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Abstract

Background: Pseudotime estimation from dynamic single-cell transcriptomic data enables characterisation and
understanding of the underlying processes, for example developmental processes. Various pseudotime estimation
methods have been proposed during the last years. Typically, these methods start with a dimension reduction step
because the low-dimensional representation is usually easier to analyse. Approaches such as PCA, ICA or t-SNE belong
to the most widely used methods for dimension reduction in pseudotime estimation methods. However, these
methods usually make assumptions on the derived dimensions, which can result in important dataset properties
being missed. In this paper, we suggest a new dictionary learning based approach, dynDLT, for dimension reduction
and pseudotime estimation of dynamic transcriptomic data. Dictionary learning is a matrix factorisation approach that
does not restrict the dependence of the derived dimensions. To evaluate the performance, we conduct a large
simulation study and analyse 8 real-world datasets.

Results: The simulation studies reveal that firstly, dynDLT preserves the simulated patterns in low-dimension and the
pseudotimes can be derived from the low-dimensional representation. Secondly, the results show that dynDLT is
suitable for the detection of genes exhibiting the simulated dynamic patterns, thereby facilitating the interpretation
of the compressed representation and thus the dynamic processes. For the real-world data analysis, we select datasets
with samples that are taken at different time points throughout an experiment. The pseudotimes found by dynDLT
have high correlations with the experimental times. We compare the results to other approaches used in pseudotime
estimation, or those that are method-wise closely connected to dictionary learning: ICA, NMF, PCA, t-SNE, and UMAP.
DynDLT has the best overall performance for the simulated and real-world datasets.

Conclusions: We introduce dynDLT, a method that is suitable for pseudotime estimation. Its main advantages are: (1)
It presents a model-free approach, meaning that it does not restrict the dependence of the derived dimensions; (2)
Genes that are relevant in the detected dynamic processes can be identified from the dictionary matrix; (3) By a
restriction of the dictionary entries to positive values, the dictionary atoms are highly interpretable.
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Background
The transcriptomic profile of a cell changes over time,
for example during its development or when exposed to
some (external) condition. Gene expression profiling can
help to understand the underlying mechanisms, identify
key genes in these processes, distinguish and characterise
variants of different subgroups and more.
First approaches studying this time dynamic behaviour

are ordering bulk samples based on expression similarity
[1–3]. In this context, the term pseudotime was intro-
duced, which describes a cells’ biological progression. In
current pseudotime estimation experiments, single-cell
datasets – in contrast to bulk datasets – are commonly
analysed. The data of each single-cell is interpreted as a
snapshot of the temporal development.
Since the development of single-cell RNA-sequencing

(scRNA-seq), various pseudotime estimation methods
have been published. An extensive review on 45 existing
pseudotime estimation methods together with an evalu-
ation on a total of 339 datasets is given by Saelens et al.
in [4]. Typically, these methods start with a dimension
reduction step to allow for easier handling of the data.
Three methods that belong to the most widely applied
approaches for dimension reduction in pseudotime esti-
mation are: (1) Principal component analysis (PCA) [5],
(2) independent component analysis (ICA) [6], and (3) t-
distributed stochastic neighbour embedding (t-SNE) [7].
Well known pseudotime estimation methods using PCA
for dimension reduction are SCOUP [8], TSCAN [9],
and Waterfall [10]. Monocle [11] presents a well-known
method using ICA and SCUBA [12] uses t-SNE.
Both, for ICA and PCA, the derived components –

which the data is projected onto – have to satisfy certain
assumptions, e.g. independence (in ICA) or orthogonal-
ity (in PCA). Data compression using PCA premises that
the desired information is exactly provided by variance.
However, other factors, caused for example by sampling or
technical bias, can have a large impact on the variance of
the data as well. Further – in the light of the application of
this paper – some genes might vary little, but are impor-
tant for the investigated process - or vice versa, the biolog-
ical question might not be related to the highest variance
in the data. ICA presents an alternative approach to PCA.
It derives statistically independent components, which is
a stronger condition than non-correlation in PCA. It is
the nature of biological processes, however, that they are
connected and depend on each other. Also, processes rel-
evant for dynamic changes might indeed be dependent.
Consequently, these processes could be missed by ICA
and pseudotime estimation based on a low-dimensional
representation from ICA would be misleading.
The third mentioned approach for dimension reduc-

tion of transcriptomic data is t-SNE. This is a non-linear
approach and thus does not result in two matrices, like

PCA, ICA, and other matrix factorisation approaches.
This means, that an interpretation of the result is more
difficult, and it is more difficult or impossible to derive
the genes that are governing the dynamics. Further, t-
SNE focuses on preserving local structures, which can be
misleading when pseudotimes of the entire dataset are
requested because global distances are relevant in this
case.
Concerns regarding the use of these methods for the

analysis of transcriptomic data have been mentioned
in [13–15]. Given the variety of available approaches
for dimension reduction, Street et al. [16] present their
cell lineage and pseudotime inference method Slingshot,
which allows performing the dimension reduction step
with any method suitable for this purpose. Together, this
indicates (the need for) a rethinking, away from the use of
the same old default approaches for dimension reduction
in pseudotime estimation and the need for the develop-
ment of a dimension reduction approach which projects
data to biologically meaningful components.
In this paper, we apply dictionary learning (DiL) for

dimension reduction of transcriptomic datasets from
dynamic processes. In DiL, the data matrix is factorised
into a product of two matrices, a dictionary and a matrix
of coefficient vectors for each sample. The dictionary
columns, so-called atoms, do not need to satisfy any
assumptions among each other, which presents a major
difference to PCA and ICA. Therefore, we say that our
approach is model-free. Compared to representations
derived from PCA or ICA, those from DiL are potentially
better because the vectors are on average nearer to the
signal examples due to the refrain from the assumptions
[17].
The representation derived with DiL is highly inter-

pretable: Each atom contains values that can be assigned
to each gene. These atoms can therefore be interpreted
as gene modules. Gene modules are groups of genes
that relate to proteins that interact to coordinate specific
cellular functions and biochemical events. Genes corre-
sponding to high entries in an atom can be interpreted
as such a module. In our previous study [18] we have
shown that the gene modules derived from a DiL analysis
of transcriptomic datasets are biologically relevant. The
coefficient vectors assign weights to those modules for
each sample, resulting in a low-dimensional representa-
tion. DiL is designed to yield sparse representations. This
way, atoms are constructed such that each sample requires
as few atoms as possible to be reconstructed.When apply-
ing DiL to transcriptomic data, our idea is that this leads to
atoms, respectivelymodules, that are relevant to processes
in many samples.
In our previous study [18] we use a DiL based approach

for transcriptomic data compression and gene module
detection, further referred to as DiL For The Analysis Of
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Transcriptomic Datasets (DLT). We show that, applied to
data from different types, (1) DLT yields gene modules
that agree with the biological context of the distinctive
types, while (2) type-specific differences are maintained in
the sparse low-dimensional representations.
Using a modification of DLT for the analysis of dynamic

transcriptomic datasets, further referred to as dynDLT,
we aim to find modules that represent gene modules that
are relevant in the detected dynamic processes. An analy-
sis of these gene modules can provide deeper insight into
the cellular dynamic processes. The coefficient vectors
entail the coefficients corresponding to these modules.
This way, we use the coefficients to interpret them as the
pseudotemporal ordering.
In this paper, we first perform a simulation study. We

analyse simulated datasets in which a subset of genes
expresses a characteristic pattern over simulated time.We
evaluate two things: (1) Whether the coefficient vectors
preserve the simulated patterns in low-dimension and (2)
the overlap of genes in themodules with the genes exhibit-
ing the simulated patterns. dynDLT accurately represents
the simulation patterns and genes. Results from dynDLT
are compared to results from ICA, non-negative matrix
factorisation (NMF), PCA, t-SNE, and Uniform Mani-
fold Approximation and Projection (UMAP). Compared
to the other methods, dynDLT reaches the highest per-
formance for the majority of the evaluated datasets. ICA
and NMF are the two approaches with the most similar
performance.
In addition to the simulation study, we analyse 8 real-

world time course datasets. Among these, 2 datasets
contain samples from one phenotype and 6 datasets are
composed of samples from different subtypes. Subtypes
can for example be similar cells that are exposed to dif-
ferent conditions or stem cells that develop into specific
cell types. Such datasets are often referred to as having
branching timelines. We evaluate whether they are rep-
resented by the coefficients from our dynDLT. While in
our previous study [18] we showed that DLT represents
data from different sample types well, in this paper, we
thus extend DLT by adding time dynamics. To enable an
evaluation of the results in a meaningful way, we analyse
datasets for which the experimental times are known. This
allows for a comparison of the experimental times with
the estimated pseudotimes.
For the real-world data analysis, the evaluated methods

perform similarly well. Nevertheless, dynDLT is overall
performing slightly better. However, for these datasets
large groups of samples have the same timestamp, mean-
ing that time labels are not known in detail. Therefore,
we assign more importance to the experiments on simu-
lated datasets, as they allow for a better evaluation of the
methods’ performance.

Results
To gain a deep understanding of our method dynDLT for
pseudotime estimation of transcriptomic data, a simula-
tion study is performed as a first analysis. Subsequently, 8
real-world dynamic transcriptomic datasets are analysed
with dynDLT. All results are compared to those from inde-
pendent component analysis (ICA), non-negative matrix
factorisation (NMF), principal component analysis (PCA),
t-distributed stochastic neighbour embedding (t-SNE),
and Uniform Manifold Approximation and Projection
(UMAP).
For the simulated and real-world data we present results

for dynDLT, in which the pseudotimes are derived directly
based on the coefficient vectors returned from dynDLT,
respectively the comparison methods. In addition, for the
real-world data we also present results when the dimen-
sion reduction step in Monocle is performed with dyn-
DLT. The pseudotimes are then estimated from the result-
ing manifold. Note thatMonocle is chosen exemplary, and
any other method might be chosen as well.

Simulation studies
In this section, results from dynDLT for multiple simu-
lated datasets are evaluated. In each simulated dataset, a
subset of the genes exhibits a characteristic pattern over
simulated time (details on the simulated datasets are given
in “Simulated data” section). To assess the performance of
the dynDLT results for the simulated datasets, two things
are evaluated: (1)Whether the coefficient vectors preserve
the simulated patterns in low-dimension and (2) the over-
lap of marker genes derived from the dictionary atoms
with the genes exhibiting the simulated patterns (marker
genes are defined in “Estimating pseudotime based on
dictionary learning” section).
To evaluate the coefficient matrices, the Spearman cor-

relation of the coefficients for each atom with the sim-
ulated patterns are investigated. The influence of the
parameter m, the number of dictionary atoms, which is
varied over m ∈[ 1, ..., 10] is considered first. Correlations
close to 1 are reached for the majority of datasets when
m is sufficiently large, e.g. m > 3 (see Fig. 1). Note, that
this also depends on the number of genes exhibiting the
simulated pattern, |gsim|, and the intensity of perturbation,
which is discussed in the next paragraph. For an increas-
ing number of atoms, once a high correlation is reached,
it remains high for larger values of m. Generally, for each
dictionary, there is one atom that represents the simulated
pattern.
The atom with the maximum Spearman correlation to

the ground truth is further considered for any value ofm ∈
[ 1, ..., 10]. Correlations for dynDLT increase or remain
stable for increasing |gsim|, the number of genes exhibit-
ing the simulated patterns, (see Fig. 2), which presents
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Fig. 1 Spearman correlation for the values of the coefficient vector from DiL for each parameter. Shown are results for five simulation (sub-)pattern/
perturbation combinations in rows for three values of simulated genes exhibiting the pattern (|gsim|) in columns. The dataset labelled ‘Increasing
perturbed’ is the one with high-noise-and-zero-counts perturbation, for the other datasets only noise perturbation is conducted. For the dataset with
an increasing and a fluctuating pattern, the correlations for each subpattern are shown separately. The respective subpattern is given in the row
description in italic letters. The x-axis of each plot shows the number of atoms (m) and the y-axis the atom ID. The maximal correlation increases or
remains stable for an increase of the presented values for |gsim| (100,500,1000) with few exceptions. Typically, for each value ofm there is one atom
that represents the time course

an anticipated property, as the patterns are more sig-
nificant when they appear in a larger number of genes.
For |gsim| ≥ 400 correlations are larger than 0.74 for all
datasets. For the datasets with one half of genes increasing
and the other half fluctuating over time, correlations are
lower. Since for these datasets only |gsim|/2 genes exhibit
each subpattern, the results can be compared to the other
datasets with |gsim|/2 genes exhibiting the simulated pat-
tern. Correlations are then similar. Hence, dynDLT does
also identify two subpatterns well. Further, regarding the

perturbations, noise and noise-and-zero-counts have a
smaller effect than high noise. The high-noise-and-zero-
counts perturbation leads to only a slightly decreased
performance compared to high noise. We conclude from
this that zero-counts are not problematic for dynDLT.
Regarding the use of dynDLT as a method for marker

gene detection, we evaluate the percentage of the |gsim|
highest dictionary entries overlapping with the gsim genes
(see Fig. 3). For all datasets for which |gsim| > 300 the
overlap is larger than 98% (median percentage for these
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Fig. 2 Correlation evaluations for the simulated datasets for each evaluated method. The subfigures shows evaluations for each method (method
name in subtitle). The x-axis shows the number of genes with the simulated time pattern, |gsim|. The y-axis shows for each dataset the maximum
correlations among the matrices with different method parameters. The dataset with one half of |gsim| increasingly ordered and the other half
fluctuating is labelled “Incr_Fluct”, with “Incr_Fluct_1” being the half of increasing values and “Incr_Fluct_2” the half of fluctuating values. The high
noise perturbation is labelled Noise+. Correlations for DiL, ICA, and NMF increase or remain similar for increasing |gsim|, which presents an anticipated
behaviour. However, compared to DiL and ICA, correlations for NMF are high for higher values of |gsim| only. For PCA, t-SNE, and UMAP this property
is generally not held

datasets is 100, mean 99.6). This presents a very good
performance and means that dynDLT is suitable for the
identification of marker genes in the simulated dynamic
processes. Those datasets that have a smaller overlap for
|gsim| ≤ 300 are either those with two subpatterns or those
with high noise perturbation. This finding coincides with
the conclusions from the correlation analysis.

Comparisonmethods
The results from dynDLT are compared to results from
independent component analysis (ICA), non-negative
matrix factorisation (NMF), principal component analysis

(PCA), t-distributed stochastic neighbour embedding (t-
SNE), and Uniform Manifold Approximation and Pro-
jection (UMAP). For simplicity, we subsequently refer
to each column/ component/ dimension of the resulting
dictionary-like matrices as component for all comparison
methods. To evaluate the coefficient matrices, the Spear-
man correlation of the coefficients for each component
with the simulated patterns are investigated. To evalu-
ate the performance of each method for marker gene
detection, the percentage of genes from gsim, the genes
exhibiting the simulated pattern, in the |gsim| highest
dictionary-like matrix entries per component is computed
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Fig. 3 Percentage of correctly identified genes for the simulated datasets. The subfigures show evaluations for each method (method name in
subtitle). The x-axis shows the number of genes with the simulated time pattern, |gsim|; The y-axis shows for each dataset the maximum percentage
among the matrices with different method parameters. The dataset with one half of |gsim| increasingly ordered and the other half fluctuating is
labelled “Incr_Fluct”, with “Incr_Fluct_1” being the half of increasing values and “Incr_Fluct_2” the half of fluctuating values. The high noise
perturbation is labelled Noise+. DiL and ICA perform similarly well, whereas NMF does not reach as high percentages as the other methods. For PCA,
high percentages are reached for most datasets, but they are mostly smaller than for DiL or ICA. Notably, for several datasets PCA-percentages
decrease for increasing |gsim|, which presents an undesired behaviour

(see “Performance evaluation” section). Same as for dyn-
DLT, for each dataset and method we present results for
the best performing component among all components
among all evaluated dimensionalities (for dynDLT this is
the highest value among all values presented in each sub-
figure of Fig. 1, likewise for ICA in Additional file 1, Figure
S1). Results are shown in Figs. 2 and 3.
Correlations with the simulated patterns for ICA and

NMF increase or remain stable for increasing |gsim| with
few exceptions (see Fig. 2), which presents an anticipated
property that also appears in the dynDLT results. How-
ever, correlations for NMF are high for higher values of
|gsim| only, especially for the dataset with two subpatterns,
whereas dynDLT and ICA reach correlations close to 1
for small values of |gsim| and remain high. Correlations for

PCA, t-SNE, and UMAP are to a large extent smaller than
those of the other methods and, contrary to anticipation,
do not increase when |gsim| is increased.
Taking a closer look at the difference of correlations with

the simulated patterns between ICA and dynDLT, unlike
dynDLT, for ICA, not all dimensionalities larger than the
dimensionality that does first reach a high correlation
yield a high correlation too (compare Fig. 1 and Addi-
tional file 1, Figure S1). This means, that for ICA multiple
parameters have to be evaluated, and the best solution has
to be selected. However, this requires a measure to select
the best solution. Recall, that for dynDLT for increas-
ing dimensionality once a high correlation is reached for
one atom, this maintains stable for higher dimensionali-
ties (compare Fig. 1 and Figure S1 in Additional file 1).
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In dynDLT, we therefore only need to select the one best
performing atom, which should not be difficult as we see
that one atom is representing the pattern clearly. However,
for ICA we need to evaluate multiple dimensionalities
and find those which perform best. Likewise as for dyn-
DLT, among these, the best performing component has
to be identified. If only a few data labels are known, this
task becomes non-trivial, if not impossible. Neverthe-
less, we further assume one knows how to select the best
parameter for ICA.
Correlation results are shown in Fig. 2. DynDLT reaches

a higher performance than ICA in 64% of the evaluations,
for 4% dynDLT and ICA perform identical and for 31%
ICA performs better than dynDLT. On average, dynDLT
outperforms ICA in the datasets with two subpatterns
(average correlation difference 0.03) as well as those with
perturbations (average correlation difference 0.01). ICA is
slightly better in the datasets with |gsim| ≤ 200 (average
correlation difference 0.05). However, for datasets with
|gsim| ≥ 300 dynDLT is on average outperforming ICA
also in these datasets (average correlation difference 0.03).
The performance of the methods when evaluating the

percentages of correctly identified genes are similar to
the performances for the correlation evaluations: Dyn-
DLT and ICA perform best and percentages increase or
remain similar for increasing |gsim| with few exceptions.
This is not the case for PCA. However, a major difference
in the evaluation of the percentages of correctly identified
genes and the correlation evaluations appears for NMF.
NMF performs significantly worse than dynDLT and ICA
when considering the percentages : Maximal percentages
for NMF are 69, whereas the other three methods reach
100 for many datasets.
Comparing the percentages of correctly identified genes

between the two best-performing methods ICA and dyn-
DLT, both methods perform similar, especially when
|gsim| > 300 for which the maximal difference between
the percentages is 6, with an average difference of 0.02.
For |gsim| = 300, dynDLT is performing better for the
increasing pattern half of the dataset with two subpatterns
over time and high noise as well as zero-counts pertur-
bation. ICA, on the other hand, performs better for the
fluctuating pattern half of this dataset.

Conclusions from the simulation study
In the simulation study 160 simulated (sub-)pattern/per-
turbation/|gsim| combinations are analysed in total (note,
that each subpattern of the dataset with two subpatterns
is considered separately, therefore we have 160 and not
120 in total). We start by summarising the influence of the
parameter |gsim|, the number of genes exhibiting the sim-
ulated pattern: For its increase, meaning that the pattern
becomes stronger in the dataset, we expected to see an
increase or stability in the performance. Among the eval-

uated methods, only dynDLT, ICA, and NMF show this
property with few exceptions for some values of |gsim|.
Overall, dynDLT detects simulated patterns well for

either of the simulated patterns and also with perturba-
tion. Generally, one of the dictionary atoms reflects the
simulated pattern. The correlations of the coefficient vec-
tors with the simulated patterns are > 0.9 in 120 of 160
evaluations. The average correlation over all evaluations
is 0.87 (median 0.96). The percentage of marker genes
overlapping with the simulated genes is > 90% in 144 of
160 evaluations. Among the 112 datasets for which the
|gsim| > 300, for 106 datasets the correlation is > 0.9 and
the percentage is >90%.
ICA presents the only method that performs similarly

good as dynDLT. However, dynDLT scores better for the
majority of datasets. A higher performance of dynDLT is
reached especially in datasets with two subpatterns over
a wide range of simulation parameters, while ICA scores
better for some datasets for which simulation parameter
|gsim| < 300. Further, regarding the performance over
an increase of the dimensionality, unlike dynDLT, ICA
results do not maintain good performance for all higher
dimensionalities once the good performance is reached.
Thus, for ICA multiple parameters have to be evaluated
and a measure to select among those is required, which is
non-trivial.
While NMF reaches high correlations similar to ICA

and dynDLT – however, only for large values of |gsim| – it
does not reach as high percentages as dynDLT and ICA
for any value of |gsim|. Results for t-SNE and UMAP are
significantly worse.

Pseudotime estimation for dynamic real-world data
The simulation studies in which expression time patterns
are simulated reveal that the coefficient vectors from dyn-
DLT reflect such patterns well. In this section, real-world
time course datasets are analysed with dynDLT, and it is
examined whether the dynamic changes are represented
by the coefficient vectors. To evaluate the time represen-
tation, data from samples in dynamic processes taken at
different time points is analysed. The time points are used
for the evaluation of the estimated pseudotimes.
We start the real-world data analysis with an evalua-

tion of 2 time dynamic datasets with samples from one
phenotype/ experimental condition. Due to our findings
in [18], which revealed that the compressed representa-
tions from DLT, our DiL based approach for the analy-
sis of static transcriptomic datasets, maintain differences
among samples from different phenotypes, we are also
interested in such datasets. Therefore, we also analyse 6
dynamic datasets with samples from different subtypes.
We compare the results from dynDLT to those from ICA,
NMF, PCA, t-SNE, and UMAP (for details on the com-
parison approaches see “Comparison methods” section).
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For simplification, we refer to each column/ component/
dimension of the resulting dictionary(-like) matrices as
component for all methods.
As described in “Estimating pseudotime based on dic-

tionary learning” section - with examples in “Simula-
tion studies” section - pseudotimes are derived based on
one component of the low-dimensional representation
for each method. Thereto, the order of the coefficients
of a component for each sample is used as the pseu-
dotemporal ordering. For each component of the resulting
low-dimensional representation, the Spearman correla-
tion with the experimental times is computed. Note, that
the Spearman correlation measures univariate behaviour.
In consequence, whenever a set of components cap-
tures the time dynamics, this does not become visible by
the Spearman correlation. The component for which the
highest correlation is measured is used for pseudotime
estimation.
As an alternative approach, for the real-world data anal-

ysis, we combine the low-dimensional representations of
dynDLT and the comparison methods with the polygonal
reconstruction algorithm fromMonocle. To derive a pseu-
dotemporal ordering from the entire low-dimensional
representation, this algorithm constructs a minimal span-
ning tree (MST) from the representation. Next, it deter-
mines the longest connected path within the MST. Last,
each node (sample) is assigned to the closest point on this
longest path. The pseudotimes are then derived by this

path. This way, the entire low-dimensional representation
is used for the pseudotime estimation and the selection of
a component for the pseudotime estimation is no longer
required.
Note that by comparing the derived pseudotimes to

experimental time points, we treat the experimental times
like the ground truth. However, this is not necessarily
correct for each sample, particularly because multiple
samples have the same time label. This is a crucial remark.
Consequently, we do not expect to obtain correlations of
1. Nevertheless, the experimental times should provide
an orientation to evaluate whether the time dynamics are
captured in principle.

Results for time dynamic data from one type
For the 2 real-world datasets without subtypes, results for
all methods with 2 components are visualised in Fig. 4.
For these datasets, the correlations for the dynDLT results
are maximal for dictionaries with few atoms. e.g. m ≤ 3
(see Fig. 5). For dataset E-MTAB-2565 the highest cor-
relation for dynDLT over all evaluated values for the
number of atoms is 0.98, the smallest correlation is 0.80.
PCA and ICA reach similar high correlations. For dataset
GSE122380 the highest correlation for dynDLT is 0.88, the
smallest correlation is 0.49. ICA, PCA, NMF, and UMAP
reach similar high correlations.
As an alternative to a selection of the best scor-

ing atom, we also derive the pseudotemporal ordering

Fig. 4 2D visualisation of the coefficients for all evaluated methods for two components for two datasets. Shown are visualisations of the
coefficients for the two datasets without subtypes (dataset E-MTAB-2565 in Subfigure a and dataset GSE112004 in Subfigure b). The respective
dataset ID is given in the subtitle. The data points are coloured based on the experimental time points (colour encoded in legend). The parameters
for t-SNE, respectively UMAP (perplexity = 10, number_of_neighbours = 10) are chosen to maximise the correlation among all values evaluated on
average for both datasets. As the varied parameter for the other methods is the dimensionality, which is set to 2 here, for these methods no
parameter search is conducted. Hence, for the show representations a parameter study is performed for t-SNE and UMAP only. For both datasets, for
many methods, at least one component is representing well the dynamics of the data. It is striking that the low-dimensional representations from
dynDLT represent the dynamics with low noise
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Fig. 5 Correlations of experimental times with pseudotimes for 2 real datasets with samples from one phenotype. Subfigures to the left show results
for pseudotimes derived based on the ranks of the values of the coefficient vector for the best scoring component; Subfigures to the right show the
correlations for pseudotimes derived based on the entire low-dimensional representation with Monocle’s polygonal reconstruction. The x-axis
displays the number of components the data is reduced to, or for UMAP the number of neighbours and for t-SNE the perplexity. The majority of
correlations are higher when pseudotimes are derived based on one atom

from the entire low-dimensional representation using the
polygonal reconstruction approach from Monocle. For
both datasets the correlations are similarly high as from
one single component (see Fig. 5). However, especially
for dataset GSE122380, the correlation drops for higher
dimensions for several methods.
We have also conducted an analysis of the marker genes

derived from the respective component that is displaying
the pseudotime, as explained in “Performance evaluation”
section. Recall that we used a significance cut-off of 10−3.
The full list of the respective GO-terms is given in the
supplementary material, Additional file 2.
For all methods, the resulting GO-terms contain terms

that are either associated with dynamic cell processes, or
with the sample types, respectively experimental condi-
tions. For both datasets, only dynDLT and NMF identify
genes for which the GO-terms can be associated with
the sample types, respectively experimental conditions.
This is in line with the property of these two methods as
being those with positive dictionary(-like) matrices, which
enhances interpretability. Comparing between dynDLT
and NMF, the proportion of terms regarded as meaning-
ful is higher in dynDLT. For NMF, more terms are found,
however, many of them are quite general.

Results for time dynamic data with different subtypes
The analysis of real-world data with time dynamics reveals
that the coefficient vectors from dynDLT have a high

correlation with the experimental times. In this section,
results for 6 datasets with different subtypes are pre-
sented. The datasets are analysed with dynDLT (see Fig. 6)
and the comparison approaches ICA, NMF, PCA, t-SNE,
and UMAP.
The metadata of the 6 datasets with subtypes contains

several features (compare Table 1 and Additional File 1,
Table S1). Each of these features is regarded as a candi-
date variable for a subtype partition with different time
patterns. To evaluate whether the low-dimensional repre-
sentation displays the times of the feature-subtypes well,
for each subtype, the correlation of the experimental times
and values of the coefficient vector are computed for all
samples belonging to the subtype. To merge all subtype
values for each feature and come up with a value for the
entire feature, each of these correlations is scaled by the
percentage of samples that belong to the subtype. The
resulting values are summed for each feature (for details
see Additional File 1, section S2.3).
When the pseudotimes are derived based on the order-

ing of the coefficients for each component, several meth-
ods reach high correlations for several datasets (see
Fig. 7). Considering the maximal correlation over all
parameters per dataset and method, dynDLT reaches the
highest correlation for 3 out of 6 datasets (GSE84712,
GSE92652, EMTAB6811). ICA and UMAP are among the
best scoring methods for 2 datasets each (ICA: GSE87375,
EMTAB6811; UMAP: GSE100425, EMTAB6811).
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Fig. 6 3D visualisation of the coefficients for a dictionary with three atoms for two datasets. Shown are three rotations of the 3D visualisation.
Visualisation for dataset GSE84712 are shown on the left; Visualisations for dataset E-MTAB-6811 are shown on the right. For each dataset, the
low-dimensional representation is coloured once by the subtype separating feature (Dose for GSE84712 and Organ for E-MTAB-6811) and once by
the experimental times. For dataset GSE84712, samples with a dose of 30μM are clearly separated from those with no or 3μM lead exposure for
higher times. On each branch, samples are well ordered according to experimental times. A similar pattern is observable for dataset E-MTAB-6811

For many datasets, the correlations are high for sev-
eral parameter values (number of components/ number of
neighbours for UMAP/ perplexity for t-SNE). Solely the
smallest parameter value evaluated is often leading to sig-
nificantly worse results. For all higher parameter values
for all datasets but GSE92652, correlations do on average
not change by more than 0.23.
When the pseudotimes are derived by an integration

of the entire low-dimensional representation from each

method with the polygonal reconstruction from Mon-
ocle, the correlations are slightly worse than those for
the single best component for several dataset/method
combinations (see Fig. 7). For dataset GSE92652 Mono-
cle fails, which is why only the remaining 5 datasets are
analysed here. In this case, dynDLT reaches the high-
est correlations for 2 out of the 5 datasets. ICA, NMF,
and UMAP are among the best methods for 1 dataset
each.

Table 1 Overview of the metadata for the 8 real-world datasets (after outlier removal)

Database-ID Database Datatype Organism Samples Reads/Genes Time points Metadata variables

GSE122380 GEO scRNA-seq Homo sapiens 294 16,237 16 -

E-MTAB-2565 ArrayExpress Microarray Arabidopsis thaliana 71 20,361 18 -

GSE100425 GEO RNA-seq Mus musculus 120 19,715 7 6

GSE129486 GEO RNA-seq Homo sapiens 174 30,566 9 6

GSE84712 GEO scRNA-seq Homo sapiens 78 18,255 27 2

GSE87375 GEO scRNA-seq Mus musculus 912 22,027 7 8

GSE92652 GEO RNA-seq Homo sapiens 92 46,378 6 5

E-MTAB-6811 ArrayExpress Microarray Rattus norvegicus 359 27,330 16 4

The first two datasets are those without subtypes
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Fig. 7 Correlations of experimental times with pseudotimes for 6 real-world datasets with multiple subtypes. Subfigures in each row show
evaluations for each dataset. Subfigures to the left show results for pseudotimes derived based on the ranks of the values of the coefficient vector
for the best scoring component; Subfigures to the right show the correlations for pseudotimes derived based on the entire low-dimensional
representation with Monocle’s polygonal reconstruction. For dataset GSE92652 Monocle fails, which is why only the remaining 5 datasets are
analysed here. The x-axis displays the number of components the data is reduced to, or for UMAP the number of neighbours and for t-SNE the
perplexity. The majority of correlations are higher when pseudotimes are derived based on one atom
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We have also conducted an analysis of the marker genes
derived from the respective component that is display-
ing the pseudotime, as explained in section 2. Recall that
we used a significance cut-off of 10−3. The full list of the
respective GO-terms is given in the supplementary mate-
rial, Additional file 2. In the following, we refer to those
GO-terms which are associated to dynamic processes,
or those which are in association with the sample types,
respectively the experimental set-up, as the relevant ones.
For the individual datasets, the results are as follows:
For dataset GSE100425, for all methods but ICA two of

the significant GO-terms are relevant. For ICA, six of the
significant GO-terms are relevant. The number of total
significant GO-terms is higher for ICA and NMF, com-
pared to dynDLT and PCA, though. This means that the
number of non-relevant GO-terms is also higher for these
methods.
For dataset GSE129486, for dynDLT, four significant

GO-terms are relevant. For all other methods this amount
is smaller and the number of non-relevant GO-terms is
significantly higher for NMF and PCA.
For dataset GSE84712 the 18 GO-terms are relevant for

dynDLT. With 7 relevant GO-terms NMF is the method
with the second highest number of relevant GO-terms.
The number of non-relevant GO-terms is significantly
higher for NMF and PCA. For ICA six out of eight GO-
terms are relevant.
For dataset GSE87375 PCA is the onlymethod for which

more than one GO-term is significant.
For dataset GSE92652 the only significant GO-term

that can be associated to the sample types, respectively
the experimental set-up is found by NMF. However, for
ICA, NMF, and PCA a number of GO-terms associated
to dynamic processes are found. For this datasest the
dynDLT results do not contain any such GO-terms.
For dataset EMTAB6811, the number of relevant GO-

terms varies from two to three in all results but those
found by NMF for which 13 such terms are found. How-
ever, at the same time, similar to the results for the other
datasets, for NMF the amount of non-relevant GO-terms
is a lot higher than for the other methods.
In summary, this pseudotime evaluation suggests that

the results by the dynDLT method contain more relevant
information compared to the other methods for the real-
world data evaluations. Recall, however, that the labels for
the analysed real-world datasets – which are used for the
evaluation – are less detailed than those for simulated data
with only a few time stamps per dataset. We would there-
fore like to highlight again the results of the simulated data
analysis. Knowing the actual time points of each cell could
give better insight when comparing with the estimated
pseudotimes and might show an even more significant
benefit for dynDLT. In the GO-term evaluation, for two
out of six datasets, namely for GSE129486 and GSE84712,

dynDLT is performing better than the other methods
based on our evaluation criteria described above. Among
the other dataset no method shows an outstanding per-
formance for datasets GSE100425 and E-MTAB-6811. For
dataset GSE87375, PCA is the best performing method.
For dataset GSE92652 all comparison methods perform
similar. Further, regarding the methods other than dyn-
DLT, it is striking in particular for NMF that the propor-
tion of relevant GO-terms in the significant GO-terms is
comparably small.

Discussion
Wehave introduced and evaluated our new approach dyn-
DLT for pseudotime estimation of transcriptomic datasets
which are composed of samples from dynamic processes.
We started with a simulation study in which we focused on
two things: (1) Whether the coefficient matrices preserve
the simulated patterns in low-dimension and (2) the over-
lap of genes corresponding to the high dictionary values
with the genes exhibiting the simulated patterns – which,
if successful, allows for the interpretation of the dynamic
processes on the gene level.
We have performed an extensive simulation study as

well as an analysis of 8 real-world datasets. The low-
dimensional representations from dynDLT represent the
simulated time patterns well. At the same time, themarker
genes from the dictionary significantly overlap with the
genes that exhibit the simulated pattern. Hence, with
regard to the simulation studies, dynDLT represents a
method that is capable of pseudotime estimation, and it
can be applied to find modules that entail the gene sets
which play a relevant role in the dynamic processes.
We compared our results to those from other

approaches used in pseudotime estimation, or those that
are method-wise closely connected to dynDLT: ICA,
NMF, PCA, t-SNE, and UMAP. ICA and NMF perform
well in pseudotime estimation for the simulated datasets.
However, for NMF, this is only the case for datasets with
many genes exhibiting the time pattern. ICA, on the
contrary, performs worse than dynDLT in the majority of
evaluated datasets and especially when the simulated data
contains more than one time pattern. For marker gene
detection, only dynDLT and ICA perform well overall.
PCA yields good marker gene detection results for some
datasets only. As discussed throughout the paper, another
advantage of dynDLT is that the dictionary entries are
positive, unlike for ICA and PCA. This allows for an easier
interpretation of the low-dimensional representation.
For the real-world data evaluation, high correlations

between the experimental time points and the values of
the coefficient vector are measured for all methods. How-
ever, summarising over all evaluated datasets, dynDLT
has the best overall performance in this correlation anal-
ysis. Due to the few known time points for the real-world
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datasets, the assessment based on correlation is vaguer
than for the simulated datasets, where the pseudotime
ordering of each sample is known. Therefore, we put
more emphasis on the simulation results and provide the
real-world data results as a confirmation that pseudotime
estimation based on dynDLT is also working on real-world
data.
For the real-world datasets the identified gene-sets are

evaluated by a GO-term analysis. Note though, that,
among the analysed methods, the only methods suitable
for this purpose are the linear ones, namely dynDLT, ICA,
NMF, and PCA. For four out of eight datasets dynDLT
is performing better than the comparison methods. For
two further datasets no method shows an outstanding
performance; For one dataset PCA is the best perform-
ing method. Additionally, it is striking that, in the results
for the comparison methods and in particular for NMF,
the proportion of relevant GO-terms in the significant
GO-terms is small compared to dynDLT.
Note, that even though we have analysed datasets from

multiple phenotypes with different experimental condi-
tions among samples, this work does not present amethod
to identify branches. Notably, analysing such datasets and
evaluating the pseudotemporal ordering of each branch
shows that time patterns are captured for such multi-type
datasets. A visualisation of the coefficient vectors derived
from dynDLT shows that dynDLT is also well suited for
the visualisation of dynamic transcriptomic datasets. For
branch detection using dynDLT, the compression meth-
ods in existing branch detection approaches, e.g. PCA,
ICA, t-SNE, can be substituted with dynDLT. As an exam-
ple, we exchange ICA in Monocle with dynDLT which
yields promising results. Certainly, we have only evaluated
one method for the incorporation of the entire represen-
tation. A study of the incorporation of dynDLT into other
approaches remains for future research.
A challenge in the application of the presented dynDLT

based approach and the comparison approaches, when
not combined with other algorithms, is to identify the
atom/component that captures the dynamics, or how to
otherwise incorporate all atoms/components. This is still
unsolved.
In the application of dynDLT for pseudotime estima-

tion, only one parameter (number of atoms, m) has to be
selected by the user. In the majority of real-world data
analyses, a value of m = 3 yields good results. If no
experiments are carried out, we suggest using this value.

Conclusion
In this paper, we present a new dictionary learning
basedmethod for pseudotime estimation of simulated and
dynamic real-world data, dynDLT. We compare the per-
formance of dynDLT to those of ICA, NMF, PCA, t-SNE,
and UMAP.

The simulation study shows that dynDLT is suitable for
the detection of dynamic patterns in transcriptomic data.
In addition, for the simulated datasets, the genes that are
identified by our method to be important are in large
agreement with the ground truth. When comparing to
similar methods such as ICA, we find that ICA performs
worse for the majority of the considered datasets, espe-
cially for those with more than one expression pattern.
Further, ICA performs well for some parameter values
only, which requires a parameter search and a measure to
select the results with the best performance. This, how-
ever, is non-trivial in pseudotime estimation as it presents
an unsupervised task.
For the real-world data analysis, dynDLT is overall per-

forming slightly better than the other methods, based on
the evaluation using correlation of the estimated times
with the experimental time points.
We derive pseudotime from one atom of the dictionary

given by dynDLT, respectively from one component of the
dictionary-likematrices from other approaches. The iden-
tification of this one atom presents a challenge. To provide
a workflow without having to detect this one atom, we
additionally incorporate the entire low-dimensional rep-
resentation into Monocle, which also yields good results.
The main advantages of using dynDLT for pseudo-

time estimation of dynamic transcriptomic datasets are:
(1) It presents a model-free approach, meaning that
the data representation is not required to fulfil specific
assumptions, such as orthogonality or independence of
the dimensions; (2) Important marker genes can be iden-
tified from the dictionary matrix; (3) By a restriction
of the dictionary entries to positive values, the dictio-
nary atoms are highly interpretable; (4) A good perfor-
mance is reached for several parameter values (number
of atoms), which means a large parameter search is not
necessary.

Methods
We apply Dictionary learning (DiL) for pseudotime esti-
mation of transcriptomic datasets. DiL is a matrix factori-
sation approach that results in a dictionary matrix and a
matrix carrying the coefficient vectors. In our previous
study [18] we show that DiL can be applied to transcrip-
tomic data when a small modification is performed. The
coefficient vectors then yield a low-dimensional represen-
tation of the data, while the dictionary matrix contains
the information on the genes that are relevant for the
compression. In this paper, we apply DiL to time course
transcriptomic datasets and estimate pseudotimes based
on the coefficient vectors. The genes that are relevant for
the dynamic changes can be derived from the dictionary
matrix.
The difference of standard DiL and the suggested

approach, further referred to as DiL For The Analysis
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Of Transcriptomic Data From Dynamic Processes (dyn-
DLT), is, for one thing, the modification of DiL such
that the dictionary is a thin-matrix and not overcomplete,
which is a required modification to obtain dictionary and
coefficient vectors as desired. Further, unlike in the stan-
dard DiL approach, in dynDLT the coefficient vectors
need to be non-sparse. Only then can dynDLT be applied
for the estimation of pseudotimes from transcriptomic
datasets. Details on these steps are given in this section.
We describe (1) the general DiL approach, (2) how to
apply DiL to transcriptomic data, and (3) how to estimate
pseudotimes from the dynDLT results.
In addition, in this section we provide details on the

simulated and real-world datasets analysed, explain how
we evaluate the performance of the methods and provide
details on methods we compare our approach to.

The dictionary learning approach
In DiL, for a given dataset X =[ x1, x2, ..., xn]∈ R

p×n

we want to find a dictionary matrix D =[ d1, d2, ..., dm]∈
R
p×m and coefficient matrix R =[ r1, r2, ..., rn]∈ R

m×n,
s.t.:

xi = Dri + ε ∀i ∈ 1, ..., n , (1)

where ε is the reconstruction error. Typically, the dictio-
nary matrix is chosen to be overcomplete, meaning m >

p. Further, among the set of all possible solutions, the
sparsest ri, meaning the one with the highest number of
coefficients equal to 0, is desired. Together, this yields the
dictionary learning problem:

min
D,R

n∑

i=1
‖ri‖0 , s.t. ‖X − DR‖2F ≤ δ ∀i ∈ 1, ..., n , (2)

where ‖·‖F denotes the Frobenius norm, ‖·‖0 is defined as
the number of non-zero elements of a vector, referred to
as l0-norm, and δ is the reconstruction error. Additionally,
‖di‖2 = 1 is typically required. The vectors ri are referred
to as coefficient vectors and the columns of D are referred
to as atoms. Solving (2) is typically implemented as an iter-
ative two-step process, where in each step it is solved for
either D or R.
A formulation similar to (2), where the sparsity for each

sample representation is restricted to be maximally s, is:

min
D,R

‖X − DR‖2F , s.t. ‖ri‖0 ≤ s ∀i ∈ 1, ..., n . (3)

In this formulation, R is said to be the column-wise s-
sparse.
(2) and (3) are not computationally feasible since they

are non-convex problems. Ramirez et al. [19] have shown
that the l1-norm is the best convex approximation for the
l0-norm. Typically, DiL is implemented using the l1-norm.

Dictionary learning for dynamic transcriptomic data
Assume we are given a transcriptomic count data matrix
Y ∈ R

p×n, where p is the number of genes and n is the
number of samples. For the computation of the dictio-
nary and coefficient vectors, the transposed datasetY t can
be considered likewise. For the atoms of D to be inter-
pretable as gene-modules, it needs to be of shape p × m.
Hence, we consider Y, because otherwise D ∈ Rn×m. This
approach is further referred to as DiL For The Analysis Of
Transcriptomic Data (DLT).
In transcriptomic count data analysis, the ‘small n large

p’ problem describes the problem of n � p. Hence, using
Y ∈ R

p×n as the input matrix for DiL means that the dic-
tionary is not overcomplete as D = Y ∈ R

p×n would be
an optimal solution to the problem. However, this solution
is trivial and does not provide any new information about
the data. We therefore need to choose m < n and there-
fore m � p. Thus, dictionaries in DLT are a lot smaller
in dimension compared to the standard DiL approach.
Consequently, they are of low rank.
Certainly, by reformulating the DiL method to yield

thin-matrix-dictionaries, the results differ from the tradi-
tional DiL approach. Indeed, it is not the main goal of our
approach to yield a data representation that has the small-
est reconstruction error to the original dataset. Rather, we
aim to find those atoms, respectively gene modules, that
represent the gene modules of the main underlying pro-
cess. Consequently, the coefficient vectors can be inter-
preted as a representation of the corresponding processes.
In numerical experiments (results presented in “Simula-
tion studies” section) we show that the obtained modules
are correlated with the genes exhibiting dynamic patterns.
Further, the dynamic processes are well represented in the
low-dimensional representation obtained from the coef-
ficient vectors. Results for the analysis of real-world data
in “Pseudotime estimation for dynamic real-world data”
section support this implication. This suggests that the
chosen representation is meaningful from a biological
point of view.

Estimating pseudotime based on dictionary learning
To derive pseudotimes from the DiL based analysis of
dynamic transcriptomic datasets, we follow the idea of
several other pseudotime approaches, e.g. [20–22], and
derive pseudotimes based on the similarities of the tran-
scriptomic profiles of the samples. This similarity is mea-
sured in the low-dimensional representation of the sam-
ples. Following this idea, the pseudotimes can be directly
inferred from the values of the coefficient vector. Hence,
to derive the pseudotimes we simply consider the differ-
ences in the values of the coefficient vector among all
samples. Further, relevant time course genes, or marker
genes, can be obtained from the dictionary. Recall, that
the dictionary matrix consists of atoms, which each assign
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a value to each gene. Hence, the more relevant the gene
is within an atom, the higher is the value of this atom
entry. Thus, the highest atom values can be interpreted
as marker genes for the process this atom depicts. In [18]
we show that marker genes in fact depict relevant genes
when DLT is applied to transcriptomic data from different
phenotypes.
In numerical experiments (results presented in “Sim-

ulation studies” section) we observe that the dynamic
changes in the dataset are usually captured by one atom.
We therefore assume that there is one atom that cap-
tures the dynamic changes of the data. Note, that we
have not yet derived a measure to determine the relevant
atom. Rather, in this paper, we present evaluations for the
atom that performs best among all atoms. When few sam-
ple states are known, the atom representing the dynamic
module can be identified, e.g. via semi-supervised cluster-
ing.
However, assuming one atom to represent the dynamic

processes requires non-zero values for all samples, as oth-
erwise many samples would be assigned the same pseu-
dotime based on the zero entries. Therefore, unlike in
the standard DiL approach and unlike in DLT, in dynDLT
the coefficient vectors need to be non-sparse. Only then
can dynDLT be applied for the estimation of pseudotimes
from transcriptomic datasets.

Using diL with existing pseudotime estimationmethods
Many existing pseudotime estimation approaches con-
struct graphs based on the low-dimensional representa-
tion of the RNA-seq dataset under study. Approaches
such as PCA, ICA or t-SNE belong to the most widely
used methods for dimension reduction in pseudotime
estimation methods.
Apart from deriving pseudotimes from the coefficient

vectors from dynDLT directly as described above, the
derived low-dimensional representation can also be incor-
porated into existing pseudotime estimation approaches.
Thereto, the method used for data compression by
the respective approach, e.g. PCA, ICA, or t-SNE, is
exchanged with dynDLT. Hence, the graph is learned
based on the dynDLT representation. Results for such an
approach are shown, by exemplary using Monocle [11],
in “Pseudotime estimation for dynamic real-world data”
section.
Note that for such an analysis the interpretability, which

is a major benefit of dynDLT is partially lost. The reason
is that the pseudotimes are no longer estimated based on
the atoms, but based on the graph. This is the case for any
graph-based pseudotime estimation approach, no mat-
ter which method is used to derive the low-dimensional
representation. Hence, a connection to the gene mod-
ules, which are derived based on the dictionary atoms, is

no longer as clear as for the pseudotimes based purely
on dynDLT. This presents a major benefit of using dyn-
DLT alone: It is a highly interpretable approach for the
estimation of pseudotimes.

Further remarks regarding the proposed diL basedmethod
Positive dictionary entries
As previously described, the dictionary atoms can be
interpreted as a collection of gene modules and the coef-
ficient vectors can be interpreted as a representation of
each sample based on these modules. To derive a better
understanding of a gene module and the sparse represen-
tations, we restrict the dictionary to have positive values
only. The values of the coefficient vectors can be positive
or negative.

Parameters
DynDLT has two parameters: m, the number of dictio-
nary atoms, and s, the number of non-zero entries in the
representation for each sample. The dictionary is learned
based on formulation (2). This means that the dictionary
is learned to derive maximally sparse coefficient vectors.
The idea is that this should result in atoms that represent
the main gene modules.
Once the dictionary is learned, we use formulation (3)

to derive the coefficient vectors. Recall, that in dynDLT
we set s = m. This means that the coefficient vector is
no longer sparse, but it has non-zero values for each atom
per sample. The reason for this parameter choice is that
pseudotime estimation coefficients are required for each
sample. Accordingly, only for s = m it can be inferred how
much a particular module is expressed in each sample for
all atoms. A benefit of this determination is that m is the
only parameter that has to be selected in our approach.

Implementation and complexity
We use the Python implementation DictionaryLear-
ning [23], which is an implementation of online dictio-
nary learning, with default setting. It solves the problem
“by efficiently minimizing at each step a quadratic surro-
gate function of the empirical cost over the set of con-
straints” [23]. This is in line with the observed times for
the experiments presented.
The coefficient vectors (ri) are computed using orthog-

onal matching pursuit (OMP) [24]. A detailed complexity
analysis of OMP is given in [25].

Datasets
The proposed method for the estimation of pseudotimes
of dynamic transcriptomic dataset, dynDLT, is evaluated
on simulated and real-world data. In this section, the
construction of the simulated data, as well as details on
real-world dynamic RNA-seq datasets, are explained.
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Simulated data
To simulate data that is similar to real-world data, simu-
lations are based on a real-world single-cell time-course
RNA-seq dataset (NCBI GEO [26] accession number:
GSE87375). To prevent an influence of the time dynam-
ics in the dataset, samples are shuffled before simula-
tion. After an outlier detection 10,000 genes, hereinafter
referred to as gor , and 500 samples are randomly selected.
The resulting matrix is used as the baseline for the subse-
quent simulation.
The actual simulation is performed for a subset of the

10,000 genes, gsim. The simulation of values for each gene
gsim,i, i ∈[ 1, |gsim|], |gsim| ∈[ 100, 200, ..., 1000] is based on
the count values of a randomly drawn gene gor,k , k ∈
[ 1, ..., 10, 000]. The values are simulated to follow a par-
ticular pattern, while maintaining characteristics of the
distribution of gor,k . Details on the simulation of dynamic
patterns are given below.
Two types of dynamic gene expression patterns are

modelled: (1) Change over time diverging from an ini-
tial state and (2) a periodic, or fluctuating change over
time. The former might appear when samples are exposed
to a condition over a period of time. The latter could
appear in cyclic processes, for instance the cell cycle or
circadian rhythms. We consider multiple parameters and
additional perturbations for the construction of the sim-
ulated datasets. This way, we can track the influence of
these changes on the performance in the results.

Simulation patterns To simulate values for each gsim,i ∈
gsim, a gene gor,k ∈ gor is randomly sampled from the orig-
inal dataset. Datasets with either of 3 simulation patterns
are each obtained by reordering the expression values of
each gor,k (compare also Fig. 8):

1 Values for all simulated genes are sorted increasingly.

2 Values for all simulated genes are sorted in a
fluctuating manner: Values for each gene are
partitioned into four equally large segments . The
selection of values per segment is conducted
randomly . Next, in the first and third segment values
are sorted increasingly, while in the second and
fourth segment, values are sorted decreasingly.

3 For one half of the simulated genes (|gsim|/2) counts
are ordered increasingly, for the other half of
simulated genes values are ordered fluctuating
(compare pattern 2).

In several time dynamic dataset studies, e.g. [27–29]
an occurrence of multiple gene expression patterns from
different gene sets, as simulated in pattern 3, has been
observed. Analysis of this dataset should yield insight into
whether the evaluated methods can identify more than
one pattern in one dataset. We refer to datasets that are
simulated with pattern 3 as those with two subpatterns.
Subsequently, we add (combinations of) perturbations

to the simulated gene counts: noise of different inten-
sity and zero-counts. For the noise perturbation, for each
gsim,i, random noise ∈ N (0, σ 2(valuesgsim,i)), or high ran-
dom noise ∈ N (0, 2σ 2(valuesgsim,i)) is added to the sim-
ulated gene counts. To maintain a real-world like dataset,
which has positive integer values only, values are rounded
to integers and negative values are set to their initial val-
ues before addition of noise. This yields 6 datasets for each
value of |gsim|: For each of the 3 patterns, one with noise
and one with high noise perturbation.
The previously described perturbation of added noise

results in fewer zero-counts compared to the original val-
ues becausemany zero-values entries are overwritten with
non-zero noise. Tomaintain amore real-world dataset, we
also construct datasets in which each gene has as many
zero-counts as observed in the original dataset for each

Fig. 8 Visualisations of the 3 simulation patterns with noise perturbation. Shown are matrices with 1000 genes exhibiting the simulated pattern. The
x-axis shows the samples ordered by simulated time. The y-axis shows the genes. The pattern is the same for all gsim (simulated genes) for the
increasing pattern and the fluctuating pattern, whereas for the third pattern, one half of gsim follows a different subpattern than the other
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gor,k . The respective samples which are assigned these
zero-counts are selected randomly. Thus, in total, for each
value of |gsim| 12 datasets are simulated.

Real world data
We analyse 8 real-world time course datasets from dif-
ferent organisms. Datasets stem from Gene Expression
Omnibus [26] and ArrayExpress [30]. These include sam-
ples from bulk and single-cell experiments (see Table 1).
For 2 datasets, samples stem from the one phenotype; 6
datasets contain samples from different subtypes. More
details on the data are given in Additional File 1, section
S2.

Performance evaluation
To assess the performance of dynDLT for pseudotime esti-
mation, two things can be evaluated: (1) Whether the
low-dimensional representation given by the coefficient
vectors preserve the time ordering of the original data (2)
the overlap of marker genes derived from the dictionary
atoms with the genes exhibiting the dynamic behaviour.
To determine whether the coefficient vectors derived

from dynDLT represent the simulated patterns, respec-
tively the experimental times, we evaluate the Spearman
correlation of the estimated pseudotimes with the respec-
tive simulated or experimental time points. The Spear-
man correlation compares the ranks of the values of
two vectors. For the real-world data, the values of the
coefficient vector can simply be compared to the exper-
imental time points. For the simulated data, the repre-
sentative vectors for each pattern, thus the vectors the
Spearman correlation are measured for, are constructed
as rank vectors according to the simulation pattern (sim-
ulation pattern construction is described in “Datasets”
section).
Further, for the simulated data, we evaluate whether the

dictionary values corresponding to the simulated genes
are high. Hence, we evaluate the performance of marker
gene detection. In particular, we calculate the percentage
of the simulated genes that are among the |gsim| high-
est dictionary entries. Recall, that |gsim| is the number of
genes that are simulated to express the dynamic patterns.
For the datasets with pattern 3, hence, a set of genes

with increasing counts and a set of genes with fluctuating
counts over simulated time, we measure correlation and
percentage for each pattern separately. We do not com-
bine the derived values so that we can verify whether one
pattern is better detected than the other.
When amethod correctly identifies the imposed simula-

tion pattern, the correlation with the representative vector
as well as the percentage of correctly identified genes is
high.
For the evaluation of the derived marker genes in the

real-world data analysis, we consider only the atom (or

component in the methods other than dynDLT) that is
displaying the pseudotime. To evaluate the genes, we per-
form a GO-term analysis of the 500 genes with the highest
absolute entries in the atom (component). It is neces-
sary to consider absolute values, as for ICA and PCA
the entries can be positive or negative. However, for our
approach dynDLT and for NMF the values are positive,
which allows for a better interpretation. Among all evalu-
atedmethods, the onlymethods suitable for such amarker
gene detection are hence dynDLT, ICA, NMF, and PCA.
We evaluate all GO-terms with a p-value≤10−3.

Comparison methods
The results from dynDLT are compared to results from
independent component analysis (ICA), non-negative
matrix factorisation (NMF), principal component analy-
sis (PCA), t-distributed stochastic neighbour embedding
(t-SNE), and Uniform Manifold Approximation and Pro-
jection (UMAP). Note, though, that only ICA, NMF, and
PCA return a matrix decomposition. Therefore, an eval-
uation of correctly identified marker genes can be con-
ducted for these methods only: Identically as performed
for dynDLT, one matrix is interpreted as the matrix of
gene modules and the other one is interpreted as the
matrix displaying the dynamic processes. The represen-
tation of the simulated patterns is evaluated for all five
comparison methods.
To interpret PCA as a method that yields a dictionary-

like matrix as well as a low-dimensional representation
matrix, let us firstly define the matrices resulting from
PCA: Suppose X =[ x1, x2, ..., xn]∈ R

p×n is a column-wise
mean-centred dataset. PCA then yields principal compo-
nents V =[ v1, v2, ..., vn]∈ R

n×n, with vj ∈ R
n , such that

the linear transformations Z =[ z1, z2, ..., zn]∈ R
p×n are

given by zi = xi · v, or equivalently:
Z = XV

⇔ ZV−1 = X

⇔ ZVT = X .

This formulation illustrates that PCA can be directly com-
pared to dynDLT: Recall that in dynDLT we have DR ≈ X.
Thus, Z is comparable to the dictionary matrix and VT to
the matrix of coefficient vectors.

Comparisonmethod parameters
Similar to the analysis for dynDLT, for ICA, NMF, and
PCA the number of components is varied over [ 1, ..., 10].
For t-SNE and UMAP different parameters need to be
considered: For t-SNE the dimensionality can be maxi-
mally 3. As for t-SNE the parameter perplexity has a major
impact, we fix the dimensionality to 2 and evaluate the
value of the perplexity ∈[ 10, 20, ..., 100] (the default value
for perplexity is 30). For UMAP the dimensionality is
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always 2.We evaluate the change of the parameter number
of neighbours ∈[ 1, ..., 10] - the default value in the Python
implementation is 5, and we thus perform a search around
the default value.
For all methods the remaining parameters are set to

their default values as specified in the Python library
sklearn [31] (for ICA, NMF, PCA, and t-SNE), respec-
tively umap [32] (for UMAP).
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