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Abstract
We study the sharp interface limit of the two dimensional stochastic Cahn-Hilliard equa-
tion driven by two types of singular noise: a space-time white noise and a space-time
singular divergence-type noise. We show that with appropriate scaling of the noise the
solutions of the stochastic problems converge to the solutions of the determinisitic Mullins-
Sekerka/Hele-Shaw problem.
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1 Introduction

We consider the stochastic Cahn-Hilliard equation with additive noise

d
1

d d in 0

0 on 0

0 0

(1.1)

where 0 1 2, is the outward unit normal to , 0 is a constant, 0 is
a small parameter and is a singular space-time noise which will be specified later on.
The nonlinearity in Eq. 1.1 is taken as where 1

4
2 1 2 is the

double-well potential.
By introducing an additional variable, a chemical potential , it is possible to reformu-

late (1.1) as

d d d in

1
in

0 on 0

0 0 in .

(1.2)

The deterministic Cahn-Hilliard equation (i.e. Eq. 1.2 with 0) reads as

D D in

D D
1

D in .
(1.3)

The Cahn-Hilliard equation is a model for the non-equilibrium dynamics of metastable
states in phase transitions [6, 15, 17]. The parameter in Eq. 1.2 represents an “interaction
length”, which is typically very small, and is an order parameter (scaled concentration)
which assumes the values 1 and 1, respectively, in the regions occupied by the
pure phases. The phase separation consists of two stages a so-called spinodal decomposition
which is followed by a coarsening process. Starting from a fully mixed state, e.g., a random
perturbation around the initial mass, the system undergoes a short phase, so-called spinodal
decomposition, during which the initial phases are formed. The solution quickly approaches
the respective values 1, 1 in the regions occupied by the pure phases. The pure phases
are separated by a thin region with a width proportional to , so-called diffuse interface.
Once the diffuse interface is fully formed, the evolution enters a second stage, so-called
coarsening phase, during which the originally fine-grained structure coarsens, the geometric
structure of the phase regions gradually becomes simpler and eventually tends to regions of
minimum surface area with preserved volume.

A rigorous sharp interface limit of the deterministic Cahn-Hilliard (1.3) has been
obtained in [1] Under the assumption that the interfaces have been formed, i.e., that there
exists a smooth closed curve 00 such that 0 1 in , in the region enclosed
by 00, and 0 1 in 00 , it is shown in [1] that lim 0 D
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along with lim 0 D 0 , 0 satisfy the
deterministic Mullins-Sekerka/Hele-Shaw problem:

0 in 0

0 on

on

1

2
on

0 00

(1.4)

where 1
2

1
1 d , is the mean curvature of with the sign convention that

convex hypersurfaces have positive mean curvature, is the normal velocity of the interface
with the sign convention that the normal velocity of expanding hypersurfaces is positive,

0 1 is the normal to and , are respectively the restriction of on
(the exterior/interior of in ).

The sharp interface limit of stochastic Cahn-Hilliard equation with trace-class noise has
been studied in [2]. There, the authors show that for sufficiently large the sharp interface
limit of Eq. 1.2 satisfies the deterministic Mullins-Sekerka/Hele-Shaw problem (1.4). In the
recent paper [3] the authors show convergence of structure preserving numerical approx-
imation of the stochastic Cahn-Hilliard to the deterministic Mullins-Sekerka/Hele-Shaw
problem. In addition [3] obtains a uniform convergence result which implies convergence
of the zero-level set of the numerical solution to the free boundary 0
of Eq. 1.4. The case of 1 remains an open problem.

In this paper we study the sharp interface limit of stochastic Cahn-Hilliard equation
driven by singular noise. We consider the Cahn-Hilliard-Cook model, proposed by Cook,
cf. [6] and [15]), which incorporates thermal fluctuations in the form of an additive noise
in Eq. 1.2. We choose the noise as 1 or 2, where 1 is mass-conserved

2 -cylindrical Wiener process and 2 is an 2 2 -cylindrical Wiener process.
We note that in the latter case the equation is known as the time-dependent Ginzburg-Landau
(TDGL) equation and is also related to the stochastic quantization for 4

2-quantum field.
For the existence and uniqueness results for these two kinds of equations we refer to [8, 22]
and the reference therein.

To analyze the sharp interface limit of the solution to Eq. 1.2 for the case of
the space-time white noise 1, we adapt the approach of [2]. We estimate the differ-
ence of to an approximate solution which is constructed by the matched
asymptotic expansion method such that the interface is the zero level set of , cf. [1].
The approximation satisfies a perturbed equation

in

1
in

(1.5)

along with the boundary conditions

0 on .

Since the goes to zero as 0, we can show that for 0 the differences ,
converge to 0 for 107

12 . As a consequence the sharp interface limit of the
Eq. 1.2 satisfies the deterministic Hele-Shaw model (1.4) for 107

12 . We note that the
low regularity of the considered noise, prohibits the direct application of Itô’s formula to

499
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estimate . Hence the arguments of [2] are not directly transferable to our case.
Instead, we make use of the idea of Da Prato-Debussche [10]: after introducing a variable

0
2

we study the translated difference which
enjoys better regularity properties. By combining the estimates for and we bound the
error and obtain the sharp-interface limit.

For the case singular divergence-type noise 2 the Eq. 1.2 is ill-
posed in the classical sense, since the solution is not a function but a distribution.
Hence, it does not make sense to consider the sharp interface limit of Eq. 1.2 directly.
Instead we follow the renormalization approach: we employ a suitable regularization

2 of the the space-time white noise 2 and consider the regularized
equation:

1
3 (1.6)

where 3 is a renormalization term (see Eq. 5.7) which ensures that converges to
for 0, where is the unique solution of the renormalized version of Eq. 1.2, see

Eq. 5.11. The analysis in the case of the divergence-type noise is complicated by the fact
that for fixed 0 the renormalization constant in Eq. 1.6 diverges, i.e., that as

0.
By choosing for some 0 and goes to 0 (see Theorem 5.6) the constant

becomes small as 0 which enables us to control the term . The remaining steps
in the analysis of Eq. 1.6 are analogical to the first case: we obtain that the sharp interface
limit of Eq. 1.6 for 26

3 is the deterministic Mullins-Sekerka problem (1.4).
The paper is organized as follows. In Section 2 we give an overview of existing

results on sharp interface limits for related problems. In Section 3, we introduce the
notation and state preliminary results. The sharp interface limit for the space-time white
noise is stated in Section 4 and we prove it in Section 4.1. In Section 5 we use a
similar argument as we used in Section 4.1 to prove the results for divergence-type
noise.

2 Overview of Existing Results

For stochastic Cahn-Hilliard eqaution, the authors in [2] prove that for large the sharp
interface limit of Eq. 1.2 also satifies the deterministic Hele-Shaw model if is a trace-
class noise. For 1, the sharp interface limit is also conjectured to satisfy the following
stochastic Hele-Shaw model:

0 in 0

0 on

on

1

2
on

0 00

(2.1)
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In [4], the authors prove that the sharp interface limit of generalized Cahn-Hilliard equation:
1

2 1 satisfies the following Hele-Shaw model:

lim
0 1 in 0

0 on

lim
0 2 on

1

2
on

0 00

(2.2)

Since they require some regularity conditions for 1, 2 w.r.t time, which are not satisfied
by Bronwnian motions, it is not clear how to obtain the stochastic Hele-Shaw model rigor-
ously. Until now, the rigorous complete description of the motion of interfaces in dimensions
two and three in stochastic case stands for many years as a wide open problem.

Another simpler model is the following Allen-Cahn equation

1
2

. (2.3)

It is well-known that the movement of interface is characterized by mean curvature flow (see
e.g. [9, 11, 16]). Unlike the solution to the Allen-Cahn equation, the solution to the Cahn-
Hilliard (1.3) does not approach 1 away from the interface exponentially fast. The direct
application of the method of asymptotic matching in [9] does not lead to the desired approx-
imation solutions. In stochastic case which is also called Model A of [15]), the authors in
[12] and [26] consider the following stochastic Allen-Cahn equation

1
2

1
. (2.4)

The noise is constant in space and smooth in time. For 0 the correlation length goes
to zero at a precise rate and 0 converges to a Brownian motion pathwisely. They prove
that the dynamics of the phase-separating hyperplane appearing in the limit is given by
stochastic mean curvature flow (see also in [13, Chapter 4]). For space-time white noise, in
[25] the authors prove the “exponential loss of memory property”. But for sharp interface
limit, there is still no result for space-time white noise.

3 Notations and Preliminaries

Throughout the paper, we use the notation if there exists a constant 0 which is
independent to and time such that . If is depend on , we use the notation

. We write if and .
Let 0 1 2, 0 . In this paper, we always use to denote the

2 -inner product. For any , we denote by the characteristic function of , i.e.

1 if

0 if .

We consider the Neumann Laplacian operator on 2 with domain

2 0 on .
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The operator is self-adjoint positive and has compact resolvent. It possesses a basis of
eigenvectors 2 which is orthonormal in 2 . In fact for 1 2

2,
is given by

0 1 1 0 2 cos 1 1 0 2 2 cos 2 2

2 cos 1 1 cos 2 2 1 2 0.
(3.1)

It is associated with the eigenvalues , where 2.
We also introduce a notation for the average of 2 :

0 .

For any , we define as the closure of under the norm

2 2 2.

It is easy to see that is a Hilbert space and , where is the classical
Sobolev space on domain which can be defined as the closure of under the norm

2

2

1 2.

In the rest of this paper, we use the notation to represent for simiplicity.
Moreover for any , we can define a bounded operator 2

by:

2 0 0

where .
We also set

0 0 0

where denote the inner product in . Moreover we denote 2
0

0
0 .

The analysis of this paper relies heavily on the existence of smooth solution to Eq. 1.4
which is guaranteed by the next theorem.

Theorem 3.1 [5, Theorem 1.1] For any 00
3 for some 0 1 , there exists

a 0, such that Eq. 1.4 has a unique local solution 0 , where
3

3 0 3 .

Throughout the paper we assume that 00 and satisfy the conditions of Theorem 3.1,
i.e., that the Mullins-Sekerka problem (1.4) admits a unique classical solution on 0 .
Consequently, it is possible to construct an approximate solution that satisfies (1.5). The
properties of the solution of Eq. 1.5 which are summarized in the theorem below are the
consequence of Theorems 2.1 and 4.12 of [1].

Theorem 3.2 Let 0 be the classical smooth solution to Eq. 1.4. For any 0
there exists a pair of solutions to Eq. 1.5, such that for a small enough 0,
is uniformly bounded and

2

Moreover

where is the solution to Eq. 1.4 below.
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Finally for any such that , where 0 1 and is
the distance of to and is a constant that is independent to , it holds respectively that

1 on , 1 on , where and are respectively
the interior and exterior of in . also satisfies the following thin interface conditions:

1

where is the Lebesgue measure.

4 The Sharp Interface Limit for Space-TimeWhite Noise

Let be an 2
0 -cylindrical Wiener process on a fixed stochastic basis ,

i.e. is the space-time white noise.

Theorem 4.1 ([8, Theorem 2.1])For . . , there exists a unique solution to Eq. 1.2
in 0 1 .

We rewrite the Eq. 1.2 as

d d in

1
in .

(4.1)

We assume that the interface has been formed initially. That is, there exists a smooth closed
curve 00 such that 0 1 in , the region enclosed by 00, and 0 1
in 00 .

Our main theorem will show that as 0, tends to , which, together with a free
boundary 0 , satisfies the deterministic Hele-Shaw problem (1.4).

We present now the following spectral estimate which is useful in our proof.

Proposition 4.2 ([1, Proposition 3.1]) Let be the approximation given in Theorem 3.2.
Then for all 1 satisfying Neumann boundary conditions such that 0, the
following estimate is valid

2
1

1 2
0

2
1 .

We consider the residual

(4.2)

where is the unique solution to Eq. 4.1. We show bounds for this error in our main
theorem below.

Theorem 4.3 (Main Theorem) Let be defined in Theorem 3.2 with large enough
and let be the unique solution to Eq. 1.2 with initial value 0 0 . For any

0,

13

1

3

13

3
2
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where 1
4 is introduced in Lemma 4.6, there exist a generic constant 0 and a

constant 0 for all 0 such that the following estimates hold

3 3 1

2
0 1

1 1 2 3 1

2
1 0 2 3 1 1 .

Remark 4.4 Since can be arbitrarily small, the best choice is 107
12 .

Corollary 4.5 There exists a subsequence 1 such that for . .

lim 1 2 in 3

where is the interior of in .

Proof We note that by Theorem 4.3 the problem (1.4) has a unique strong solution on 0 .
Hence, by the construction of , see [1], it holds uniformly 0 that

lim
0

1 2 uniformly on compact subsets.

For any 0, choosing small enough such that 3 , then we have

3 3 3

which implies that 3 converge in probability to 0. Thus there exists a subsequence
(still denoted as ), such that

lim
0

3 0 . ..

Since , we obtain the assertion.

4.1 The proof of theMain Theorem

4.1.1 The Decomposition of the Equation for the Error

On Combining (4.1), (1.5) and noting (4.2) we obtain

2 1

0 on .
(4.3)

Let 0
2

, which is the mild solution to the linear equation:

2

0 on .
(4.4)
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Then satisfies:

2 1

0 on .
(4.5)

where .
Moreover, we define a stopping time by:

inf 0
0

3
3 (4.6)

for some 1.

4.1.2 Estimate for Z

Lemma 4.6 For any 0, there exists a constant 0, such that

1

where 1 0 is a universal constant, 1
2 , and 1

4 .

Proof By the factorization method in [7] we have that for 0 1

sin

0

1

where is the kernel of the semigroup
2

and

0

2
.

Similarly to the proof of Lemma 2.12 in [7], we have that

2 2 . (4.7)

It suffices to estimate 2 for 1
2 .

In fact, we have that

2
2

0

2
2

0

2
2

.

(4.8)

Here we used that belongs to the first order Wiener-chaos and Gaussian hypercon-
tractivity (cf. [21, Section 1.4.3] and [20]) in the second inequality. Moreover, we obtain
that

0

2
2

0

2 2 . (4.9)

Since is the kernel of
2
, we have that for any 2

2 4
.

505



L. Baňas et al.

Hence
4

. (4.10)

where is defined in Eq. 3.1. Note that 1
2 . Thus we

obtain
4

(4.11)

Then Eq. 4.9 becomes

0

2
2

0

2 2 2 .

(4.12)

By [24, p282, (c)], we have that

2 4 4 2 0 2 . (4.13)

Then taking (4.12) into (4.13), we deduce that

0

2
2

2

0

2 2 4 2 4 2

2 1 2 2 2 2 .
(4.14)

Here we require that

1 2
2

0 2 2 0

that is
1 2 4 (4.15)

which can be obtained by choosing small enough 0. Hence by Eqs. 4.7 and 4.8, we
obtain that for any 1

2 4

This implies that for any 2 1 and small enough 0,

4 2 . (4.16)

Hence the statement follows by Cheybeshev’s inequatliy.

4.1.3 Local-in-time estimate for Y up to T on the set ,

In the remainder of the proof we fix where is defined in Lemma 4.6 and
work pathwise. We note that by definition 2 for .

By taking inner product with 1 in both side of Eq. 4.5 we have that

1

2

2
1 2

1

1
.

(4.17)
We estimate each term in right hand side of Eq. 4.17 separately. Using Proposition 4.2 we
have that

1 2
1 0

2
1 (4.18)
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For 1 by Theorem 3.2 we know that is uniformly bounded in .
Thus we have that

1 1
3 3

2

1 2
3 (4.19)

where we used Hölder’s inequality in the first inequality and Lemma 4.6 in the last
inequality.

It has been proved in [1, Lemma 2.2] that 3 for in a bounded set
which is the case in the lines below. Then

1 1 1

1 3
3

1

1 3
3

3 2 1 1

(4.20)
where we used Lemma 4.6 in the last inequality.

For , by the Taylor expansion,
2 6 2, where 0 1 . Then we have

2
1

2 3
3

2
2

3 2 4 2 2 2
3

2 3
3

(4.21)
where we used the uniform boundness of in the second inequality and Lemma 4.6 in the
first and the last inequality.

For , by Theorem 3.2 we have

2
1

2
3 . (4.22)

Let , 1, be small enough and large enough. Collecting (4.17)-(4.22)
together, by using Hölder’s inequality we have

2
1 2

1

1 3
3

1 2
3

2
3

3
3

3 2 1.

Then for any we have

2
1

0

1 3
3

1 2
3

3 2 1

1

0

3
3

1 2

0

3
3

1
3

3 2 1

1 1 2 3 3 2 1.

(4.23)

To estimate 2 0 1 norm of , we use the estimate presented in [1, p.171]

1

0

2 2
3

0

3
3

2
3 3.
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L. Baňas et al.

Then
1

0

2
3

0

3
3

2
3

2
3 1 . (4.24)

Combining (4.17), (4.19)-(4.22) and (4.24) we have for any

0

2
1

2
3

5
3 2 2 3 3 2 2 2. (4.25)

4.1.4 Final step: Globalization T T

Let
1 1 3 2 1 1 2

3

2
2

3

5

3
3 2 2 2 2

3
2

2

3

5

3
1 1

then we have for any

sup
0

2
1

1

0

2
1

2 . (4.26)

We use the Sobolev’s embedding of into with 2 1
2

1 2 . Then by
the interpolation we have

3 1
3

2
3

1

1
3

1 .

For any by Eq. 4.26 we have

0

3
3 sup

0
1

0

2
1

1
2 2 .

(4.27)

Then we have that for small enough, , if 1
2 2.

Let 1
2
3

2
3 such that 2

2
3

5
3 , then we only need

1
2

3

10

3
.

i.e.

1
2

3

10

3

3 2 1
2

3

10

3

1 2
3

2

3

10

3
.

A direct calculation yields that

13

1

3

13

3
2

(4.28)

which also implies 1 1 1 2 3 .
Since , by Lemma 4.6 we have for any

3 3 2 3

2
0 1

1 1 2 3 .
(4.29)
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Hence we note that

1
.

Using the embedding 2 we get

1 0 2 2 0 2 3 2 .

Similarly as above

2

6 2.

Since are uniformly bounded in and 0 1 , we have that

1 0 2 1

3
1

2
1 1

3
2

3
3

3

3 2

3

where we use the Soblev embedding 1 2 in the first inequality.
Hence we deduce that

1 0 2 3 1 3 1

3 1.
(4.30)

The statement of the Theorem 4.3 then follows on combining the above inequality with
Eq. 4.28.

5 Sharp Interface Limit for the Divergence-Type Noise

Throughout this section we consider the singular divergence-type noise ,
where is an 2

0
2 -cylindrical Wiener process on stochastic basis . For

2
0

2 , we denote its component functions by 1 2
2
0 , i.e.

1 2 . There exist two independent 2
0 -cylindrical Wiener processes

1 and 2 such that 1 2 . Similarly as in [22, 23], it follows that the solu-
tion to Eq. 1.2 with the divergence-type noise is distribution-valued. It does not appear to
be possible to obtain the sharp-interface limit by directly considering (5.11). Thus we study
the sharp interface limit of the regularized (1.6) instead.

5.1 Existence and Uniqueness of Solutions to Eq. 1.6

In order to consider the convolution of the noise with an approximate delta function (the
standard mollifier). we need to extend the noise to the whole space 2. Considering the
Neumann boundary condition, it is reasonable to extend it evenly to 1 1 2 first, then do
a periodical extension to the whole space. That is, for any function on which satisfies

509
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the Neumann boundary condition, we view it as a function on 2 by

1 1 2 2 1 2
2

1 2
2 when 1 1 2.

Moreover, for 2 and 0, define

1 2
4

where 1 is the inverse Fourier transformation on 2. By Poisson summation formula, for
any 2

2

2 2

is the kernel of
2

on , where is the Neumann Laplacian operator on . A direct
calculation yields that for any 2

2
. (5.1)

Define

2

2 2

where 1 2 , thus for any 0, is the
inverse Fourier transformation of the function 2

4
, i.e.

1 2
4

.

We use 2 to denote the Schwartz funtion on 2, 2 to denote the Schwartz
distribution on 2 and 2 2 to denote the dual between 2 and 2 . Then
we know that 2 for any 0. Moreover we define by

0
2 2

2

1 0
2 2 .

(5.2)

Here 1 2 , 1 2 is two i.i.d Wiener processes defined by

2 2 2

for any 2 and 2 is defined as

2

2 2 .

For simplicity we write

2

1 0
2 2

0
.

We also denote
2

(5.3)
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where 1, is defined in Section 3. Then is the mild solution to the linear
equation

2

0

with Neumann boundary conditions,

0 on

where
1 2 div 1 . (5.4)

Let be an approximate delta function on 2 given by

2 1.

Define for any

0

0

(5.5)

where , and 1 2 ,

2
.

For fixed 0, let be a solution to the following equation on

1

0
(5.6)

with the Neumann Laplacian operator on . Here is the Wick power
defined by

3

0

3 3
(5.7)

where for any 0 1 2 3

3

0

3 2

0
1

2 2

3 3
3 .

and
2 . (5.8)

Lemma 5.1 ([18, Example 5.2.27]) For any 0, there exists a unique solution
0 2 to Eq. 5.6.
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Since , similar as in the proof in [19, 22, 23], for any 1 2 3, as 0,

converges in 0 for any 0 whose limit is denoted as .
Here is defined as the Besov space , see [23] and the reference therein for details.

Then we denote

1

0 1
0

(5.9)

where

3

0

3 3
(5.10)

Theorem 5.2 [22, Theorem 4.4] For . . , there exists a unique solution to Eq. 5.9
in 0 1

0 for any fixed 0.

Remark 5.3 We note that in [22] the authors consider the periodical boundary condition,
which is different from the Neumann boundary condition. But by our extension method as
we explained before, a similar proof follows.

In fact, lim 0 in 0 1
0 . Let , also

converges to in 0 1 , which is the unique solution to

1

0 1
(5.11)

with Neumann boundary conditions,

0 on (5.12)

where is defined in Eq. 5.10.

5.2 The Sharp Interface Limit of Eq. 1.6

Similarly as in the proof of Theorem 4.3 we prove that for a suitable choice , the
solutions to Eq. 5.11 will converge to the solution to deterministic Hele-Shaw model (1.4).

The method is a modification of the one in Section 4.1. We consider the residual

. (5.13)

Let , which satisfies

2 1

(5.14)
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where is defined in Eq. 5.8. For we also have the energy estimate:

1

2

2
1 2

1

1

.

(5.15)
In order estimate , we still need the estimation of and . Analogously to

Lemma 4.6 we have

Lemma 5.4 There exists a consant 2 0 such that for any 0 1,

2
2

where 4 . Then for any 0, there exists a constant 0, such that

1

where 2
2 2 .

Proof We follow a similar proof as in Lemma 4.6. A factorization formula implies that

sin

0

1

where is the kernel of
2

and

0
2 2

where is defined in Eq. 5.21. Combined with Eq. 5.22, we have that

4

where 0 and 3. Similarly to Eqs. 4.9-4.14 we have that

2
2 2

0

2 2 2 2

2 2 1 2 2 2 2

(5.16)
where we require that

1 2
2

0 1

Similarly to Eq. 4.8, we have that

2 4 .

Let 2 and 0 be small enough such that 1 2 4 , 1. Similarly
as in the proof of Lemma 2.7 in [7], we have that

2

4 2 2.
(5.17)

The statement then follows by Chebyshev’s inequality.
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L. Baňas et al.

For , we have the following estimate:

Lemma 5.5 There exists a constant 0 such that for any and any
0 1 ,

2 1 log

Proof Following a similar argument as in Eqs. 4.10, 4.11 and 4.13, we obtain that for all
1 2

2 2

1
1

2
2

1 1 2 2
4

.

Hence
4

. (5.18)

where is defined in Eq. 3.1. Note that 1
2 . Thus we

obtain
4

2 2 . (5.19)

By [24, p282, (c)], we have that for any ,

2
3 4 1

3
3

. (5.20)

Thus we obtain for any 0 , ,

1
4

3 1
4

3
.

We can extend the definition of for 2 with the same form as in
Eq. 5.18, and denote

2
. (5.21)

Therefore (5.5) becomes

0
2 2

Then by [14, Lemma 10.17] we have that

1
4

3 1
4

3
. (5.22)

Then we have that for any .

2

0

2

2 1

0

1
4

6
2 1

0

1
4

6

2 1 log .
(5.23)
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The next theorem is the main result of this section.

Theorem 5.6 Let be the unique solution to Eq. 5.11 and be defined in Theorem 3.2
with large enough 0. For some 0 such that 2, we assume that

13

1

3

13

3
.

(5.24)

Then there exist a generic constant 0 and a constant 0 for all 0 2
1
6

13
6 2 such that the following estimates hold

3 3 1

2
0 1

1 1 2 1

2
1 0 2 3 1 1

(5.25)

where
1

3 .

Proof We proceed similarly as in Section 4.1. We define a stopping time

inf 0
0

3
3 . (5.26)

Then let and fix an . Since

2 (5.27)

for some 0. We have that

log
2

log 2 1 . (5.28)

For we have that for small enough

0
3 1 2 3 2 .

For the rest of the terms on the right hand side of Eq. 5.15, we follow the proof in
Section 4.1 by repalcing the estimate for with the estimate of in Lemma 5.4. Thus
we have that for small enough and

sup
0

2
1

2 3 2 1 1 2 3 3 2 1.

Also,

0

2
1

2 3 3 2
3 1 1 2 2 3 3 2 2 2.

Hence we have

sup
0

2
1

1

0

2
1

2 (5.29)
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where

1 2
3

2 1 2
3

3 2 1 1

2 1 1
2

3

5

3
.

Similarly to Eq. 4.27, we have

0

3
3

1
2 2 .

In order to prove for small enough , we need to prove 1
2 1 2. First we

assume that 2
2
3

5
3 , i.e.

1
2

3

2

3
.

Then 1
2 1 2 yields

1
2

3

10

3
.

A direct calculation yields that

13

1

3

13

3
2

4

which implies that

1 1 2
3

1 .

Since 0 can be arbitrarily small, we can only assume that Eq. 5.24 hold and let
0 2 1

3
13
3 .

Since , and 1 3, we can obtain the estimate of which is
similar to Eq. 4.29. Moreover since

1
3

similarly to Eq. 4.30, we obtain that

2
1 0 2 2

1
1

1 2
1 0 2

3
1

3
1

3

3 1 2 2 log 3 1.

Remark 5.7 It is easy to see that Eq. 5.24 implies the condition 26
3 . This implies

that the slower converges to 0 than , the smaller could be. Since can be arbitrarily
small, the lower bound for is 26

3 .

The next corollary is a simple consequence of Theorem 5.6 and can be shown as
Corollary 4.5.
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Corollary 5.8 There exist a subsequence 1 and 1 with 2 such that for
. .

lim 1 2 in 3

where is the interior of in .
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