
1.  Introduction
The impact of atmospheric dynamics on the time-variable rotation of the Earth has been detected already dur-
ing the early years of Very Long Baseline Interferometry (VLBI) by analyzing excitation functions based on 
global numerical weather prediction models (Barnes et al., 1983). Subsequently, the accuracy of space geodesy 
progressed rapidly, and also the quality of atmospheric model data sets improved due to newly available meteor-
ological satellite observations and a break-through in meteorological data assimilation. Progress eventually led to 
the detection of signatures of the El Niño Southern Oscillation in seasonal variation in the length-of-day (Gross 
et al., 1996) caused by low-frequency variations in tropospheric winds.

Changes in the orientation of the solid Earth are conveniently studied by applying the principle of conservation 
of angular momentum in the whole Earth system including the surrounding fluid layers of atmosphere, oceans, 
and the terrestrial hydrosphere (Gross, 2007). By summarizing the angular momentum changes from mass redis-
tributions in any of those subsystems, the overall effect on the orientation of the solid Earth as represented by the 
terrestrial reference frame realized through a set of geodetic observatories is obtained. Changes in the mass dis-
tribution of the atmosphere can be expressed by its tensor of inertia calculated from given surface pressure fields. 
In addition, relative angular momentum changes can be derived from vertically integrated zonal and meridional 
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atmospheric winds. The influence on Earth rotation from those angular momentum changes can be summarized 
as effective angular momentum functions (EAM; Brzeziński, 1992) divided into the pressure or mass term and 
the motion term. EAM functions also consider a partly decoupled rotation of the Earth's core, the effect of elastic 
Earth surface deformations under atmospheric pressure, and rotational deformations.

Numerous studies intercompared EAM for the atmosphere with atmospheric angular momentum (AAM) from 
different sources (Koot et al., 2006; Masaki, 2008), and highlighted the importance of various specific aspects 
of the calculation of AAM including the accurate consideration of the surface orography (Zhou et al., 2006) and 
the consideration of stratospheric winds in addition to the tropospheric mass transports (Zhou et al., 2008). The 
individual contributions of surface pressure variations from regional sectors to AAM were also analyzed (Nastula 
et al., 2009), thereby opening up opportunities to principally inform atmospheric models by means of assimilat-
ing information on atmospheric angular momentum from geodetic observations (Neef & Matthes, 2012).

The strong relationship between model-based EAM and observed Earth orientation parameters (EOP) encour-
aged the use of EAM forecasts for Earth rotation predictions. Especially, the short-term predictions of variations 
in the Earth spin rate UT1-UTC (universal time-coordinated universal time) could benefit from the third com-
ponent (χ3) of AAM forecast data (Bell et al., 1991; Freedman et al., 1994). UT1 prediction errors were reduced 
by 20% at a forecast horizon of 5 days. In 2000, the International Earth Rotation and Reference Systems Service 
(IERS) started to introduce AAM χ3 forecasts from NCEP into their official Earth rotation prediction product 
Bulletin A in order to improve the short-term predictions of UT1-UTC variations. However, it showed up that 
including the AAM forecasts sometimes degraded the UT1 prediction skill due to systematic differences between 
the AAM and UT1 series. Smoothing of the AAM data to reduce the subdaily variability helped to reduce those 
effects (both periodic and linear).

Not only UT1 predictions could be improved by AAM χ3 forecasts, but polar motion predictions could also 
benefit from AAM forecasts, namely the components χ1 and χ2. The first comparison campaign for Earth orienta-
tion parameters prediction underlines the necessity of the AAM forecast for the very-short-term EOP prediction 
(Kalarus et al., 2010). The authors also recommend the incorporation of EAM forecasts for ocean and terrestrial 
hydrology as presented the first time in a comprehensive study by Dill and Dobslaw (2010) for polar motion 
and UT1 predictions. The findings were confirmed by a study of Gross (2012) for improved UT1 predictions. 
Although EAM forecasts have typically a very short forecast horizon of only several days, 90-day EOP prediction 
could also benefit from the improvements in the very-first part of the EOP prediction (Dill et al., 2013, 2018).

EAM contributions for χ1, χ2, χ3 mass and motion term forecasts of ocean and hydrology, χ1 and χ2 mass term 
forecasts of the atmosphere and χ3 mass and motion forecast of the atmosphere show excellent prediction skills 
with a Brier-Skill (Storch & Zwiers, 1999) score above 0.8 throughout the whole forecast length of 6 days. In 
contrast to this good performance of most EAM components, AAM χ1 and χ2 motion term forecasts show much 
lower prediction skills. Here, regular drops below zero (Brier-Skill score 𝐴𝐴 𝐴 0.0 ) occur, see Figure 3 in Dobslaw 
and Dill (2017). During the first three prediction days, these deficiencies in the AAM χ1 and χ2 motion term fore-
casts even drag down the overall EAM prediction skill sometimes below a Brier-Skill score of 0.8 that would be 
necessary for meaningful predictions.

In contrast to all other EAM forecast errors that are increasing with prediction length, large deviations between 
the AAM χ1 and χ2 motion term forecast and subsequently available analysis data pop up irregularly in the very-
first forecast epochs. These deviations decrease with prediction length. Figures  1 and 2 exemplary show the 
deviations of 100 consecutive AAM motion term forecasts from its subsequently available analysis data. In the 
χ1 and χ2 components (Figure 1), we find artificial quasi-periodic signals with initial amplitudes larger than the 
increasing stochastic forecast error after 6 days with an average period of 1.071 days in χ1 and 1.098 days in χ2. 
This artificial signal is excited irregularly from day-to-day with seemingly arbitrary amplitude and phase. The 
signal, if excited, vanishes with increasing forecast length. The χ3 component (Figure 2) reflects the normal be-
havior, a continuously increasing forecast error with increasing forecast length (compare temporal behavior along 
the vertical axis tforecast in Figures 1 and 2).

We suspect the origin of these AAM motion term forecast errors is in the ECMWF (European Centre for Me-
dium-Range Weather Forecasting) wind fields. So far, we could not find any documentation that might explain 
the existence of such artificial signals. It looks like the ECMWF's forecast system excites a free eigenmode once 
the system is no more constrained by assimilation data. In order to reduce the AAM forecast error, the following 
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study explores machine learning (ML) to eliminate these supposedly artificial signals in the AAM motion term 
forecasts as far as possible. ML encompasses a class of generic yet highly adaptable operators and tools that 
can be trained to solve specific tasks. ML applications range from image classification, speech recognition to 
automated driving (e.g., Girasa,  2020). However, ML methods are also rapidly advancing in Earth sciences 
and can solve a plethora of classification, data-augmentation, inversion, and modeling problems in this field 
(Irrgang et al., 2021; Lary et al., 2016; Salcedo-Sanz et al., 2020). Especially in numerical weather prediction, 
postprocessing forecast variables by ML has become an efficient tool to improve the prediction skills for specific 
application, e.g., postprocess short-term hub-height wind by multivariable neural network (Salazar et al., 2021), 
reducing the error in ECMWF lower stratosphere wind prediction by 2%–15% for wind speed and 15%–25% for 
direction (Candido et al., 2020). The advantage of such a postprocessing approach is the improvement of pre-
diction skills for derived parameters such as AAM without the need of improving the whole numerical weather 
prediction system which is often beyond the research scope.

2.  Atmospheric Angular Momentum Analysis and Forecast Data
Atmospheric surface pressure and wind data are available from various sources including global reanalyses from 
the National Center for Environmental Prediction (NCEP), the Japan Meteorological Agency, and the European 
weather agency ECMWF. Moreover, these institutions also provide short-term forecasts of atmospheric data, but 
generally the access to the data is restricted. AAM derived from NCEP data is processed at the center for Atmos-
pheric and Environmental Research in Boston, and from ECMWF by ESMGFZ (Earth System Modelling group 
at the Helmholtz Centre Potsdam GFZ, German Research Centre for Geosciences). The AAM data products are 
provided via the International Earth Rotation and Reference Systems Service (IERS) under the auspices of the 
International Association of Geodesy (IAG). The IERS hosts the Global Geophysical Fluids Center (GGFC) that 
collects and disseminates those AAM data and metadata describing the contributions from mass redistributions 
in atmosphere, oceans, and the terrestrial hydrosphere (https://www.iers.org/IERS/EN/DataProducts/Geophysi-
calFluidsData/geoFluids.html). All data of the GGFC are publicly available without any charges.

In contrast to AAM (analysis) data sets from several reanalysis runs of numerical weather models, up to now, 
AAM forecast data sets are publicly available via the GGFC only from ESMGFZ. Since 2016, ESMGFZ is 

Figure 1.  Systematic forecast errors in the χ1 (left) and χ2 (right) atmospheric angular momentum (AAM) motion terms. Forecast minus analysis time series. Heat map 
over 100 consecutive forecasts with a typical forecast time window of 6 days each (3-hourly sampling).

https://www.iers.org/IERS/EN/DataProducts/GeophysicalFluidsData/geoFluids.html
https://www.iers.org/IERS/EN/DataProducts/GeophysicalFluidsData/geoFluids.html
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moreover routinely providing EAM forecasts for either 6  days (individually for the EAM from atmosphere, 
ocean, hydrology, and sea level) or 90 days (combination of all effects). The data sets are updated daily around 
11:00 UTC with all time steps of the previous day (analysis) and 6 days into the future (forecasts). More details 
are available at http://esmdata.gfz-potsdam.de:8080/.

For this study, we collected 1,988 daily AAM χ1 and χ2 motion term forecasts from 2016 to 2021, each sampled 3 
hr, i.e., 48 epochs for 6 days. The forecasts were contrasted against subsets of the AAM analysis data for the same 
epochs. Figure 3 shows the mean differences time series and the variety of forecast errors over the forecast length. 
In contrast to Figure 1 where individual forecast errors are plotted for a subset of consecutive forecasts, Figure 3 
shows the forecast errors for the whole data set in an aggregated view. Again, the strong quasi-periodicity of the χ1 
and χ2 forecast errors is very prominent (Figure 3, black line). However, the large variety of this quasi-periodicity 
in shape as well as period, phase, length, and amplitude is visible, too (Figure 3, gray swath).

On the one hand, exactly this erratic behavior makes it challenging to filter out this kind of error. Defining a 
filter that removes the error signal is challenging especially since the forecasts contain useful information on the 
same periods that has to be retained. As clearly as the errors are visible in the aggregated view of Figure 3, when 
looking at a single forecast time series these periodic errors are far from obvious.

On the other hand, the errors are not random and have some hard to define yet clearly visible characteristics which 
may help to separate true from false forecast information. With ML, a suitable filter has not to be defined a priori, 
it will be generated within a neural network (NN) during the training.

Figure 2.  Systematic forecast errors in the χ3 atmospheric angular momentum (AAM) motion term. Forecast minus analysis 
time series. Heat map over 100 consecutive forecasts with a typical forecast time window of 6 days each (3-hourly sampling).

http://esmdata.gfz-potsdam.de:8080/
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In general, we would expect a forecast error increasing with forecast length. However, we can detect exceptionally 
large errors especially in the first forecast epochs (e.g., Figure 3). The forecast errors are caused by an artificial 
periodic signal that is arbitrarily excited at the beginning of the AAM forecasts with decreasing amplitude for 
longer prediction length. Respective time series from AAM analysis do not contain this periodic signal. In con-
trast to the AAM forecast, the AAM analysis is based on numerical weather model simulations that assimilate 
observational data as soon as they are available.

In addition to the exceptional difference between AAM χ1 and χ2 motion term forecasts and analysis, we find also 
large deviations in the overlapping epochs of consecutive forecasts. Here, we would expect only small deviations, 
especially for the first part of the forecast period (e.g., first day of today's forecast versus second day of yesterday's 
forecast). A preliminary approach to estimating the erroneous forecast signal from such consecutive forecasts and 
the known deviation from the analysis of older forecasts led only to a minor reduction of the overall forecast error 
as the overlapping time series are too short for a robust harmonic analysis.

Due to the restricted access to AAM forecasts from other numerical weather models such as NCEP, we could 
not inspect if the observed AAM motion term forecast shortcomings are typical for numerical weather prediction 
models or solely existent in ECMWF's atmospheric wind forecasts.

3.  Methods
To isolate and remove the systematic errors contained in the polar motion related AAM data, different neural 
network classes were applied and tested: feed forward neural networks (FFNN), long short-term memory (LSTM) 
and other recurrent neural networks (RNN), as well as convolutional neural networks (CNN). As typical with 
ML approaches, the work includes a large fraction of trial and error to find suitable network architectures and 
connected hyperparameters like network shape, number of neurons in each layer, etc. We found that all of the 
listed network classes could be adapted to the problem and give comparable results (not shown). In the following, 
we describe only one of the tested ML classes, the cascading forward neural network model (CFN, e.g., Bolanča 
et al., 2009; Warsito et al., 2018). The CFN performed slightly better than the other tested configurations and 
was used to generate the results of this study. CFN are enhanced FFNN. In FFNN, while the first layer acts on 
the task-related input data, the following hidden layers process only the output of the previous layer. In a CFN, 
each hidden layer can access and process the output of all previous layers including the task-related input data.

The best performing CFN (MATLAB, 2021a) for our purpose is sketched in Figure 4 and has the following lay-
out, which was implemented using the Deep Learning Toolbox of MATLAB (2021b). The CFN has 128 input 

Figure 3.  Forecast error, i.e., differences between atmospheric angular momentum (AAM) motion term forecast and the respective analyses time series for a prediction 
of 6 days into the future. Left: χ1. Right: χ2. Range (gray) and average (black) over the 1,988 individual curves.
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neurons, which process AAM motion term forecasts for χ1 and χ2. Both input time series have a length of 64 
epochs, each containing the erroneous 6-day forecast (48 epochs at 3-hr sampling) and 2 days of preceding AAM 
analysis data (16 epochs). The network contains two hidden layers with 5 and 3 neurons, respectively, and a final 
output layer with 96 neurons, matching the length of the target forecast corrections for χ1 and χ2. The task of the 
CFN is to generate an additive forecast correction to derive an improved version of the erroneous input forecast. 
For this purpose, 6 days of differences (48 epochs), i.e., AAM forecast minus analysis for χ1 or χ2, are used as 
prescribed target outputs. To evaluate the ML-based correction, we compare erroneous and ML-corrected AAM 
forecasts with the corresponding AAM analysis time series in terms of root mean square errors (RMSE). During 
the training, the weights of the CFN are adapted by using the Levenberg-Marquardt back-propagation algorithm 
(Marquardt, 1963). From the available 1,988 AAM forecasts (see Section 2), 1,500 forecasts and their subsequent 
analyses are used pair-wise during the CFN training and validation (Figure 4). The remaining 488 forecasts and 
analyses are used to quantify the CFN performance with respect to the data used for the training procedure (see 
Section 4).

4.  Results and Discussion
Figure 5 shows the results of the various CFN we designed to improve the AAM motion term forecasts. The 
results are shown as RMSE over the 488 time series which were refrained from the CFN training. The black lines 
correspond to the black lines of Figure 3, i.e., this is the forecast error of the untreated AAM forecasts. Note that 
while Figure 3 shows this baseline error as temporal average, Figure 5 represents a squared RMSE view.

The most basic approach to the problem is to train two CFN separately, one for χ1 and one for χ2. We call this the 
serial approach from now on. Here, each CFN takes one component of the AAM forecast as input and delivers a 
correction to it as output. In and output each have the same length of 48 epochs for 6 days. This most simple ap-
proach reduces already the RMSE significantly below the baseline (cf. Figure 5, red with black line). The RMSE 
reduction is quite dramatic. The total RMSE of the 488 χ1 (χ2) forecasts amounts to 4. 78 × 10−8 (4.66 × 10−8) and 
is reduced by the serial approach to 3.53 × 10−8 (3.67 × 10−8), i.e., a relative reduction of about 26% (21%). Es-
pecially in the first epochs of the forecast, where the supposedly artificial errors are most pronounced, the RMSE 
drop. The RMSE of the first 3 days of the forecast period (epochs 1–24) drop by 38% (30%). Consequently, by 

Figure 4.  Sketch of the machine learning (ML)-based correction scheme for one exemplary atmospheric angular momentum (AAM) motion term forecast. The neural 
network analyzes time series of 6-day 3-hourly AAM motion term forecasts for χ1 and χ2 (dark blue time series), both complemented with 2 days from the latest analysis 
(light blue time series), to estimate an additive forecast correction (red time series). Colored blocks show neurons in the different layers and arrows indicate information 
aggregation and pathways between the layers.
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applying the serial approach, the remaining RMSE now grow more linear with the forecast horizon. Toward the 
end of the 6-days forecasts, the RMSE of the serial approach and the RMSE of the unaltered forecasts meet. This 
linear RMSE trend is expected and far more realistic (cf. also Figure 2) and arises naturally from chaotic and 
nonlinear components in the atmosphere system. In addition to the trend, an RMSE baseline of about 2 × 10−8 
remains. The origin of this offset is not part of this study but may originate in missing or in-accurate assimilation 
data insufficiently constraining the ECMWF atmospheric model. Also remaining is a periodic modulation of the 
natural RMSE trend. The period of this remaining RMSE modulation is about 12 hr (corresponding to 24 hr in 
the nonsquared errors) and might be connected with periodic daytime-dependent fluctuations in the quality of 
ECMWF's atmospheric forecasts compared to their operational analysis data. Given its input data, phase, and 
amplitude of this remaining modulation are from the CFN point of view random and cannot be further reduced.

The next natural progression of the CFN was to process χ1 and χ2 together within one NN. This we termed parallel 
approach and this CFN has χ1 and χ2 as input and delivers respective corrections for both AAM motion term com-
ponents (Figure 5, blue line). Compared to the serial approach, the total RMSE do improve slightly: 3.42 × 10−8 
(3.46 × 10−8) for χ1 (χ2). That corresponds to an additional relative improvement of 3% (5%) compared with the 
serial approach. This is surprisingly little, given the fact that the information the CFN now gets is doubled. Natu-
rally one would assume that since χ1 and χ2 are physically linked, information contained in the one could be useful 
for correcting the other. However, the influence of this additional information seems to be of minor importance 
as far as the filtering of the dominant AAM forecast errors is concerned. In other words, each component on 
its own contains already enough information to reduce the RMSE to a certain degree and considering the other 
component gives only little additional, i.e., independent information.

However, additional information can indeed help to lower the RMSE further, e.g., by extending the input vectors 
of the parallel approach with analysis data that is available at the respective time of forecast. Here, we add 16 
epochs of data preceding the forecast time window as additional input to the CFN of the parallel approach (green, 
cf. Figure 4). The results of this parallel-extended approach amount to a total RMSE of 3.29 × 10−8 (3.19 × 10−8), 
i.e., a relative improvement with respect to the unaltered forecasts of 31% (32%) for the full 48 forecast epochs 
and 48% (45%) improvement when only the epochs 1–24 are considered (Figure 5, green line).

Considering the remaining RMSE and their development with forecast time, the stochastic trend, the initial bias, 
and the periodic modulation of the trend are now very clear in both polar motion AAM components. It seems that 
our general CFN approach has reached its full potential, given the provided information. In other words, from the 

Figure 5.  Performance comparison of traditional and cascading forward neural network model (CFN) corrected atmospheric angular momentum (AAM) motion term 
forecasts. Root mean square errors (RMSE) between forecast and analysis over the 488 time series which were refrained from the CFN training. Left: χ1. Right: χ2. 
Traditional uncorrected forecast (black), a serial CFN that separately processes χ1 and χ2 (red), a parallel CFN that simultaneously processes χ1 and χ2 (blue), and a 
parallel CFN that has analysis information (preceding the time of forecast) as additional input (green, cf. Figure 4).



Earth and Space Science

DILL ET AL.

10.1029/2021EA002070

8 of 10

perspective of the NN all remaining errors appear to be undecidable at fore-
cast time. Undecidable in that sense that the error's governing mechanisms 
are random and completely external, i.e., no further robust hints about the 
errors can be found in the input data provided to the NN.

As a final note, the described results do not depend strongly on the choice 
of NN, the hyperparameters, and the amount of training. As mentioned in 
Section 3, several NN classes were tested. All tried configurations were able 
to considerably reduce the RMSE of the forecasts. Likewise, all finally re-
maining RMSE showed the same characteristics as far as trend, modulation, 
and bias are concerned. The RMSE values, however, can differ slightly de-
pending on the NN of choice and, as usual with ML, among several instances 
of the same network.

The purpose of an improved AAM motion term forecast is to enhance EOP 
predictions based on AAM forecasts. On time scales of a few days atmos-
pheric wind and pressure variations are mainly responsible for observed 
changes in UT1-UTC, respectively, the Earth's rotational speed. In contrast, 
polar motion is excited equally by atmospheric, oceanic, and hydrological 
mass redistributions. The AAM motion forecast itself has only a minor in-
fluence on polar motion predictions. We therefore expect only a small but 

not negligible improvement for polar motion predictions. Without changing the EOP prediction system, three 
hindcast experiments with 1,784 daily 90-day EOP predictions for the years 2016–2020 were calculated using 
ESMGFZ's EOP prediction algorithm (Dobslaw & Dill, 2017). The reference experiment was calculated with the 
original AAM forecasts. The second experiment uses the NN corrected AAM motion term forecasts. The third 
experiment uses 6-day subsets of the AAM analysis data to simulate perfect forecasts providing a target reference 
for the best possible EOP prediction that might be achieved without any further change (parameters for harmon-
ic analysis and autoregression model) of the EOP prediction system. Table 1 summarizes the RMS prediction 
error for the three experiments for forecast horizons of 5, 10, 40, and 90 days. As expected, the polar motion 
x-component shows a small improvement (4%–5%). However, the y-component shows almost no improvement. 
Interestingly, the y-component does also not benefit from a perfect forecast, which might be originated in the EOP 
prediction system that is tuned to the original forecasts and its included errors. Our EOP prediction system com-
bines an extrapolation of deterministic signals determined by harmonic analysis and an autoregression model for 
the residual stochastic variations. Several parameters such as window length for the determination of offset and 
trend or the length of the autoregression model are tuned to the existing erroneous EAM forecasts. This way, the 
EOP prediction approach compensates systematic EAM forecast errors. Introducing now improved AAM motion 
term forecasts might lead to an overcompensation.

For a more extensive exploitation of the corrected AAM motion term forecasts, the harmonic analysis and au-
toregression model of the ESMGFZ's EOP prediction system have to be adapted to the new characteristics of the 
AAM motion terms.

5.  Summary
The Earth System Modelling group at the Helmholtz Centre Potsdam GFZ, German Research Centre for Ge-
osciences (ESMGFZ) routinely provides effective angular momentum function (EAM) forecasts for the next 
6 days, which are based on atmospheric forecast data from the European Centre for Medium-Range Weather 
Forecasts (ECMWF). EAM forecasts are naturally accompanied with forecast errors that typically grow with 
increasing forecast length. In contrast to this behavior, however, we have detected large quasi-periodic deviations 
between atmospheric angular momentum (AAM) χ1 and χ2 motion term forecasts and their subsequently available 
analysis. These supposedly artificial forecast errors appear to be excited irregularly with arbitrary amplitude and 
phase during the first forecast epochs and fade with increasing prediction length. While we could not conclusively 
isolate the cause of these artificial forecast errors, we suspect them to originate from artificial signatures in EC-
MWF's wind fields. Nevertheless, we expected a significant improvement of the forecast quality during the first 
3–4 days after separation and removal of the artificial errors.

Polar motion forecast RMS 
(mas) 5 days 10 days 40 days 90 days

No correction X pole 0.93 1.92 8.65 15.76

Y pole 0.64 1.30 5.14 10.85

Pole 1.13 2.32 10.06 19.14

AAM corrected X pole 0.89 1.83 8.64 15.78

Y pole 0.67 1.33 5.09 10.77

Pole 1.12 2.26 10.03 19.11

Perfect forecast X pole 0.88 1.68 8.56 15.80

Y pole 0.66 1.28 5.10 10.74

Pole 1.10 2.11 9.97 19.10

Note. Forecast horizon 5, 10, 40, and 90 days into the future.

Table 1 
Polar Motion Forecast Error (RMS) in mas Using Original AAM Forecasts 
(No Correction), Corrected AAM Motion Terms Using NN (AAM Corrected), 
and Perfect Forecasts Reflecting the AAM Analysis Data
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The separation and removal of unwanted noise, or artificial errors, in otherwise meaningful data are a classical 
task for machine learning (ML). In this paper, we introduced an ML correction scheme for the AAM χ1 and χ2 
motion term forecasts that dynamically derives a 6-day forecast correction for given 6-day AAM forecasts. After 
testing different neural network classes, a cascading forward neural network was chosen to isolate forecast errors 
from a 6-year long time period (2016–2021) in a supervised training environment.

Comparing both ML-corrected and uncorrected AAM χ1 (χ2) forecasts with the subsequently available analysis 
has revealed a relative improvement of 31% (32%) for the entire 6-day forecast. During the first three forecast 
days, where the largest artificial errors were detected, a relative improvement of 48% (45%) could be achieved. 
Thus, we conclude that the neural network is able to successfully identify and remove the erroneous quasi-pe-
riodic forecast errors. Comparing the ML-corrected forecasts with their analysis, shows, as we would expect, a 
remaining forecast error trend that is increasing linearly with forecast length. On top, however, the error trend 
contains a remaining offset and an additional periodic modulation with an exact 24 hr (respectively, 12 hr in the 
RMSE) period. These remaining signatures could not be entirely removed by the ML correction.

A more rigorous solution to get rid off systematic errors in the AAM motion term forecast could be the appli-
cation of a likewise ML correction scheme in the underlying atmospheric wind field forecast rather than in the 
derived AAM terms.

However, even in its present form, the ML correction is already skillful enough to be included into the operation-
al forecast system at GFZ, allowing us to provide significantly improved AAM forecasts to the community. In 
return, we hope that further analysis of our ML-based corrections and the described residual forecast errors can 
also feedback toward understanding and eliminating the causes of these artificial errors in the used atmospheric 
reanalysis products.
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