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Abstract
The Bayesian solution to a statistical inverse problem can be summarised by a
mode of the posterior distribution, i.e. a maximum a posteriori (MAP) estima-
tor. The MAP estimator essentially coincides with the (regularised) variational
solution to the inverse problem, seen as minimisation of the Onsager–Machlup
(OM) functional of the posterior measure. An open problem in the stability anal-
ysis of inverse problems is to establish a relationship between the convergence
properties of solutions obtained by the variational approach and by the Bayesian
approach. To address this problem, we propose a general convergence theory
for modes that is based on the Γ-convergence of OM functionals, and apply this
theory to Bayesian inverse problems with Gaussian and edge-preserving Besov
priors. Part II of this paper considers more general prior distributions.
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1. Introduction

In diverse applications such as Bayesian inference and the transition path analysis of diffu-
sion processes, it is important to be able to summarise a probability measure μ on a possibly
infinite-dimensional space X by a single distinguished point of X—a point of maximum prob-
ability under μ in some sense, i.e. a mode of μ. If μ is an absolutely continuous measure on a
finite-dimensional Euclidean space X, then the modes of μ are the maximisers of its Lebesgue
density. In the Bayesian statistical context, if μ is the posterior measure, then the modes of
μ are precisely the maximum a posteriori (MAP) estimators. If X is an infinite-dimensional
Banach space X, then a Lebesgue density is not available. In this case it has become common
to define modes using the posterior probabilities of norm balls in the small-radius limit. Under
suitable conditions, such modes admit a variational characterisation as the minimisers of an
appropriate Onsager–Machlup (OM) functional. Heuristically, such an OM functional plays
the role of the negative logarithm of the ‘Lebesgue density’ of μ, but the rigorous formulation
of this relationship requires some care. In a statistical context, this variational characterisation
of modes suggests a connection between the fully Bayesian approach and the regularised vari-
ational approach to inverse problems: the negative logarithm of the prior acts as a regulariser
for the misfit (i.e. for the negative log-likelihood).

A significant challenge to exploiting this connection is the lack of a suitable convergence
theory. This is because the stability properties of MAP estimators are poorly understood. In par-
ticular, it is not known under what circumstances mild perturbations of the setup of a Bayesian
inverse problem (BIP) lead to mild perturbations of the posterior distribution and to mild per-
turbations of its MAP estimators. Typical examples of perturbations include those arising from
finite-dimensional truncation of an infinite-dimensional prior; numerical approximation of an
ideal forward operator within the likelihood, e.g. the solution operator of a differential equation;
perturbation of observed data; or limiting procedures such as small-noise limits.

In the last decade, beginning with the seminal work of Stuart (2010), many articles have
studied the well-posedness and stability of BIPs in function spaces. However, in general, the
stability of the posterior and of its MAP estimators are ‘orthogonal’ questions: two posterior
probability measures can be arbitrarily close in a strong sense such as Kullback–Leibler (rel-
ative entropy) distance and still have MAP estimators that are at constant distance from one
another; conversely, even equality of MAP estimators says nothing about the similarity of the
full posteriors. The situation vis-a-vis convergence is even less satisfying, as the following
examples show:

Example 1.1.

(a) The normal distributions μ(1) :=N (0, 1) and μ(σ) :=N (0, σ2) on R have the same unique
mode at 0, but can be very far apart in the Kullback–Leibler sense:

KL
(
μ(1)‖μ(σ)

)
=

σ−1 − 1 + log σ

2
→+∞ as σ→ 0 or σ→+∞,

(1.1)
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Figure 1. (a) The densities ρ(t) from (1.2) for t ≈ 0 are close in the Kullback–Leibler
sense but their modes are far apart, at x ≈ ±r = ±2 respectively. However, the cluster
points of the modes of ρ(t) as t → 0 yield the modes of ρ(0). (b) The densities ρ(n) from
(1.3) for n ∈ {1, 2, 10, 100,∞}. For n ∈ N, the unique mode of ρ(n) is at x ≈ 1

n , whereas
the unique mode of ρ(∞) is at x = 1, even though ρ(n) → ρ(∞) pointwise.

(b) In the other direction, fix a large r � 1 and consider for t ∈ (−1, 1) the following Gaus-
sian mixture distribution μ(t) on R with Lebesgue density ρ(t) : R→ [0,∞) illustrated in
figure 1(a) and given by

ρ(t)(x) :=
(1 + t) exp

(
− 1

2 (x − r)2
)
+ (1 − t) exp

(
− 1

2 (x + r)2
)

2
√

2π
. (1.2)

For large values of r, ρ(t) has two local maximisers near r and −r. When t > 0, the local
maximiser near r is the unique mode; when t < 0, the local maximiser near −r is the
unique mode. However, μ(t) and μ(−t) are very close in the Kullback–Leibler sense: e.g.
for r = 5, KL

(
μ(t)‖μ(−t)

)
≈ 105/4t9/4 as t → 0.

One might argue that at least the cluster points as t → 0 of the modes of the measures
μ(t) yield the two modes at x = ±r of the symmetric Gaussian mixtureμ(0). However, even
this situation cannot be expected to hold true in general, as the next example shows.

(c) For n ∈ N, let μ(n) be the probability measure on R with Lebesgue density ρ(n) : R→
[0,∞) illustrated in figure 1(b) and given by

ρ(n)(x) :=
exp

(
− 1

2 (x − 1)2
)
+ 1[x � 0]4n2x2 exp(−n2x2)√
2π +

√
π/n

, (1.3)

where 1[P] := 1 if P is true and 1[P] := 0 if P is false. The densities converge pointwise
but not uniformly to the Gaussian distribution μ(∞) = N (1, 1) with density ρ(∞)(x) ∝
exp

(
− 1

2 (x − 1)2
)
, which has a unique mode at x = 1. Convergence in the Kull-

back–Leibler sense also holds, with KL
(
μ(∞)‖μ(n)

)
≈ 1

n . However, each μ(n) has a unique
mode at approximately x ≈ 1

n and the unique cluster point of this sequence of modes is
x = 0 �= 1. Thus, even in finite-dimensional settings, pointwise convergence of densities
(and hence of OM functionals) does not imply convergence of modes.

Given the variational characterisation of modes as minimisers of an OM functional, it seems
natural to assess the convergence (and hence stability) of modes using a notion of convergence
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that is appropriate for variational problems, i.e. one for which the convergence of function-
als implies the convergence of minimisers. The notion of Γ-convergence, as introduced by
De Giorgi and collaborators from the 1970s onwards (De Giorgi 2006), fulfils exactly this
rôle and, in particular, overcomes the shortcomings of pointwise convergence as illustrated
in example 1.1(c). Indeed, if the densities in example 1.1(c) were uniformly convergent, then
they would be continuously convergent and hence Γ-convergent as well, and the pathological
non-convergence of modes would have been avoided. Therefore, the strategy followed by this
article consists in the following:

(a) Formulate the problem of finding modes of probability measures on potentially infinite-
dimensional spaces as a variational problem for the associated OM functionals; and

(b) Study the Γ-convergence properties of such problems, in order to obtain criteria for the
convergence and stability of such modes.

The remainder of this article is structured as follows. Section 2 gives an overview of related
work in the theory of modes for measures on infinite-dimensional spaces and section 3 sets
out some notation and basic results for the rest of the article. Section 4 explores the corre-
spondence between modes and minimisers of OM functionals, and hence demonstrates that
Γ-convergenceof OM functionals is the correct notion of convergence to ensure convergenceof
modes. Section 5 develops this idea in two prototypical settings, namely Gaussian and Besov-
1 measures, which are frequently used as Bayesian prior distributions; these results can then
be transferred to measures that are absolutely continuous with respect to these paradigmatic
examples and can be interpreted as the corresponding posterior measures. More general prior
measures, which include Cauchy measures and Besov-p measures for 1 � p � 2 are treated in
part II of this paper (Ayanbayev et al 2021). In section 6, these ideas are then applied to the
convergence and stability of MAP estimators for BIPs, for which Gaussian and Besov-1 mea-
sures are prototypical prior distributions. Some conclusions and suggestions for further work
are given in section 7. Standard definitions and results relating to Γ-convergence are collected
in appendix A and technical supporting results are given in appendix B.

2. Overview of related work

In stochastic analysis and mathematical physics, the interpretation of the minimisers of OM
functionals over path spaces as most probable paths appears to be due to Dürr and Bach (1978).
The OM functionals of diffusion processes, and hence the determination of MAP paths, have
been considered by e.g. Zeitouni (1989) and Dembo and Zeitouni (1991). It is important to
note that simply determining the OM functional on some n-dimensional approximation space
and then taking a limit as n →∞ can fail to yield the correct OM functional as defined in
terms of ratios of small ball probabilities by (3.3). This is because the space on which the OM
functional is finite can be ‘smoother’ than the full space on which small ball probabilities are
defined (Dashti et al 2013).

Recent years have seen a growing interest in the well-posedness and stability of BIPs in
function spaces, a perspective proposed by a seminal article of Stuart (2010) that has stimu-
lated many follow-on works and generalisations (e.g. Dashti et al (2012), Hosseini (2017), Latz
(2020), Sprungk (2020), Sullivan (2017)). There is also complementary theory of discretisa-
tion invariance, sometimes referred to as the ‘Finnish school’, which in some sense treats the
finite-dimensional discrete versions of BIPs as the primary objects of interest but pays careful
attention to their limiting properties as the discretisation dimension tends to infinity (e.g. Lasa-
nen (2012a, 2012b), Lassas and Siltanen (2004), Lassas et al (2009), Lehtinen et al (1989)).
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However, the robustness studies in these works have focussed on the robustness of the poste-
rior measure in a distributional sense such as the Hellinger, Kullback–Leibler, or Wasserstein
sense and, as example 1.1 shows, these are insufficient to ensure robustness of modes or MAP
estimators. Our results can be seen as contributions to this field in the sense that they establish
stability/convergence of MAP estimators in a setting that is not limited to finite-dimensional
or even linear spaces.

In the BIP context, the definition of a MAP estimator as the centre of a norm ball that
has maximum posterior probability in a small-radius limit appears to be due to Dashti et al
(2013). As Dashti et al (2013) note, a similar definition of a maximal point was given earlier
by Hegland (2007), but that analysis was implicitly limited to the finite-dimensional setting,
since it assumed finiteness of the Cameron–Martin norm. The context of Dashti et al (2013)
was limited to a separable Hilbert space4 X equipped with a Bayesian posterior measure μ
that was absolutely continuous with respect to a centred non-degenerate Gaussian reference
measure μ0. In this setting, Dashti et al (2013) established the existence of MAP estimators
and characterised them as the minimisers of the OM functional, which they further identified
as the sum of the log-likelihood and the OM functional of μ0. When read in the context of a
general probability measure on a metric space, rather than the original setting of a Bayesian
posterior on a Hilbert space, the definition of Dashti et al (2013) is essentially the definition of
a strong mode (definition 3.6).

The work of Dashti et al (2013) has been extended in multiple ways. Dunlop and Stuart
(2016) proved the connection between MAP estimators and OM functionals in the setting of
piecewise continuous inversion, where the prior is defined in terms of a combination of Gaus-
sian random fields. Recently, Kretschmann (2019) has corrected some technical deficiencies
of Dashti et al (2013).

The definition of a (strong) MAP estimator for μ given by Dashti et al (2013) was relaxed to
that of a weak MAP estimator by Helin and Burger (2015), in which comparisons between the
masses of balls are only performed for balls whose centres differ by an element of a topologi-
cally dense subspace E of X. Helin and Burger (2015) showed that this weak MAP estimator
has a close relationship with the zeroes of the logarithmic derivative βμ

h := d(dhμ)
dμ of μ, where

dhμ(A) := lim
t→0

μ(A + th) − μ(A)
t

for measurable A ⊆ X,

is the Fomin (directional) derivative of μ in the direction h ∈ X. The initial analysis of the weak
MAP estimator relied upon the existence of a continuous representative for βμ

h , which could not
be guaranteed for several important applications, notably the edge-preserving Besov prior with
p = 1. By focussing on the Radon–Nikodym derivative rμh := dμ(·−h)

dμ instead of βμ
h instead of

βμ
h , the analysis of Agapiou et al (2018) remedied this shortcoming, posed the definitions and

results in more general terms of modes of probability measures rather than MAP estimators of
Bayesian posteriors, and also considered local (rather than global) strong and weak modes. The
equivalence of strong and weak modes when E is dense in X and under a uniformity condition
on μ was established by Lie and Sullivan (2018), who worked in the more general context of
measures on metrisable topological vector spaces.

Finally, we mention that the definition of a strong mode is unsuitable for probability mea-
sures with bounded support, and especially to such measures with essential discontinuities
in the density. Examples of such measures include uniform measures on bounded subsets of

4 Dashti et al (2013) stated their results in separable Banach spaces. However, as pointed out by Wacker (2020), their
proof techniques are valid only in the case that X is a Hilbert space and not in the Banach space case.
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X. The definition is unsuitable because it excludes ‘obvious’ modes on the boundary of the
support. The recent generalised mode of Clason et al (2019) addresses this deficiency.

3. Preliminaries and notation

3.1. General notation and assumptions

Throughout this article, X will denote either a topological space, a metric space, a separable
Banach or a Hilbert space. When thought of as a measurable space, X will be equipped with its
Borel σ-algebra B(X), which is generated by the collection of all open sets. When X is a metric
space, we write Br(x) for the open ball in X of radius r centred on x. The set of all probability
measures on (X,B(X)) will be denoted P(X); we denote typical probability measures by μ, μ0,
μ(n) for n ∈ N ∪ {∞} etc. The topological support of μ ∈ P(X) defined on a metric space X is

supp(μ) := {x ∈ X| for all r > 0, μ(Br(x)) > 0}, (3.1)

which is always a closed subset of X.
We write R for the extended real line R ∪ {±∞}, i.e. the two-point compactification of R.
For 0 < p � ∞, we write �p := �p(N) for the real sequence space of pth-power summable

sequences, and bounded sequences in the case p = ∞. Furthermore, given γ = (γk)k∈N ∈ R
N

>0,
we write

�p
γ :=

{
h ∈ R

N

∣∣∣∣ (hk/γk)k∈N ∈ �p

}
, ‖h‖�p

γ
:= ‖(hk/γk)k∈N‖�p, (3.2)

for the corresponding weighted �p space. It is well known that ‖ · ‖�p (and hence ‖ · ‖�p
γ
) is a

complete quasinorm when p > 0, a Banach norm when p � 1, and a Hilbert norm when p = 2.

3.2. OM functionals

We recall here the definition of an OM functional for a measure. The minimisers of OM func-
tionals will turn out to be the modes of the measure (see section 4). We also stress a property that
is already implicitly used without a name in the modes literature, one that essentially ensures
that the modes must lie in the domain of the OM functional.

Definition 3.1. Let X be a metric space and let μ ∈ P(X). We say that I = Iμ = Iμ,E : E → R,
with5

∅ �= E ⊆ supp(μ) ⊆ X, is an Onsager–Machlup functional (OM functional) for μ if

lim
r↘0

μ(Br(x1))
μ(Br(x2))

= exp(I(x2) − I(x1)) for all x1, x2 ∈ E. (3.3)

We say that property M(μ, E) is satisfied if, for some x� ∈ E,

x ∈ X \ E =⇒ lim
r↘0

μ(Br(x))
μ(Br(x�))

= 0, (3.4)

and in this situation we extend I to a function I : X → R with I(x) := +∞ for x ∈ X\E.

Remark 3.2 (The M-property). Lemma B.1 establishes some basic facts about property
M(μ, E). In particular, lemma B.1(a) shows that property M(μ, E) does not depend on the choice
of reference point x� ∈ E, provided that μ has an OM functional on E.

5 We insist on defining the real-valued version of I only on a subset of supp(μ) since, for x2 /∈ supp(μ), the ratio in
the limit in (3.3) is infinite or even undefined for small enough r > 0.
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Every measure μ admits an OM functional if E is taken to be small enough, e.g. a singleton
subset of supp(μ). Therefore, there is a natural desire to have E be ‘maximal’ in some sense.
Property M(μ, E) means that the set E is the ‘maximal’ set on which the OM functional assumes
finite values.

It is tempting but incorrect to read property M(μ, E) as saying that μ somehow concentrates
upon E. A straightforward counterexample is given by any non-degenerate Gaussian mea-
sure μ with infinite-dimensional Cameron–Martin space H(μ), such as the law μ of standard
Brownian motion on X = C([0, 1];R) with H(μ) = H1([0, 1];R). In this situation, property
M(μ, H(μ)) holds (Dashti et al 2013, lemma 3.7) and yet μ(H(μ)) = 0 (Bogachev 1998,
theorem 2.4.7). Rather, the purpose of property M(μ, E) is to ensure that the global weak modes
(see definition 3.7) of μ lie in E and are precisely the minimisers of its extended OM func-
tional (see proposition 4.1). Furthermore, it is essentially the lim sup part of the limit in (3.4)
that ensures this; example B.2 shows that if we weaken (3.4) by considering the limit inferior
instead of the limit, then—even for very simple choices of E—the desired correspondence
may break down.

Remark 3.3 (Topological considerations). Note that in defining the OM functional here
and various notions of mode/MAP estimator later on, we use open balls (following e.g. Dashti
et al (2013) and Agapiou et al (2018)) rather than closed balls B̄ε(x) (following e.g. Bogachev
(1998)). However, proposition B.3 shows that these two notions yield the same definition of
OM functionals and global weak modes.

Remark 3.4 (Uniqueness of OM functionals). Note that OM functionals are at best
unique up to the addition of real constants. Whenever we talk aboutΓ-convergence and equico-
ercivity of sequences of OM functionals, which are at the core of this work, we always mean
the existence of representatives that fulfil these properties. Further, whenever we apply results
that require both Γ-convergence and equicoercivity (such as theorem A.3), we need to make
sure that the same representatives can be chosen for both properties.

Remark 3.5 (OM functionals and changes of metric). Unfortunately, the choice of
metric on a space X can affect the OM functional of a measure μ on X, even beyond the non-
uniqueness alluded to in remark 3.4, and even if the two metrics are Lipschitz equivalent.
An explicit example of this is furnished by the finite measure μ of Lie and Sullivan (2018),
(example 5.6); see example B.4 for details.

3.3. Modes and MAP estimators

In finite-dimensional spaces, for probability measures that are either purely discrete or possess
a continuous Lebesgue density, modes (as points of maximum probability) are easily defined
as being global maximisers of the probability mass function or probability density function as
appropriate. For probability measures on infinite-dimensional spaces, however, the situation
is more delicate as there is no infinite-dimensional analogue of Lebesgue measure to serve
as a uniform reference. Therefore, it has become common to define modes by examining the
masses of norm balls in the small-radius limit. The following definition of a strong mode is a
slight generalisation of the definition of a MAP estimator for a Bayesian posterior measure on
a normed space as given by Dashti et al (2013).
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Definition 3.6. Let X be a metric space. A strong mode of μ ∈ P(X) is any u ∈ X satisfying

lim
r↘0

μ(Br(u))
Mr

= 1, (3.5)

where Mr := supw∈Xμ(Br(w)) ∈ (0, 1]. Since μ(Br(u)) � Mr, the ratio inside the limit in (3.5)
is at most one, and so it is equivalent to define a strong mode as being any u ∈ X for which

lim
r↘0

μ(Br(u))
Mr

� 1 or lim inf
r↘0

μ(Br(u))
Mr

� 1 or lim sup
r↘0

Mr

μ(Br(u))
� 1.

A related notion of mode for a measure is the weak mode or weak MAP estimator (Helin
and Burger 2015, definition 4), which are points that dominate all other points within an affine
subspace, in terms of small ball probabilities. Since we are only interested in global weak
modes, we simplify the definition slightly and at the same time generalise this concept to metric
spaces. The original definition relies on subtraction and thus only applies in the case of linear
spaces.

Definition 3.7. For a metric space X, a global weak mode of μ ∈ P(X) is any u ∈ supp(μ)
satisfying, for any point u′ ∈ X,

lim sup
r↘0

μ(Br(u′))
μ(Br(u))

� 1. (3.6)

Remark 3.8. The definition (3.6) differs further from that of Helin and Burger (2015),
(definition 4) in that we use a limit superior instead of a limit. We suspect that this is the
way it was intended to be defined—if a point dominates every other point in terms of small
ball probabilities (in the sense that the ratio in (3.6) becomes�1 for sufficiently small r > 0), it
should be called a weak mode. This suspicion is based on Helin and Burger (2015), (lemma 3),
where the authors prove that every strong mode is a weak mode, which is clearly a desir-
able property given the terminology ‘strong’ and ‘weak’, but their proof is incorrect given
their original definition. The reason is that the ratio in (3.6) can drop below �1 as r ↘ 0 for
certain points u, u′ ∈ X without the limit existing (e.g. it might oscillate between 0 and 1

2 ),
such that u cannot be a weak mode in the original definition, while it can still be a strong
mode. Example B.2 shows that such oscillations can occur and a slight modification provides
a concrete counterexample to Helin and Burger (2015), (lemma 3).

Lemma 3.9. Let μ ∈ P(X) and let u ∈ supp(μ) be a strong mode of μ. Then u is a global
weak mode of μ.

Proof. Since u ∈ supp(μ) is a strong mode of μ, we obtain, for any point u′ ∈ X,

lim sup
r↘0

μ(Br(u′))
μ(Br(u))

� lim sup
r↘0

Mr

μ(Br(u))
= lim

r↘0

Mr

μ(Br(u))
= 1.

Sufficient conditions for the converse implication are given by Lie and Sullivan (2018). The
relationship between modes and OM functionals will be examined in section 4.

3.4. Generalised inverses

We adopt the following definition of the Moore–Penrose pseudoinverse of an operator (Engl
et al 1996, definition 2.2):

Definition 3.10. For a bounded linear operator A : X → Y between Hilbert spaces X and Y, the
Moore–Penrose pseudoinverse A† of A is the unique extension of (A|(ker A)⊥ )−1 to a (generally

8
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unbounded) linear operator A† : ran A ⊕ (ran A)⊥ → X subject to the restriction that ker A† =
(ran A)⊥.

Remark 3.11. For y ∈ ran A ⊕ (ran A)⊥,

A†y = arg min {‖x‖X | x minimises ‖Ax − y‖} .

In particular, for y ∈ ran A, A†y is the minimum-norm solution of Ax = y (Engl et al 1996,
theorem 2.5).

Remark 3.12. For a self-adjoint and positive semi-definite (SPSD) and compact operator
C =

∑
n∈Nσ

2
n en ⊗ en : X → X on a Hilbert space X, (en)n∈N being an orthonormal system in

X and σn � 0 for each n ∈ N, we denote the SPSD operator square root of C by C1/2 and
furthermore set

C†/2 := (C1/2)† =
∑

n∈N : σn �=0

σ−1
n en ⊗ en.

Note that (C†)1/2 can differ from (C1/2)† since it may have a smaller domain.

4. Modes, OM functionals, and their convergence

The purpose of this section is to firmly establish the intuitively plausible relationship between
the modes of a probability measure μ and its OM functional I, namely that the global weak
modes of μ are exactly the global minimisers of I. Once this is done, it is a relatively simple
matter to give sufficient conditions for the global weak modes of a sequence of measures to
converge to the global weak modes of a limiting measure: Γ-convergence and equicoercivity
of the associated OM functionals.

Proposition 4.1 (Global weak modes and OM functionals). Let X be a metric space
and let I : E → R be an OM functional for μ ∈ P(X), defined on a nonempty subset E ⊆ X
with property M(μ, E). Then u ∈ E is a global weak mode of μ if and only if u is a minimiser
of the extended OM functional I : X →R.

Proof. By property M(μ, E) and lemma B.1(c), any global weak mode of μ must lie in E, and
in addition any minimiser of I : X → R must also lie in E, where E is the set on which I takes
real values. Let u ∈ E be arbitrary. Then limr↘0

μ(Br(u′))
μ(Br(u)) exists for any u′ ∈ E by definition of I

being the OM functional, and the same limit exists and equals 0 for u′ ∈ X\E, because property
M(μ, E) holds. Thus,

u ∈ E is a global weak mode ⇐⇒ for all u′ ∈ X, lim sup
r↘0

μ(Br(u′))
μ(Br(u))

� 1

⇐⇒ for all u′ ∈ X, lim
r↘0

μ(Br(u′))
μ(Br(u))

� 1

⇐⇒ for all u′ ∈ X, exp (I(u) − I(u′)) � 1

⇐⇒ for all u′ ∈ X, I(u) � I(u′),

as claimed. �

9
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Property M(μ, E) was essential in the above argument in order for points outside E to be
treated in a consistent way. Recall that, in definition 3.1, for a given μ ∈ P(X), we initially
defined the OM functional of μ to be a function I : E → R. Only under property M(μ, E) can
we sensibly extend I to a R-valued function on X by setting I(x) := +∞ for x ∈ X\E. The
motivation for this extension is that, by lemma B.1(c), no point of X\E can be a global weak
mode for μ, and hence cannot be a strong mode for μ.

Unfortunately, without additional assumptions, an analogous result to proposition 4.1 can-
not hold for strong modes, as demonstrated in example B.5. The main idea behind the measure
μ constructed therein is that u = 1 ‘dominates’ any other (fixed) point u′ ∈ X = R in the limit
r ↘ 0, i.e. limr↘0

μ(Br(u′))
μ(Br(u)) � 1, hence u = 1 is a global weak mode; but for certain arbitrar-

ily small radii rn, n ∈ N, there exist points un ∈ X that ‘dominate’ u by a margin, in fact
lim infr↘0

μ(Br(u))
Mr

� 1√
2
, hence u = 1 cannot be a strong mode. Moreover, for E = N ⊆ X,

property M(μ, E) holds and an OM functional Iμ,E : E → R exists and has u = 1 as its
minimizer. The construction is based on suitably chosen singularities of the Lebesgue density
ρ of μ.

The following result, which is an almost immediate consequence of the preceding discus-
sion, provides clear criteria for the convergence of global weak modes along sequences of
probability measures. (Definitions and basic properties of Γ-convergence, equicoercivity, etc
are collected in appendix A.)

Theorem 4.2 (Γ-convergence and equicoercivity imply convergence of modes).
Let X be a metric space and let, for n ∈ N ∪ {∞}, μ(n) ∈ P(X) have OM functionals
I(n) : E(n) → R, such that property M(μ(n), E(n)) is satisfied. Extend each I(n) to take the value
+∞ on X\E(n). Suppose that the sequence (I(n))n∈N is equicoercive and Γ-converges to I(∞).
Then, if u(n) is a global weak mode of μ(n), n ∈ N, every convergent subsequence of (u(n))n∈N
has as its limit a global weak mode of μ(∞).

Proof. By proposition 4.1, the global weak modes of μ(n) are precisely the minimisers of the
extended version of I(n), n ∈ N ∪ {∞}. The rest follows immediately from the fundamental
theorem of Γ-convergence (theorem A.3). �

It is instructive to reconsider the earlier example 1.1(c) in light of theorem 4.2. The problem
in example 1.1(c)—in which the unique modes of the measures μ(n) fail to cluster at the
unique mode of the limiting measure μ(∞) —can now be recognised as being due to the fact
that although pointwise convergence of Lebesgue densities and OM functionals holds, Γ-
convergence does not. Therefore, theorem 4.2 does not apply to that example and there is
no reason for modes to converge in this case.

Theorem 4.2 is, of course, a highly general result. For it to be useful in specific situations,
one must prove property M(μ(n), E(n)) and identify the form of the OM functional I(n) for every
n ∈ N. In addition, one must verify both the Γ-convergence and equicoercivity properties of
the sequence (I(n))n∈N. In the next section, we do this for Gaussian measures and Besov-1
probability measures, which are commonly used as priors in the context of BIPs.

5. Γ-convergence of OM functionals for Gaussian and Besov-1 priors

This section illustrates the preceding general theory of convergence of modes via Γ-
convergence of OM functionals by means of two key examples, namely Gaussian and Besov Bs

1
measures, both of which commonly arise as prior distributions in BIPs. Besov Bs

p-priors with
1 � p � 2, Cauchy priors, and more general product measures are treated in a unified way in

10
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part II of this paper (Ayanbayev et al 2021). The convergence of modes (MAP estimators) for
posterior distributions will be discussed in section 6.

5.1. Gaussian measures

As a natural first case, we consider the Γ-convergence of the OM functionals of Gaussian
measures—and we call attention to the fact that we consider Gaussian measures with possibly
indefinite covariance operators. It is almost folklore that the OM functional of a Gaussian
measures is half the square of the associated Cameron–Martin norm; a precise formulation of
this result is the following.

Theorem 5.1 (OM functional of a Gaussian on a separable Banach space). Let
μ be a centred Gaussian measure on a separable Banach space X. Let H(μ) be the
Cameron–Martin space of μ, with Cameron–Martin norm ‖ · ‖H(μ). Then, for all h, k ∈ H(μ),

lim
r↘0

μ(Br(h))
μ(Br(k))

= exp

(
1
2
‖k‖2

H(μ) −
1
2
‖h‖2

H(μ)

)
. (5.1)

In particular, the OM functional for μ on the Cameron–Martin space H(μ) is half the square
of the Cameron–Martin norm.

Proof. This is a special case of Bogachev (1998), (corollary 4.7.8), in which the cylindrical
σ-algebra E(X) and the Borel σ-algebraB(X) coincide by the separability of X, the measurable
seminorm q is the ambient norm ‖ · ‖X, the q-ball Vr is the ball Br(0) ∈ B(X), and the projection
πq is the identity due to the definiteness of q(·) = ‖ · ‖X. Note that Bogachev (1998) works with
closed balls, this difference being inconsequential in view of proposition B.3. �

Corollary 5.2. Letμ = N (0, C) be a centred Gaussian measure on a separable Hilbert space
X, where the covariance C is interpreted as an SPSD operator on X. Then the (extended) OM
functional Iμ : X → R of μ is given by

Iμ(u) =

⎧⎨
⎩

1
2
‖C†/2u‖2

X for u ∈ H(μ) = ran C1/2,

+∞ otherwise.

Proof. By Bogachev (1998), (section 2.3, p. 49), the reproducing kernel Hilbert space
X∗
μ :=X∗L2(μ) of μ can be identified with the weighted Hilbert space of sequences

�2
C :=

{
x = (xn)

∣∣∣∣∑
n∈N

σ2
n x2

n < ∞
}

, ‖x‖�2
C

:=

(∑
n∈N

σ2
n x2

n

)1/2

. (5.2)

Further, after extending C naturally to X∗
μ, the Cameron–Martin space coincides with the image

of X∗
μ under C, i.e. H(μ) = C(X∗

μ).
Now let C =

∑
n∈Nσ

2
nen ⊗ en, σn � 0, be the eigenvalue decomposition of its covariance

operator C with complete orthonormal system (en)n∈N and let u =
∑

n∈N unen ∈ H(μ). Since
H(μ) = C(X∗

μ), there exists x = (xn)n∈N ∈ �2
C, such that un = σ2

n xn for all n ∈ N, and, by
Bogachev (1998), (lemma 2.4.1) and remark 3.12,

11
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‖u‖2
H(μ) = ‖x‖2

�2
C
=

∑
n∈N

σ2
n x2

n =
∑

n∈N : σn �=0

u2
n

σ2
n
= ‖C†/2u‖2

X.

The claim now follows from theorem 5.1 and from Dashti et al (2013), (lemma 3.7), where
property M(μ, H(μ)) is established6. �

Remark 5.3. Note that the notation in Bogachev (1998), (section 2.3, p. 49) is slightly impre-
cise, since the space �2

C in (5.2) is, in general, only a pre-Hilbert space (and ‖ · ‖�2
C

is just a

seminorm). To be rigorous, one would need to consider the quotient space of �2
C after factoring

out the subspace {x|‖x‖�2
C
= 0}. This detail has no influence on the proof of corollary 5.2.

Corollary 5.4. Let μ0 = N (0, C) be a centred Gaussian measure on a separable Hilbert
space X, where the covariance C is interpreted as an SPSD operator on X, and μ = N (m, C).
Then the OM functional Iμ : X → R of μ is given by

Iμ(u) =

⎧⎨
⎩

1
2
‖(u − m)‖2

H(μ0) =
1
2
‖C†/2(u − m)‖2

X for (u − m) ∈ H(μ0) = ran C1/2,

+∞ otherwise.

Proof. This follows directly from theorem 5.1 and corollary 5.2. �

We now give the main result of this section, that the strong (norm) convergence of means
and covariance operators of Gaussian measures is sufficient to ensure that their associated OM
functionals are Γ-convergent and equicoercive.

Theorem 5.5 (Γ-convergence and equicoercivity of OM functionals for Gaussian
measures). Let X be a separable Hilbert space and μ(n) = N (m(n), C(n)) and μ = N (m, C)
be Gaussian measures on X such that m(n) → m in X and C(n) → C with respect to the operator
norm. Then Iμ = Γ-limn→∞ Iμ(n) . Furthermore, the sequence (Iμ(n) )n∈N is equicoercive.

Remark 5.6. Since all the Gaussian OM functionals Iμ(n) are quadratic forms, and homo-
geneity is preserved by Γ-limits (Braides 2006, proposition 2.13), it is not surprising that
Γ-limn→∞ Iμ(n) is quadratic—the point here is to check that the quadratic forms Γ-limn→∞ Iμ(n)

and Iμ agree, and moreover with careful attention to the possibility of indefinite covariances.

Proof of theorem 5.5. Let A :=C1/2 and An := (C(n))1/2. Further, let (ek)k∈N be an orthonor-
mal eigenbasis of A, A =

∑
k∈N σk ek ⊗ ek with σk � 0, and, for any vector w ∈ X, let

wk := 〈w, ek〉X denote its kth component in that basis.
Let (u(n))n∈N be a sequence in X that converges to u ∈ X. If lim infn→∞ Iμ(n) (u(n)) = ∞, then

there is nothing to prove. Therefore, define I := lim infn→∞ Iμ(n) (u(n)) ∈ R. There exists a sub-
sequence of (u(n))n∈N, which for simplicity we also denote by (u(n))n∈N, such that u(n) − m(n) ∈
ran An for each n ∈ N and Iμ(n) (u(n)) −−−→

n→∞
I (note that Iμ(n) (u(n)) = ∞ unless u(n) − m(n) ∈

ran An).
Now let ε > 0 and v(n) :=A†

n(u(n) − m(n)), n ∈ N. Without loss of generality (possi-
bly, by a further thinning of the subsequence) and using corollary 5.4, we may assume

6 The statement of Dashti et al (2013), (lemma 3.7) may be understood as a weaker statement than needed for the
M(μ, H(μ)) (lim inf in place of lim in (3.4)). However, their proof clearly shows the stronger statement as we use it
here. Further, as pointed out by Wacker (2020), their proof is not valid in the Banach space setting, but works in the
Hilbert space setting, which is sufficient for our purposes.

12
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1
2‖v(n)‖2

X = Iμ(n) (u(n)) � I + ε for each n ∈ N. Define K := {k ∈ N|σk > 0} and the sequences

v̂ = (vk)k∈N and �v̂(n)� = (�v(n)
k �)k∈N, n ∈ N, by

vk :=

⎧⎨
⎩

uk − mk

σk
if k ∈ K,

0 otherwise,
�v(n)

k � :=

{
v(n)

k if k ∈ K,

0 otherwise.

To prove the Γ-lim inf inequality, and with corollary 5.4 in mind, we must show that

(a) v̂ ∈ �2 and therefore v :=
∑

k∈N vkek ∈ X;
(b) Av = u − m and therefore u − m ∈ ran A;
(c) 1

2‖v‖2
X � I + ε and therefore

Iμ(u) =
1
2
‖C†/2(u − m)‖2

X � 1
2
‖v‖2

X � I = lim inf
n→∞

Iμ(n) (u(n)),

by using the fact that ε > 0 is arbitrary and by using remark 3.11.

Since ‖An − A‖ → 0, ‖u(n) − u‖X → 0 and ‖v(n)‖X � Mε :=
√

2I + 2ε for all n ∈ N, we
obtain

‖u − m − Av(n)‖X � ‖(u − m) − (u(n) − m(n))‖X + ‖u(n) − m(n) − Av(n)‖X

= ‖u − u(n)‖X + ‖m − m(n)‖X + ‖(An − A)v(n)‖X

� ‖u − u(n)‖X + ‖m − m(n)‖X + ‖An − A‖‖v(n)‖X

−−−→
n→∞

0.

The above convergence implies componentwise convergence: |uk − mk − σkv
(n)
k | −−−→

n→∞
0

for each k ∈ N or, equivalently, �v(n)
k � −−−→

n→∞
vk for each k ∈ N and uk − mk = 0 for all k /∈ K.

Since, for each n ∈ N, �v̂(n)� ∈ �2 with ‖�v̂(n)�‖�2 � ‖v(n)‖X � Mε, lemma B.6 implies that
v̂ ∈ �2 and v ∈ X with ‖v̂‖�2 = ‖v‖X � Mε, proving (a) and (c). Since uk − mk = 0 for all
k /∈ K, we obtain Av =

∑
k∈K(uk − mk)ek =

∑
k∈N(uk − mk)ek = u − m, proving (b) and final-

ising the proof of the Γ-lim inf inequality.
For the Γ-lim sup inequality, first note that, if u − m /∈ ran A, then Iμ(u) = ∞, and there

is nothing to prove since we may choose u(n) := u for all n ∈ N. If u − m ∈ ran A, let
v :=A†(u − m) and u(n) :=m(n) + Anv. Then ‖u(n) − u‖X � ‖m(n) − m‖X + ‖An −
A‖‖v‖X −−−→

n→∞
0. Since v is some solution of Anx = u(n) − m(n) and A†

n(u(n) − m(n)) is its

minimum norm solution (cf remark 3.11), corollary 5.4 implies

Iμ(u) =
1
2
‖v‖2

X � 1
2
‖A†

n(u(n) − m(n))‖2
X = Iμ(n) (u(n)),

for each n ∈ N, finalising the proof of the Γ-lim sup inequality.
In order to prove equicoercivity of the sequence (Iμ(n) )n∈N, let t ∈ R and

Kt :=
⋃
n∈N

K(n)
t ,

K(n)
t := I−1

μ(n) ([−∞, t]) =

{
u ∈ m(n) + ran An

∣∣∣∣ 1
2
‖A†

n(u − m(n))‖2
X � t

}
= m(n) + AnB√

2t(0),

13
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where we used corollary 5.4. We will now show that Kt is (sequentially) precompact. To this
end, let (u(ν))ν∈N be a sequence in Kt. If u(ν) ∈ K(n)

t infinitely often for some n ∈ N, there is noth-
ing to prove, since An is a compact operator for each n ∈ N. Otherwise, there exist subsequences
(u(ν j)) j∈N and (μ(n j)) j∈N such that u(ν j) ∈ K

(n j)
t for each j ∈ N. Hence, u(ν j) − m(n j) ∈ ran An j for

each j ∈ N and the points v( j) :=A†
n j

(u(ν j) − m(n j)) are uniformly bounded, ‖v( j)‖X �
√

2t for

j ∈ N. Since A is a compact operator, the sequence (w( j)) j∈N given by w( j) :=Av( j) has a sub-
sequence that converges to some element w ∈ X. For simplicity, we denote this subsequence
by (w( j)) j∈N. It follows that

‖u(ν j) − m − w‖X � ‖u(ν j) − m(n j) − w( j)‖X + ‖m(n j) − m‖X + ‖w( j) − w‖X

� ‖An j − A‖︸ ︷︷ ︸
→0

‖v( j)‖X︸ ︷︷ ︸
�
√

2t

+ ‖m(n j) − m‖X︸ ︷︷ ︸
→0

+ ‖w( j) − w‖X︸ ︷︷ ︸
→0

−−−→
j→∞

0,

and so (u(ν))ν∈N has a convergent subsequence. Hence, Kt is compact with I−1
μ(n) ([−∞, t]) ⊆ Kt

for each n ∈ N, finalising the proof of equicoercivity. �
The following corollary is a direct consequence of theorems 4.2 and 5.5:

Corollary 5.7. Let X, μ, (μ(n))n∈N be as in theorem 5.5. If u(n) is a global weak mode of μ(n),
n ∈ N, then every convergent subsequence of (u(n))n∈N has as its limit a global weak mode of
μ.

5.2. Bs
1-Besov measures

We now establish analogous results to those of the previous section for the class of Besov-1
measures. Besov-1 measures and Gaussian measures on infinite-dimensional spaces are anal-
ogous to Laplace distributions and normal distributions on R. Besov-1 measures have been
used as sparsity-promoting or edge-preserving priors7 in inverse problems (Agapiou et al 2018,
Dashti et al 2012, Lassas et al 2009).

Throughout this subsection, we use the following notation8:

Assumption 5.8. Let s ∈ R, d ∈ N, η > 0, t := s − d(1 + η) and assume that τ := (s/d +
1/2)−1 > 0. The parameter s is thought of as a ‘smoothness parameter’ and d as a ‘spatial
dimension’. Define γ0 := 1 and γ, δ ∈ R

N by

γk := k1− 1
τ , δk := k2+η− 1

τ , k ∈ N,

and let μk ∈ P(R) for k ∈ N ∪ {0} have the Lebesgue density

dμk

du
(u) = Z1 γ

−1
k exp(−|u/γk|), Z1 :=

(∫
R

exp(−|x|) dx

)−1

=
1
2
.

7 Strictly speaking, regularisation using the Besov-1 norm promotes edge-preservation for the MAP estimator but not
for samples from the full posterior distribution.
8 Typically, Besov measures are introduced on the space L2(Td); the same construction that we use for the components
of a random sequence in R

N is used for the components of a random Fourier or wavelet expansion in L2(Td). In our
definition, the dimension d becomes superfluous and one could work with s̃ := s/d, but we continue to use the classical
notation in order to reduce confusion.
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We define the Besov measure Bs
1 as follows, using notation that is an adaptation of that of

Dashti et al (2012) and Agapiou et al (2018).

Definition 5.9 (Sequence space Besov measures and Besov spaces). Using
assumption 5.8, we call μ :=

⊗
k∈N μk a (sequence space) Besov measure on R

N and write
Bs

1 :=μ. The corresponding Besov space is the weighted sequence space (Xs
1, ‖ · ‖Xs

1
) :=

(�1
γ , ‖ · ‖�1

γ
).

Since it is the summability parameter p (in this case, p = 1) that most strongly affects the
qualitative properties of the measure, we often refer simply to a ‘Besov-1 measure’ (or Besov-p
measure in the general case) for any measure in the above class, regardless of the values of s,
d, etc.

Lemma 5.10. Let μ = Bs
1 be the Besov measure defined above and X = Xt

1 = �1
δ . Then

μ(X) = 1.

Proof. This is a restatement of Lassas et al (2009), (lemma 2) for particular case p = 1. �
From now on we will consider the Besov measure μ = Bs

1 on the normed spaces
X = Xt

1 = �1
δ . This is possible since, by Ayanbayev et al (2021), (lemma B.1), B(�1

δ) ⊆ B(RN),
where we consider the product topology on R

N.

Proposition 5.11. Let μ = Bs
1 be a Bs

1-Besov measure on the space X = Xt
1 = �1

δ . Then, for
E = Xs

1 = �1
γ , property M(μ, E) is satisfied and the OM functional Iμ : X → R of μ is given by

Iμ(u) =

{‖u‖Xs
1

for u ∈ E,

∞ otherwise.
(5.3)

Proof. The OM functional formula on E follows from Agapiou et al (2018), (theorem 3.9),
while property M(μ, E) follows from Ayanbayev et al (2021), (theorem 4.9). The assumptions
of this theorem are fulfiled, given definition 5.9 and lemma 5.10. �

Remark 5.12. Proposition 5.11 uses and extends (Agapiou et al 2018, theorem 3.9). The
authors write that ‘the space Bs

1(Td) here, is the largest space on which the OM functional is
defined’. This claim is intuitively true, since ‖h‖Xs

1
= +∞ if h /∈ Xs

1 = E, and in our notation Xs
1

corresponds to Bs
1(Td). However, one must not a priori exclude the possibility that Iμ can have

a different formula outside of E. Property M(μ, E) in the above proof is one way to guarantee
that the claim is true.

We now give a Γ-convergence and equicoercivity result for sequences of Besov-1 measures
with converging smoothness parameters.

Theorem 5.13 (Γ-convergence and equicoercivity of OM functionals for Besov-1
measures). Let μ(n) :=Bs(n)

1 , n ∈ N ∪ {+∞}, be centred Besov measures such that
s(n) → s(∞). Then there exists n0 ∈ N such that, for each n � n0, μ(n)(�1

δ(∞) ) = 1 and we there-

fore consider these measures on X = Xt(∞)

1 = �1
δ(∞) (after dropping the first n0 − 1 measures).

Then, for the OM functionals Iμ(n) = ‖ · ‖
Xs(n)

1
: X → R, n ∈ {n′ ∈ N|n′ � n0} ∪ {+∞}, given

by (5.3), the sequence (Iμ(n) )n�n0 is equicoercive and Iμ(∞) = Γ-limn→∞ Iμ(n) .
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Proof. Since s(n) → s(∞) there exists n0 ∈ N such that, for n � n0, |s(n) − s(∞)| � dη(∞)

2 . There-
fore, for n � n0, we may choose η(n) > 0 such that t(n) = s(n) − d(1 + η(n)) = s(∞) − d(1 +

η(∞)) = t(∞) and consider μ(n) as a measure on X = Xt(∞)

1 = �1
δ(∞) by lemma 5.10. With-

out loss of generality, we assume n0 = 1 from now on in order to simplify notation. Since
s(n) � s := s(∞) − dη(∞)

2 ,

γ(n)
k = k−

s(n)
d + 1

2 � k−
s
d +

1
2 =: γk, k, n ∈ N,

and, for any θ � 0 and n ∈ N,

I−1
μ(n) ([−∞, θ]) :=

{
u ∈ X

∣∣∣∣∑
k∈N

|uk|
γ(n)

k

� θ

}
⊆

∏
k∈N

[−γkθ, γkθ]=: Kθ.

We will now show that Kθ ⊆ X is precompact. For this purpose, we define the operators

T, Tm : �∞ → X = �1
δ(∞) , T(x) = (γkxk)k∈N,

Tm(x) = (γkxk)k=1,...,m, m ∈ N.

All Tm are finite-rank operators that converge to T in the operator norm:

‖Tm − T‖ = sup
‖x‖�∞�1

∑
k>m

γk

δ(∞)
k

|xk| �
∑
k>m

k−1− η(∞)
2 −−−−→

m→∞
0.

Therefore, T is a compact operator and Kθ = θ TB�∞
1 (0) is precompact, finalising the proof of

equicoercivity. Note that for θ < 0 there is nothing to prove, since I−1
μ(n) ([−∞, θ]) = ∅ for each

n ∈ N ∪ {∞} in this case.
In order to prove the Γ-convergence statement, we will first show that ‖γ(n) − γ(∞)‖X → 0.

Since the sequences a(n) := (k−1−η|k s(∞)−s(n)
d − 1|)k∈N are uniformly bounded by the summable

sequence a = (2k−1− η(∞)
2 )k∈N (where we used |s(n) − s(∞)| � dη(∞)

2 ), the reverse Fatou lemma
implies ‖γ(n) − γ(∞)‖X → 0 via

lim sup
n→∞

‖γ(n) − γ(∞)‖X = lim sup
n→∞

∑
k∈N

k−1−η

∣∣∣∣k s(∞)−s(n)
d − 1

∣∣∣∣
�

∑
k∈N

lim sup
n→∞

k−1−η

∣∣∣∣k s(∞)−s(n)
d − 1

∣∣∣∣
= 0.

For the Γ-lim inf inequality, it follows from ‖u(n) − u(∞)‖X → 0 and ‖γ(n) − γ(∞)‖X → 0 that
u(n)

k

γ(n)
k

→ u(∞)
k

γ(∞)
k

for all k ∈ N. Thus, by Fatou’s lemma,
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Iμ(∞) (u(∞)) = ‖u(∞)‖�1
γ(∞)

=
∑
k∈N

|u(∞)
k |

γ(∞)
k

=
∑
k∈N

lim inf
n→∞

|u(n)
k |

γ(n)
k

� lim inf
n→∞

∑
k∈N

|u(n)
k |

γ(n)
k

= lim inf
n→∞

Iμ(n) (u(n)).

For the Γ-lim sup inequality, note that, if Iμ(∞) (u(∞)) = ∞, then there is nothing to prove.

Therefore, let us assume that Iμ(∞)(u(∞)) < ∞, and define u(n) by u(n)
k = γ(n)

k
u(∞)

k

γ
(∞)
k

, k ∈ N. Then

Iμ(n) (u(n)) =
∑
k∈N

|u(n)
k |

γ(n)
k

=
∑
k∈N

|u(∞)
k |

γ(∞)
k

= Iμ(∞) (u(∞)) < ∞,

and lim supn→∞ Iμ(n) (u(n)) � Iμ(∞) (u(∞)). Additionally,

∥∥u(n) − u(∞)
∥∥

X
=

∑
k∈N

|u(n)
k − u(∞)

k |
δ(∞)

k

=
∑
k∈N

|u(∞)
k |

γ(∞)
k

∣∣∣γ(n)
k − γ(∞)

k

∣∣∣
δ(∞)

k

� Iμ(∞) (u(∞))‖γ(n) − γ(∞)‖X → 0 as n →∞,

finalising the proof of the Γ-lim sup inequality. �
The following corollary is now a direct consequence of theorems 4.2 and 5.13:

Corollary 5.14. Let X, (μ(n))n∈N∪{∞} be as in theorem 5.13. If, for each n ∈ N, u(n) is a global
weak mode ofμ(n), then every convergent subsequence of (u(n))n∈N has as its limit a global weak
mode of μ(∞).

6. Consequences for MAP estimation in BIPs

The Γ-convergence theory of OM functionals described in section 5 has important conse-
quences for the stability of MAP estimators of BIPs, in particular those BIPs that use the
probability measures considered above as prior distributions.

An inverse problem consists of the recovery of an unknown u from related observational data
y. In the Bayesian approach to inverse problems (Kaipio and Somersalo 2005, Stuart 2010),
these two objects are treated as coupled random variables u and y that take values in spaces
X and Y respectively. A priori knowledge about u is represented by a prior probability mea-
sure μ0 ∈ P(X) and one is given access to a realisation y of y. The solution of the BIP is, by
definition, the posterior probability measure μy ∈ P(X), i.e. the conditional distribution of u
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given that y= y. For the sake of space, we omit here all technical discussion of the existence
and regularity of this conditional distribution and focus exclusively on the case that μy has a
Radon–Nikodym derivative with respect to μ0 of the form

μy(du) ∝ exp(−Φ(u; y))μ0(du),

for some Φ : X × Y → R. The function Φ, often called the potential, encodes both the ide-
alised relationship between the unknown and the data and statistical assumptions about any
observational noise. The textbook example is that X is a separable Hilbert or Banach space
of functions, Y = R

J for some J ∈ N, and that y = O(u) + η for some deterministic observa-
tion map O : X → Y and additive non-degenerate Gaussian noise η ∼ N (0, Cη) that is a priori
independent of u, in which case Φ is the familiar quadratic misfit

Φ(u; y) =
1
2

∥∥∥C−1/2
η (y −O(u))

∥∥∥2
.

One convenient point summary of μy is a MAP estimator, i.e. a point of maximum proba-
bility under μy in the sense of a maximiser of a small ball probability. Under the conditions
laid out in section 4, these points (in the sense of global weak modes) are the minimisers of the
OM functional of μy. However, we note that there are many problems of interest for which a
more generalised notion of MAP estimator and a correspondingly generalised OM functional
are needed, particularly problems in which the prior may have bounded support or the potential
may take the value +∞ (Clason et al 2019).

Our interest lies in assessing the stability of μy (more precisely, the stability of the MAP
estimators of μy) in response to the following:

• Perturbations of the observed data y, to be reassured that the posterior is not unduly
sensitive to observational errors;

• Perturbations of the potential9 Φ, for example to be reassured that the posterior is not
unduly sensitive to numerical approximation ofO by someO(n) (e.g. using a finite element
solver to solve a partial differential equation), or to examine the small-noise limit Cη → 0;

• Perturbations of the prior μ0, to be reassured that the posterior is not unduly sensitive to
prior assumptions, e.g. relating to the regularity of u.

We propose to address this question using the Γ-convergence results of the previous section.
The classes of measures for whose OM functionals explicitΓ-limits were computed in section 5
will serve here as Bayesian prior measures.

Our main result concerns the transfer of convergence properties of sequences of prior OM
functionals and sequences of potentials to the convergence of posterior OM functionals.

Theorem 6.1 (Transfer of property M, Γ-convergence, equicoercivity, and MAP
estimators). Let X be a metric space. For each n ∈ N ∪ {∞}, let μ(n)

0 ∈ P(X) and let
Φ(n) : X → R be locally uniformly continuous. Suppose that, for each n ∈ N ∪ {∞},
Z(n) :=

∫
Xe−Φ(n)(x) μ(n)

0 (dx) ∈ (0,∞) and set

μ(n)(dx) :=
1

Z(n)
e−Φ(n)(x) μ(n)

0 (dx).

9 Of course, a perturbation of the data y induces a perturbation of Φ(·; y). Sometimes it is easier to consider data
perturbations and potential perturbations separately, and sometimes, as we do in theorem 6.1, it is simpler to consider
them both as perturbations of the potential.
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Suppose that each μ(n)
0 has an OM functional I(n)

0 : E(n) → R. Then the following statements
hold:

(a) Each μ(n) has I(n) :=Φ(n) + I(n)
0 : E(n) → R as an OM functional.

(b) Suppose that property M(μ(n)
0 , E(n)) holds. Then property M(μ(n), E(n)) also holds, and the

global weak modes of μ(n)
0 (resp. of μ(n)) are the global minimisers of the extended OM

functional I(n)
0 : X → R (resp. of I(n) : X → R).

(c) Suppose that I(n)
0

Γ−→ I(∞)
0 and Φ(n) → Φ(∞) continuously10 as n →∞. Then the OM

functionals I(n) satisfy

Γ- lim
n→∞

I(n) = I(∞),

(d) Suppose that the sequence (I(n)
0 )n∈N is equicoercive and the functions Φ(n) � M are uni-

formly bounded from below by some constant M ∈ R. Then the sequence (I(n))n∈N is also
equicoercive with respect to the same representatives of I(n) as for the Γ-convergence (cf
remark 3.4).

(e) Suppose that the assumptions of parts (b)–(d) all hold. Then the cluster points as n →∞
of the global weak modes of the posteriors μ(n) are the global weak modes of the limiting
posterior μ(∞).

Proof. Parts (a) and (b) follow from lemma B.8, and part (c) follows from proposition A.4 i.e.
Dal Maso (1993), (proposition 6.20).

For part (d), let (I(n)
0 )n∈N be equicoercive and Φ(n) � M be uniformly bounded from

below. Then, for any t ∈ R, there exists a compact Kt ⊆ X such that, for all n ∈ N, (I(n)
0 )−1

([−∞, t]) ⊆ Kt. Since I(n)(x) = I(n)
0 (x) +Φ(n)(x) � t implies I(n)

0 (x) � t − M, it follows that,
for any t ∈ R and n ∈ N, (I(n))−1([−∞, t]) ⊆ Kt−M .

Finally, part (e) is just a restatement of theorem 4.2. �

Remark 6.2. Loosely speaking, the hypothesis in theorem 6.1(d) that the potentials are uni-
formly bounded below corresponds to a likelihood model in which the observed data are
(uniformly)finite dimensional. BIPs with infinite-dimensionaldata are known to involve poten-
tials that are unbounded below. Such potentials cannot be interpreted as (non-negative) misfit
functionals, as discussed by e.g. Stuart (2010), (remark 3.8) and Kasanický and Mandel (2017).

Note also that a standing assumption of Dashti et al (2013) is that Φ is locally Lipschitz
continuous, which is stronger than the local uniform continuity assumed in theorem 6.1, and
that boundedness of Φ from below is also assumed by Dashti et al (2013), (theorem 3.5), just
as in the hypothesis of theorem 6.1(d).

Corollary 6.3. Consider a BIP with priorμ0 = μ(∞)
0 , potentialΦ = Φ(∞), and observed data

y = y(∞), each of which may now be approximated. In addition to the assumptions of theorem
6.1, assume for simplicity that the OM functional of μ0 is lower semicontinuous, so that it
equals its own Γ-limit (theorem A.5).

(a) If the data y=: y(∞) are approximated by a sequence (y(n))n∈N and the potential Φ
and prior μ0 are held constant, then continuous convergence of Φ(n) :=Φ(·; y(n)) to

10 See definition A.2 for the definition of continuous convergence. Note that proposition A.4 is agnostic as to which
of the two summands converges continuously, and so theorem 6.1(c) also holds if I(n)

0 → I(∞)
0 continuously and

Φ(n) Γ−→ Φ(∞) , which would be a weaker hypothesis on the potentials but a stronger one on the prior OM functionals.
However, since we have not studied the continuous convergence of prior OM functionals, we do not stress this version
of the theorem.
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Φ(∞) :=Φ(·; y(∞)) ensures Γ-convergent and equicoercive sequences of posterior OM
functionals and convergent sequences of MAP estimators (in the sense of global weak
modes, and up to subsequences).

(b) Similarly, if the data and potential are held constant and the prior μ0 =:μ(∞)
0 is approxi-

mated by a sequence of priors (μ(n)
0 )n∈N, then Γ-convergence of prior OM functionals, i.e.

I
μ(n)

0

Γ−→ I
μ(∞)

0
, yields convergent sequences of MAP estimators.

(c) Finally, if the data and prior are held constant and the potential Φ=:Φ(∞) is approx-
imated by a sequence of potentials (Φ(n))n∈N, then continuous convergence Φ(n)(·; y) →
Φ(∞)(·; y) yields convergent sequences of MAP estimators; in particular, this holds when
the approximate misfit/potential Φ(n) arises through projection, e.g. Galerkin discretisa-
tion (lemma B.9).

Example 6.4 (Small-noise limits). Regrettably, the analysis of MAP estimators of small-
noise (infinite-precision) limits is not entirely trivial even under the Γ-convergence theory that
we have outlined. Consider a BIP on X with prior μ0 and potential Φ. Assume that μ0 has OM
functional I0 : E → R that satisfies M(μ0, E), leading to a lower semi-continuous and coercive
extended OM functional I0 : X → R. Assume also that Φ is locally uniformly continuous, is
bounded below, and attains its lower bound—without loss of generality, take this minimal
value to be 0. Now consider the posterior

μ(n)(dx) :=
1

Z(n)
e−nΦ(x)μ0(dx),

in the small-noise limit n →∞. By theorem 6.1, μ(n) has OM functional I(n) = nΦ + I0. It is
easy to see that, pointwise,

lim
n→∞

I(n)(x) = I(∞)(x) :=

{
I0(x), if Φ(x) = 0,

+∞, otherwise.

It is natural to hope thatΓ-limn→∞ I(n) = I(∞) as well, and hence that the MAP estimators of μ(n)

converge, in the small-noise limit n →∞, to the constrained minimisers of the prior OM func-
tional I0 among the global minima of Φ. However, this Γ-convergence is not straightforward
to establish.

• For the Γ-lim sup inequality, choose any x ∈ X. Consider first the case that Φ(x) > 0: for
the recovery sequence xn ≡ x,

I(n)(xn) = nΦ(x) + I0(x) −−−→
n→∞

+∞ = I(∞)(x).

Similarly, in the case Φ(x) = 0, we may use the same recovery sequence to obtain
I(n)(xn) = I(n)(x) = I0(x) = I(∞)(x).

• For the Γ-lim inf inequality, choose any x ∈ X and any sequence xn → x. Taking ωΦ,x to
be a local modulus of continuity for Φ near x, we have
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|Φ(xn) − Φ(x)| � ωΦ,x(‖xn − x‖),

and hence

lim inf
n→∞

I(n)(xn) = lim inf
n→∞

(nΦ(xn) + I0(xn))

� lim inf
n→∞

(
nΦ(x) − nωΦ,x(‖xn − x‖) + I0(xn)

)
� lim

n→∞
nΦ(x) − lim inf

n→∞
nωΦ,x(‖xn − x‖) + I0(x),

where the last inequality uses the lower semicontinuity of I0. At this point we encounter
a problem. For x such that Φ(x) > 0, the right-hand side of the above display is indeed
+∞, as required. However, for x such that Φ(x) = 0, the Γ-lim inf inequality only holds if
lim inf n→∞ nωΦ,x(‖xn − x‖) = 0, and this holds only if xn converges sufficiently rapidly
to x, which is not at all guaranteed.

We close this section by repeating the observation made at the end of section 4, that the
necessity of the continuous convergence/Γ-convergence assumptions, as opposed to simple
pointwise convergence of densities or OM functionals, is shown by example 1.1(c) from the
introduction, which can easily be interpreted as a pointwise but not continuously convergent
sequence of likelihoods/potentials and a Gaussian prior.

7. Closing remarks

The purpose of this paper was to establish a convergence theory for modes of probability
measures (in the BIP setting, MAP estimators of Bayesian posterior measures) in the sense
of maximisers of small ball probabilities, by first characterising them as minimisers of OM
functionals and then using the well-established notion of Γ-convergence from the calculus of
variations. The correspondence between modes and OM minimisers was established rigor-
ously for global weak modes under the abstract M-property, and counterexamples were given
to show that an extension to strong modes and relaxation of the M-property would be non-trivial
if not impossible. The general programme of studying Γ-limits of OM functionals of measures
was illustrated via two explicit example classes that are frequently used in the inverse prob-
lems literature, namely Gaussian measures and Besov Bs

p measures with integrability parameter
p = 1.

The Gaussian and Besov-1 measures treated in this paper are merely simple examples of
a general class of measures, namely countable products of scaled copies of a measure on R

(the normal and Laplace distributions respectively). General Besov-p measures and infinite-
product Cauchy measures fall into this class. Part II of this paper (Ayanbayev et al 2021) treats
this class in a high degree of generality, following the same programme of determining the
OM functional, verifying the M-property, and showing Γ-convergence and equicoercivity. The
advantage of having considered the Gaussian and Besov-1 measures separately in this paper is
that the requisite calculations could be done in more-or-less closed form and with much less
notational overhead than the general case.

This work has made extensive use of the hypothesis that some measure μ of interest actu-
ally possesses an OM functional (and moreover one that satisfies property M(μ, E) for a ‘good
enough’ E), and that μ possesses a mode. However, there are examples, even in finite dimen-
sion, of μ that have no strong or global weak modes, only generalised modes in the sense of
Clason et al (2019), which are associated with generalised OM functionals. A natural further
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generalisation of this article would be to study theΓ-convergenceproperties of such generalised
OM functionals, and hence the convergence of generalised strong modes.

It would be of great value in applications not only to know that some sequence of approxi-
mations to an ideal limiting MAP problemΓ-converges, but also to quantify how quickly those
approximate MAP estimators converge. Unfortunately, this is not trivial, since the basic frame-
work of Γ-convergence does not easily deliver convergence rates for minimisers, especially
when the objective functions are non-smooth, as is the case for most of the OM functionals in
our setting. Therefore, the interesting question of convergence rates for modes/MAP estimators
must be deferred to future work.
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Appendix A. Γ-convergence

We collect here the basic definitions and results related to Γ-convergence as used in the main
text. Standard references on Γ-convergence include the books of Braides (2002, 2006) and Dal
Maso (1993).

Definition A.1. Let X be a metric space and suppose that Fn, F : X → R. We say that Fn

Γ-converges to F, written Γ-limn→∞ Fn = F or Fn
Γ−→

n−→∞
F, if, for every x ∈ X,

(a) (Γ-lim inf inequality) for every sequence (xn)n∈N converging to x,

F(x) � lim inf
n→∞

Fn(xn);

(b) (Γ-lim sup inequality) and there exists a ‘recovery sequence’ (xn)n∈N converging to x such
that

F(x) � lim sup
n→∞

Fn(xn).

We say that (Fn)n∈N is equicoercive if for all t ∈ R, there exists a compact Kt ⊆ X such
that, for all n ∈ N, F−1

n ([−∞, t]) ⊆ Kt.

In general, Γ-convergence and pointwise convergence are independent of one another,
although the following inequality always holds:
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(
Fn

Γ−→
n−→∞

F and Fn −→
n−→∞

G pointwise
)

=⇒ F � G.

However, one can compare Γ-convergence with continuous convergence:

Definition A.2. Let X be a metric space and suppose that Fn, F : X → R. We say that Fn

converges continuously to F if, for every x ∈ X and every neighbourhood V of F(x) in R,
there exists N ∈ N and a neighbourhood U of x such that

(n � N and x′ ∈ U) =⇒ Fn(x′) ∈ V.

Continuous convergence implies both pointwise convergence and Γ-convergence and, in
the case that F is continuous, is implied by uniform convergence of Fn to F (Dal Maso 1993,
chapters 4 and 5).

Theorem A.3 (Fundamental theorem of Γ-convergence; Braides (2006), theorem
2.10). Let X be a metric space and suppose that Fn, F : X → R are such that
Γ-limn→∞ Fn = F and (Fn)n∈N is equicoercive. Then F has a minimum value and
minX F = limn→∞ inf XFn. Moreover, if (xn)n∈N is a precompact sequence such that
limn→∞ Fn(xn) = minX F, then every limit of a convergent subsequence of (xn)n∈N is a
minimiser of F. Thus, if each Fn has a minimiser xn, then every convergent subsequence of
(xn)n∈N has as its limit a minimiser of F.

Proposition A.4 (Dal Maso 1993, proposition 6.20). Let X be a metric space and

suppose that Fn, F : X → R and Gn, G : X → R are such that Fn
Γ−→ F on X and Gn → G

continuously on X as n →∞. Then

Fn + Gn
Γ−→

n−→∞
F + G on X.

Theorem A.5 (Braides 2006, proposition 2.5). The Γ-limit of a constant sequence
(F)n∈N is the lower semicontinuous envelope Flsc of F, i.e. the greatest lower semicontinuous
function bounded above by F:

Flsc(x) := lim inf
x′→x

F(x′).

In particular, F = Γ-limn→∞ F if and only if F is lower semicontinuous.

Appendix B. Technical supporting results

B.1. Supporting results for section 3

Lemma B.1 (The M-property). Let X be a metric space and let μ0 ∈ P(X). Suppose that
μ0 has an OM functional I : E → R on a nonempty subset E ⊆ supp(μ).

(a) If x� ∈ E satisfies (3.4), then any x�� ∈ E\{x�} satisfies (3.4). In particular, property
M(μ0, E) does not depend on the choice of x� in (3.4).
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(b) LetΦ : X → R be measurable, such thatΦ is bounded on bounded subsets of X.11 Suppose
that Z :=

∫
X e−Φ(x)μ0(dx) ∈ (0,∞) and define μ ∈ P(X) by μ(dx) :=Z−1e−Φ(x)μ0(dx). If

property M(μ0, E) holds, then so too does M(μ, E).
(c) If property M(μ0, E) holds, then no point of X\E can be a global weak mode for μ0, and

hence cannot be a strong mode for μ0.

Proof. Suppose that x� ∈ E satisfies (3.4). Let x�� ∈ E and x ∈ X\E. If x /∈ supp(μ0), then
for sufficiently small r, μ0(Br(x)) = 0, so it suffices to prove the claim for x ∈ supp(μ0)\E.
Since μ0 has an OM functional I : E → R,

lim
r↘0

μ0(Br(x))
μ0(Br(x��))

= lim
r↘0

μ0(Br(x�))
μ0(Br(x��))

μ0(Br(x))
μ0(Br(x�))

= lim
r↘0

μ0(Br(x�))
μ0(Br(x��))

lim
r↘0

μ0(Br(x))
μ0(Br(x�))

= exp(I(x��) − I(x�)) lim
r↘0

μ0(Br(x))
μ0(Br(x�))

= 0,

where we used (3.3) and (3.4) in the penultimate and last equation. This proves (a).
For (b), suppose that property M(μ0, E) holds with x� ∈ E satisfying

x ∈ X \ E =⇒ lim
r↘0

μ(Br(x))
μ(Br(x�))

= 0.

Observe that, for any x ∈ X,

μ(Br(x))
μ(Br(x�))

=

∫
Br(x) exp(−Φ(y))μ0(dy)∫
Br(x�) exp(−Φ(y))μ0(dy)

� exp

(
− inf

Br(x)
Φ + sup

Br(x�)
Φ

)
μ0(Br(x))
μ0(Br(x�))

.

The exponential on the right-hand side is finite, by the assumption that Φ is bounded on
bounded subsets of X. If x ∈ X\E, then taking the limit as r ↘ 0 yields property M(μ, E),
as claimed.

Suppose that x ∈ X\E is a global weak mode in the sense of definition 3.7. Then
x ∈ supp(μ) and

1 � lim sup
r↘0

μ0(Br(x�))
μ0(Br(x))

=

(
lim inf

r↘0

μ0(Br(x))
μ0(Br(x�))

)−1

.

Above, we used that x� ∈ E ⊆ supp(μ) to ensure that for every r > 0, μ0(Br(x�))
μ0(Br(x)) > 0. The

inequality above implies that

lim inf
r↘0

μ0(Br(x))
μ0(Br(x�))

� 1,

11 The assumption that Φ is bounded on bounded subsets of X is not restrictive. If Φ : X →R is continuous, then
the boundedness assumption holds whenever the bounded subset is contained in a sufficiently small ball. Mild conti-
nuity assumptions on forward models and log-likelihoods are commonplace in the study of BIPs e.g. Stuart (2010),
(assumption 2.6(i)–(ii)).
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and hence x� does not satisfy (3.4). Finally, if x is not a global weak mode, then by lemma 3.9,
it cannot be a strong mode. This proves (c). �

Example B.2 (Importance of limit in the M-property). For n ∈ N, let

an := 2− (n−1)(n+2)
2 , bn :=

an

2
, αn := 2−n(an − an+1),

βn :=
αn

2
, εn := 2αn, δn :=αn.

Let μ ∈ P(R) be given by its probability density

ρ ∝
∑
n∈N

2n
(
1[−1+αn,−1+2αn] + 1[1−2βn,1−βn]

)
,

where 1A denotes the indicator function of A ⊆ R, as visualized in figure B.1. The definitions
of an and αn imply that (an)n∈N is strictly decreasing to 0 and, for every n ∈ N,

αn = 2− n2+3n−2
2 − 2− n2+5n

2 > 0,

αn

αn+1
>

2− n2+3n−2
2 − 2− n2+5n

2

2− n2+5n+2
2

= 2n+2 − 2−1 > 2,

so (αn)n∈N is strictly positive and strictly decreasing to 0. Hence, the intervals
([−1 + αn,−1 + 2αn])n∈N are disjoint, and the intervals ([1 − 2βn, 1 − βn])n∈N are also dis-
joint. The facts that (αn)n∈N are strictly positive and decreasing imply that if m � n, then
(−1 + αm,−1 + 2αm) ⊆ (−1 − 2αn,−1 + 2αn) = Bεn(−1). The inequality αn−1

αn
> 2 implies

that −1 + 2αn < −1 + αm and hence (−1 + αm,−1 + 2αm) ∩ (−1 − 2αn,−1 + 2αn) = ∅

for any m < n. This implies that μ(Bεn(−1)) =
∑∞

k=n 2kαk = an. Similar arguments yield

μ(Bεn(−1))
μ(Bεn(1))

=

∑∞
k=n2kαk∑∞
k=n2kβk

=
an

bn
= 2, (B.1)

μ(Bδn(−1))
μ(Bδn(1))

=

∑∞
k=n+12kαk∑∞

k=n2kβk
=

an+1

bn
= 2−n−2 −−−→

n→∞
0. (B.2)

Thus, lim supε↘0
μ(Bε(−1))
μ(Bε(1)) = 2 and lim infε↘0

μ(Bε(−1))
μ(Bε(1)) = 0. For x ∈ supp(μ)\{−1, 1}, it fol-

lows from the disjointness of ([−1 + αn,−1 + 2αn])n∈N and ([1 − 2βn, 1 − βn])n∈N that there
exists a unique m ∈ N such that either x ∈ [−1 + αm,−1 + 2αm], or x ∈ [1 − 2βm, 1 − βm].
In either case, for sufficiently small ε it holds that μ(Bε(x)) = (2ε)2m, if x is in the interior
of either interval. If x is an endpoint of one of the intervals, then for sufficiently small ε,
μ(Bε(x)) = ε2m, so it suffices to consider the case where x is in the interior of one of the
intervals. Since μ(Bεn(1)) = bn, it follows that

μ(Bεn(x))
μ(Bεn(1))

=
2m+12αn

bn
=

2m+1−n(an − an+1)
an

< 2m+1−n an

an
= 2m+1−n −−−→

n→∞
0.

Then lim infε↘0
μ(Bε(x))
μ(Bε(1)) = 0 for any point. Hence, for E = {1}, the lim inf part of property

M(μ, E) is satisfied. Further, u = 1 is a minimiser of any OM functional on E since E = {1},
but u = 1 is not a global weak mode due to (B.1).
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Figure B.1. Probability density ρ (unnormalized) in example B.2. u = 1 is a minimiser
of the OM functional Iμ,E on E = {1}, but not a global weak mode, even though the
‘lim inf-only’ version of property M(μ, E) is satisfied. The vertical lines are located
at −1 + αn and 1 − αn, respectively.

Note that the above example can be modified to be even more extreme: if one sets
an := 2−n(n−1) and bn := an

2n , then one obtains that an/bn = 2n and an+1/bn = 2−n, and hence

lim inf
ε↘0

μ(Bε(−1))
μ(Bε(1))

= 0, lim sup
ε↘0

μ(Bε(−1))
μ(Bε(1))

= ∞.

Proposition B.3 (Open v. closed balls). Let X be a metric space, μ ∈ P(X) a proba-
bility measure on (X,B(X)) and x1, x2 ∈ X with x2 ∈ supp(μ). For ε > 0 define the ratios
Rε := μ(Bε(x1))

μ(Bε(x2)) and R̄ε := μ(B̄ε(x1))
μ(B̄ε(x2)) , where B̄r(x) denotes the closed ball in X of radius r centred

on x. Then

lim sup
ε↘0

R̄ε = lim sup
ε↘0

Rε and lim inf
ε↘0

R̄ε = lim inf
ε↘0

Rε.

Hence, limε↘0 R̄ε exists if and only if limε↘0 Rε exists, in which case these two values agree.

Proof. First assume that lim supε↘0 R̄ε > lim supε↘0 Rε=: s̊. Then there exists ζ > 0 and a
positive null sequence (εn)n∈N such that R̄εn � s̊ + ζ. For each n ∈ N perform the following
construction: since

⋂
δ>0Bεn+δ(x) = B̄εn(x) for any x ∈ X and using continuity of probability

measures, we obtain

lim
δ↘0

Rεn+δ =
limδ↘0 μ(Bεn+δ(x1))
limδ↘0 μ(Bεn+δ(x2))

=
μ(B̄εn(x1))
μ(B̄εn(x2))

= R̄εn � s̊ + ζ,

and there exists 0 < δn < n−1 such that Rεn+δn � s̊ + ζ/2. Hence, we have constructed a null
sequence (ε̃n)n∈N := (εn + δn)n∈N with

s̊ = lim sup
ε↘0

Rε � lim sup
n→∞

Rε̃n � s̊ + ζ/2,

which is a contradiction. Therefore, our assumption was false and lim supε↘0 R̄ε �
lim supε↘0 Rε. The other inequality can be proven similarly using

⋃
δ>0B̄εn−δ(x) = Bεn(x) and

a similar argument works for the corresponding lim inf statement. �
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Figure B.2. Uniform length measure μ on the set E = E− ∪ E+ ⊂ R
2 shown here has

a unique strong mode and global weak mode at (1, 0) with respect to the one-norm on
R

2, but at (−1, 0) with respect to the ∞-norm. The OM functionals for μ associated to
these two norms are likewise distinct, as discussed in example B.4.

Example B.4 (OM functionals and changes of metric). Following Lie and Sullivan
(2018), (example 5.6), let μ be the finite Borel measure on (R2,B(R2)) that is one-dimensional
Hausdorff measure (i.e. uniform length measure) on the disjoint union E of two right-angled
crosses in the plane, with one cross, E+, aligned with the coordinate axes and centred at
e1 := (1, 0) and the other, E−, aligned at π/4 to the axes and centred at −e1, as illustrated
in figure B.2. (Note that there is a slight error in Lie and Sullivan (2018), (example 5.6) con-
cerning the side lengths of the cross E− and hence the total mass of μ, but this error does not
affect the final conclusion of that example or this one, since it is only the mass near ±e1 that
is important.) With respect to the one-norm,

μ(B1
r (−e1)) = 2

√
2r, μ(B1

r (e1)) = 4r,

whereas, with respect to the ∞-norm, which in this setting is Lipschitz equivalent to the one-
norm,

μ(B∞
r (−e1)) = 4

√
2r, μ(B∞

r (e1)) = 4r,

and, after considering the other points of R2, it follows that e1 (resp. −e1) is the unique strong
and global weak mode of μ with respect to the one-norm (resp. ∞-norm). These same calcula-
tions, though, can be used to show that μ has an OM functional I1 : E → R (resp. I∞ : E → R)
with respect to the one-norm (resp. ∞-norm) and moreover

I1(−e1) = I1(e1) + log
√

2,

I∞(−e1) = I∞(e1) − log
√

2.

Indeed, more generally, I1 takes greater values on E− than on E+, whereas I∞ takes greater
values on E+ than on E−. This shows that these two OM functionals are distinct (i.e. differ by
more than an additive constant).

B.2. Supporting results for section 4

Example B.5. Let X = R, E = N and μ ∈ P(X) have Lebesgue density ρ := 24
5π2

∑
k∈N ρk,

shown in figure B.3, where

ρ0(x) :=
1
4

(|x|−1/2 − 2) 1[
− 1

4 , 1
4

]
\{0}(x), (B.3)
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ρk(x) :=
ρ0(x − k)

k2
+ k2 1[

− 1
2k4 , 1

2k4

](x − k). (B.4)

Since supp ρ0 = [− 1
4 , 1

4 ] and supp ρk = [k − 1
4 , k + 1

4 ], it follows that if k �= � then suppρk ∩
supp ρ� = ∅. In addition, for r � 1

4 ,
∫

Br(0)ρ0(x) dx = r1/2 − r. This implies that
∫

Xρ0 = 1
4 .

Hence
∫

Xρk =
5

4k2 and
∫

X ρ = 1. For every k ∈ N and r � min{ 1
4 , 1

2k4 },
∫

Br(k)ρk(x) dx =

k−2(r1/2 − r) + 2rk2. Then, for u = 1 and any k ∈ E = N,

μ(Br(u))
μ(Br(k))

r↘0−−−→ k2,

which implies that u = 1 is a weak mode or weak MAP estimate in the sense of Helin and
Burger (2015), (definition 4) and hence a global weak mode in the sense of definition 3.7. In
addition, Iμ,E(k) = 2 log k defines an OM functional for μ on E, with unique minimiser u = 1.
Next, we show that property M(μ, E) holds. If x /∈

⋃
k∈N supp ρk, then for sufficiently small

r > 0, μ(Br(x)) = 0. Thus, it suffices to consider x ∈
⋃

k∈Nsupp ρk \ N. There exists a unique
m ∈ N = E such that x ∈ suppρm\{m}. Assume that x = m + δ for 0 < δ � 1

4 . Then, for r
small enough,

μ(Br(x)) =
1

2m2

(√
δ + r −

√
δ − r

)
− r + 2m2r ≈ 1

2m2

(
1

2δ1/2
2r

)
+ r(2m2 − 1),

using the Taylor expansion of y �→ √
y. Thus, μ(Br(x)) decreases to zero linearly in r, whereas

μ(Br(m)) decreases to zero like r1/2. Recall that property M(μ, E) holds if there exists some
x� ∈ E such that if x ∈ X\E then (3.4) holds, i.e. limr↘0

μ(Br(x))
μ(Br(x�)) = 0. Using that x = m + δ

and x� = m shows that property M(μ, E) holds.
Next, recall from (3.3) that if I = Iμ,E : E → R is an OM functional for μ, then I must satisfy

limr↘0
μ(Br(x1))
μ(Br(x2)) = exp(I(x2) − I(x1)) for all x1, x2 ∈ E. For x1 = 1 and x2 = 5

4 , the preceding

calculations show that the ratio μ(Br(x1))
μ(Br(x2)) increases to ∞ as r ↘ 0. If, on the other hand, we set

x1 =
5
4 and x2 = 1, then the resulting limiting ratio equals 0. This shows that the domain of the

OM functional Iμ,E cannot be extended beyond E = N. However, for u = 1, n ∈ E = N and
rn = 1

2n4 ,

lim inf
r↘0

μ(Br(u))
Mr

� lim inf
n→∞

μ(Brn(u))
μ(Brn(n))

� lim inf
n→∞

1√
2n2 + 1

n4

1
n2

=
1√
2
.

Thus, u = 1 cannot be a strong mode of μ, even though it minimises Iμ,E.

B.3. Supporting results for section 5

Lemma B.6. Let a(n) = (an
k)k∈N ∈ �2, n ∈ N, define a bounded sequence in �2, i.e. there exists

a constant M > 0 such that ‖a(n)‖�2 � M for each n ∈ N. Further, let a(n)
k −−−→

n→∞
ak ∈ R for

each k ∈ N. Then a := (ak)k∈N ∈ �2 and ‖a‖�2 � M.

Proof. Assume that there exists K ∈ N such that
∑K

k=1|ak|2 > M2 + ε for some 0 < ε < 1.
Since a(n)

k −−−→
n→∞

ak for each k ∈ N, there exists, for each k = 1, . . . , K, a number N(k) ∈ N

such that, for all n � N(k), |a(n)
k − ak| < ε

4K(|ak|+1) (� 1). Hence, for each k = 1, . . . , K and
N := max(N(1), . . . , N(K)),
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Figure B.3. Probability density ρ in example B.5. u = 1 is a minimiser of the OM
functional Iμ,E and an E-weak mode for E = N, but not a strong mode.

|ak|2 � (|a(N)
k |+ |a(N)

k − ak|)2

= |a(N)
k |2 + 2 |a(N)

k |︸ ︷︷ ︸
�|ak|+1

|a(N)
k − ak|︸ ︷︷ ︸

� ε
4K(|ak |+1)

+ |a(N)
k − ak|2︸ ︷︷ ︸

� ε
4K(|ak|+1)

� |a(N)
k |2 + ε

K
.

Therefore,
∑K

k=1|ak|2 � M2 + ε, yielding a contradiction. Hence, our assumption was false
and the lemma is proven. �

Remark B.7. Lemma B.6 does not state that ‖a(n) − a‖�2 → 0 and, in fact, this is not true in
general. A counterexample is provided by a = 0 and a(n) = (δnk)k∈N, where δnk denotes the
Kronecker delta function.

B.4. Supporting results for section 6

Recall that a function f : X → Y between metric spaces X and Y is locally uniformly contin-
uous if, for every x ∈ X, there exists a function ω f ,x : [0,∞) → [0,∞], a local modulus of
continuity for Φ near x, such that

for all x′ ∈ X, dY( f (x′), f (x)) � ω f ,x

(
dX(x′, x)

)
, (B.5)

and ω f ,x(r) → 0 as r → 0. (B.6)

In particular, (B.6) implies that, for each x ∈ X, there exists rx > 0 such that ω f ,x(rx) is finite
for all 0 � r � rx . It is no loss of generality to assume that ω f ,x is an increasing function. Local
uniform continuity is slightly but strictly stronger than f being continuous: according to Izzo
(1994), (theorem 1), on every infinite-dimensional separable normed space there exist bounded,
continuous real-valued functions that are nowhere locally uniformly continuous; however, Izzo
(1994), (theorem 4) also shows that every continuous real-valued function on a metric space
can be approximated uniformly by locally uniformly continuous functions.

Lemma B.8 (OM functionals for reweighted measures). Let X be a metric space
and let μ0 ∈ P(X) have an OM functional I0 on E ⊆ X. Let Φ : X → R be locally uni-
formly continuous. Suppose that Z :=

∫
X e−Φ(x)μ0(dx) ∈ (0,∞). Then μ ∈ P(X) defined by

μ(dx) :=Z−1e−Φ(x)μ0(dx) has I :=Φ+ I0 as an OM functional on E. If, furthermore, property
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M(μ0, E) holds and I0 is extended to I0 : X → R by setting I0 ≡ +∞ on X\E, then property
M(μ, E) holds and Φ+ I0 is an extended OM functional for μ.

Proof. Let u, v ∈ E and let r0 be small enough that both ωΦ,u(r0) and ωΦ,v(r0) are finite; with-
out loss of generality we henceforth consider only 0 < r < r0. By (B.5), on Br(u), Φ satisfies
the bound

Φ(u) − ωΦ,u(r) � Φ(·) � Φ(u) + ωΦ,u(r).

Since μ(A) = Z−1
∫

A exp(−Φ(x))μ0(dx) for each measurable set A ∈ B(X), it follows that

Z−1 exp(−Φ(u) − ωΦ,u(r))μ0(Br(u))

� μ(Br(u)) � Z−1 exp(−Φ(u) + ωΦ,u(r))μ0(Br(u)).

Similar arguments apply mutatis mutandis for v in place of u. Hence,

exp(−Φ(u) − ωΦ,u(r))μ0(Br(u))
exp(−Φ(v) + ωΦ,v(r))μ0(Br(v))

� μ(Br(u))
μ(Br(v))

� exp(−Φ(u) + ωΦ,u(r))μ0(Br(u))
exp(−Φ(v) − ωΦ,v(r))μ0(Br(v))

,

and so, since I0 is an OM functional for μ0 and both ωΦ,u(r) and ωΦ,v(r) tend to 0 as r → 0,

exp(−Φ(u) +Φ(v) + I0(v) − I0(u)) � lim
r↘0

μ(Br(u))
μ(Br(v))

� exp(−Φ(u) +Φ(v) + I0(v) − I0(u)).

which proves the first claim.
The second claim is an immediate consequence of the first part and lemma B.1(b). �

Lemma B.9 (Continuous convergence of potentials via projection). Let X be a
separable Banach space and let (Xn)n∈N be a sequence of (not necessarily nested) finite-
dimensional subspaces with surjective uniformly bounded linear projection operators Pn :
X → Xn such that

for all x ∈ X, lim
n→∞

‖Pnx − x‖ = 0. (B.7)

Let Φ : X → R be locally uniformly continuous.

(a) For each n ∈ N, Φ ◦ Pn is locally uniformly continuous.
(b) Φ ◦ Pn → Φ continuously as n →∞.

Proof. Let M � 1 be a uniform upper bound for the operator norms ‖Pn‖, n ∈ N. (Note that, in
the special case that X is a separable Hilbert space with complete orthonormal system {ψn}n∈N
and Pn is the orthogonal projection onto span{ψ1, . . . ,ψn}, we may take M = 1.)

To show (a), fix n ∈ N and x ∈ X and let ωΦ,Pnx : [0,∞) → [0,∞] be an increasing local
modulus of continuity for Φ near Pnx. Then, for all x′ ∈ X,
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|(Φ ◦ Pn)(x′) − (Φ ◦ Pn)(x)| � ωΦ,Pnx

(
‖Pnx′ − Pnx‖

)
� ωΦ,Pnx

(
‖Pn‖‖x′ − x‖

)
.

Thus, ωΦ◦Pn,x(r) :=ωΦ,Pn x(Mr) is a local modulus of continuity for Φ ◦ Pn near x.
To establish (b), fix x ∈ X and let ωΦ,x : [0,∞) → [0,∞] be an increasing local modulus

of continuity for Φ near x. Let ε > 0 be arbitrary and let rε > 0 be such that ωΦ,x(rε) < ε.
By (B.7), there exists N ∈ N such that, for all n � N, ‖Pnx − x‖ < rε/2. Then, for n � N and
x′ ∈ X with ‖x′ − x‖ < rε/2M,

|(Φ ◦ Pn)(x′) − Φ(x)| � ωΦ,x
(
‖Pnx′ − x‖

)
� ωΦ,x

(
‖Pnx′ − Pnx‖+ ‖Pnx − x‖

)
� ωΦ,x

(
M‖x′ − x‖+ ‖Pnx − x‖

)
� ωΦ,x(rε) < ε,

as required. �
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