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Abstract
Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks’

capture zone with a prevailing lake-groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby
Gaussian finite mixture modeling (GFMM) and Spike-and-Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater
geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB
to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands
plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking
production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three
hierarchical clusters with a probability of cluster membership varying from <0.2 to >0.8. The findings demonstrated that the
clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper
diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist
among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of
a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there
has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate
measures to reverse the inflow towards the lakes.

Introduction
Establishing a rigorous advanced warning system

for a sustainable groundwater management strategy is
mandatory, which means it is important to enhance
the current understanding of spatiotemporal groundwater
geochemical evolution and its controlling factors (Liu
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et al. 2015). In particular, this requires directing attention
to the groundwater geochemistry dataset associated with
the capture zone of waterworks where drinking water for
domestic consumption is produced.

The evolution of groundwater geochemical facies
and their spatiotemporal variability have mainly been
characterized by natural processes (e.g., lithology, water-
rock interactions, and hydrogeological conditions), and
anthropogenic activities (e.g., mining, agriculture, indus-
try, construction of dams, and groundwater overdrafts
(Hadj et al. 2014; Carucci et al. 2012; Güler et al. 2012;
Sbarbati et al. 2015; He et al. 2012; Wang et al. 2013;
Golian et al. 2019; Ostad-Ali-Askari et al. 2019); Taie
Semiromi and Koch 2020). The geochemical facies of
groundwater also tend to vary over time and space (Yang
et al. 2020).

Groundwater geochemical datasets are intrinsically
multivariate; this means that each groundwater param-
eter represents the physical, chemical, and biological
properties that have been imprinted on the parame-
ter (Liu et al. 2021). Therefore, delineating the spa-
tiotemporal evolution of groundwater geochemistry of a
dataset requires the implementation of cluster analysis, in
which the dataset is split into several clusters. Indeed,
observations/samples of a certain cluster illustrate the
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greatest similarity, while the similarity among clusters
is minimal; this demonstrates the dominant controlling
processes shaping each cluster (Güler and Thyne 2004a,
2004b; Pacheco Castro et al. 2018; Pant et al. 2018; Templ
et al. 2008).

Clustering methods may be broadly classified into
two groups: (1) hierarchical clustering methods, which
consists of agglomerative and divisive methods; and
(2) partitioning clustering methods, which consists
of distance-based, model-based, and density-based
approaches (Fraley and Raftery 1998). A review of clus-
tering algorithms and their development was discussed
by Saxena et al. (2017). These approaches have gained
increasing popularity to identify hydrogeochemical facies
and detect their spatiotemporal evolution over time
(Kim et al. 2003; Simeonov et al. 2003; Shrestha and
Kazama 2007; Cloutier et al. 2008; Nguyen et al. 2015;
Wang et al. 2015).

Clustering is considered a propitious approach that
has been widely used in several multivariate analyses to
delineate spatiotemporal patterns embedded in a ground-
water geochemistry dataset (e.g., Cloutier et al. 2008;
Güler and Thyne 2004a, b; Yang et al. 2020; Papaioan-
nou et al. 2010; Woocay and Walton 2008). However,
the validity of procured geochemical clusters has largely
remained a formidable challenge because clustering is a
subjective process (Dougherty and Brun 2004).

To address this issue, clustering methods with prob-
abilistic outputs may be very useful when an observation
is assigned into a cluster while its membership coefficient
is quantified in terms of probability (Aguilera et al. 2013).
Regardless, relying on one specific probabilistic approach
to determine geochemical facies and its controlling fac-
tors for hydrologically complex catchments may not be
reliable. This is because the estimated probability of mem-
bership for a specific cluster may have considerable uncer-
tainty. This is particularly the case for the capture zone of
waterworks where the monthly and seasonal water level
fluctuations of lakes, groundwater, and streamflow within
the capture zone may provoke a movement in the hydro-
logical boundary conditions. This movement influences
the groundwater dynamics including the reversal of pre-
viously established hydraulic gradients and subsequent
alterations in the geochemical environment (Ferone and
Devito 2004; Vepraskas et al. 2020).

The paucity of stratigraphic knowledge for most
aquifers across the world and the anthropogenic impacts
from activities such as water extraction for drinking
water can cause unexpected effects on surface water and
groundwater quality and quantity. These effects add to
the complexity of the dataset of interest, increasing the
uncertainty associated with cluster identification.

Thus, this serves as the point of departure for current
research through which we have aimed to appraise a
probabilistic classifier to cluster the geochemical dataset
of the waterworks’ capture zone. It also seeks to
concurrently validate the obtained clusters against that
of another probabilistic classifier; such a comparison has
been poorly documented in the literature. To address

this knowledge gap, two algorithms previously not used
for clustering a groundwater geochemical dataset were
selected; Gaussian finite mixture modeling (GFMM)
(Scrucca et al. 2016) and spike-and-slab Bayesian model
(SSB) (Partovi Nia and Davison 2012). Successful
applications of GFMM (e.g., Ellefsen et al. 2014; Ellefsen
and Smith 2016; Scrucca 2016; Marbac et al. 2017;
Popp et al. 2019; Saranya et al. 2020; Zhou and
Wang 2020), and SSB (e.g., Tadesse et al. 2005; Partovi
Nia 2009; Partovi Nia and Davison 2012; Anderson and
Vehtari 2017; Canale et al. 2017; Cao et al. 2019; Bai
et al. 2021), have been widely documented for datasets
other than those relating to groundwater geochemistry.

Consequently, clusters representing the highest prob-
ability of occurrence may be considered for future water
quality management of waterworks while downweigh-
ing clusters with the lowest probability of occurrence.
It is expected that the risk of failure for precautionary
and protection measures in line with appropriate water
quality management is reduced (Aguilera et al. 2013)
when using highly reliable groundwater geochemical
clusters.

This study will also examine the complemen-
tary implications of these two probabilistic clustering
approaches, as one is fed with replicated observations (i.e.,
SSB) and the other is input with all individual obser-
vations (i.e., GFMM) when used together for a specific
hydrogeochemical dataset. The suitability of this compar-
ison will be assessed for hydrogeochemical parameters
associated with 13 groundwater observations, two lakes,
and a gallery of drinking water production wells. The res-
idents in the northeast of Berlin are highly dependent
on the capture zone of the waterworks; as such, sub-
tle evidence signifying an early warning to water quality
endangerment may be decoded by taking advantage of the
possible complementary outcomes of these algorithms.

Study Area
The study area is located approximately 20 km

northeast of Berlin, Germany (Figure 1a) on the Barnim
Highlands plateau. The topography is characterized by a
hummocky landscape of gently rolling hills intersected
by a glacial valley that is slightly southward sloping.
The valley contains a small stream, the Fredersdorfer
Mühlenfließ, that passes through two lakes (i.e., Fängersee
[Fae] and Bötzsee [Boe]), in the southern part of the area.
At the outlet of the downstream lake (Boe, Figure 2),
the annual mean discharge has declined by 50% over the
last three decades, from 0.3 m3/s in 1980 to 0.15 m3/s
in 2009. In addition to climatic and land-use changes,
the local waterworks have potentially influenced the
hydrology of the region in recent years (Atlas 2018). The
annual precipitation in the region for 1951 to 2012 varies
between 345 and 794 mm/year. Annual atmospheric water
balances of the region show a mean annual deficit of
approximately 82 mm/year for the 1981 to 2006 period
(Germer, et al. 2011). The dominant land-use type in
the catchment is a mixed forest where approximately
69% is dominated by pines. The remaining area almost
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(c)

Figure 1. The study area: (a) map of Germany and position of the application area; (b) land use/land cover of the Spree 2
basin and the capture zone of waterworks; and (c) the lithology of the Spree 2 basin and the capture zone.
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exclusively consists of agriculture, while other patches of
residential land-use constitute less than 1% of the study
area (Figure 1b).

Waterworks located in the catchment have been
operational since 1977. Groundwater is extracted from
a 1.5 km gallery in length, and is comprised of 12
production wells (herein referred as WW); the gallery
extends from the Northwest to Southeast (Figure 2).
The mean daily production between 2011 and 2013 was
4475 m3/d, with a range from 1622 to 10,751 m3/d. Due
to elevated levels of urbanization in the peri-urban zone
of Berlin, the production capacity of waterworks has
been increased, including the expansion of the gallery in
2014. According to the official hydrogeological map of
Brandenburg (State Office for Mining Geology and Raw
Material of Brandenburg 2012), the capture zone spans
a 93 km2 area. Traditionally, fixed-radius and analytical
approaches have been used to delimit a capture zone
(Frind and Molson 2018). However, advanced techniques
have come to the fore; this includes techniques such
as the particle tracking method in which a groundwater
model is built to configure the flow system and track
particles along flow lines. The capture zone of these
waterworks was delineated using long-term groundwater
head data by the State Office for Mining Geology
and Raw Material of Brandenburg (2012). Although
the capture zone states the overall extent of the study
area, this study was particularly focused on the vicinity
of waterworks (see Figure 2). Lake Bötzsee (Boe)
was located approximately 200 m in the west of the
gallery with a length of 2.8 km; it extends in the north-
south direction, with a maximum width and depth of
450 and 13.6 m, respectively. Lake Fängersee (Fae) is
located approximately 400 m upstream of WW, and is
approximately half the size of Boe, with a maximum
known depth of 5.5 m (Figure 2).

The geology in the study area is formed by a series
of layered Pleistocene and Tertiary sediments that are
approximately 150 to 200 m thick, with a lower confining
bed of Oligocene marine Rupel clay. The series consists
of a complex interplay of glacial deposits from the
Pleistocene and permeable marine and limnic sediments
of the Upper Oligocene and Miocene. The series may
be divided into an upper unconfined system of shallow
Weichselian and late Saalian sediments. Underneath these
sediments is a thick confined aquifer system of the
early Saalian and Elster layers, and Upper Oligocene and
Miocene sediments.

In general, a shallow (i.e., 5 to 10 m) unconfined
aquifer is separated from the thick (140 to 190 m) lower
confined aquifer by a 15 to 20 m thick layer of Saalian
sediments. The stratification is known to be convoluted
and disturbed towards the northern part of the capture zone
(State Office for Mining Geology and Raw Material of
Brandenburg 2012). The confined and unconfined aquifers
consist of multiple permeable sediment layers partially
disconnected by layers of till, which are thus hydraulically
connected.

In the northeast of Germany, groundwater levels and
landscape runoff have largely been in decline for over
three decades (Suckow et al. 2002; Lahmer 2003; Germer
et al. 2011; Merz and Pekdeger 2011); regional climate
studies suggest further decreases over the next decades
(Gerstengarbe et al. 2003, 2013; Held et al. 2013). Thus,
water resource management for this region requires a
thorough assessment of possible adaptions and measures
to counteract or mitigate severe consequences, such
as decreasing groundwater heads and surface water
levels and declining groundwater and surface water
quality.

Methods

Sampling and Analytical Procedures
There were 25 monitoring wells located in the

vicinity of the production gallery; of these, 10 wells
were selected based on the distance and direction
from the waterworks and depths (Table S1, Supporting
Information). All observation wells were assumed to
be hydraulically affected by water extraction (Böttcher
et al. 2014) (Figure 2).

Sampling took place from September 2011 to August
2013 at bimonthly intervals. A total of 131 samples were
analyzed from 10 groundwater observation wells and
two lakes. The temporal resolution of sampling for all
observation points is provided in Table S2. Groundwater
sampling was carried out after a minimum pumping
duration of 45 min until geochemical parameters remained
stable; a Grundfoss BMI/MP1-230 V immersion pump
was used to sample groundwater.

The pH, redox potential, dissolved oxygen, electrical
conductivity (EC), and temperature were measured in
the field during sampling. Samples were filtered using
0.22 μm membrane filters to exclude suspended solids
such as precipitated iron (Fe−) and manganese (Mn−)
(hydr)oxides and colloids. Samples taken for cation
analysis were preserved in concentrated nitric acid
(HNO−

3 ).

Data Preprocessing
The 13 hydrochemical parameters used as inputs for

the clustering algorithms were: pH, EC, dissolved organic
carbon (DOC), Na+, K+, Mg2+, Mn2+, Fe2+, Ca2+, Cl−,
HCO−

3 , PO3−
4 , and SO2−

4 .
All samples were checked for ionic balance and

excluded when the charge balance error exceeded 5%;
a 131 × 13 data matrix remained viable for data analysis.
The ranges of all dataset variables after preprocessing
are provided in Table S1 for each site. Samples were
distributed in a relatively similar manner among all sites
with at least 10 samples per site, with the exception
of G23; this site was included at a later stage of the
monitoring program and contributed only five samples.

To have the equal effect of variables on the clustering
approach, the 131 samples were standardized to mean zero
and variance one by subtracting each sample variable from
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Figure 2. Map of the capture zone of waterworks in the southern part of the study area along with the Fredersdorfer
Mühlenfließ river and the two lakes (Fängersee [Fae] and Bötzsee [Boe]) (Ministry of Environment Health and Consumer
Protection of Brandenburg 2009; Böttcher et al. 2014).
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its mean and dividing by its standard deviation (Iwamori
et al. 2017).

Clustering Approaches

GFMM Clustering Algorithm
Finite normal mixture models as a model-based

clustering method with probabilistic outputs are the most
common for the clustering of a wide range of datasets
(e.g., Marbac et al. 2017; Saranya et al. 2020; Zhou and
Wang 2020).

Assuming an aquifer system with two regions that
have different geochemical characteristics, the geochem-
ical parameters of each region are characterized by
a specific probability density function (PDF) (Ellefsen
et al. 2014). The PDF of the geochemical properties
of region 1 is: f (Z | θ1); θ1 shows the parameters of
that specific PDF, and Z is the value or concentration
of each geochemical element. Notably, geochemical ele-
ments have already been through the transformation pro-
cedure, being standardized to mean zero and variance one.
The parameters of the PDF for the geochemical proper-
ties of region 2 are represented by θ2. Therefore, when
a certain sample denoted by i, falls within region 1, the
resultant f (Zi | θ1) will normally be large-valued, while
f (Zi | θ2) will be small-valued. Conversely, when sam-
ple, i, falls within region 2, this relationship is reversed
(Ellefsen et al. 2014).

Thus, the PDF for the entire aquifer p(Z) was
a weighted summation of the two PDFs for the two
regions, calculated as: p(Z) = λ1f (Z | θ1) + λ2f (Z | θ2).
The coefficients, λ1 and λ2, are the areas of regions 1 and
2, respectively, divided by the area of the entire aquifer.
Each weight/coefficient is the relative contribution of the
corresponding PDF to p(Z).

In practice, as there are several regions/sampling
areas with associated geochemical properties, the finite
mixture model is generalized to J regions. Therefore, we
have:

p(Z) =
J∑

j=1

λjf
(
Z | θj

)
(1)

The PDF p(Z) should be considered a mixture of
J PDFs, each reflecting the geochemical properties of
a specific region within the entire study area (e.g.,
aquifer). The weights fall within the range: 0 ≤ λj ≤
1 and

∑J
j=1λj = 1 (McLachlan and Peel 2000). As a

result, a finite mixture model is considered to be able to
appropriately characterize the mathematical representation
of the geochemical properties of a specific application
area.

The probability that sample, i, is attributed to PDF,
j , is represented by the conditional probability:

gij = λjf
(
Zi | θj

)

p(Zi)
(2)

where i = 1, . . . , n where n is the number of samples
(Fraley and Raftery 2002). Thus, as gij increase, sample i

becomes increasingly resembled by PDF j . A “cluster”
constitutes samples in which gij ≥ 0.5 for the PDF j .
Accordingly, the number of clusters is identical to the
number of PDFs in the finite mixture model; this is the
premise for this approach being named “mixture-model
clustering” (Ellefsen et al. 2014).

The parameters of the mixture model, θj ,

were unidentified; therefore, they were estimated
using the log-likelihood function: l(θ; 1, . . . , n) =∑n

i=1 log (f (ni; θ)) . As it is difficult to conduct
the direct maximization of the log-likelihood, the
Expectation-Maximization (EM) algorithm was utilized
to procure the maximum likelihood estimator (MLE)
(Dempster et al. 1977; McLachlan and Peel 2000).

One of the most important challenges in clustering is
identifying the optimal number of clusters/components.
Additionally, the PDF base on which clustering is
carried out should be assigned in GFMM. The 14
models were tested in the current study (Table 1), as
available in the Mclust package in R (https://cran.r-
project.org/web/packages/mclust/mclust.pdf); each model
was associated with a PDF that represented a structure
type, volume, shape, and orientation. We used Bayesian
information criterion (BIC) to specify the optimal number
of clusters and the model appropriate for clustering.
In GFMM, the Gaussian mixture model dimensional
reduction (GMMDR) developed by Luca Scrucca (2010)
was used to project observations onto a reduced subspace;
in turn, summary plots were able to assist with visualizing
the clustering typology. This method was premised on
the eigen decomposition of an appropriate kernel matrix
with unknown parameters obtained from the number of
PDFs in the Gaussian mixture model; this was fitted well
to the dataset of interest. Similar to principal component
analysis (PCA), transformed observations were referred
to as “directions,” comparable to principal components;
details of classification using GFMM were described by
Scrucca et al. (2016).

Spike-and-Slab Bayesian (SSB) Clustering Algorithm
Assigning observations into different clusters in

Bayesian clustering is considered a statistical parameter.
Thus, we postulated a Bayesian model for the dataset that
was conditional on the grouping configuration. To that
end, a prior distribution was appointed for the clusters,
in which a search algorithm was applied to determine the
maximum posteriori grouping. The search algorithm used
in this study, as implemented in the bclust package, was
an agglomerative search approach because it illustrates
a dendrogram which provides a visual assist to other
possible groupings.

Based on a dataset with observations assigned to
C clusters of sizes, T1, . . . , TC , with complete T =∑C

c=1Tc clustering individuals; then, a multinomial-
Dirichlet distribution (Heard et al. 2006) as the allocation
prior is assumed as follows:

f (C) ∝ (C − 1)!T1! . . . Tc!

T (T + C − 1)!
(3)
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Table 1
Parameterizations of Multidimensional Data

Available in the Mclust Package, and Associated
Geometric Properties, as Per Scrucca et al. (2016)

Model Distribution Volume Shape Orientation

EII Spherical Equal Equal —
VII Spherical Variable Equal —
EEI Diagonal Equal Equal Coordinate axes
VEI Diagonal Variable Equal Coordinate axes
EVI Diagonal Equal Variable Coordinate axes
VVI Diagonal Variable Variable Coordinate axes
EEE Ellipsoidal Equal Equal Equal
EVE Ellipsoidal Equal Variable Equal
VEE Ellipsoidal Variable Equal Equal
VVE Ellipsoidal Variable Variable Equal
EEV Spherical Equal Equal Variable
VEV Spherical Variable Equal Variable
EVV Diagonal Equal Variable Variable
VVV Diagonal Variable Variable Variable

f (C | y) = k−1f (y | C)f (C) (4)

where f (C | y) is the marginal density of the dataset for
known allocation clusters (c) obtained from Equation 5
(Partovi Nia 2009), and k >0 is a fixed value for
a given dataset. This value may be disregarded in
numerical calculations as it has no effect on agglomerative
clustering.

f (y) =
V∏

v=1

f (yv) (5)

where the univariate random variable, yv , represents the
clustering sample dataset T (T = 1, . . . , Tc) in cluster C
(c = 1, . . . , C), recorded on the continuous variable, v
(v = 1, . . . , V ). The marginal density for each variable
is a convex combination of the spike-and-slab densities.
The spike-and-slab distribution and its parameters are
discussed by Partovi Nia and Davison (2012).

To apply SSB in practice, in the beginning, each
sample was considered an individual cluster. Thus, the
number of samples was equal to that of clusters, meaning
that C = T and, as such, the number of samples of
cluster, c, was Tc = 1 for all, c = 1, . . . , C; then, pairwise
merges were applied. To do so, the clustering posterior
(Equation 4) was computed and the merge that maximized
(Equation 4) was applied. The log posterior, gc =
logf(C | y), was the most optimal merge with c clusters;
this was adopted to represent the dendrogram height
(Partovi Nia and Davison 2012). Based on Equation 4,
clusters c1 and c2 were to join to build a new cluster c;
as a result, Tc = Tc1 + Tc2. In doing so, the algorithm
continues examining all pairwise merges again and it
is proceeded until all clusters are combined; therefore,
all samples are within one cluster. The most suitable
grouping, determined via the posterior as an objective

function in an agglomerative procedure, maximizes gc

over c = 1, . . . , C. The groupings pertaining to gc

were reserved in agglomerative order as clusters (c) is
increased; hence, a dendrogram illustration was possible.
Although a monotone height function is a requisite to
create a dendrogram, gc is not necessarily monotone. For
this reason, a transformation, which is gmax = max (gc),
is applied that assumes that cmax = argmax (gc) is the
number of clusters maximizing gc. When c > cmax, the
dendrogram height becomes negative as per: hc = gmax −
gc, and therefore, the formula is revised as: hc = gc −
gmax, which is positive. If gc is unimodal, hc is monotone
by definition; as such, splitting the dendrogram at zero
provides the grouping that maximizes gc. As plotting a
dendrogram in R requires having positive heights, hc is
revised as: hc − min (hc) (Partovi Nia and Davison 2012).

In this Bayesian clustering approach, the importance
of variables for clustering was represented in the Bernoulli
random variable, δv . Note that the log posterior was
utilized as an objective function to identify the optimal
number of clusters of SSB.

The details of the SSB model are described by Partovi
Nia and Davison (2012). To apply SSB, the “bclust”
R package (https://cran.r-project.org/src/contrib/Archive/
bclust/) was utilized, as it was developed on basis of the
presented approach.

Evaluation of Optimal Clusters Identified by GFMM and SSB
To appraise the optimal cluster numbers identi-

fied by BIC and the log-posterior for GFMM and
SSB, respectively, we applied 30 indices provided
by the NbClust R package (https://cran.r-project.org/
web/packages/NbClust/NbClust.pdf). These indices were
applied to ascertain the most appropriate number of clus-
ters that may exist in the geochemical dataset. To calculate
the 30 indices, we selected “euclidean” to compute the
dissimilarity index. Then, according to the majority rule,
the cluster number with the highest frequency (i.e., based
on the results of these 30 indices), was selected as the
optimal clustering number.

Assessment of Clusters Via Standard Piper Diagram and PCA
Clusters

To examine whether the clustering results were plau-
sible, we applied the Piper diagram (Piper 1944; Rus-
soniello and Lautz 2020) to clusters of the classification
approach (GFMM or SSB) in which the number of clusters
was more similar to that identified by the NbClust R pack-
age. We deployed Piper to reveal the major cations and
anions, thereby establishing the predominant water type.
To create Piper, we used the publicly available GW_Chart
program (Winston 2000).

The PCA was deployed to further investigate the
suitability of the resultant clusters and ascertain the dom-
inant factors underlying the geochemistry of observation
points (i.e., groundwater observation wells, lakes, drink-
ing production wells). Similar to the Piper diagram, we
used PCA to assess the clusters from the classification
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Figure 3. Methodological workflow that commences from sampling to assessing the selected classifier.

approach (GFMM or SSB) in which the number of clus-
ters were more close to that specified by several indices
of the NbClust R package.

The methodological steps adopted in the current study
were represented using a flowchart (Figure 3).

Results

Ascertaining the Optimal Number of Clusters
The resulting optimal number of clusters are illus-

trated in Figures 4a-4c; the optimal number of clusters
identified via BIC, for GFMM was nine (Figure 4a).

According to the highest BIC value, the most suitable
model was the “ellipsoidal, equal volume, shape, and ori-
entation” (EEE) (Table 1), as shown by Figure 4a.

The optimal number of clusters identified via maxi-
mum of the log posterior for the SSB model was three
(Figure 4b).

As the clusters from SSB were presented using a
dendrogram, the number of clusters was more subjective
(Partovi Nia and Davison 2012) (Figure 7).

Based on the majority indices as implemented in
the NbClust R package, five objective functions/indices
representing the highest frequency suggest that two and
nine are the optimal number of clusters. As samples were
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Figure 4. Identification of optimal clusters: (a) the optimal number of clusters and the suitable model (Table 1), identified
for the clustering approach using GFMM (note that the best model was identified based on the greatest BIC); (b) the optimal
number of clusters for SSB (similarly, note that the optimal number of clusters was based on the greatest log posterior); and
(c) the most suitable cluster number specified using the majority approach following Charrad et al. (2014).

collected from different sources (i.e., lake, observation
wells, and gallery of production wells), and distributed
across the region, we regarded nine as the number of
clusters identified using the frequency of majority indices
(Figure 4c).

Classification of Observations and Quantification
of Uncertainty Using GFMM

Figure 4 shows that the EEE model (Table 1)
of the GFMM fitted by the Expectation-Maximization
(EM) algorithm yielded nine clusters. As stated earlier,
the EEE model may plausibly fit to the mixture com-
ponents of geochemical parameters (Figure 4a) where
−1187.50 and −3428.04 were the log-likelihood and BIC,
respectively. Given the 131 observations in the dataset,
13, 10, 6, 42, 9, 17, 12, 11, and 11 of the observa-
tions/samples (Table S1), were classified in the clus-
ters of 1 to 9, respectively (Figure 5); in other words,

approximately 10%, 7%, 4%, 32%, 6%, 13%, 9%, 8%,
and 8% of observations were categorized from C1 to
C9, respectively. Therefore, C4 and C3 with 42 and
six members comprise the largest and smallest clusters,
respectively.

One of the biggest advantages of the GFMM is that
it is able to demonstrate the probability assignment of
each sample to its most suitable cluster. Interestingly,
nearly each observation point corresponded to one cluster
and was represented by a strong probability, P ≥0.80
(Figure 5). All observations of GW1, sampled at different
time periods (Table S1), made C1; the same was
true for observations of GW2, GW26, GW28, GW30,
Boe, and Fae that structured the clusters C2, C7, C8,
C9, and C5, respectively. However, some observations
did not fall into one cluster exclusively. For instance,
GW2_11 was structured into C3, while the remainder of
observations pertaining to GW2 were categorized as C2.
Likewise, GW28_2 fell under C3, while the remaining
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Figure 5. Assignment of sampling points to its highly probable cluster (i.e., clusters 1 to 9). Note that no observation fell into
the probability category of 0.20 to 0.50 and 0.50 to 0.80.

observations belonging to GW28 were represented by
C8. Moreover, observations for some of the sampling
points showed considerable similarity, thus structuring
into one cluster. In this regard, C3 was formed by
observations from GW2, GW8, and WW_1 to WW_4;
C4 was produced by observations from GW20, GW21
(except for GW21_5), GW22, and WW_5 to WW_12,
while C6 included all observations from GW23 and
GW25.

Figure 6 illustrates a two-dimensional (2D) data plot
projected onto the first two directions specified with
uncertainty boundaries and data points, that were marked
according to the corresponding mixture component.
Uncertainty was indicated through a grayscale, whereby
darker regions reflected higher uncertainty. In the context
of uncertainty boundaries among clusters, it was evident
that most of the nine clusters showed a narrow uncertainty
boundary where they were satisfactorily distinguished
from each other, albeit with a marginal overlap between
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Figure 6. The nine identified clusters of GFMM with uncer-
tainty areas projected onto the first two GMMDR directions
(Dir1 and Dir2).

C3, C4, and C6 (Figure 6). Interestingly, one of the
samples of C5 (i.e., GW21_5) was assigned to C4, given
the delineated uncertainty boundaries among the clusters;
Figure 5 shows that C5 was fully structured with the two
lake samples and a sample of an observation well (i.e.,
GW21_5) (see Table S1).

Discerning Geochemical Clusters Using the SSB Model
According to the dendrogram in Figures 7 and 8

and the phenon line drawn at the dissimilarity index
of 32, three clusters (G1 to G3) were identified for
the 13 observation points consisting of 131 samples
via SSB. Figure 7 shows that observations at the two
lakes, Fae and Boe, formed G1 with an almost strong
similarity or a low dissimilarity index. The observations
of sampling points GW28, GW25, and GW23 structured
G2, in which the former did not share a striking similarity
with the latter two; GW25 and GW23 exhibited a
close similarity as quantified by the dissimilarity index
at almost “zero” (Figure 7). The largest cluster, G3,
consisted of eight observation points, in which a wide
range of similarity/dissimilarity was observed. Notably,
this cluster itself was comprised of three sub-clusters.
With the exception of GW30 which represents a stand-
alone component within the entire cluster, the remaining
sampling points were grouped together, albeit with
different patterns and numbers. In this regard, GW20
and GW1 were clustered together with a remarkable
similarity, while GW26, GW2, GW21, WW, and GW22,
presenting with an order of increasing similarity or
decreasing dissimilarity, were patterned on one sub-
cluster.

In addition to the hierarchical clustering illustrated in
Figure 7, an image plot was superimposed onto the den-
drogram (Figure 8), in which observation points and vari-
ables were clustered in rows and columns, respectively.

Figure 7. Hierarchical clusters detected using the SSB
model.

The rainbow color scheme used in this plot was used
to illustrate minimum and maximum values, which were
shown in red and magenta, respectively. Therefore, the
corresponding colors of intermediate values, depending
on their proximity to the minimum and maximum, fell
within this rainbow-colored range. Figure 8 shows that
Fae and Boe created G1 with an almost strong simi-
larity shared by three variables, including Na+, PO3−

4 ,
and Fe2+; these were found to be almost identical, thus
also forming one cluster. Due to the similarity for SO2−

4
(orange, Figure 8), for observation points GW28, GW25,
and GW23 (G2), it was structured as one cluster itself.
The observation points, GW23 and GW25, created a sub-
cluster with striking similarity (Figure 7); they benefited
from three variables, including Fe2+, SO2−

4 , and pH that
fell within the same cluster-variable. The same held true
for GW28 and GW25, where SO2−

4 shared similarities
between them; likewise, DOC, SO2−

4 , and SO2−
4 pro-

vided other cluster-variables between GW28 and GW23.
The stand-alone sub-cluster GW30 (Figure 8) demon-
strated meaningful similarity with GW20 and GW26 due
to the shared cluster-variable, DOC and Mg2+; the latter
showed only similarity between GW30 and GW26. Like-
wise, GW30 displayed a certain similarity with GW22,
WW, GW21, and GW1 in accordance with the shared
cluster-variables, K+, Na+, PO3−

4 , and pH, respectively.
Furthermore, there was no cluster-variable within the
largest cluster (G3) that consisted of GW30, GW20, GW1,
GW26, GW2, GW21, WW, and GW22. However, there
were cluster-variables within the sub-clusters of the largest
cluster. In this regard, DOC, SO2−

4 , and Cl− were cluster-
variables of GW20 and GW1, while GW26, GW2, GW21,
WW, and GW22 had only one cluster-variable; Ca2+. The
sampling points, GW26, GW2, and GW21, shared a close
similarity by having four cluster-variables consisting of
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Figure 8. Superimposing an image plot onto a dendrogram tree obtained from applying the SSB algorithm (Figure 7), in
which the clustering of observation points and variables/parameters were incorporated.

Mn2+, Ca2+, K+, and Cl−. The same was true for WW
and GW22, in which four cluster-variables existed; Mn2+,
Fe2+, Ca2+, and EC.

Quantifying the Probability of Observation Assignments
to each Cluster Via SSB

As each of the clusters identified using GFMM
were broadly representative of one observation point (see
Figure 5), we computed the probability assignment of each
observation point to its most probable cluster (Figures 7
and 8). This enabled a comparison of the membership
probabilities estimated by GFMM and SSB for each
observation point/cluster.

The probability to which each observation point was
clustered using SSB is illustrated by Figure 9a; these
probabilities are given in ascending order, where the
highest and lowest probabilities pertained to GW28 and
GW21 with a probability >0.9 and 0.15, respectively.
In comparison with GFMM, the probabilities calculated
using SSB showed only GW28, Boe, GW30, and GW2
fell within the probability category of 0.8 to 1. By contrast,
all observations pertaining to each cluster (C1 to C9)
were classified as the narrow probability range of 0.8
to 1, as approximated using GFMM. Counter-intuitively,
some observation points structuring one sub-cluster such
as GW23 and G25 and sharing a striking similarity
(Figure 7), suggested a middle probability of membership
(approximately 0.5) in this sub-cluster; the same held true
for GW20 and GW1.

Given the spike-and-slab models used in this
approach, we were able to determine the parameters
that most influenced the clustering typology. As these
parameters were arranged based on variable importance

(a)

(b)

Figure 9. (a) The probability that relates each observation
point to clusters determined using the SSB model (Figures 7
and 8). Note that the observation points are given in
ascending order of probability; and (b) the most important
variables (in order of importance), influencing the clustering
of SSB as quantified using the log Bayes factor.
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Figure 10. Hydrogeochemical facies discerned using the Piper diagram for the nine clusters of GFMM.

(Figure 9b), it was observed that only three variables had
an impact on clustering (i.e., Na+, SO2−

4 , and Cl−), while
the remaining variables had no effect on clustering.

Evaluation of GFMM-Clusters with the Piper Diagram
and PCA

As the number of clusters identified by GFMM was
exactly the same as the number of clusters obtained
from the majority index (Figures 4a and 4c) (i.e., nine),
the plausibility of clustering results from GFMM was
examined using the Piper diagram and PCA (Figures 10
and 11). As such, the C1 to C9 clusters were illustrated on
the Piper diagram and a 2D plot in which the x and y axis
represented the first and second principal components,
respectively. Figure 10 shows that clusters were almost
well distinguished from each other while being grouped
all together as a Ca2+-HCO−

3 water type, in which Ca2+

and HCO−
3 were the predominant cation and anion for

all clusters, respectively. As all clusters (C1 to C9) fell
into one water type category, C1 and C6 had the highest
and lowest Ca2+concentrations, respectively; these are
well illustrated by the boxplot (Figure S1). Likewise, the

highest and lowest HCO−
3 concentrations were associated

with clusters C8 and C2, respectively. Despite the striking
similarity among clusters that fell into one water type
category (Figure 10), these clusters did not completely
overlap; this supports the distinction created with the nine
clusters from GFMM.

The PCA of the dataset provided 13 eigenvalues (cor-
responding to the variance of the 13 geochemical param-
eters), and 13 eigenvectors (corresponding to 13 compo-
nents that were linear combinations of 13 geochemical
parameters). Table 2 lists the first four principal compo-
nents in which the eigenvalues were >1, thus explain-
ing approximately 75% of the variance. To evaluate and
interpret principal components with respect to possible
underlying processes, the Pearson correlation coefficients
of the 13 original standardized hydrochemical parameters
and the principal components (i.e., the Loadings) were cal-
culated; this described how much each variable/parameter
contributes to a particular PC. Due to the high variabil-
ity attributable to these two principal components, further
analysis was conducted for these particular principal com-
ponents.
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Figure 11. Principal component scores for the first two
components. Samples belonging to one cluster are illustrated
with the same color. Note that the nine ellipses correspond
to the nine identified clusters (C1 to C9) from GFMM.

Table 2
Principal Component Loadings, Eigenvalues, and

the Explained Variances for the First Four
Components

Variable PC1 PC2 PC3 PC4

pH −0.55* 0.00 0.03 0.28
EC 0.40 0.79** −0.02 −0.15
Cl− −0.16 0.78 ∗ ∗ 0.43 −0.26
SO2−

4 −0.60∗ 0.60∗ −0.15 −0.26
PO3−

4 0.65∗ −0.45 0.16 0.04
Na+ 0.39 0.32 −0.40 0.69 ∗ ∗
K+ 0.31 0.19 0.32 0.32
Mg2+ 0.55∗ 0.14 0.72 ∗ ∗ 0.00
Ca2+ 0.35 0.80∗ −0.38 −0.11
Fe2+ 0.76 ∗ ∗−0.19 0.20 −0.44
DOC −0.33 0.32 0.53∗ 0.60∗
HCO−

3 0.83 ∗ ∗ 0.39 −0.15 0.13
Mn2+ 0.73 ∗ ∗−0.20 −0.23 0.12
Eigenvalue 3.82 2.89 1.54 1.40
Explained variance (%) 29.61 22.46 11.95 10.89

Note that the absolute values that were approximately ≥0.5 (moderate
loadings), and ≥0.7 (strong loadings) for each component are denoted by
“*” and “**”, respectively.

To further inspect the clustering results from GFMM,
according to the nine clusters (Figure 5), nine ellipses
corresponding to C1 to C9 were established on a plot
of principal component scores relating to the first two
components (PC1 and PC2) (Figure 11). Clusters were
mainly largely separated from each other, although C4
and C8 showed a large and small degree of overlap
with C9, respectively; C7 formed as a sub-cluster
within C3.

Discussion

Analysis of Clusters Delineated by GFMM and SSB
The nine delineated clusters closely corresponded

to the 13 observation points in the dataset (Figure 5);
each cluster resembled one or two observation points.
This particularly holds true for C1, C2, C5, C6, C7,
C8, and C9, which represented GW1, GW2, Boe/Fae,
GW23/GW25, GW26, GW28, and GW30, respectively.
Subtle differences observed between clusters suggest the
possibility of a mixture condition in which geochemical
characteristics may be ascribed to the geochemistry of the
lakes, groundwater observations wells, and the gallery of
drinking water production wells.

The nine clusters of GFMM were distinguished
on the Piper diagram with some marginal overlaps
(Figure 10). Yang et al. (2020) showed that seven
clusters resulting from hierarchical cluster analysis were
reasonably reflected by the Stiff and Piper diagrams.
This indicates that standard techniques such as the Piper
diagram are still a useful tool to assess an advanced
clustering approach. Marginal overlaps among clusters
may be associated with similarly high concentrations
of Ca2+and HCO−

3 , and similarly low concentrations
of Cl− and Mg2+ (see Figure S1). The viability of
the GFMM algorithm was more evident when it could
differentiate nine geochemical clusters for what had been
characterized as one water type (i.e., Ca2+-HCO−

3 ), by the
Piper diagram; this signifies that GFMM may successfully
detect even subtle differences in the dataset.

To examine the clustering of GFMM with PCA,
nine obtained clusters were projected onto a plot created
using the first two principal components (Figure 11).
The size of the ellipses demonstrates the degree of
similarity between samples captured by an ellipse; a
higher density of samples within one ellipse indicates
stronger similarities between samples, implying a smaller
level of uncertainty reflected in a certain cluster (Scrucca
et al. 2016). For instance, C3 represented the largest
ellipse while being recognized as the smallest cluster
with only six samples (members). This suggests a low
degree of similarity between its members and indicates
considerable uncertainty where two samples were across
the uncertainty boundary and one sample overstepped the
boundary (Figure 6). By contrast, C4 was the largest
cluster with 42 members; it showed a higher similarity
between its samples, yielding a smaller ellipse. In this
regard, C1, C2, and C6 with a high density of samples
within their ellipses, explained a remarkable similarity
found between members of each cluster. Given the
distinct geochemical characteristics of these two lakes
(Figure S1), the GW21_5 should have already been
assigned to C4, which was also assigned to other samples
of observation well GW21. Rectifying the misleading
assigned probability of GW21_5 to C5 was suggested by
elliptical clusters in Figure 11; this was further advocated
by the uncertainty boundaries in Figure 6. Although the
successful application using PCA to assess a clustering
method was demonstrated (e.g., Iwamori et al. 2017; Yang
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et al. 2020), Liu et al. (2021) drew a comparison between
t-distributed Stochastic Neighbor Embedding (t-SNE) and
PCA. They found that t-SNE showed superiority over
PCA, in which members of each cluster plotted over a 2D
t-SNE were relatively well agglomerated together rather
than those of PCA.

By superimposing an image plot onto a dendrogram
tree derived from the SSB algorithm (Figure 8), we iden-
tified the discrepancy among parameters of a certain clus-
ter. This means that disparities among individual sam-
ples of geochemical facies will not be hidden; this is
of paramount importance to future water quality man-
agement. For instance, GW28, GW25, and GW23 were
grouped as G2 despite the distinct colors (considerable dif-
ferences) for Mn2+ and Ca2+. The same held true for G1,
in which distinct colors, particularly for Mn2+, HCO−

3 ,
and DOC, were easily recognized. Thus, different factors
may control the geochemistry of a certain cluster, although
the samples of one cluster share a strong similarity.

By comparison, the probabilities of all GFMM clus-
ters had a probability membership ≥0.8, while the cluster
membership probability of observation points of SSB
(nearly correspondent to the nine clusters from GFMM),
ranged from <0.2 to >0.8. Therefore, the probability
assignment of only four observation points (GW28,
Boe, GW30, and GW2) to specific clusters was nearly
identical; that is ≥0.8 for both methods. The probability
assignment of three observation points varied from 0.6
to 0.8 (GW1, GW26, and Fae). Likewise, the probability
of membership of observation points, GW25 and GW23,
varied from 0.4 to 0.6. Only the probability of member-
ship of two clusters fell below 0.2; this should be treated
with caution in the context of water quality management.

Due to the highly distinguishable geochemistry of the
two lakes, C5 (Figure 5; GFMM) and G1 (Figure 8; SSB)
were majorly formed based on all samples pertaining to
the two lakes, and to only one sample from a groundwater
observation point (i.e., GW21_5; see Figure 5).

Note that the most effective parameters on the
clustering using SSB (i.e., Na+, SO2−

4 , and Cl−) were
consistent with the strong and moderate loadings of PC4,
PC1/PC2, and PC2, respectively.

Strengths and Weaknesses of GFMM and SSB
for Clustering

To further assess the effectiveness of GFMM and SSB
for classification purposes, we applied them to another
dataset with the known number of clusters; this was the
Oslo dataset (see Figures S3 and S4). Theoretically, we
expected nine clusters corresponding to nine different
plants from the Oslo dataset (Liu et al. 2021). The
findings demonstrate that GFMM failed to distinguish the
measurement of the nine plants into nine clusters; rather,
the result was three clusters (Figure S3). By contrast,
SSB could successfully differentiate the dataset into nine
groups, albeit this data had a wide range of similarity
among the groups (Figure S4).

Although GFMM was unsuccessful in differentiating
the nine different materials of plants into nine clusters,

it could satisfactorily classify the geochemical parameters
of the capture zone of the waterworks in this study as
nine clusters. Each cluster corresponded to an observation
point; the exception to this was for GW20, GW21, GW22,
and WW, where their parameters constituted one cluster
(i.e., C4) (Figure 5). This is likely because GW20, GW21,
and GW22 were evenly distributed around the waterworks
(i.e., WW), with an average distance ranging from 700
to 1000 m; as a result, a similar geochemical pattern
for these points was detected by GFMM. The clusters
of GFMM were congruent with the classification carried
out by the PCA and Piper diagram. Therefore, the Oslo
dataset or similar datasets such as the Taiyuan karst water
(Ma et al. 2011) and Jianghan Plain groundwater (Yang
et al. 2020) may only be used as auxiliary indices to assess
the performance of a clustering method. However, making
a conscious decision on the efficacy of a clustering method
also requires the soft knowledge of the practitioner, as is
the case for the geochemical dataset of this study and the
results obtained from applying GFMM.

The strength and weakness of SSB and GFMM
should be considered when applying them to a dataset,
specifically to a geochemical dataset obtained from an
aquifer or waterworks. As SSB can operate based on
replications, it can yield a clear-cut hierarchal group, in
which entire observations belonging to a certain group
may easily be visualized, and the similarity/dissimilarity
among groups may easily be detected (see Figure 7).
In addition SSB makes it possible to discern the extent
of similarity among observations points and compare
the degree of similarity among parameters/variables of
obtained groups. Thus, the most important parameters
that create distinctions between groups may be assigned.
GFMM yields clusters over the time series and therefore,
the geochemical evolution may be detected. This means
that any turning point or break in the clusters, normally
due to a significant change within the area of interest, may
effectively be identified. This was the case for shifting the
geochemical pattern of WW from C3 to C4 from 2002.
It seems that GFMM was sensitive to the nature of the
dataset of interest, thus a preprocessing of the dataset
should be carefully conducted prior to its use. Due to its
high sensitivity, preprocessing should be carried out using
different transformation methods. In this regard, one of
the datasets with known clusters (e.g., the Oslo dataset)
may be utilized to ascertain the proper transformation
technique. Generally, it is suggested that GFMM and SSB
are applied to the dataset of interest to take advantage of
the complementary outputs of these approaches alongside
the quantified uncertainty of each obtained cluster. This is
of huge importance when using these datasets for water
quality management of waterworks or an aquifer.

Conclusion
It is hugely challenging to delineate the geochemical

facies of the capture zone of waterworks and identify
controlling factors influencing geochemistry. This is
particularly relevant for waterworks that are dynamically
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influenced by lake-aquifer flux exchange. To identify
the spatiotemporal geochemical evolution and its driving
factors, a number of methods were developed; these
methods ranged from classic diagrams such as Stiff and
Piper to advanced clustering/classification algorithms such
as multivariate statistics and machine learning algorithms.
Despite the significant advances in recently developed
methods for this purpose, there is considerable uncertainty
ascribed to the ascertained clusters; this imposes severe
constraints on the suitability of obtained clusters for
groundwater quality management of the capture zone of
waterworks.

To address this issue, we proposed a scheme where
two classifiers with cluster memberships given in terms
of probability were appraised against each other. For this
purpose, two sound clustering algorithms were deployed
to evaluate the validity of clusters obtained from either
method; these algorithms were GFMM and SSB. The
algorithms were applied to 13 hydrochemical parameters
collected during different sampling periods at 13 observa-
tion points (including 10 observation wells, two lakes, and
a gallery of drinking production wells). These observation
points were located across the Barnim Highlands plateau
to the northeast of Berlin, Germany. We also drew com-
parisons between the most important parameters control-
ling the geochemistry of clusters obtained from GFMM
and those obtained from SSB. The results demonstrate that
GFMM produced nine clusters with a probability of mem-
bership that was ≥0.8 for either cluster. SSB yielded three
major hierarchal clusters in which the probability of obser-
vations ranged from <0.2 to >0.8. Given the comparison
between clusters delineated by GFMM and SSB, the prob-
ability assignment of only four observations to specific
clusters was nearly identical; this means that the prob-
ability of observations was ≥0.8 for both methods. The
results indicated that three parameters (i.e., Na+, SO2−

4 ,
and Cl−), given in order of importance, could influence the
classification carried out by SSB. Furthermore, the clus-
tering result from GFMM was in good agreement with the
clustering obtained from PCA and the Piper diagram.

Our findings also show that the geochemical cluster
(identified by GFMM) of the capture zone of the
waterworks resembled that of the lakes from 2002. This
means that the geochemical properties of the waterworks
have switched from C3 to C4. Therefore, we postulate that
since this time, a noticeable inflow from the lakes into the
capture zone of the waterworks has been activated. This is
a result of the groundwater head drawdown of the capture
zone due to the overutilization of groundwater.

In conclusion, the complementary implications of
GFMM and SSB that enhance the current understanding of
underlying geochemical processes relating to the capture
zone of the waterworks are highly useful to inform future
groundwater quality management and planning.
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