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Abstract
Background: Short-chain fatty acids (SCFAs) are fermented dietary components that 
regulate immune responses, promote colonic health, and suppress mast cell–medi-
ated diseases. However, the effects of SCFAs on human mast cell function, includ-
ing the underlying mechanisms, remain unclear. Here, we investigated the effects of 
the SCFAs (acetate, propionate, and butyrate) on mast cell–mediated pathology and 
human mast cell activation, including the molecular mechanisms involved.
Method: Precision-cut lung slices (PCLS) of allergen-exposed guinea pigs were used 
to assess the effects of butyrate on allergic airway contraction. Human and mouse 
mast cells were co-cultured with SCFAs and assessed for degranulation after IgE- or 
non–IgE-mediated stimulation. The underlying mechanisms involved were investi-
gated using knockout mice, small molecule inhibitors/agonists, and genomics assays.
Results: Butyrate treatment inhibited allergen-induced histamine release and airway 
contraction in guinea pig PCLS. Propionate and butyrate, but not acetate, inhibited 
IgE- and non–IgE-mediated human or mouse mast cell degranulation in a concentra-
tion-dependent manner. Notably, these effects were independent of the stimulation of 
SCFA receptors GPR41, GPR43, or PPAR, but instead were associated with inhibition of 
histone deacetylases. Transcriptome analyses revealed butyrate-induced downregula-
tion of the tyrosine kinases BTK, SYK, and LAT, critical transducers of FcεRI-mediated 
signals that are essential for mast cell activation. Epigenome analyses indicated that 
butyrate redistributed global histone acetylation in human mast cells, including signifi-
cantly decreased acetylation at the BTK, SYK, and LAT promoter regions.
Conclusion: Known health benefits of SCFAs in allergic disease can, at least in part, be 
explained by epigenetic suppression of human mast cell activation.
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1  | INTRODUC TION

Short-chain fatty acids (SCFAs) are positive regulators of immune 
responses and colonic health.1,2 The three most prevalent SCFAs, 
acetate, propionate, and butyrate, produced by fermentation of non-
digestible dietary fiber in the gut, are known to regulate gut integ-
rity, colonic mobility, mucus production, and gastrointestinal pH.1,2 
SCFAs are important regulators of immune responses in human stud-
ies of IgE-mediated3 and non–IgE-mediated4 food allergy and mouse 
models of colitis, arthritis, and allergic airway disease.5 Although 
mainly produced in the gut, human and mouse studies indicate signif-
icant immunoregulatory effects of SCFAs in other tissues including 
the lungs,6-8 skin,9-11 and bones.12

Mast cells play a central role in initiating and maintaining in-
flammation, particularly in allergies and asthma, in which aller-
gen re-exposure induces IgE-mediated FcεRI aggregation on the 
plasma membrane, rapidly triggering mast cell degranulation.15-17 
Degranulation initiates the release of numerous inflammatory me-
diators13 and subsequent downstream signaling responses initiate 
the production of inflammatory cytokines, including tumor necrosis 
factor-alpha (TNFα)14,15 and interleukin 6 (IL-6).16 FcɛRI aggregation 
induces phosphorylation of the Linker for Activation of T cells (LAT) 
adaptor molecule by the tyrosine kinases Lck/Yes-related Novel 
tyrosine kinase (LYN) and spleen tyrosine kinase (SYK).17 This sig-
naling cascade subsequently triggers Bruton's tyrosine kinase (BTK) 
phosphorylation and activation of phospholipase (PLC)γ and protein 
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kinase C, which increase the mobilization of calcium (Ca2+) to initiate 
mast cell degranulation.17

Mast cells are present in tissues where the body contacts the out-
side world,18 including the gastrointestinal tract, the upper and lower 
airways, and the skin. Due to their location in the gut and vascularized 
tissues, mast cells are exposed to high SCFA concentrations, reach-
ing up to 140 mmol/L in the colon.23,24 Notably, diffusion and active 
transport significantly reduce SCFA concentrations in human stool 
samples.3,19 Importantly, SCFAs are also detectable in the blood20,21 
and previously implicated in protection against allergic airway inflam-
mation, although the role of mast cells was not investigated.21

Previous studies have suggested possible links between fiber 
intake, SCFA concentrations, and mast cell–mediated pathology. 
Butyrate has been reported to decrease proliferation and increase his-
tamine content in a mouse mast cell line.22 Butyrate also inhibits mouse 
mast cell degranulation and cytokine production23 as well as mast cell 
degranulation and inflammatory mediator content in the gut mucosa of 
piglets.24 However, the underlying mechanistic basis for these effects 
of butyrate remains unclear.25 Moreover, studies in primary human 
mast cells are lacking, which is critical since significant functional and 
phenotypical differences exist between rodent and human mast cells.26

Functional effects of SCFAs are often attributed to activa-
tion of membrane receptors GPR41 (or ‘FFAR3’) and GPR43 (or 
‘FFAR2’),5,27 the latter also expressed by mast cells.28 Nuclear per-
oxisome proliferator-activated receptors (PPARs) can also be stim-
ulated by SCFAs, in particular butyrate.29 PPARs are expressed in 
mast cells30 and PPARγ stimulation attenuated atopic and contact 
dermatitis, possibly inhibiting mast cell maturation.31 Finally, butyr-
ate is a known inhibitor of histone deacetylases (HDACs),32 a class 
of chromatin-modifying enzymes that play key roles in transcrip-
tional regulation.33,34 Butyrate inhibits class I and II HDACs, but 
not class III enzymes (including the Sirtuins).35 Dietary components, 
including SCFAs, were shown to promote gut homeostasis and 
immunity via control of histone acetylation and subsequent gene 
transcription.36,37 Furthermore, the therapeutic use of butyrate to 
modulate gene expression has been employed for various diseases, 
including cancer38-41 and inflammatory disease.42-45 Notably, It was 
recently shown in mouse mast cells that butyrate suppressed FcεRI-
dependent cytokine release, likely via inhibition of HDAC activity, 
without affecting β-Hexosaminidase.46

Here, we investigated the effects of SCFAs in a clinically relevant 
ex vivo model of mast cell–mediated pathology. Importantly, using 
primary mouse and human mast cells for functional assays as well as 
transcriptome and epigenome profiling, we have uncovered a critical 
mechanism of action by which butyrate suppresses mast cell activation.

2  | METHODS

2.1 | Animals

All protocols described in this study were approved by the University 
of Groningen Committee for Animal Experimentation, Groningen, 

the Netherlands. Guinea pigs were housed under a 12-hour light/
dark cycle in a temperature- and humidity-controlled room with 
food and tap water ad libitum. Animals were actively IgE-sensitized 
to ovalbumin as described previously.72 The animals were used for 
experiments 4 weeks after sensitization.

2.2 | Peripheral blood mononuclear cell-derived 
human mast cells

Human peripheral blood mononuclear cell-derived mast cells 
were generated as previously described by Gaudenzio et al.73 
Briefly, peripheral blood mononuclear cells were obtained from 
buffy coats of healthy blood donors and CD34+ precursor cells 
were isolated using the EasySep Human CD34 Positive Selection 
Kit (STEMCELL Technologies). CD34+ cells were maintained for 
4 weeks under serum-free conditions using StemSpan medium 
(STEMCELL Technologies) supplemented with recombinant human 
IL-6 (50 ng/mL; Peprotech), human IL-3 (10 ng/mL; Peprotech), 
and human Stem Cell Factor (100 ng/mL Peprotech). Thereafter, 
the cells were maintained in IMDM Glutamax I, sodium pyruvate, 
2-mercaptoethanol, 0.5% BSA, insulin- 175 transferrin selenium 
(all from Invitrogen), ciprofloxacin (10 µg/mL; Sigma-Aldrich), IL-6 
(50 ng/mL), and human Stem Cell Factor (100 ng/mL Peprotech). 
After 8-12 weeks, PBCMCs were tested for maturity by Giemsa 
or toluidine blue staining and beta-hexosaminidase release assays 
(see below).

2.3 | Statistical analysis

Statistical tests were performed with Graphpad Prism 7 (GraphPad 
Software, Inc). Two-tailed Student's t tests (unpaired or paired) 
and one-way ANOVA tests were performed as described in the 
respective figure legends. A P < 0.05 was considered statistically 
significant.

A full description of all methods is available in the Data S1.

3  | RESULTS

3.1 | Butyrate reduces histamine release and 
inhibits OVA-induced airway narrowing

To mimic the mast cell–driven airway narrowing seen in asthma pa-
tients, we prepared precision-cut lung slices (PCLS) from the lower 
airways of guinea pigs sensitized to the model allergen ovalbumin 
(OVA). Subsequent OVA challenges induced airway narrowing in a 
concentration-dependent manner (Figure 1A). To assess the func-
tional effects of butyrate on mast cell–mediated airway contrac-
tion, we treated PCLS with different concentrations of butyrate 
for 24 hours. Butyrate inhibited IgE- and allergen-induced airway 
contraction in a concentration-dependent manner (Figure 1A,B). 
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Normal tissue viability and responsiveness were confirmed via a 
histamine challenge following the final OVA challenge (Appendix 
S1A).

Histamine release by mast cells, and subsequent stimulation 
of the H1-receptor on airway smooth muscle cells, is a common 
inducer of airway contraction.47,48 We measured histamine re-
lease in our ex vivo assay and found that OVA-challenged PCLS 
showed increased histamine release (Appendix S1B). Butyrate 
treatment of tissue slices abolished histamine release upon OVA 
stimulation (Appendix S1B). The concentration-dependent inhibi-
tion of airway narrowing by butyrate is visualized by representa-
tive photographs in Figure 1C and Videos S1-S4. Together, these 
data demonstrate that butyrate inhibits IgE-dependent mast cell 

activation in a clinically relevant model of allergen-induced airway 
narrowing.

3.2 | Short-chain fatty acids propionate and 
butyrate inhibit primary mast cell activation

Given the continuous exposure of mast cell populations to high 
concentrations of acetate, propionate, and butyrate in vivo, we 
investigated the direct effects of these SCFA on the activation of 
cultured mast cells. Murine primary bone marrow-derived mast 
cells and human peripheral blood mononuclear cell-derived mast 
cells were incubated with increasing concentrations of the SCFAs 

F I G U R E  1   Butyrate inhibits OVA-induced airway contraction in an ex vivo model of bronchoconstriction. A, OVA-induced reduction of 
airway luminal area in precision-cut lung slices (PCLS) of OVA-sensitized guinea pigs either untreated or treated with butyrate for 24 h. B, 
Effect of different concentrations of butyrate on the airway luminal area after the final OVA challenge. As a control, slices were stimulated 
with histamine to induce strong contraction (1.84 mg/mL). C, Video stills depicting the effects of butyrate on OVA-induced airway 
contraction in PCLS. The white scale bar indicates 500 μm. OVA stimulation in vehicle-treated PCLS induced strong airway contraction 
(‘control’). Note that the airway, indicated by a yellow arrow, is located close to a blood vessel. Pre-treatment of 5 and 25 mmol/L butyrate 
inhibits OVA-induced airway contraction. Data represent mean ± SEM, statistical significance was tested using a (A) two-way ANOVA test or 
(B) one-way ANOVA test, *P < .05; **P < .01; ***P < .001. Results in (A) and (B) are pooled from 2 to 3 independent experiments performed 
with PCLS from different animals (n = 2-3) [Color figure can be viewed at wileyonlinelibrary.com]
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acetate, propionate, and butyrate for 24 hours. Propionate and 
butyrate, but not acetate, inhibited IgE/antigen-induced mast cell 
degranulation in a concentration-dependent manner (Figure 2A). 
Propionate and butyrate—but not acetate—, at millimolar con-
centrations, induced up to 90% inhibition of both mouse and 
human mast cell degranulation after IgE/antigen-induced stimu-
lation. Mast cell activation induced by ionomycin was also mark-
edly inhibited by butyrate and, to a lesser extent, by propionate 
treatment (Appendix S2A), as was degranulation triggered by 
compound 48/80 or substance P (Figure 2B). In addition, mast 
cell secretion of IL-6, a typical inflammatory mediator pro-
duced by activated mast cells, was inhibited by both propionate 
and butyrate (Figure 2C). SCFAs did not affect total beta-hex-
osaminidase levels (data not shown), did not induce spontane-
ous mast cell degranulation (Appendix S2A) and did not induce 
cellular toxicity as measured by LDH leakage (Appendix S2B). 
Together, these data show that butyrate and propionate, but not 

acetate, potently inhibit both IgE- and non–IgE-mediated mast 
cell activation.

3.3 | Inhibitory effects of SCFAs on mast cell 
activation are independent of GPR41, GPR43, and 
PPAR receptors

Next, we investigated whether the inhibitory effects of SCFAs de-
pend on signaling through their known GPR41/43 and PPAR recep-
tors. We found that FcεRI-mediated degranulation was highly similar 
in mast cells from GPR41−/− and GPR43−/− mice as compared to wild-
type (WT) mast cells (Figure 3A). Importantly, GPR41 and GPR43 
were not required for the inhibitory effects of butyrate (Figure 3A) 
or propionate (Appendix S3A,B) on mast cell degranulation. In line 
with these observations, direct agonist stimulation of the GPR43 
receptor did not suppress mast cell degranulation (Figure 3A, right 

F I G U R E  2   Butyrate and propionate, but not acetate, inhibit IgE- and non–IgE-mediated mast cell activation. A, Percentage of mast cell 
degranulation (as measured by beta-hexosaminidase release) after IgE-mediated activation using either DNP-HSA or anti-IgE stimulation in 
mouse and human mast cells treated with increasing concentrations of acetate (left), propionate (middle), and butyrate (right). B, Percentage 
of degranulation after IgE- and non–IgE (C48/80 or Substance P)- mediated mast cell activation in untreated or treated (5 mmol/L butyrate, 
24 h) human mast cells. C, Effects of butyrate and propionate on IL-6 cytokine production in mouse mast cells after IgE-mediated activation. 
Results are pooled from 3 independent experiments performed with mouse or human mast cells from 3 different donors (n = 3/group). 
Data represent mean ± SEM, statistical significance was tested using a one-way ANOVA test: #Significantly increased compared with 
nonstimulated; *Significantly decreased compared with control (P < .05). *P < .05; **P < .01; ***,###P < .001. NS, not significant; DNP-HAS, 
dinitrophenyl – Human Serum Albumins; Sub. P., substance P [Color figure can be viewed at wileyonlinelibrary.com]
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panel). Potential signal transduction of SCFAs via GPR109a was not 
further pursued due to very low expression detected in our gene 
expression analysis of primary human mast cells (see below; data not 
shown). Exposure of mast cells to PPARα, PPARβ, or PPARγ agonists 
also did not result in reduced mast cell degranulation (Figure 3B). 
Moreover, a specific PPARγ antagonist did not prevent the inhibition 
mast cell degranulation by butyrate (Appendix S3C). These results 
indicate that the effects of SCFAs on mast cell activity are not medi-
ated via GPR41, GPR43, or PPAR receptor stimulation.

3.4 | HDAC activity is regulated by propionate and 
butyrate and modulates mast cell degranulation

Short-chain fatty acids, and butyrate in particular, are known to 
act as inhibitors of HDAC activity. Indeed, administration of bu-
tyrate led to attenuated HDAC activity in both human and mouse 
mast cells (Figure 3C). Propionate also inhibited HDAC activity 
in mouse mast cells, albeit less potently than butyrate (Appendix 
S3D). In mouse mast cells, inhibition of HDAC activity was strong-
est after 1 hour of incubation (Figure 3C). Trichostatin A (or TSA, 
a potent pan-HDAC inhibitor) treatment also caused a significant 
decrease in human and mouse mast cell degranulation (Figure 3D), 
with a quantitatively similar impact as SCFAs (ie compared with 
Figure 2A). Therefore, SCFAs may regulate mast cell degranula-
tion via modulation of HDAC activity and, as a consequence, gene 
expression.

3.5 | Butyrate induces gene expression changes 
associated with cytokine signaling and activation of 
human mast cells

To assess whether butyrate treatment induced gene expression 
changes in primary human mast cells, we employed microarray gene 
expression profiling. The effect of butyrate on the human mast cell 
transcriptome was studied in nonstimulated mast cells and anti–IgE-
stimulated mast cells. In nonstimulated mast cells, 1683 genes were 
differentially expressed (>twofold up- or downregulated) following 
butyrate treatment. Of these genes, 735 were upregulated (43.7%) 
and 948 downregulated (56.3%; Figure 4A).

To investigate the cellular functions of butyrate-regulated genes 
and to link such functions to the regulatory effects of butyrate on 

mast cell activation, we performed a gene ontology (GO) pathway 
enrichment analysis. Human mast cells treated with butyrate for 
24 hours predominantly showed expression changes in genes as-
sociated with the regulation of immune cell activation and (cyto-
kine) signaling processes (Figure 4B). Butyrate treatment strongly 
affected transcription of genes associated with mast cell activation 
and FcεRI signaling. Of 62 genes, 15 linked to the mast cell activa-
tion pathway (GO:0045576) were found to be differently expressed, 
including reduced expression of the signaling genes BTK (-2.12-fold), 
SYK (-2.84-fold), and LAT (-4.6-fold), each of which is essential for 
full mast cell activation49-52 (Figure 4C,D). Downregulation of these 
essential genes following 24 hours of butyrate treatment was val-
idated using qPCR in human mast cells from 3 additional donors 
(Figure 4E). Accordingly, 24 hours of butyrate exposure reduced BTK 
and SYK protein levels in mouse mast cells (Appendix S4A,B). The 
butyrate-induced transcriptional changes in FcεRI signaling path-
way genes and how they explain the impaired mast cell response 
is further visualized in Appendix S4C. To further define the roles 
of butyrate-targeted genes in human mast cell activation, we exam-
ined the basal expression levels of these genes. Interestingly, genes 
upregulated in response to butyrate treatment showed overall low 
expression levels in the vehicle-treated mast cells, while downreg-
ulated genes showed significantly higher expression levels prior to 
treatment (Figure 4F). The 13 downregulated mast cell activation 
genes in particular were highly expressed before butyrate treatment 
(Figure 4F, right box plot).

In human mast cells stimulated via IgE-crosslinking, butyrate 
treatment also induced a robust transcriptional response, with 1767 
differentially expressed genes following butyrate treatment (1092 
upregulated and 675 downregulated, see Appendix S5A). Similar to 
nonstimulated mast cells, gene expression changes were associated 
with mast cell activation and cytokine production (Appendix S5B). 
Although butyrate primarily induced transcriptional upregulation in 
stimulated mast cells, genes in pathways associated with the activa-
tion of immune responses (eg mast cell activation, FcεRI-mediated 
signaling, and cytokine production) were strongly downregulated 
(Appendix S5C,D). Butyrate-induced downregulation of key mast 
cell activation genes BTK, SYK, and LAT also occurred in stimulated 
mast cells (Appendix S5E).

Finally, our microarray analysis showed that butyrate treat-
ment regulated expression of genes associated with asthma and 
bronchoconstriction (ALOX5, LTC4S, and IFNGR2),53-57 JAK/STAT 
signal transduction (JAK3, STAT6), cytokine receptors associated 

F I G U R E  3   The effects of SCFAs are independent of GPR41, GPR43, and PPAR stimulation, but dependent on HDAC activity. A, 
Percentage of mast cell degranulation after IgE-mediated activation in mouse mast cells from WT, GPR41−/− or GPR43−/− mice (left panel). 
Effects of a GPR43 agonist on mast cell degranulation (right panel). B, Effect of different PPAR agonists on the percentage of degranulation 
via IgE-mediated activation in mouse mast cells. C, The effect of butyrate or TSA (10 µmol/L) on HDAC activity in mouse and human 
mast cells. HDAC activity was measured by adding cell-permeable HDAC substrate containing an acetylated lysine side chain; subsequent 
deacetylation by HDAC releases a detectable fluorophore. D, Percentage of degranulation after TSA treatment (left panel: 10-1000 nmol/L, 
right panel: 1000 nmol/L) in mouse and human mast cells. Results are pooled from 3 independent experiments performed with mouse and 
human mast cells from 3 different donors (n = 3/group). Data represent mean ± SEM, statistical significance was tested using a one-way 
ANOVA test or an unpaired Student's t test: *P < .05; **P < .01; ***P < .001. TSA, trichostatin A; Sub. P., substance P [Color figure can be 
viewed at wileyonlinelibrary.com]
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with different immune responses (IL2RG, IL1RL1, IL18R1, IL18RAP, 
and CRLF2) and the negative regulator of NFkB signaling, TNFAIP3 
(Data S2—MicroArray_Genelist). Furthermore, expression of TET2, 

a gene associated with epigenetic regulation of mast cell prolifer-
ation and activation, was downregulated.58-61 Together, these data 
indicate that butyrate regulates the expression of genes associated 
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with mast cell activation, inflammatory responses, and cytokine 
signaling.

3.6 | Butyrate triggers elevated global 
H3K27 acetylation but decreased acetylation 
at the transcription start site of human mast cell 
activation genes

Acetylated histones are associated with active gene transcription 
and represent a major substrate for HDACs. To assess whether 
butyrate-induced changes in HDAC activity result in an altered his-
tone acetylation landscape in mast cells, we performed ChIP-Seq 
analysis of H3 lysine 27 acetylation (H3K27Ac)—a well-character-
ized epigenetic modification that recognizes active promoters and 
enhancers62—on two independent butyrate (or vehicle)-treated 
primary human mast cell cultures. To capture the immediate early 
effects of butyrate treatment on the mast cell chromatin land-
scape, we analyzed H3K27Ac levels after 3 hours of treatment. In 
line with its inhibitory effect on HDAC activity, butyrate treatment 
rapidly triggered increased global H3K27Ac levels, both in terms of 
genome-wide acetylation coverage and enrichment peaks detected 
(Figure 5A,B, shown for the KIT gene, as an example in Figure 5C). 
These observations were largely independent of analysis parame-
ter settings (Appendix S6A,B). Notably, 3 hours of butyrate treat-
ment predominantly triggered de novo acetylation events, with 
only a small minority (~1%) of regions that completely lost H3K27Ac 
(Figure 5A). De novo acquisition of H3K27Ac induced relatively 
modest acetylation mostly outside of or between regions that were 
highly acetylated in vehicle-treated mast cells (Figure 5C; Appendix 
S6C-E). Thus, butyrate exposure has a rapid and substantial impact 
on global mast cell histone acetylation.

We next integrated H3K27Ac ChIP-Seq data with butyrate-in-
duced transcriptional changes in nonstimulated human mast cells 
(see Figure 4). H3K27Ac levels around the transcription start site 
(TSS) of the 735 genes upregulated by butyrate treatment re-
mained largely unchanged (Appendix S6D), although there was a 
minor reduction in peak height. In contrast, genes that were down-
regulated after 24 hours of butyrate exposure showed substantial 
deacetylation already at 3 hours of treatment (Appendix S6E). These 

included the set of 62 GO mast cell activation genes, which showed 
high H3K27Ac levels in the absence of butyrate, but were rapidly 
deacetylated around their TSS upon butyrate treatment (Figure 5D). 
Specifically, H3K27ac covering the TSS of BTK (64% decrease), SYK 
(43% decrease), and LAT (70% decrease) was substantially reduced 
(Figure 5E-G), correlating with their loss of expression upon butyrate 
treatment.

Together, these data show that exposure of mast cells to butyr-
ate has a profound impact on their chromatin landscape. Butyrate 
evokes a low-level global histone hyper-acetylation, but also induces 
a specific loss of acetylated transcription-competent chromatin 
around highly expressed genes critical for FcεRI-mediated mast cell 
activation.

4  | DISCUSSION

The immunomodulatory effects of SCFAs in mast cell-mediated dis-
ease, such as allergies and asthma, have been extensively studied. 
While SCFAs such as butyrate appear to suppress mast cell activ-
ity, the underlying mechanisms remain unclear and the direct effects 
of SCFAs on human mast cells have not yet been explored. Here, 
we validate that butyrate strongly reduces mast cell-driven airway 
narrowing in an ex vivo model of mast cell–mediated bronchocon-
striction. These findings were further substantiated in a primary 
human mast cell culture system, as SCFAs propionate and especially 
butyrate inhibited both IgE- and non–IgE-mediated degranulation. 
Importantly, our studies in primary mast cells indicate that these 
effects are not dependent on the membrane receptors GRP41 and 
GPR43, nor on the nuclear PPAR receptors, which all have been im-
plicated in mediating the biological effects of SCFAs. Instead, we 
show that HDAC activity in both mouse and human mast cells can 
be suppressed by propionate and butyrate, evoking a redistribution 
of global histone acetylation. Altered histone acetylation included 
a loss of acetylation and expression at genes encoding key signal-
ing molecules mediating FcεRI-mediated degranulation, providing a 
plausible mechanism for how SCFAs can provide health benefits in 
the context of mast cell–mediated allergic disease.

The SCFA levels that we found to inhibit mast cell activation in 
vitro or ex vivo were nontoxic and comparable with physiological 

F I G U R E  4   Butyrate induces human mast cell gene expression changes associated with cytokine signaling and mast cell activation. 
A, Scatterplot comparison of gene expression levels measured by microarray analysis in unstimulated human mast cells either untreated 
or exposed to 5 mmol/L butyrate for 24 h. Upregulated genes (>1.0 log2 fold change) are indicated in green, downregulated genes (<-1.0 
log2 fold change) in red. B, Selected pathways that were strongly affected by butyrate treatment in unstimulated human mast cells. Y-axis 
denotes P-values on a -log10 scale. C, D, Butyrate-induced upregulation or downregulation of genes associated with the GO:0045576—
‘Mast Cell Activation’ pathway represented as a Venn diagram (C) or bar graph (D) in unstimulated human mast cells treated with or without 
butyrate for 24 h. E, Butyrate-induced downregulation of BTK, SYK, and LAT was validated using qPCR in human mast cells from 3 additional 
independent donors. F, Genes upregulated in response to 24 h butyrate treatment (compared with vehicle-treated cells, indicated as 0 h) 
showed overall low expression levels in vehicle-treated mast cells, while downregulated genes showed significantly higher expression levels 
prior to treatment. Downregulated mast cell activation genes in particular are highly expressed before butyrate treatment (right box plot). 
A-D, F, Results are from a single culture of human mast cells. E, Results are pooled from 3 independent experiments performed in human 
mast cells from 3 different donors. Data represent mean ± SEM, statistical significance was tested using a one-way ANOVA test: *P < .05; 
**P < .01; ***P < .001. GO, gene ontology [Color figure can be viewed at wileyonlinelibrary.com]
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SCFA concentrations in the gut and blood of humans20,63 or ro-
dents.64 Although several mechanisms have been proposed to un-
derlie the immunomodulatory effects of SCFAs,5,27,29,30,65 our data 
indicate that mast cell suppression by SCFAs is relayed via modu-
lation of HDAC activity, rather than by the stimulation of mem-
brane GPR41/43 or PPAR nuclear receptors. The noninstantaneous 
(>12 hours) effects of SCFAs on mast cell degranulation indicate that 
they are more likely to originate from alterations in gene expression, 
rather than by direct receptor stimulation. Indeed, we observed max-
imum HDAC inhibition directly after butyrate incubation (1 hour), 
followed by rapid changes in histone acetylation (3 hours) and a 

subsequent transcriptional silencing of FcεRI signaling genes for 
optimal suppression of mast cell degranulation (18-24 hours). Zhang 
et al recently reported that butyrate did not affect β-Hexosamini-
dase release in mouse mast cells. We believe that this discrepancy 
arises from the shorter exposure time (ie 12 hours) used in this 
study, which is likely not enough to allow for the abovementioned 
sequence of molecular events to sufficiently deplete the levels of 
FcεRI signaling components or other, possibly FcεRI-independent, 
mediators of degranulation.

Although butyrate-induced local histone deacetylation and sub-
sequent transcriptional downregulation at highly expressed genes 

F I G U R E  5   Butyrate induces a loss of histone acetylation at the transcription start site of key genes involved in FcεRI-mediated signaling. 
A, Venn diagram depicting the overlap in H3K27Ac enrichment peaks (reproducibly detected in both donors) detected at 0 and 3 h of 
butyrate treatment. Only a minority (~1%) of regions lose all H3K27Ac signal, in contrast to de novo enrichment of 14 292 unique peaks 
following butyrate treatment. B, Butyrate treatment induces elevated megabases (Mb) of genome covered by H3K27Ac. C, Genome browser 
view of histone 3 lysine 27 acetylation (H3K27Ac) levels at the KIT locus, as measured by ChIP-Seq before and after 3 h of 5 mmol/L 
butyrate exposure. D, Average H3K27Ac levels around the TSS of mast cell activation genes downregulated by 24 h of butyrate exposure 
(see Figure 4D). E-G, Genome browser views depicting H3K27ac levels across loci encoding key signaling molecules involved in FcεRI-
mediated signaling. TSS regions show reduced acetylation levels for BTK (64% decrease), SYK (43% decrease) and LAT (70% decrease), 
correlating with their loss of expression upon butyrate treatment. Similar results were obtained using mast cells from 2 independent cultures 
of 2 different donors; data obtained from donor 2 are shown. TSS, transcription start site [Color figure can be viewed at wileyonlinelibrary.
com]
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appears counterintuitive at first glance, earlier studies have also re-
ported gene repression induced by HDAC inhibitors,66 particularly 
for highly expressed genes heavily occupied by HDACs.67-69 Of note, 
HDACs were reported to boost transcription by restricting histone 
acetylation specifically to the TSS.68 We postulate that HDAC in-
hibition by SCFAs triggers global ‘aspecific’ low level histone hy-
per-acetylation, especially near highly active gene loci that are 
preferentially targeted by HDACs. This redistribution lowers acetyl-
ation levels at transcription start sites, resulting in reduced mRNA 
expression, and histone acetylation at highly expressed genes (eg for 
BTK, Figure 5). Regulation of mast cell function by HDAC activity 
is further supported by a recent study demonstrating that TSA can 
diminish FcεRI-mediated cytokine production and degranulation in 
mouse mast cells.70

Our analyses suggest that a strong transcriptional silencing of 
critical molecules for IgE receptor-induced signal transduction, 
including BTK, SYK and LAT, represents the mechanism that un-
derlies SCFA-mediated inhibition of human mast cell activation. 
Mast cells deficient in these signaling genes display reduced 
FcεRI-mediated degranulation.49-52 Importantly, BTK, SYK, and 
LAT are directly upstream of JNK and NFAT activation, poten-
tially explaining the results of studies showing reduced JNK and 
NFAT phosphorylation or binding upon butyrate treatment.23,24 
Butyrate might additionally modulate AP-1 and NF-AT DNA bind-
ing through altered histone acetylation to suppress the late phase 
of mast cell activation. Whether butyrate exposure also modulates 
other (unknown) regulators of mast cell activity via histone acetyl-
ation levels is an important topic for future investigations.

The observation that butyrate prevented allergen-induced his-
tamine release in PCLS of OVA-sensitized guinea pigs and markedly 
attenuated OVA-induced airway contraction indicates that SCFA-
mediated HDAC inhibition of mast cell activation could potentially 
be of therapeutic interest in allergic diseases. Comparable effects 
were reported in a similar PCLS model using other HDAC inhibi-
tors.71,72 Notably, short-term butyrate treatment (2 hours) showed 
little effect on contraction of guinea pig PCLS,71 which parallels our 
findings that longer treatment with butyrate (24 hours) is needed for 
demonstration of inhibitory responses.

In summary, our findings indicate that SCFAs suppress human 
mast cell degranulation, cytokine production and allergen-induced 
airway contraction via HDAC inhibition and the subsequent tran-
scriptional downregulation of critical mast cell signal transducers via 
an epigenetic mechanism. Hence, the acknowledged health benefits 
of SCFAs for allergic disease can be, in part, attributed to inhibition 
of mast cell activation via histone deacetylation. Additional insight 
into the inhibitory mechanisms of SCFAs may be of clinical impor-
tance and could reveal new approaches to inhibit pathogenic mast 
cell activity in allergic diseases.
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