conversely, if Lc is a full layer, then any Ld �= ∅ with |d − c| ≥ 2 will yield a
contradiction via Lemma 5.1: Just take C := {c, d}.

Now, for the second part, let us assume that we have a maximal layer B1 sitting
in between A0 and A2. In particular, by the induction hypothesis, all points of the
associated hyperplane [xν = 1] ⊂ Z

r containing B1 will be contaminated.
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In particular, this means that for each (a, 0) ∈ A0 or (a, 2) ∈ A2, the points (a, 1)
are contaminated, In the second round, these pairs will infect the whole vertical lines
a × Z. This, however, means that s A × Z becomes contaminated.

Finally, as a third round, we proceed with the contamination procedure for s A ⊆
Z
r−1 in each layer Zr−1 × {c} with c ∈ Z simultaneously. �
Since we have seen in Sect. 3.2 that 2-dimensional maximal exceptional sequences

are always full, the previous proposition implies the same fact for 3-dimensional
maximal exceptional sequences of width (in some direction) at most 3.

5.3 Heavy layers stick together

Another immediate consequence of Lemma 5.1 is the observation that heavy layers
Lc, i.e., those having a large size �c := |Lc| will always be close to each other:

Proposition 5.4 Let s ⊂ Z
r be an r-dimensional exceptional sequence. Then, any two

different layers La and Lb with �a + �b > 2r−1 have to be neighbors, i.e., they satisfy
|b − a| = 1.

Proof Assume that La and Lb are not neighbors. Then, by Lemma 5.1 it follows that
qν : (La ∪ Lb) ↪→ Z

r−1 is injective, and that its image is an exceptional sequence of
dimension r − 1. Hence, �a + �b ≤ 2r−1. �

5.4 Lower bounds for the heaviest layers

In particular, for r = 3, the previous Proposition 5.4 has quite strong implications.
The reason is the following statement ensuring the existence of a layer L with |L| ≥ 3
in at least one direction ν ∈ {1, . . . , r}:
Lemma 5.5 Let s ⊂ Z

r be an r-dimensional maximal exceptional sequence. Then,
there is a ν ∈ {1, . . . , r} such that at least one of the associated layers L satisfies
� = |L| ≥ 2r−1

r . In particular, if r = 3, then there has to be a layer with � ≥ 3.

Proof In the ordered sequence s all elements after the initial one, i.e., after s0, have to
be in one of the following layers

(
{s01 + 1} × Z × · · · × Z

)
,
(
Z × {s02 + 1} × Z × · · · × Z

)
,

. . . ,
(
Z × · · · × Z × {s0r + 1}

)
.

Since there are 2r − 1 elements from s\{s0} to be distributed to r possible layers, the
result follows from the pigeon hole principle. �

Finally, let us focus on the case r = 3.While we already have treated the case of full
layers, i.e., �c = 4, in Proposition 5.3, we may assume that �c ≤ 3 for all c ∈ Z and
all directions ν ∈ {1, 2, 3}. But then, Lemma 5.5 guarantees the existence of at least
one layer Lc (in some direction ν) satisfying �c = 3. Moreover, by Proposition 5.4,
any further layer (in the same direction ν) containing more than one point has to be
adjacent to Lc.
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6 Block structure

As in Sect. 5, we start with an r -dimensional exceptional sequence s and fix a coor-
dinate ν ∈ {1, . . . , r}. Recall that πν : Zr →→ Z and qν : Zr →→ Z

r−1 denote the
associated projections. According to this, the non-empty layers Lc = s ∩ π−1

ν (c) of
s, i.e., those with �c = |Lc| ≥ 1, can be arranged in several blocks. The following
definition makes this precise:

Definition 6.1 A finite subset B ⊂ Z of consecutive numbers is called a segment for
ν if Lb �= ∅ for all b ∈ B and if Lmin(B)−1 = Lmax(B)+1 = ∅. The preimage

LB := s ∩ π−1
ν (B) =

⋃

b∈B
Lb

is called the block associated with B. The layers Lmin(B) and Lmax(B) are called the
boundary or outer layers of B.

6.1 Outer layers are lighter than their neighbors

The following proposition shows that the number of elements in a layer decreases
toward the boundaries of the corresponding block.

Proposition 6.2 Let s be an r-dimensional maximal exceptional sequence. Then, for
any direction ν ∈ {1, . . . , r} and for each segment B ⊂ Z, no outer layer of LB

contains more points than its neighboring “inner” layer. That is,

�min(B) ≤ �min(B)+1 and �max(B) ≤ �max(B)−1.

In particular, the width of the block w(LB) = max(B) − min(B) + 1 does always
exceed one.

Note that blocks may have width w(LB) = 2. Then, the neighbors Lmin(B)+1 and
Lmax(B)−1 are obviously not inner layers at all—nevertheless, they were called so
in the previous proposition. In this special case, it implies that �min(B) = �max(B).
Anyway, for all cases, this proposition is a direct consequence (just set b := min(B)

or b := max(B)) of the following lemma:

Lemma 6.3 Let s be an r-dimensional maximal exceptional sequence. Then, for any
direction ν ∈ {1, . . . , r} and any b ∈ Z we have �b ≤ �b−1 + �b+1.

Proof We start with the subsets

C := (b + 1) + 2Z and C ′ := b + 2Z = C + 1.

They fit the assumptions of Corollary 5.2; hence sC := s ∩ π−1
ν (C) = ⋃

c∈C Lc

consists of exactly 2r−1 elements—and so does sC ′ what, nevertheless, we do not
need. Instead, we consider

C ′′ := {b} ∪ C\{b ± 1},

123



318 Journal of Algebraic Combinatorics (2022) 56:305–322

i.e., sC ′′ = Lb ∪ sC\(Lb−1 ∪ Lb+1). Furthermore, C ′′ ⊂ Zmeets the requirements of
Lemma 5.1, thus |sC ′′ | ≤ 2r−1. Hence, 2r−1 ≥ |sC ′′ | = |Lb ∪ sC\(Lb−1 ∪ Lb+1)| =
�b + |sC | − �b−1 − �b+1 = �b + 2r−1 − �b−1 − �b+1 and therefore �b ≤ �b−1 + �b+1.

�

6.2 Blocks are balanced

In Corollary 5.2, we had seen that the even and the odd layers contribute the same
number of points to a maximal exceptional sequence s, namely 2r−1 in each case.
However, a similar statement is true for each block separately.

Proposition 6.4 Let s be a maximal exceptional sequence. Then, within each block
LB, the alternating sums

∑
c∈B(−1)c �c vanish.

Note that this proposition excludes once again, like it does Proposition 6.2, the
existence of blocks of width one.

Proof We do again exploit Corollary 5.2. We start with the standard pair C := 2Z and
C ′ := 2Z + 1. We then produce D, D′ ⊂ Z out of C,C ′ ⊂ Z by switching B ∩ C
with B ∩ C ′ inside these sets. More precisely, we set

D := C ∪ (B ∩ C ′)\(B ∩ C)\{min(B) − 1, max(B) + 1}

and

D′ := C ′ ∪ (B ∩ C)\(B ∩ C ′)\{min(B) − 1, max(B) + 1}.

These sets are still disjoint, and the removal of the empty layers beyond B ensures
the assumptions 1 /∈ D − D and 1 /∈ D′ − D′ without destroying the property
s ⊆ ⋃

c∈D∪D′ Lc. Thus, both sC and sD (and also sC ′ and sD′) contain 2r−1 elements
each. But this implies that

∑
c∈B∩C �c = ∑

c∈B∩C ′ �c. �

6.3 Empty layers

The presence of inner empty layers, i.e., those separating blocks in s, allows to manip-
ulate s in different ways with various results. To demonstrate this, we assume that
L0 = ∅. As usual, this is meant for a fixed direction ν ∈ {1, . . . , r}. Recall from
Definition 2.3 that eν ∈ Z

r denotes the corresponding unit vector, i.e., πν(eν) = 1
and qν(eν) = 0 ∈ Z

r−1.

6.3.1 Merging positive and negative layers

Fix a natural number m ∈ N. Then, we obtain a new sequence s(m) out of s by
defining

s(m)i :=
{
si if siν > 0
si + m · eν if siν < 0.
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While s(0) = s, the new sequence s(1) arises from s by simply erasing the 0-th (empty)
layer. For larger m ≥ 2, it will more and more happen that the former negative part
s− and the former positive part s+ merge. In particular, a potential block structure of
s will disappear—or reappear, in a different manner, for m � 0.

While it is clear that s(m) stays a maximal exceptional sequence if s was one, it
should be mentioned that it is not guaranteed at all (and almost always false) that
exceptionality survives when including an empty layer in an exceptional sequence.
Similarly, a potential fullness of s is bequeathed to s(m)—but the reverse conclusion
does not work either.

6.3.2 Duplicating or reducing empty layers

A much easier situation arises when the definition of s(m) is literally extended to
negative m < 0. This means to amend the empty layer L0 by additional |m| empty
ones. The reverse operation means to thin out sequences of consecutive empty layers
such that at least one of them survives. This operation is a special type of those from
Sect. 6.3.1.

Proposition 6.5 Duplicating or reducing empty layers in a sequence s (without extin-
guishing them all) leads to a sequence s′ sharing with s exactly the same properties
with regard to exceptionality, maximality, and infectivity, i.e., fullness.

Proof The property of (s j −si )μ being equal or not equal to 1 is equivalent to the same
property of (s′ j − s′i )μ for every μ = 1, . . . , r . Moreover, within the contamination
procedure, all new points (p, c, q) ∈ Z

ν−1 ×Z×Z
r−ν arising in the empty layers Lc

appear simultaneously in all layers, i.e., as a line p × Z × q. �
The previous observation means that, while empty layers do indeed matter, we

can restrict ourselves to the case of isolated (but, maybe, still several) ones. This
applies either for the classification of maximal exceptional sequences or for proving
that maximality implies fullness.

6.4 Bounding the sequence

The previous results have the consequence that the problem of fullness of all maximal
exceptional sequence can be reduced to maximal exceptional sequence in a bounded
region.

Proposition 6.6 All r-dimensional maximal exceptional sequence are full if and only
all those contained in a cube with 3 · 2r−1 − 1 layers in each direction are full.

Proof By Proposition 6.2, all blocks of a maximal exceptional sequence s have at
least width 2 in any direction. By Proposition 6.5, we can exchange s by s′ that has
no empty blocks of width larger than 1 and still the same properties with regard to
fullness. Hence, s′ has at most 2r non-empty layers and at most 2r−1 −1 empty layers
in between in all ν-directions. Thus s′ fits in a cube with 2r + 2r−1 − 1 layers in each
direction. �
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7 Special issues for r = 3

In this concluding section, we assume that s is a 3-dimensional maximal exceptional
sequence, i.e., with r = 3. Moreover, by Proposition 5.3, we may and will assume
that s has no layer of size 4. Finally, according to Sect. 6.3.2, we suppose that all inner
empty layers, in all directions, are isolated.

We are going to present upper bounds for the widths of s with respect to all
three directions. Let ν ∈ {1, 2, 3}—we look for all possible “load sequences”
(. . . , �c−1, �c, �c+1, . . .) indicating the sizes of the consecutive layers, up to equiva-
lence relations like shifts or reflections within each block.

7.1 Assuming a layer of size 3

For the fixed direction ν we suppose that we have a layer of size 3 within the maximal
exceptional sequence s. We are going to distinguish a few cases—but the overall result
will be that wν(s) ≤ 6. Moreover, if lacking empty layers, we can bound it by 5.

7.1.1 Two layers of size 3

If s contains, in the same direction ν, two layers of size 3, then, by Proposition 5.4,
they have to be adjacent. The remaining two layers of width 1 cannot be isolated by
Proposition 6.2. Thus, we obtain as possible load sequences (1, 3, 3, 1) or (3, 3, 1, 1),
or (3, 3, 0, 1, 1). In any case, we have wν(s) ≤ 5.

7.1.2 Two layers of size 2

They are supposed to exist additionally to the layer of size 3 we have anyway. Again
by Proposition 5.4, we see that the load sequence has to look like (. . . , 2, 3, 2, . . .),
thus, it has to be (2, 3, 2, 1) yielding wν(s) = 4.

7.1.3 Exactly one layer of size 2

Here, we obtain (1, 3, 2) as a necessary subsequence. The remaining part has to be
(1, 1)—either separated from the big part by an empty layer or not.We obtainwν(s) =
5 or 6.

7.1.4 All layers are of size 1

This is meant up to the big layer of size 3 we have assumed anyway. Then, this case
cannot occur—it contradicts Lemma 6.3.

7.2 No layer of size 3

By Proposition 6.6, the longest possible load sequence is

(1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1);
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it has length 11. And this can indeed occur in a maximal exceptional sequence. On the
other hand, if there is at least one layer of size 2 involved, then one of the subsequences
(1, 1, 0, 1, 1) has to be replaced by (1, 2, 1) or even (2, 2). Thus, the estimate forwν(s)
drops from 11 to 9.

7.3 Computational evidence

Wewill conclude our proof of Theorem2.4 (or, equivalently, Theorem1.1) by strength-
ening the claim of Lemma 5.5. The starting point was that the seven elements of
{s1, s2, . . . , s7} are distributed on three affine planes having distance one to s0. While
the original claim of the lemma states that there is one plane containing three points
of s\{s0}, we do even know that the distribution must be either (3, 3, 3), (3, 3, 2),
(3, 3, 1) or (3, 2, 2)—recall that there are no planes containing 4 points of s.

Assume first that the distribution is (3, 3, 3), (3, 3, 2) or (3, 3, 1). This means that,
w.l.o.g. for ν = 1, 2, we may apply the scenario of Sect. 7.1 leading to w1/2(s) ≤ 6
and, for ν = 3, the first one from Sect. 7.2 leading to w3(s) ≤ 11.

Similarly, the distribution (3, 2, 2) leads to, w.l.o.g., w1(s) ≤ 6 and w2/3(s) ≤ 9.
Altogether this means that s fits either in a (6 × 6 × 11)- or in a (6 × 9 × 9)-

grid. Both cases had been checked with a computer, using a rather straight algorithm.
The result was that all possible maximal exceptional sequences had contaminated the
whole space Z3 in at most seven steps.
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