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Abstract: We propose using coupled deep learning based super-resolution restoration (SRR) and
single-image digital terrain model (DTM) estimation (SDE) methods to produce subpixel-scale
topography from single-view ESA Trace Gas Orbiter Colour and Stereo Surface Imaging System
(CaSSIS) and NASA Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment
(HiRISE) images. We present qualitative and quantitative assessments of the resultant 2 m/pixel
CaSSIS SRR DTM mosaic over the ESA and Roscosmos Rosalind Franklin ExoMars rover’s (RFEXM22)
planned landing site at Oxia Planum. Quantitative evaluation shows SRR improves the effective
resolution of the resultant CaSSIS DTM by a factor of 4 or more, while achieving a fairly good height
accuracy measured by root mean squared error (1.876 m) and structural similarity (0.607), compared
to the ultra-high-resolution HiRISE SRR DTMs at 12.5 cm/pixel. We make available, along with
this paper, the resultant CaSSIS SRR image and SRR DTM mosaics, as well as HiRISE full-strip SRR
images and SRR DTMs, to support landing site characterisation and future rover engineering for
the RFEXM22.

Keywords: Mars; 3D mapping; large-area mapping; digital terrain model; deep learning; super-
resolution restoration; single image DTM estimation; MADNet; TGO; CaSSIS; HiRISE; HRSC; CTX;
Oxia Planum; ExoMars; Rosalind Franklin rover; landing site; planetary mapping; 3D reconstruction

1. Introduction

Mars is the most Earth-like planet within our solar system and is probably the Earth’s
closest habitable neighbour. In order to develop an in-depth understanding of our neigh-
bouring planet for future human exploration, we need to better understand the different
Martian surface geologies, processes, features and phenomena. Critical to this endeavour
has been the role of remotely sensed images since the first successful flyby mission in 1965
by Mariner IV [1], and over the last 56 years via multiple orbital (e.g., [2–6]) and robotic
(e.g., [7–10]) missions. Amongst all the data collected and derived through these missions,
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high-resolution digital terrain models (DTMs) and their corresponding terrain-corrected
orthorectified images (ORIs) are probably two of the most important resources for studying
the Martian surface as well as its interaction with the Martian atmosphere.

Apart from the globally available lower resolution (~463 m/pixel) Mars Orbiter Laser
Altimeter (MOLA) DTM [11,12], higher resolution Mars DTMs are typically produced from
the 12.5–50 m/pixel Mars Express High Resolution Stereo Camera (HRSC) images [13], the
6 m/pixel Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images [14], the
~4.6 m/pixel (4 m/pixel nominal resolution) ExoMars Trace Gas Orbiter (TGO) Colour and
Stereo Surface Imaging System (CaSSIS) images [15,16], and the ~30 cm/pixel (25 cm/pixel
nominal resolution) MRO High Resolution Imaging Science Experiment (HiRISE) im-
ages [17]. The DTM products derived from these imaging sources often have different effec-
tive resolutions and spatial coverage, depending on the properties of the input images and
the DTM retrieval methods, which include traditional photogrammetric methods [18–21],
photoclinometry methods [22–25], and deep learning-based methods [26–29].

It has been a common understanding that DTMs derived from a particular imaging
dataset can only achieve a lower, or at the best, similar effective spatial resolution compared
to the input images, due to the various approximations and/or filtering processes intro-
duced by the photogrammetric or photoclinometric pipelines. With recent successes in deep
learning techniques, it has now become more practical and effective to improve the effective
resolution of an image using super-resolution restoration (SRR) networks [30], retrieving
pixel-scale topography using single-image DTM estimation (SDE) networks [27,29], and
eventually, combining the two techniques to potentially produce subpixel-scale topography
from only a single-view input image.

SRR refers to the process of improving the spatial resolution and retrieving high-
frequency details from a given lower-resolution image by combining subpixel or multi-
angle [31–33] information contained in multiple lower-resolution inputs, or through infer-
ence of the best possible higher-resolution solution using deep learning techniques [30,34–36].
In particular, the deep learning-based SRR methods, either using residual networks [37–39],
recursive networks [40,41], attention-based networks [42,43], and/or using generative
adversarial networks (GANs) [44–46], have become more and more popular over the last
decade, not only in the field of picture/photo enhancement, but also in the field of Earth
observation for improving the quality and resolution of satellite imagery [34–36].

In parallel, SDE refers to the process of deriving heights or depths from a given single-
view image, using traditional “shape from shading” (photoclinometry) techniques [22–24,47,48],
or learning the “height/depth cues” from a training dataset using deep learning techniques.
Such deep learning-based SDE methods, using residual networks [49–51], conditional
random fields [52–55], attention-based networks [56,57], GANs [58,59], and U-nets [60,61],
have been fairly successful in recent years, not only in the field of indoor/outdoor scene
reconstruction but also in the field of remote sensing for topographic retrieval using
planetary orbital images [26–29].

In this paper, we propose combining the use of SRR and SDE to boost the effective reso-
lution of optical single-image-based DTMs to subpixel-scale. The in-house implementations
of the MARSGAN (multi-scale adaptive-weighted residual super-resolution generative ad-
versarial network) SRR system [30,35] and the MADNet (multi-scale generative adversarial
U-net based single-image DTM estimation) SDE system [27,29] are employed for this study.
Our study site is within the 3-sigma ellipses of the Rosalind Franklin ExoMars rover’s
planned landing site (centred near 18.275◦N, 335.368◦E) at Oxia Planum [28,62,63]. We use
the 4 m/pixel TGO CaSSIS “PAN” band images [15] and the 25 cm/pixel MRO HiRISE
“RED” band images [17] as the input test datasets. We apply MARSGAN SRR to the original
CaSSIS and HiRISE images, and subsequently, we apply MADNet SDE to the resultant
1 m/pixel CaSSIS SRR images and the 6.25 cm/pixel HiRISE SRR images, to produce
CaSSIS SRR-DTMs at 2 m/pixel and HiRISE SRR-DTMs at 12.5 cm/pixel, respectively.

We show qualitative assessments for the resultant CaSSIS and HiRISE SRR-DTMs.
We also provide quantitative assessments for the CaSSIS SRR-DTMs using the DTM
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evaluation technique that is described in [64], using multiple smoothed versions of the
higher-resolution reference DTMs to compare with the lower-resolution target DTMs. The
1 m/pixel HiRISE Planetary Data System (PDS) DTMs (available through the University
of Arizona HiRISE archive at https://www.uahirise.org/dtm/(accessed on 22 December
2021)) and the 50 cm/pixel HiRISE MADNet DTMs [28] (available through the ESA Guest
Storage Facility (GSF) at https://www.cosmos.esa.int/web/psa/ucl-mssl_oxia-planum_
hrsc_ctx_hirise_madnet_1.0 (accessed on 22 December 2021)) are tested, but their effective
resolutions are inadequate (not high enough) to evaluate the CaSSIS SRR-DTMs as detailed
in Section 3. We use instead the 12.5 cm/pixel HiRISE SRR-DTMs to compare with the
CaSSIS SRR-DTMs, as well as performing “inverse” comparisons for the HiRISE PDS DTMs
and HiRISE MADNet DTMs with respect to the HiRISE SRR-DTMs to yield quantitative
analysis. Root mean squared error (RMSE) and the structural similarity index measurement
(SSIM) [65] are used here as the evaluation metrics.

We publish the final products as area mosaics of 2 m/pixel CaSSIS SRR-DTMs and
1 m/pixel CaSSIS greyscale and colour ORIs of the ExoMars Rosalind Franklin rover’s
landing site at Oxia Planum [62,63]. The NASA Ames Stereo Pipeline software [19] is used
to blend and produce a mosaic of the resultant single-strip CaSSIS SRR-DTMs. In-house
photometric correction and mosaicing software [21,66] is used to produce an image mosaic
from the resultant single-strip CaSSIS SRR images. In addition, we also show examples
of full-strip 6.25 cm/pixel HiRISE SRR ORIs and 12.5 cm/pixel HiRISE SRR MADNet
DTMs produced from the 25 cm/pixel HiRISE “RED” band PDS ORIs. The resultant
CaSSIS SRR and SRR-DTM products have been delivered to the ExoMars PanCam team
for multi-resolution and ultra-high-resolution 3D visualisation using PRo3D [67,68]. The
resultant CaSSIS, HiRISE SRR and DTM products are submitted as supporting material
and are being published through the ESA GSF archive [69,70] (see https://www.cosmos.
esa.int/web/psa/ucl-mssl_meta-gsf (accessed on 22 December 2021)).

The layout of the rest of the paper is as follows. In Section 2.1, we introduce the
main datasets from CaSSIS and HiRISE. In Section 2.2, we revisit the MARSGAN SRR and
MADNet SDE methods, and introduce the training details, followed by an explanation
of the processing and DTM evaluation methods in Section 2.3. In Section 3.1, we give
an overview of the CaSSIS SRR and SDE results, followed by qualitative assessments of
the CaSSIS SRR and SDE results in Section 3.2, and qualitative assessments of the HiRISE
SRR and SDE results in Section 3.3. In Section 3.4, we show quantitative evaluation of the
CaSSIS and HiRISE DTM products. In Section 4, we discuss issues and uncertainties before
drawing conclusions in Section 5.

2. Materials and Methods
2.1. Datasets

TGO CaSSIS is a moderately high-resolution, multispectral (from ~500 nm to ~950 nm
for visible and near-infrared (NIR)), push-frame (an intermediate between a line scan
camera and a framing camera) stereo imager, with the goal of extending the coverage of
the MRO HiRISE camera and to produce moderately high-resolution DTMs of the Martian
surface [15]. CaSSIS provides colour images consisting of the “BLU” band (centred at
499.9 nm for blue-green), the “PAN” band (centred at 675.0 nm for orange-red), the “RED”
band (centred at 836.2 nm for NIR), and the “NIR” band (centred at 936.7 nm for NIR) [16].
Due to the limitation on the data transfer time, CaSSIS generally collects colour images
from three out of the four bands at lower spacecraft altitudes (where ground velocity is
higher), and all four bands only at higher altitudes (both with width reduction for some
of the colour bands). CaSSIS images are typically sampled at 4 m/pixel nominal spatial
resolution (~4.6 m/pixel effective spatial resolution) with a swath width of about 9.5 km
and a swath length of about 30–40 km. Due to the non-sun-synchronous orbit and its 74◦

inclination angle, CaSSIS is able to image sites at different local times of different seasons,
making CaSSIS images an ideal dataset for studying the Martian surface changes. At the
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time of the writing of this paper, CaSSIS images covered 4.3% of the Martian surface (by 28
August 2021).

In contrast, MRO HiRISE is designed to image very fine-scale surface features of Mars
at 25 cm/pixel nominal spatial resolution (~30 cm/pixel effective spatial resolution), with
a smaller swath width of about 6 km (for panchromatic) and 1.2 km (for colour), but a
larger swath length of up to 60 km [17]. HiRISE collects images in three colour bands,
consisting of a red band (centred at 694 nm), a blue-green band (centred at 536 nm), and an
NIR band (centred at 874 nm), with the blue-green and NIR bands having much narrower
swath widths compared to the red band images. Currently, HiRISE images (from 2007
to 2 September 2021) cover a smaller area (~3.4%) of the Martian surface in comparison
to the coverage of CaSSIS (~4.3%). Figure 1 shows the footprints of the HiRISE (blue,
foreground) and CaSSIS (green, background) images (in Mollweide projection–see https://
pro.arcgis.com/en/pro-app/latest/help/mapping/properties/mollweide.htm (accessed
on 22 December 2021)), up to 2 September 2021 and 28 August 2021, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 24 
 

 

colour bands). CaSSIS images are typically sampled at 4 m/pixel nominal spatial resolu-
tion (~4.6 m/pixel effective spatial resolution) with a swath width of about 9.5 km and a 
swath length of about 30–40 km. Due to the non-sun-synchronous orbit and its 74° incli-
nation angle, CaSSIS is able to image sites at different local times of different seasons, 
making CaSSIS images an ideal dataset for studying the Martian surface changes. At the 
time of the writing of this paper, CaSSIS images covered 4.3% of the Martian surface (by 
28 August 2021). 

In contrast, MRO HiRISE is designed to image very fine-scale surface features of Mars 
at 25 cm/pixel nominal spatial resolution (~30 cm/pixel effective spatial resolution), with 
a smaller swath width of about 6 km (for panchromatic) and 1.2 km (for colour), but a 
larger swath length of up to 60 km [17]. HiRISE collects images in three colour bands, 
consisting of a red band (centred at 694 nm), a blue-green band (centred at 536 nm), and 
an NIR band (centred at 874 nm), with the blue-green and NIR bands having much nar-
rower swath widths compared to the red band images. Currently, HiRISE images (from 
2007 to 2 September 2021) cover a smaller area (~3.4%) of the Martian surface in compari-
son to the coverage of CaSSIS (~4.3%). Figure 1 shows the footprints of the HiRISE (blue, 
foreground) and CaSSIS (green, background) images (in Mollweide projection–see 
https://pro.arcgis.com/en/pro-app/latest/help/mapping/properties/mollweide.htm (ac-
cessed on 22 December 2021)), up to 2 September 2021 and 28 August 2021, respectively. 

 
Figure 1. Global coverage of CaSSIS in green (up to 28 August 2021) and HiRISE in blue (up to 2 
September 2021) images of Mars (map projection: Mollweide). 

In this work, we experiment with the TGO CaSSIS PAN band images over the ESA 
and Roscosmos Rosalind Franklin ExoMars rover’s landing site at Oxia Planum [28,62,63]. 
Up until 28 August 2021, CaSSIS has 100% coverage for the 1-sigma landing ellipses, about 
92% coverage for the 3-sigma landing ellipses, and about 67% for the ExoMars team’s ge-
ological characterisation area [71] of the landing site. Table 1 lists the test CaSSIS images 
(selected for non-repeat coverage), available overlapping HiRISE PDS DTMs and ORIs 
that are used later on for comparison/evaluation and to produce the HiRISE SRR MADNet 
DTMs. A previously produced 50 cm/pixel HiRISE MADNet DTM mosaic consisting of 
44 HiRISE single-strip DTMs (available through ESA GSF; link is provided in Section 1) 
[28], which has a 100% coverage of the 3-sigma landing ellipses, is also used for intercom-
parisons. It should be noted that both of the HiRISE PDS DTMs and the HiRISE MADNet 

Figure 1. Global coverage of CaSSIS in green (up to 28 August 2021) and HiRISE in blue (up to 2
September 2021) images of Mars (map projection: Mollweide).

In this work, we experiment with the TGO CaSSIS PAN band images over the ESA and
Roscosmos Rosalind Franklin ExoMars rover’s landing site at Oxia Planum [28,62,63]. Up
until 28 August 2021, CaSSIS has 100% coverage for the 1-sigma landing ellipses, about 92%
coverage for the 3-sigma landing ellipses, and about 67% for the ExoMars team’s geological
characterisation area [71] of the landing site. Table 1 lists the test CaSSIS images (selected
for non-repeat coverage), available overlapping HiRISE PDS DTMs and ORIs that are used
later on for comparison/evaluation and to produce the HiRISE SRR MADNet DTMs. A
previously produced 50 cm/pixel HiRISE MADNet DTM mosaic consisting of 44 HiRISE
single-strip DTMs (available through ESA GSF; link is provided in Section 1) [28], which
has a 100% coverage of the 3-sigma landing ellipses, is also used for intercomparisons.
It should be noted that both of the HiRISE PDS DTMs and the HiRISE MADNet DTM
mosaic were previously 3D co-aligned with respect to the cascaded 12 m/pixel CTX and
25 m/pixel HRSC MADNet DTM mosaics [28] that are both available through the same
ESA link, which themselves are co-aligned with the United States Geological Survey (USGS)
MOLA areoid DTM v.2 (available at https://astrogeology.usgs.gov/search/details/Mars/
GlobalSurveyor/MOLA/Mars_MGS_MOLA_DEM_mosaic_global_463m/cub (accessed
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on 22 December 2021)). Figure 2 shows an overview map of the test CaSSIS images (co-
registered with the CTX and HRSC ORIs [28]) superimposed on the baseline referencing
CTX MADNet DTM mosaic [28].

Table 1. Lists of the input CaSSIS images (in the order of the image co-registration process–reverse
order of the image and DTM mosaicing process), validation HiRISE PDS DTMs, and the correspond-
ing HiRISE PDS ORIs, over the 3-sigma ellipses of the ExoMars Rosalind Franklin rover’s landing
site at Oxia Planum.

Input CaSSIS Image ID Overlapping HiRISE PDS DTM ID HiRISE PDS ORI ID

MY35_007250_019_0 - -

MY35_007623_019_0 - -

MY35_008742_019_0 (cropped) - -

MY34_003806_019_2 DTEEC_039299_1985_047501_1985_L01 ESP_039299_1985_RED_A_01_ORTHO

MY34_004925_019_2 DTEEC_036925_1985_037558_1985_L01 ESP_036925_1985_RED_A_01_ORTHO

MY35_009481_165_0 (cropped) - -

MY35_013584_163_0 (cropped) DTEEC_042134_1985_053962_1985_L01 ESP_042134_1985_RED_A_01_ORTHO

MY34_005664_163_2 - -

MY34_005012_018_2 DTEEC_037070_1985_037136_1985_L01 ESP_037070_1985_RED_A_01_ORTHO
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Figure 2. An overview map of the 9 test CaSSIS images (co-registered with the CTX and HRSC
ORIs [28]), superimposed on the CTX MADNet DTM mosaic (baseline reference), over the Exo-
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Planum [28,62,63] (centred at 18.239◦N, 24.368◦W; map projection: Mars Equirectangular).
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2.2. Overview of MARSGAN SRR and MADNet SDE

MARSGAN [30] and MADNet [29] are both based on the relativistic GAN frame-
work [72,73] that involves training of a generator network and a relativistic discriminator
network in parallel. For MARSGAN SRR, the generator network is trained to produce
potential SRR estimations, whilst the discriminator network is trained in parallel (and
updated in an alternating manner with the generator network) to estimate the probabil-
ity of the given training higher-resolution images being relatively more realistic than the
generated SRR images on average (within a small batch), whereas for MADNet SDE, the
generator network is trained to produce per-pixel relative heights, and the discriminator
network is trained to distinguish the predicted heights from the ground-truth heights.

For the MARSGAN generator network, a feed-forward residual convolutional neural
network architecture is employed, consisting of twenty-three adaptive weighted residual-
in-residual dense blocks, followed by an adaptive weighted multi-scale reconstruction
block [30]. Each of the adaptive weighted residual-in-residual dense blocks contains
eleven independent weights, three dense convolution blocks [74], and additive noise
inputs on top of the residual-in-residual structure. For the MADNet generator network, a
fully convolutional U-net [75] architecture is employed, consisting of four stacks of dense
convolution blocks as the encoder and five stacks of up-projection blocks [51] as the decoder.
MARSGAN and MADNet use a similar discriminator network architecture as detailed
in [29,30,44]. Simplified network architectures of the MARSGAN SRR and MADNet SDE
networks that are used in this work are shown in Figure 3.
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For training, MARSGAN uses a weighted sum of the mean absolute error and mean
squared error (MSE) based content loss, lower-level and higher-level VGG (named after
the Visual Geometry Group at the University of Oxford) feature [76] based perceptual loss,
and the relativistic adversarial [73] loss. The total loss function of MARSGAN ensures
the network is trained towards a “balanced” SRR solution combining perceptual-driven
enhancement and pixelwise difference-based enhancement. In [30], the MARSGAN model
was trained with a collection of down-sampled (1 m/pixel) HiRISE PDS ORIs (lower-
resolution training samples) and full-resolution (25 cm/pixel) HiRISE PDS ORIs (higher-
resolution training samples). In this work, we retrain the MARSGAN model based on
the initial study of the “real-world” image degradation that is described in [77], and our
previous study of SRR of Earth observation imagery [35], wherein we demonstrated the
positive impact of using a post-processed training dataset to improve the SRR quality and
to minimise synthetic artefacts.

The “post-processing” of the training dataset that is employed in this work contains
three aspects. Firstly, the original HiRISE training samples (lower-resolution and higher-
resolution; from [30]) are manually screened and lower-quality samples are removed from
the training dataset. Secondly, we down-sample the higher-resolution HiRISE training
samples from 25 cm/pixel into 50 cm/pixel to reduce the native noise (e.g., stripes or fixed
pattern noise) that is commonly found when zooming in to 100% display of the 25 cm/pixel
HiRISE samples, and subsequently, the lower-resolution HiRISE training samples are down-
sampled from 1 m/pixel into 2 m/pixel to form the lower-resolution counterpart of the
training dataset. Thirdly, a sequence of weighted median, bilateral filtering, and Gaussian
blurring is applied to the lower-resolution HiRISE training samples to simulate the blurring
effect of lower-resolution images, instead of using only the bicubic down-sampling process
on the higher-resolution counterpart, as this was demonstrated as being insufficient and
inappropriate to model the degradations of orbital and real-world images [35,77].

On the other hand, MADNet uses a weighted sum of the Berhu loss [78], the im-
age gradient loss, and the relativistic averaged adversarial loss. The total loss function
of MADNet ensures the network learns optimal DTM estimation combining pixelwise-
difference guided prediction and structural similarity penalised retrieval. The MADNet
model [29] was trained with a selected collection of down-sampled (at 2 m/pixel and
4 m/pixel) HiRISE PDS ORIs and DTMs and down-sampled (36 m/pixel) CTX iMars
ORIs and DTMs [20,29]. In this work, we use the pretrained MADNet model [29] for
relative DTM inference but we do not use the multi-scale reconstruction procedure that
is employed in [29]. This is because the resolution difference between the target CaSSIS
image (4 m/pixel) and the reference CTX MADNet DTM (12 m/pixel), as well as the
resolution difference between the target CaSSIS SRR image (1 m/pixel) and the reference
CaSSIS MADNet DTM (4 m/pixel) that are used in this work, are much smaller than the
resolution difference between the target HiRISE image (25 cm/pixel) and the reference
CTX MADNet DTM (12 m/pixel) that are used in the previous work [28,29]. We set the
final CaSSIS MADNet DTM products at 8 m/pixel and the CaSSIS SRR MADNet DTM
products at 2 m/pixel, i.e., half the resolution of the input image, to minimise the resolution
gap between the output and the reference DTMs, whilst on the other hand, without the
multi-scale reconstruction process, we obtain a better completeness of the CaSSIS SRR
MADNet DTM coverage (about 88% rather than 76% due to using a fixed tile size on much
smaller-sized down-sampled images) of the 3-sigma ellipses of the ExoMars landing site,
and also, within a short processing time (less than 22 h in total).

2.3. DTM Evaluation

We perform qualitative and quantitative assessments for the resultant CaSSIS SRR-
DTMs, but only qualitative evaluation for the resultant HiRISE SRR-DTMs. For qualitative
evaluation, we perform visual inspection of the resultant target DTMs in comparison with
other reference DTMs from different data sources at different resolutions that are co-aligned
with the same baseline DTM, i.e., the USGS MOLA areoid DTM. Comparison of shaded
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relief images computed from the target and reference DTMs and their corresponding ORIs
is performed to obtain qualitative insights on the level of details and overall quality of
the target DTMs, to assess the smallest areal features that can be observed from both the
target DTMs and the reference ORIs, and to inspect if there are any systematic or local
errors/artefacts from the target DTMs.

On the other hand, quantitative evaluation of high-resolution Mars topographic prod-
ucts (≤10 m/pixel) is always a difficult task as there are currently no high-resolution,
high-accuracy and large spatial coverage topographic data that can be considered as
“ground-truth” available for Mars. A recent Mars DTM evaluation study [64] examined
the relative effective resolution and accuracy of target DTMs (at lower nominal resolutions,
i.e., 20–50 m/pixel from CTX and HRSC) with respect to a set of reference DTMs (at higher
nominal resolution, i.e., ~1 m/pixel from HiRISE) that are considered as having much
higher effective resolution and vertical accuracy (20 times or more) than the target DTMs.
This assumption is made based on the conjecture that even though the differences between
the target and reference DTMs arise from errors of both datasets, the errors of the reference
dataset can be considered as negligible due to the reference DTMs having much higher
resolution (as much smaller features can be resolved) and thus much higher accuracy than
the target DTM. The authors in [64] suggest that even a smaller ratio would likely suffice,
the “ideal” reference DTMs should have 20 times or higher resolution and vertical precision
than the target DTMs.

As described in [64], a sequence of boxcar low-pass filters with increasing kernel
sizes (3 × 3, 5 × 5, 7 × 7, . . . ) are used to smooth the reference DTM. Subsequently, the
smoothed versions of the reference DTM are compared with the target DTM one by one,
and from which, we can expect that the RMSE differences will first decrease as features
that the target DTM fails to resolve are removed, then increase as larger filters begin
to remove features that are present in the target DTM. Eventually, the relative effective
resolution can be defined quantitatively in terms of the smoothing kernel size that yields
the minimum RMSE, and this minimum RMSE is hypothesized to characterise the accuracy
of the target DTM.

In this work, we follow the same method to quantitatively evaluate the resultant
8 m/pixel CaSSIS DTMs and 2 m/pixel CaSSIS SRR-DTMs (target DTMs) using multiple
smoothed versions of the 12.5 cm/pixel HiRISE SRR-DTMs (reference DTMs). We add the
SSIM [65] scoring that measures the differences between structural features as an additional
evaluation metric to complement and support the pixelwise difference measurements
from RMSE. The overall evaluation workflow (as shown in Figure 4) consists of four steps
(similar to [64]), including (a) map reprojection, down-sampling, and 3D co-alignment of
the reference DTMs to match with the target DTMs; (b) applying odd-sized boxcar filters
(i.e., 3 × 3, 5 × 5, 7 × 7, . . . ) to smooth out the details of the reference DTMs; (c) masking
out no-data and non-overlapping areas; and (d) calculating RMSEs and SSIMs for all valid
overlapping DTM areas.
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3. Results
3.1. Overview of the CaSSIS SRR and SDE Results and Product Access Information

In this work, we have produced nine single-strip CaSSIS PAN band (see Table 1 for
image IDs) 1 m/pixel SRR images and 2 m/pixel SRR-DTMs, a brightness and contrast
corrected 1 m/pixel CaSSIS SRR greyscale image mosaic, a 1 m/pixel CaSSIS SRR colour
image mosaic (colourised using HRSC colour due to the CaSSIS colour bands being much
narrower than the PAN band), an 8 m/pixel CaSSIS DTM mosaic, and a 2 m/pixel CaSSIS
SRR-DTM mosaic, over the 3-sigma ellipses of the ExoMars Rosalind Franklin rover’s
planned landing site at Oxia Planum. Figure 5 shows overview maps of the original
4 m/pixel CaSSIS NPB (NIR-PAN-BLU) band colour images, the resultant 1 m/pixel
CaSSIS PAN band SRR single-strip images, 1 m/pixel CaSSIS SRR image mosaic, 1 m/pixel
CaSSIS SRR image mosaic with HRSC colour (through intensity-hue-saturation (I-H-S)
pan-sharpening), 8 m/pixel CaSSIS MADNet DTM mosaic and the shaded relief image
(330◦ azimuth, 30◦ altitude, 2× vertical exaggeration), and the 2 m/pixel CaSSIS SRR
MADNet DTM mosaic and the shaded relief image (330◦ azimuth, 30◦ altitude, 2× vertical
exaggeration). It should be noted that all CaSSIS SRR, MADNet DTM, and SRR MADNet
DTM results are produced using the 4 m/pixel CaSSIS PAN band images, the 4 m/pixel
CaSSIS NPB colour images that are shown in Figure 5 are for information only to show
their narrower coverage and the reason why they are not used in this work (gaps between
the adjacent colour images). It should also be noted that the gaps in the 8 m/pixel CaSSIS
MADNet DTM mosaic are due to using a fixed tile size (512 × 512 pixels) without any
no-data value at the edges of the two barely overlapped CaSSIS PAN band images. The
gaps are eliminated in the 2 m/pixel CaSSIS SRR MADNet DTM mosaic using the much
larger 1 m/pixel CaSSIS SRR images.

The above results (SRR image and SRR-DTM) are at a very high resolution with
uniform quality and consistency and are being published through the ESA GSF. They
are spatially co-registered and vertically co-aligned with respect to the cascaded HiRISE,
CTX, and HRSC ORIs and DTM mosaics that are described in [28], which themselves
are accurately co-registered with the ESA/DLR/FUB HRSC MC-11W level 5 ORI mosaic
(available at http://hrscteam.dlr.de/HMC30 (accessed on 22 December 2021)), and verti-
cally co-aligned with the aforementioned USGS MOLA areoid DTM. We use identical map
projection system (Equidistant Cylindrical/Equirectangular) and map projection param-
eters as used in the ESA/DLR/FUB HRSC MC-11W level 5 ORI and DTM products. We
strongly recommend that readers download the resultant products from ESA GSF and look
at fine-scale details (they are also provided as supporting material for review purpose),

http://hrscteam.dlr.de/HMC30
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since only very small exemplar areas (i.e., “Zoom-in Area-1” and “Zoom-in Area-2” in
Figure 6) of the results are shown here in Sections 3.2 and 3.3.
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3.2. Qualitative Assessment of the CaSSIS SRR ORI and SRR MADNet DTM

In this work, we perform qualitative assessment (visual inspections) for both the
resultant 1 m/pixel CaSSIS SRR images and 2 m/pixel CaSSIS SRR MADNet DTMs. The
CaSSIS SRR results are visually inspected both at a large-scale and at different small-
scales with multiple random zoom-in areas, and are compared with the original 4 m/pixel
input CaSSIS PAN band images and the 25 cm/pixel HiRISE images, wherever they
overlap. We have the following observations: (a) the CaSSIS SRR images have no systematic
nor any patterned artefacts; (b) surface features on the CaSSIS SRR images are visually
much clearer and sharper without changing the brightness or contrast of the original
CaSSIS images; (c) there are no overshoot or undershoot issues at high-contrast edges;
(d) image noise from the original CaSSIS images has been significantly reduced; (e) surface
features/textures on the CaSSIS SRR images are much more comparable with respect
to the surface features/textures on the HiRISE images, compared to the original CaSSIS
images, although the HiRISE images still show much more details compared to the CaSSIS
SRR images; and (f) some features have a different appearance between the CaSSIS SRR
images and HiRISE images due to illumination and contrast differences, as they look similar
to the same features shown in the CaSSIS SRR images when comparing to the original
CaSSIS images.
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The CaSSIS SRR MADNet DTM is also visually inspected at a large-scale and at
different small-scales with multiple random zoom-in areas and is compared with the
8 m/pixel CaSSIS MADNet DTM mosaic, the 1 m/pixel HiRISE PDS DTMs, the 50 cm/pixel
HiRISE MADNet DTM mosaic, as well as the CaSSIS and HiRISE images. Both colourised
DTMs and shaded relief images are used in our visual inspection, and subsequently, we
have the following observations: (a) there are significantly more improvements (higher
levels of detail) between the CaSSIS MADNet DTM and the CaSSIS SRR MADNet DTM,
compared to the improvement between the CaSSIS images and CaSSIS SRR images; (b) there
are no observable systematic or local DTM artefacts/errors when/if comparing to the
CaSSIS and SRR images; (c) there are quite a great deal of small topographic features that
can now be observed in the CaSSIS SRR DTM and can also be identified (with similar
appearance) from the HiRISE DTMs, however, there are also small topographic features
that are shown on the CaSSIS SRR MADNet DTM, which have slightly different appearance
in the HiRISE DTMs; (d) some small topographic features that are resolved in the CaSSIS
SRR MADNet DTM appear to be realistic when comparing to the CaSSIS and CaSSIS SRR
images, but less realistic when compared to the HiRISE images; (e) ignoring the apparent
artefacts from the HiRISE PDS DTMs, the CaSSIS SRR MADNet DTM appears to have
similar features present but at a much higher effective resolution and details comparable
to the HiRISE PDS DTMs, but with lower effective resolution and details comparable to
the HiRISE MADNet DTM; and (f) the high-frequency noise from the original CaSSIS
images does not results in any DTM artefact, but it does seem to have a negative impact
on the effective resolution and resolvable details of the resultant CaSSIS MADNet DTM,
which consequently highlights the better effective resolution and resolved topographic
details from the CaSSIS SRR MADNet DTM benefiting from the CaSSIS SRR images being
less noisy.

Figure 7 shows a small exemplar area (refer to “Zoom-in Area-1” in Figure 6 for its
location) of the CaSSIS SRR MADNet DTM mosaic that overlaps with the HiRISE PDS DTM



Remote Sens. 2022, 14, 257 12 of 25

(DTEEC_039299_1985_047501_1985_L01), demonstrating the different level of details of the
25 cm/pixel HiRISE PDS ORI (ESP_039299_1985_RED_A_01_ORTHO), the 1 m/pixel CaS-
SIS SRR image, the 4 m/pixel original CaSSIS PAN band image (MY34_004925_019_2_PAN),
the shaded relief images of the 8 m/pixel CaSSIS MADNet DTM, 2 m/pixel CaSSIS SRR
MADNet DTM, 1 m/pixel HiRISE PDS DTM, and the 50 cm/pixel HiRISE MADNet DTM.
We can observe that using the proposed MARSGAN SRR and MADNet SDE processing,
the visual quality and details of the CaSSIS DTM has been significantly improved. The
resultant 2 m/pixel CaSSIS SRR-DTM is much superior to the 8 m/pixel CaSSIS DTM and
even has better visual quality and less noise in comparison with the 1 m/pixel HiRISE
PDS DTM, while the “new” topographic features have a reasonable visual correlation in
comparison with the 50 cm/pixel HiRISE MADNet DTM as well as the original HiRISE
and CaSSIS images.

3.3. Qualitative Assessments of the HiRISE SRR and SRR MADNet DTMs

In addition to the CaSSIS results, we also processed five single-strip 25 cm/pixel
HiRISE ORIs (see Table 1 for image IDs) into 6.25 cm/pixel HiRISE SRR images and
12.5 cm/pixel HiRISE SRR MADNet DTMs. Due to the large data volume, only two
resultant full-strip HiRISE SRR MADNet DTM (ESP_039299_1985–the one shown in the
examples and ESP_036925_1985) are currently available in the supporting material, more
HiRISE SRR MADNet DTM results will be published through the ESA GSF. Overall,
the improvement between the HiRISE and HiRISE SRR images, as well as improvement
between the HiRISE MADNet DTM and the HiRISE SRR MADNet DTM are both visually
obvious. The topographic features that are shown in the 12.5 cm/pixel HiRISE SRR
MADNet DTM visually co-align with the image features that are shown in the 25 cm/pixel
HiRISE and the 6.25 cm/pixel HiRISE SRR images.

Figure 8 shows a zoom-in view of a subarea (over the southern ridge of the larger
crater on the northeast area; refer to “Zoom-in Area-2” in Figure 6 for its location) of
the larger extent that is shown in Figure 7. We can observe that the peaks shown in
the 12.5 cm/pixel HiRISE SRR MADNet DTM are visually much sharper than the same
features that are shown in the 50 cm/pixel HiRISE MADNet DTM and 25 cm/pixel HiRISE
image. On the other hand, small surface details are revealed in the 6.25 cm/pixel HiRISE
SRR image, and their associated topography is revealed in the 12.5 cm/pixel HiRISE SRR
MADNet DTM. The proposed technique is observed to have a better positive impact on
improving the resolution and quality of the DTMs compared to improving the resolution
and quality of the images themselves. We cannot quantitatively determine the resolution
improvement and accuracy of the HiRISE SRR-DTM results as there are no higher spatial
resolution ground-truth topographic data available at this site. However, assuming the
same technique performs similarly to CaSSIS and to the HiRISE data, we can get some idea
on the resolution and accuracy through quantitative assessments of the CaSSIS SRR-DTM
results, which are described in the next section.
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Area-1” that is shown in Figure 7; location is shown in Figure 6) of the input 25 cm/pixel HiRISE
PDS ORI (ESP_039299_1985_RED_A_01_ORTHO), the resultant 6.25 cm/pixel HiRISE SRR im-
age, the shaded relief images (using similar illumination parameters as the HiRISE PDS ORI, i.e.,
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resultant 12.5 cm/pixel HiRISE SRR MADNet DTM (from top to bottom).
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3.4. Quantitative Assessment of the CaSSIS SRR MADNet DTM

As discussed in Section 2.3 and in the original cited work [64], the reference DTMs
are expected to have a much higher spatial resolution and accuracy than the target DTMs.
We have the options to use the 1 m/pixel HiRISE PDS DTMs, 50 cm/pixel HiRISE MAD-
Net DTM mosaic produced in [28], and the 12.5 cm/pixel HiRISE SRR MADNet DTMs
produced in this work, as the reference DTMs to evaluate the 8 m/pixel CaSSIS MADNet
DTM and 2 m/pixel CaSSIS SRR MADNet DTM. Given that the HiRISE PDS DTMs are
considered as the most “independent” source to this evaluation work, we initially tried
to use them to evaluate the resultant CaSSIS DTMs. However, we could not observe any
reasonable decrease/increase from the RMSE and SSIM measurements. It also did not work
even for evaluation of the 12 m/pixel CTX MADNet DTM mosaic that is produced and
published in [28].

We then tried to use the HiRISE PDS DTMs to evaluate two even lower resolution
DTMs, including the 18 m/pixel CTX CASP-GO (a photogrammetric DTM pipeline that is
described in [20]) DTMs that were published in [28] and the 25 m/pixel HRSC MADNet
DTM mosaic that was also published in [28], for which we do get reasonable RMSE and
SSIM curves, which also agree with our visual inspections of the multiple smoothed ver-
sions of the HiRISE PDS DTMs. An example of the RMSE and SSIM plots between the target
CTX CASP-GO DTM (J01_045167_1983_XN_18N024W-J03_045800_1983_XN_18N024W-
DTM) and the reference HiRISE PDS DTM (DTEEC_039299_1985_047501_1985_L01), as
well as an example of the RMSE and SSIM plots between the target HRSC MADNet DTM
mosaic and the same reference HiRISE PDS DTM, are shown in Figure 9.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 24 
 

 

(DTEEC_039299_1985_047501_1985_L01), the reference 50 cm/pixel HiRISE MADNet DTM, and the 
resultant 12.5 cm/pixel HiRISE SRR MADNet DTM (from top to bottom). 

We then tried to use the HiRISE PDS DTMs to evaluate two even lower resolution 
DTMs, including the 18 m/pixel CTX CASP-GO (a photogrammetric DTM pipeline that is 
described in [20]) DTMs that were published in [28] and the 25 m/pixel HRSC MADNet 
DTM mosaic that was also published in [28], for which we do get reasonable RMSE and 
SSIM curves, which also agree with our visual inspections of the multiple smoothed ver-
sions of the HiRISE PDS DTMs. An example of the RMSE and SSIM plots between the 
target CTX CASP-GO DTM (J01_045167_1983_XN_18N024W-
J03_045800_1983_XN_18N024W-DTM) and the reference HiRISE PDS DTM 
(DTEEC_039299_1985_047501_1985_L01), as well as an example of the RMSE and SSIM 
plots between the target HRSC MADNet DTM mosaic and the same reference HiRISE PDS 
DTM, are shown in Figure 9. 

 
Figure 9. Left: RMSE and SSIM plots of the target 18 m/pixel CASP-GO CTX DTM 
(J01_045167_1983_XN_18N024W-J03_045800_1983_XN_18N024W-DTM [28]) and the reference 1 
m/pixel HiRISE PDS DTM (DTEEC_039299_1985_047501_1985_L01); Right: RMSE and SSIM plots 
of the target 25 m/pixel HRSC MADNet DTM [28] and the reference 1 m/pixel HiRISE PDS DTM 
(DTEEC_039299_1985_047501_1985_L01). 

The RMSE curve (lower RMSE means better pixelwise similarity) nearly agrees with 
the SSIM curve (higher SSIM means better structural similarity) for the first case, with a 
21 × 21 boxcar filter width (in pixels) to best fit the reference HiRISE PDS DTM with the 
target CTX CASP-GO DTM, yielding a RMSE accuracy of 4.0339 m, whilst a 19 × 19 best 
fit boxcar filter yielding the highest SSIM score of 0.6753. For the second case, the RMSE 
curve fully agrees with the SSIM curve, with a 13 × 13 boxcar filter width best fitting the 
reference HiRISE PDS DTM with the target HRSC MADNet DTM, yielding an RMSE ac-
curacy of 5.5440 m and SSIM of 0.5429. The calculated “best fit” filter width agrees with 
our visual inspections of the target DTM and the multiple smoothed versions of the refer-
ence DTM. We also observe that the 25 m/pixel HRSC MADNet DTM has a better visual 
quality and resolution than the 18 m/pixel CASP-GO photogrammetric CTX DTM, which 
agrees with the quantitative evaluation. This is reasonable as MADNet will always pro-
duce DTMs with much higher effective resolution compared to photogrammetric meth-
ods [28,29]. 

The HiRISE PDS DTMs are successfully used to evaluate the 18 m/pixel CASP-GO 
CTX DTMs and 25 m/pixel HRSC MADNet DTM but cannot be used to evaluate the 12 
m/pixel CTX MADNet DTM, 8 m/pixel CaSSIS MADNet DTM, and the 2 m/pixel CaSSIS 
SRR MADNet DTM. This suggests that the CTX MADNet DTM, CaSSIS MADNet DTM, 
and CaSSIS SRR MADNet DTM have better effective resolutions than the CASP-GO CTX 
DTMs and HRSC MADNet DTM. The issue remains if we take the 50 cm/pixel HiRISE 
MADNet DTM as the reference DTM. We therefore believe that the differences of the 

Figure 9. Left: RMSE and SSIM plots of the target 18 m/pixel CASP-GO CTX DTM
(J01_045167_1983_XN_18N024W-J03_045800_1983_XN_18N024W-DTM [28]) and the reference
1 m/pixel HiRISE PDS DTM (DTEEC_039299_1985_047501_1985_L01); Right: RMSE and SSIM
plots of the target 25 m/pixel HRSC MADNet DTM [28] and the reference 1 m/pixel HiRISE PDS
DTM (DTEEC_039299_1985_047501_1985_L01).

The RMSE curve (lower RMSE means better pixelwise similarity) nearly agrees with
the SSIM curve (higher SSIM means better structural similarity) for the first case, with a
21 × 21 boxcar filter width (in pixels) to best fit the reference HiRISE PDS DTM with the
target CTX CASP-GO DTM, yielding a RMSE accuracy of 4.0339 m, whilst a 19 × 19 best fit
boxcar filter yielding the highest SSIM score of 0.6753. For the second case, the RMSE curve
fully agrees with the SSIM curve, with a 13 × 13 boxcar filter width best fitting the reference
HiRISE PDS DTM with the target HRSC MADNet DTM, yielding an RMSE accuracy of
5.5440 m and SSIM of 0.5429. The calculated “best fit” filter width agrees with our visual
inspections of the target DTM and the multiple smoothed versions of the reference DTM.
We also observe that the 25 m/pixel HRSC MADNet DTM has a better visual quality and
resolution than the 18 m/pixel CASP-GO photogrammetric CTX DTM, which agrees with
the quantitative evaluation. This is reasonable as MADNet will always produce DTMs with
much higher effective resolution compared to photogrammetric methods [28,29].
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The HiRISE PDS DTMs are successfully used to evaluate the 18 m/pixel CASP-GO
CTX DTMs and 25 m/pixel HRSC MADNet DTM but cannot be used to evaluate the
12 m/pixel CTX MADNet DTM, 8 m/pixel CaSSIS MADNet DTM, and the 2 m/pixel
CaSSIS SRR MADNet DTM. This suggests that the CTX MADNet DTM, CaSSIS MADNet
DTM, and CaSSIS SRR MADNet DTM have better effective resolutions than the CASP-
GO CTX DTMs and HRSC MADNet DTM. The issue remains if we take the 50 cm/pixel
HiRISE MADNet DTM as the reference DTM. We therefore believe that the differences of
the effective resolutions of the CTX MADNet DTM, CaSSIS MADNet DTM, and the CaSSIS
SRR MADNet DTM compared to the HiRISE PDS DTMs and HiRISE MADNet DTMs are
not large enough to allow the attempted evaluation.

For this reason, we have to use the resultant 12.5 cm/pixel HiRISE SRR MADNet
DTMs as the reference DTMs to evaluate the resultant CaSSIS DTMs. The HiRISE SRR
MADNet DTMs are not considered as a fully “independent” reference data. However, they
are produced using a different input source, being HiRISE, which is independent to CaSSIS,
while the spatial resolution (of the reference DTMs) is much higher than the target DTMs
(64 times higher than the CaSSIS MADNet DTM and 16 times higher than the CaSSIS SRR
MADNet DTM) and have fairly large spatial coverage (i.e., full extents from single-strip
HiRISE SRR MADNet DTMs).

The RMSE and SSIM plots between the target 8 m/pixel CaSSIS MADNet DTM and
the reference HiRISE SRR MADNet DTM, as well as RMSE and SSIM plots between the
target 2 m/pixel CaSSIS SRR MADNet DTM and the reference HiRISE SRR MADNet
DTM, are shown in Figure 10. For CaSSIS MADNet DTM, a 27 × 27 pixels boxcar filter
is the best fit of the reference HiRISE SRR MADNet DTM, yielding a RMSE accuracy of
1.5530 m, the same filter width also gives the highest SSIM score of 0.6566. For the CaSSIS
SRR MADNet DTM, a 9 × 9 pixels boxcar filter gives the best fit of the reference HiRISE
SRR MADNet DTM, yielding a RMSE accuracy of 1.8764 m, while a 11 × 11 pixels boxcar
filter yields the highest SSIM score of 0.6068. This quantitative assessment agrees with
our visual inspections, which also shows that the effective resolution of the CaSSIS SRR
MADNet DTM is much higher than the effective resolution of the CaSSIS MADNet DTM.
The accuracy of the CaSSIS SRR MADNet DTM is slightly lower than the CaSSIS MADNet
DTM as indicated by the higher minimum RMSE and the lower maximum SSIM at their
best fit filter widths. This is reasonable as the MARSGAN SRR processing is capable of
retrieving much sharper surface features, which to some extent also generates uncertainties,
which are reflected on the RMSE and SSIM statistics.
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Figure 10. Left: RMSE and SSIM plots of the target 8 m/pixel CaSSIS MADNet DTM and the
reference 12.5 cm/pixel HiRISE SRR MADNet DTM; Right: RMSE and SSIM plots of the target
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In order to address the question regarding the effective resolution of the HiRISE PDS
DTMs that is expected to be much lower than its nominal resolution of 1 m/pixel, we
perform an “inverse” evaluation using the HiRISE PDS DTMs as the target DTMs and
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the 12.5 cm/pixel HiRISE SRR MADNet DTMs as the reference DTMs. We also compare
the 50 cm/pixel HiRISE MADNet DTM and the 12 m/pixel CTX MADNet DTM that are
published in [28] with the reference HiRISE SRR MADNet DTMs to study the relative
differences of their effective resolution and accuracy, and how they differ against the
resultant 8 m/pixel CaSSIS MADNet DTM and 2 m/pixel CaSSIS SRR MADNet DTM.
These RMSE and SSIM plots are shown in Figure 11.
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(DTEEC_039299_1985_047501_1985_L01) and the reference 12.5 cm/pixel HiRISE SRR MADNet
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From the RMSE and SSIM plots of the 1 m/pixel HiRISE PDS DTM and the 12.5 cm/pixel
HiRISE SRR MADNet DTM, we can see that the HiRISE PDS DTM has an effective reso-
lution in between the effective resolutions of the CaSSIS MADNet DTM and CaSSIS SRR
MADNet DTM (see Figures 10 and 11), given a best fit boxcar filter width of 17 × 17 pixels
with a RMSE accuracy of 0.2276 m and SSIM score of 0.9016. The calculated boxcar filter
width is quite large considering its nominal spatial resolution of 1 m/pixel, which explains
why we were not able to evaluate the CaSSIS MADNet DTM and the CaSSIS SRR MADNet
DTM using the HiRISE PDS DTMs as the reference. On the other hand, we can also see
the minimum RMSE and maximum SSIM values of the HiRISE PDS DTM are much better
than the CaSSIS SRR MADNet DTM, which means that although the HiRISE PDS DTM
has a lower effective resolution it has a higher accuracy and closer structural agreement
with respect to the reference HiRISE SRR MADNet DTM. However, we should bear in
mind that, in this case, the target and reference DTMs are from the same HiRISE instru-
ment, and consequently, the RMSEs are expected to be lower and SSIMs are expected to
be higher than the statistics when comparing target and reference DTMs that come from
different instruments.
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Similarly, we can observe a low minimum RMSE of 0.2244 m and a high maxi-
mum SSIM value of 0.9165 between the 50 cm/pixel HiRISE MADNet DTM [28] and the
12.5 cm/pixel HiRISE SRR MADNet DTM, at the best fit boxcar filter width of 7 × 7 pixels.
The HiRISE MADNet DTM shows the closest effective resolution compared to the reference
12.5 cm/pixel HiRISE SRR MADNet DTM, with the best relative accuracy and structural
similarity, which is reasonable and visually correct. From the RMSE and SSIM plots of the
12 m/pixel CTX MADNet DTM [28] and the 12.5 cm/pixel HiRISE SRR MADNet DTM,
we can observe that the best fit boxcar filter width is 33 × 33 pixels yielding the minimum
RMSE of 3.4803 m, while a boxcar filter width of 5 × 5 pixels yields the maximum SSIM of
0.8067. There is a large disagreement between the best fit boxcar filter width that yields the
minimum RMSE and the boxcar filter width that yields the maximum SSIM score. The filter
width of 33 × 33 pixels for the 12 m/pixel CTX MADNet DTM is reasonable compared
to the best fit boxcar filter width of 27 × 27 pixels for the 8 m/pixel CaSSIS MADNet
DTM. However, from a visual inspection, the similarities of large-scale topographic features
between the CTX MADNet DTM and HiRISE SRR MADNet DTM with smaller boxcar
filters are fairly high, which is likely due to the fact that the CTX MADNet DTM is used as
the reference input for the production of the HiRISE SRR MADNet DTM. This should not
affect our evaluation of the CaSSIS MADNet and SRR MADNet DTMs as they are not used
as the reference inputs for the production of the HiRISE SRR MADNet DTM.

Table 2 summarises the statistics of the evaluation of the above tested target DTMs in
comparison with the reference 12.5 cm/pixel HiRISE SRR MADNet DTM. The measurement
of resolution (according to the best fit boxcar filter width) and accuracy (according to the
best fitting RMSE) of the target DTMs are relative to the reference DTM. If we assume a
simple linear relationship between the boxcar filter size and the DTM effective resolution
and assume the effective resolution of the CTX and HiRISE MADNet DTMs are 12 m/pixel
and 50 cm/pixel, respectively, we can then estimate the relative effective resolutions
of the resultant CaSSIS MADNet DTM and CaSSIS SRR MADNet DTM, being about
9–10 m/pixel and about 1–2 m/pixel, respectively. The estimated effective resolution of
the test HiRISE PDS DTMs is about 4–5 m/pixel, which agrees with our visual assessments
and comparisons. In comparison with the CTX MADNet DTM, the CaSSIS MADNet
DTM and CaSSIS SRR MADNet DTM have higher accuracy (lower best fitting RMSE) but
lower structural similarity (lower best fitting SSIM) with respect to the reference HiRISE
SRR MADNet DTM. The HiRISE PDS DTM and HiRISE MADNet DTM have the highest
accuracy and structural similarity with respect to the reference HiRISE SRR MADNet
DTM, which is partially due to fact that they are produced from the same imaging dataset.
Comparing the statistics of the CaSSIS SRR MADNet DTM and CaSSIS MADNet DTM, we
can observe a fairly significant improvement of effective resolution using SRR, while having
a slightly lowered accuracy and structural similarity, meaning slightly larger topographic
uncertainty of the CaSSIS SRR MADNet DTM.
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Table 2. Summary of evaluation statistics of the target CTX MADNet DTM [28], CaSSIS MADNet
DTM, HiRISE PDS DTM, CaSSIS SRR MADNet DTM, and HiRISE MADNet DTM [28], with respect
to the reference 12.5 cm/pixel HiRISE SRR MADNet DTM.

Target DTM
Best Fit Filter
Width (Pixels)

for RMSE
RMSE (m)

Best Fit Filter
Width (Pixels)

for SSIM
SSIM (0–1) Nominal

Resolution
Estimated
Resolution

CTX MADNet
DTM 33 × 33 3.480 5 × 5 0.807 12 m -

CaSSIS MADNet
DTM 27 × 27 1.553 27 × 27 0.657 8 m 9–10 m

HiRISE PDS DTM 17 × 17 0.228 17 × 17 0.902 1 m 4–5 m

CaSSIS SRR
MADNet DTM 9 × 9 1.876 11 × 11 0.607 2 m 1–2 m

HiRISE MADNet
DTM 7 × 7 0.224 7 × 7 0.917 50 cm -

4. Discussion

In this paper, we demonstrate that DTM production, at 2 times higher resolution than
the original input image, is feasible from single-view Mars orbital images (e.g., CaSSIS
and HiRISE) using deep learning based SRR and SDE methods. We observe significant
improvements both qualitatively and quantitatively from the resultant MADNet DTMs
that use MARSGAN SRR compared to the MADNet DTMs that do not use MARSGAN
SRR. The DTM resolution gain is visually and quantitatively better than 4 times, even
though the resolution gain of the images themselves using MARSGAN SRR is visually and
quantitatively less than 4 times (about 3 times according to [30,35]). We believe that most of
the improvement of the DTM resolution comes from the improved image resolution, and
the “extra” improvement comes from the reduction of image noise which leads to better
performance of the MADNet SDE process.

While the improvement in the DTM resolution is encouraging, the coupled SRR and
SDE process slightly lowers the accuracy (a RMSE difference of 0.323 m) and structural
similarity (a SSIM difference of 0.049) for the resultant CaSSIS DTM, which means higher
DTM uncertainty. This quantitative evaluation also agrees with our visual inspection
that topographic features in the CaSSIS SRR MADNet DTM are subject to minor over-
shoot/undershoot or shape differences, compared to the HiRISE image and HiRISE SRR
MADNet DTM, even though they look plausible when compared to the original CaSSIS
and CaSSIS SRR image. This is due to the fact that MARSGAN SRR attempts to give the
most realistic higher-resolution estimation of the fine-scale features but cannot “invent” the
higher-resolution features or textures that are completely invisible from the input image.
Such higher-resolution estimation is based on the existing information of the input image
that is partially subject to interference from sensor/atmosphere noise and/or incompletely
recorded pixel-scale information, which could consequently give inaccurate or erroneous
SRR input to the follow-up MADNet SDE process.

However, if we down-sample the resultant 2 m/pixel CaSSIS SRR MADNet DTM to
4 m/pixel (same resolution of the input CaSSIS image) and 8 m/pixel (same resolution of
the CaSSIS MADNet DTM) nominal resolution, while resulting in a slightly larger best fit
boxcar filter widths of 11 × 11 and 17 × 17 pixels, respectively, the best fitting RMSEs are
1.865 m and 1.790 m, respectively, which are slightly lower (0.011 m and 0.086 m lower)
than the best fitting RMSE of the 2 m/pixel CaSSIS SRR MADNet DTM but are still higher
(0.312 m and 0.237 m higher) than the best fitting RMSE of the 8 m/pixel CaSSIS MADNet
DTM. This suggests the differences between the target CaSSIS SRR MADNet DTM and
the reference HiRISE SRR MADNet DTM (or “error” of the CaSSIS SRR MADNet DTM
considering the reference HiRISE SRR MADNet DTM has much higher resolution), not only
come from the small-scale topographic features (super-resolved high-frequency small-scale
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features), but also come from large-scale topographic features (enhanced low-frequency
large-scale features). Such differences/errors are expected to be a mixture of height and
slope differences, feature shape variations, and local mis-coalignment.

Figure 12 shows input images and shaded relief images of the output DTMs of an
exemplar area over a subarea (south-west corner) of a small crater (centred at 24.3350◦W,
18.0716◦N) of the test site at Oxia Planum. The “red arrows” show an example of the CaSSIS
features that are considered inaccurately super-resolved, where the “real” feature appears
to be wider in the 25 cm/pixel HiRISE image, compared to the narrower appearance in the
1 m/pixel CaSSIS SRR image, and consequently, such features are inaccurately interpreted
in 3D, where the “real” feature appears to be flatter and thicker in the 50 cm/pixel HiRISE
MADNet DTM, compared to their steeper and thinner appearance in the 2 m/pixel CaSSIS
SRR MADNet DTM. The “green arrows” show a counter example of the same features
that are considered more accurately super-resolved, where the “real” feature appears to
have a very similar width and shape in the HiRISE image and CaSSIS SRR image, and
subsequently, results in a fairly similar appearance of its 3D shape and slope in the shaded
relief images of the HiRISE MADNet DTM and the CaSSIS SRR MADNet DTM. This
example demonstrates that the resultant CaSSIS SRR MADNet DTM contains a mixture
of reliable topography as well as less accurate topography, though with obviously higher
effective resolution.
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Figure 12. Images and shaded relief images of the corresponding DTM products showing a portion
(south-west corner) of a small crater (centred at 24.3350◦ W, 18.0716◦ N) of the test site at Oxia Planum.
1st row: 4 m/pixel CaSSIS PAN band image (MY35_009481_165_0_PAN), 1 m/pixel CaSSIS PAN band
SRR image, and 25 cm/pixel HiRISE RED band PDS ORI (ESP_039299_1985_RED_A_01_ORTHO);
2nd row: shaded relief images (using similar illumination parameters as the HiRISE PDS ORI,
i.e., 225◦ azimuth, 30◦ altitude, 2× vertical exaggeration) of the 8 m/pixel CaSSIS MADNet DTM,
2 m/pixel CaSSIS SRR MADNet DTM, and 50 cm/pixel HiRISE MADNet DTM. Red arrows point to
an exemplar of the super-resolved features and their topography that are considered less accurate
compared to the HiRISE images and DTMs. Green arrows point to an exemplar of the super-resolved
features and their topography that are considered more accurate compared to the HiRISE images
and DTMs.
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We have demonstrated good SRR and SDE results (both visually and quantitatively)
for a large area of the landing site at Oxia Planum, and to some extent, we believe the
proposed method can be applied to many other areas of Mars producing high-quality SRR
and subpixel-scale SDE results. However, there are still uncertainties to apply the same
method over specific regions or surface features of Mars. For SRR, it is fairly stable and
spectrally-invariant [35], but artefacts may still appear in difficult areas, e.g., dense rocks on
dusty and shaded slopes, where signal and noise are difficult separate. For SDE, there are
more uncertainties. For example, features with confusing albedo/shadow may confuse the
SDE model and produce artefacts, especially for uncommon surface features that are not
included in the training dataset which can occasionally be falsely interpreted as inverted
topography. Difficult to view areas (e.g., features within cast shadows) may result in lower
topographic accuracy and possibly introduce new artefacts. There appear to be effects
associated with differences in solar incidence angles which may result in height variations.
We plan to optimise and generalise the proposed method in the future to improve the
reliability for Mars global applications.

Last but not least, the proposed deep learning-based method is computationally
less costly for large-sized orbital images such as HiRISE, compared to using traditional
regularisation based SRR [33] and photoclinometry [22,25] techniques. Within 2–3 days of
computing time (on a single Nvidia® RTX3090® GPU), we can produce a full-strip HiRISE
SRR MADNet DTM at subpixel-scale (12.5 cm/pixel), and in a few hours, we can produce a
full-strip CaSSIS SRR MADNet DTM at subpixel-scale (2 m/pixel). This was not achievable
(in a reasonable time scale) in our previous work using coupled MARSGAN SRR and
photoclinometry [25] for such large area (e.g., a full-strip HiRISE SRR image).

5. Conclusions

In this paper, we show that we can use coupled MARSGAN SRR and MADNet SDE
techniques to produce subpixel-scale topography from single-view CaSSIS and HiRISE
images. We present qualitative and quantitative assessments of the resultant 2 m/pixel
CaSSIS SRR MADNet DTM mosaic of the Rosalind Franklin ExoMars rover’s landing site,
which demonstrate their quality, resolution, and accuracy. The resultant CaSSIS and HiRISE
SRR MADNet DTMs are being published through the ESA planetary science archive.
Within a reasonable paper length, we can only show small examples of the resultant CaSSIS
and HiRISE products, however, we strongly recommend that the readers download the
full-size full-resolution SRR and DTM results and look into their details. In the future, we
plan to apply the same technique on repeat single-view observations to study per-image
(i.e., HiRISE and CaSSIS) topographic changes of very-fine-scale dynamic features (e.g.,
slumps and recurring slope lineage) of the Martian surface.
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