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Abstract
A bipartite graph G = (U , V , E) is convex if the vertices in V can be linearly ordered
such that for each vertex u ∈ U , the neighbors of u are consecutive in the ordering of V .
An induced matching H ofG is a matching for which no edge of E connects endpoints
of two different edges of H . We show that in a convex bipartite graph with n vertices
andm weighted edges, an inducedmatching ofmaximum totalweight can be computed
in O(n +m) time. An unweighted convex bipartite graph has a representation of size
O(n) that records for each vertex u ∈ U the first and last neighbor in the ordering of V .
Given such a compact representation, we compute an induced matching of maximum
cardinality in O(n) time. In convex bipartite graphs, maximum-cardinality induced
matchings are dual to minimum chain covers. A chain cover is a covering of the edge
set by chain subgraphs, that is, subgraphs that do not contain induced matchings of
more than one edge. Given a compact representation, we compute a representation
of a minimum chain cover in O(n) time. If no compact representation is given, the
cover can be computed in O(n+m) time. All of our algorithms achieve optimal linear
running time for the respective problem and model, and they improve and generalize
the previous results in several ways: The best algorithms for the unweighted problem
versions had a running time of O(n2) (Brandstädt et al. in Theor. Comput. Sci. 381(1–
3):260–265, 2007. https://doi.org/10.1016/j.tcs.2007.04.006). The weighted case has
not been considered before.
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Fig. 1 a A convex bipartite graph G = (U , V , E) containing an induced matching H of size 3, highlighted
in red. Since we use natural numbers as elements ofU and V , we will explicitly indicate whether we regard
a number x as a vertex ofU or of V . There is no induced matching with more than 3 edges: vertex 3 ∈ U is
adjacent to all vertices of V except 1 ∈ V . Thus, if we match 3 ∈ U , this can only lead to induced matchings
of size at most 2. Furthermore, we cannot simultaneously match 1 ∈ U and 2 ∈ U since every neighbor of
2 ∈ U is also adjacent to 1 ∈ U . b A minimum chain cover of G with 3 chain subgraphs Z1, Z2, Z3 (in
different colors and dash styles), providing an independent proof that H is optimal. Here, Z1, Z2, Z3 have
disjoint edge sets, which is not necessarily the case in general. c The compact representation of G

1 Introduction

A bipartite graph G = (U , V , E) is convex if the vertices in V can be numbered as
1, 2, . . . , nV so that the neighbors of every vertex i ∈ U form an interval {Li , Li +
1, Li+2, . . . , Ri } ⊆ {1, 2, . . . , nV },whichwedenote by [Li , Ri ], seeFig. 1a. For such
graphs, we consider the problem of computing an induced matching (a) of maximum
cardinality or (b) of maximum total weight, for graphs with edge weights.

An induced matching H ⊆ E is a matching such that the subgraph ofG induced by
the matched vertices has H as its edge set. This amounts to requiring that no edge of E
connects endpoints of two different edges of H , see Fig. 1a. More formally, a set H ⊆
E is an induced matching in G if for any two distinct edges (a, b), (a′, b′) ∈ H , the
four vertices a, b, a′, b′ are pairwise distinct, and none of the edges aa′, ab′, ba′, bb′
is present in E .

In terms of the line graph, an induced matching is an independent set in the square
of the line graph. The square of a graph connects every pair of nodes whose distance
is one or two. Accordingly, we call two edges of E independent if they can appear
together in an induced matching, or in other words, if their endpoints induce a 2K2
(a disjoint union of two edges) in G. Otherwise, they are called dependent.

In convex bipartite graphs, maximum-cardinality induced matchings are dual to
minimum chain covers. A chain graph Z is a bipartite graph that contains no induced
matching of more than one edge, i. e., it contains no pair of independent edges. (Chain
graphs are also called difference graphs [13] or non-separable bipartite graphs [8].)
A chain cover of a graph G with edge set E is a set of (not necessarily induced) chain
subgraphs Z1, Z2, . . . , Zk of G such that the union of the edge sets of Z1, Z2, . . . , Zk

is E , see Fig. 1b. A chain cover with k chain subgraphs provides an obvious certificate
that the graph cannot contain an induced matching with more than k edges. We will
elaborate on this aspect of a chain cover as a certificate of optimality in Sect. 5.
A minimum chain cover of G is a chain cover with the smallest possible number k
of chain subgraphs. In a convex bipartite graph, we have the following strong duality
statement, which is due to Yu et al. [27]: the maximum size of an induced matching
is equal to the minimum number of chain subgraphs of a chain cover, see Theorem 3.
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We denote the number of vertices by nU = |U |, nV = |V |, n = nU + nV , and
the number of edges by m = |E |. If a convex graph is given as an ordinary bipartite
graph without the proper numbering of V , it can be transformed into this form in
linear time O(n + m) [2]. (In terms of the bipartite adjacency matrix, convexity is
the well-known consecutive-ones property.) Unweighted convex bipartite graphs have
a natural implicit representation [24] of size O(n), which is often called a compact
representation [14,23]: every interval {Li , Li +1, . . . , Ri } is specified by its endpoints
Li and Ri , see Fig. 1c. Since the numbering of V can be computed in O(n+m) time,
it is easy to obtain a compact representation in total time O(n + m) [23,25]. The
chain covers that we construct will consist of convex bipartite subgraphs with the
same ordering of V as the original graph. Thus, we will be able to use the same
representation for the chain graphs of a chain cover.

Related Work and Motivation The problem of finding an induced matching of max-
imum size was first considered by Stockmeyer and Vazirani [26] as the “risk-free
marriage problem” with applications in interference-free network communication.
The decision version of the problem is known to be N P-complete in many restricted
graph classes [5,16,17], in particular bipartite graphs [5,17] that are C4-free [17] or
have maximum degree 3 [17]. On the other hand, it can be solved in linear time
in chordal graphs [4], and in polynomial time in weakly chordal graphs [6], trape-
zoid graphs, k-interval-dimension graphs and co-comparability graphs [12], amongst
others. For a more exhaustive survey we refer to [9].

The class of convex bipartite graphs was introduced by Fred Glover [11], who
motivates the computation of matchings in these graphs with industrial manufactur-
ing applications. Items that can be matched when some quantity fits up to a certain
tolerance naturally lead to convex bipartite graphs. The computation of matchings
in convex bipartite graphs also corresponds to a scheduling problem of tasks of dis-
crete length on a single disjunctive resource [15]. The problem of finding a (classic,
not induced) matching of maximum cardinality in convex bipartite graphs has been
studied extensively [10,11,25] culminating in an O(n) algorithmwhen a compact rep-
resentation of the graph is given [25]. Several other combinatorial problems have been
studied in convex bipartite graphs. While some problems have been shown to be N P-
complete even if restricted to this graph class [1], many problems that are N P-hard in
general can be solved efficiently in convex bipartite graphs. For example, a maximum
independent set can be found in O(n) time (assuming a compact representation) [23]
and the existence of Hamiltonian cycles can be decided in O(n2) time [19]. For a
comprehensive summary we refer to [14].

One of the applications given by Stockmeyer and Vazirani [26] for the induced
matching problem can be stated as follows. We want to test (or use) a maximum
number of connections between receiver-sender pairs in a network. However, testing
a particular connection produces noise so that no other node in reach may be tested
simultaneously.We remark that this type ofmotivation extends very naturally to convex
bipartite graphs when we consider wireless networks in which nodes broadcast or
receive messages in specific frequency ranges. Further, weighted edges can model the
importance of connections.
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Recently, Panda et al. [20] have built on our results to obtain polynomial algorithms
for finding maximum-weight induced matchings in circular-convex and triad-convex
bipartite graphs. These graph classes generalize convex bipartite graphs. Their algo-
rithms use Theorem 1 of our paper as a subroutine.

Previous Work Yu et al. [27] describe an algorithm that finds both a maximum-
cardinality induced matching and a minimum chain cover in a convex bipartite graph
in runtime O(m2). Their procedure is improved by Brandstädt et al. [3], resulting in a
runtime of O(n2). Chang [7] computes maximum-cardinality induced matchings and
minimum chain covers in O(n+m) time in bipartite permutation graphs, which form
a proper subclass of convex bipartite graphs.

Our Contribution We improve and generalize the previous results in several ways.
In Sect. 2 we give an algorithm for finding a maximum-weight induced matching

in a convex bipartite graph in O(n + m) time. The previous best algorithm [3] had a
runtime of O(n2) and was restricted to the unweighted case.

In Sect. 3 we show that for the unweighted case, a further speed-up is possible if a
compact representation of the graph is given: we specialize our algorithm from Sect. 2
to find induced matchings of maximum cardinality in O(n) runtime.

In Sect. 4 we extend the approach from Sect. 3 to obtain in O(n) time a compact
representation of a minimum chain cover. If the input graph is not given in compact
form, our algorithm can be adapted to produce a minimum chain cover (in standard
representation) in O(n + m) time. This improves the previous best algorithm [3],
which had a runtime of O(n2).

All of our algorithms achieve optimal running time for the respective problem and
model. Our results for finding a maximum-cardinality induced matching also improve
the running times of the algorithms of Pandey et al. [21] for the circular-convex and
triad-convex case, as they use the convex case as a building block.

An inducedmatching togetherwith a chain cover of the same cardinality constitute a
certificate of optimality, of linear size. In Sect. 5, we show how to check this certificate
for validity with very simple linear time algorithms. Thus, our algorithms for the
unweighted case are certifying algorithms, see [18] for a survey about this concept.

Strong duality suggests that there should be a weighted chain cover with the same
weight as themaximumweight of an inducedmatching in a convex bipartite graph.We
discuss this aspect in Sect. 6 and leave it as an open problem to extend our maximum-
weight matching algorithm to an efficient algorithm that also finds a minimum-weight
chain cover.

2 Maximum-Weight InducedMatchings

In this section, we compute a maximum-weight induced matching of a given edge-
weighted convex bipartite graph G = (U , V , E) in time O(n + m). We generally
write indices i ∈ U as superscripts and indices j ∈ V as subscripts. We consider E
as a subset of U × V . We assume that V = {1, . . . , nV } is numbered as described in
Sect. 1 and the interval {Li , Li + 1, . . . , Ri } ⊆ V of each vertex i ∈ U is given by
the left endpoint Li and right endpoint Ri . Each edge (i, j) ∈ E has a weight Ci

j .
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Fig. 2 The table entries that enter in the computation ofWi
j are shaded: They lie in rows that end to the left

of Wi
j (marked by arrows), and only the entries to the left of Li are considered

Our dynamic-programming approach considers the following subproblems: For an
edge (i, j) ∈ E , we define Wi

j as the cost of the maximum-weight induced matching
that uses the edge (i, j) and contains only edges in U × {1, . . . , j}. As we will see,
the following dynamic-programming recursion computes Wi

j :

Wi
j = Ci

j + max
(
{Wi ′

j ′ | Ri ′ < j, j ′ < Li } ∪ {0}
)

(1)

The range over which themaximum is taken is illustrated in Fig. 2. In this recursion,
we build the induced matching H of weight Wi

j by adding the edge (i, j) to some

induced matching H ′ of weight Wi ′
j ′ . We want H to be an induced matching: By

construction, the edge (i ′, j ′) is independent of (i, j), but it remains to show that the
other edges of H ′ are also independent of (i, j). In order to prove this (Lemma 2), we
use some sort of transitivity of the independence relation for edge pairs (Lemma 1).
First we state an observation:

Proposition 1 Two edges (i, j) and (i ′, j ′) are independent if and only if j ′ /∈ [Li , Ri ]
and j /∈ [Li ′ , Ri ′ ]. ��

We emphasize that the independence of (i, j) and (i ′, j ′) does not require that the
intervals [Li , Ri ] and [Li ′ , Ri ′ ] are disjoint, see, e.g., edges (4,6) and (5,9) in Fig. 1a.
Lemma 1 Let (i ′′, j ′′), (i ′, j ′), (i, j) ∈ E with j ′′ < j ′ < j . Assume that (i ′′, j ′′)
and (i ′, j ′) are independent, and (i ′, j ′) and (i, j) are independent. Then (i ′′, j ′′) and
(i, j) are independent.
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Proof By Proposition 1, we have j ′′ ≤ Ri ′′ < j ′ ≤ Ri ′ < j and j ′′ < Li ′ ≤ j ′ <

Li ≤ j . Thus, j /∈ [Li ′′ , Ri ′′ ] and j ′′ /∈ [Li , Ri ]. ��
Lemma 2 The recursion (1) is correct.

Proof By Proposition 1, any edge (i ′, j ′) with j ′ < j that is independent of (i, j)
satisfies Ri ′ < j and j ′ < Li . By Lemma 1, all other edges (i ′′, j ′′) used to obtain
the matching value Wi ′

j ′ are also independent of (i, j). ��
We create a table in which we record the entries Wi

j . We assume that the intervals

are sorted in nondecreasing order by Li , that is, Li ≤ Lh for i < h. The values
Wi

Li , . . . ,W
i
Ri form the i th row of the table. We fill the table row by row proceeding

from i = 1 to i = nU . Each row i is processed from left to right. This ensures that the
values on the right side of the recursion (1) have already been computed when they are
needed, see Fig. 2. The only challenge in evaluating (1) is the maximum-expression,
for which we introduce the following notation.

Mi
j = max

(
{Wi ′

j ′ | Ri ′ < j, j ′ < Li } ∪ {0}
)

(2)

Each row starts with the computation of the leftmost entry Wi
Li , which we discuss

later. When we proceed from Wi
j to Wi

j+1 we want to go incrementally from Mi
j to

Mi
j+1. Direct comparison of the respective defining sets leads to

Mi
j+1 = max

(
{Mi

j } ∪ {Wi ′
j ′ | Ri ′ = j, j ′ < Li }

)
(3)

In order to evaluate the maximum of the second set in (3) efficiently, we group
intervals i ′ with a common right endpoint Ri ′ = j together. Let S j be the earliest
startpoint of an interval with endpoint j . If there are no intervals with endpoint j , we
set S j := j . (It would be more logical to set S j := j + 1 in this case, but this choice
makes the algorithm simpler.) We maintain an array Pj [�] for S j ≤ � ≤ j that is
defined as follows:

Pj [�] := max
({

Wi ′
j ′

∣∣ Ri ′ = j; row i ′ has already been processed; j ′ ≤ �
} ∪ {0}

)

(4)

In a sense, Pj [�] is a provisional version of the expression max{Wi ′
j ′ | Ri ′ =

j, j ′ ≤ � }, which takes into account only the already processed rows. For (3), we
need the entry Pj [Li − 1], and we will show that all relevant entries have already been
computed whenever we access this entry:

Lemma 3 When entry Wi
j+1 is processed, M

i
j+1 can be computed by the formula

Mi
j+1 =

{
max{Mi

j , Pj [Li − 1]}, if Li − 1 ≥ S j

Mi
j , otherwise

(5)
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j: . . . 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 . . .

i = 13 37 40 25 23 36 35 45 42 37 36 48 47 59 61 62

i = 25 26 32 28 30 36 46 49 58 54 44 64

i = 38 – – – – – –

⎫
⎪⎬

⎪⎭
Ri = 26

P26 37 40 40 40 40 40 45 45 45 46 49 58 59 61 64

i = 19 38 27 28 35 49 46 41 42 45 52 43 44 52 67

i = 26 44 27 38 45 54 50 38 44 43 49 67 59

i = 34 – – – – – – – – –

i = 40 – – – – – –

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Ri = 27

P27 38 38 44 44 49 49 54 54 54 54 54 54 67 67

...
...

i = 30 69 72 75 81 80 86 82 87 73 89 – – – – –

j j + 1L30 = 18

Fig. 3 Example. We are in the process of filling row 30 from left to right. All rows with smaller index i have
been processed and are filledwith the entriesWi

j . Unprocessed entries aremarked as “–”. The figure does not

show the rows in the order in which they are processed, but intervals with the same right endpoint Ri = r are
grouped together. The bold entries collect the provisional maxima Pr in each group. By way of example, the
encircled entry P27[20] = 54 is themaximum among the shaded entries of the intervals that end at Ri = 27,
ignoring the yet unprocessed entries. As we proceed from j = 27 to j = 28 in row 30, the intervals with
Ri = 27 become relevant. The maximum usable entry from these intervals is found in position 17 of this
array, because 17 = L30 − 1. The entry P27[17] = 44 is marked by an arrow. The next entry W 30

28 is equal

to C30
28 + max{P27[17], P26[17], . . . , P17[17]} according to (2), by the interpretation of the entries Pj [�].

(Some of these entries might not exist.) The maximum in this expression is M30
28 , and in the algorithm it

is computed incrementally by formula (5) from P27[17] and the term M30
27 = max{P26[17], . . . , P17[17]},

which has been used for calculatingW 30
27 . We can confirm that the minimum over which P27[17] is defined

involves no unprocessed entries at this time (Lemma 3). Later, when the next row i = 34 in the group with
Ri = 27 is filled, the array P27 will updated

Figure 3 illustrates the role of the arrays Pj when processing a row.
Before proving that (5) defines indeed the same quantity as (3), we first discuss that

the expression (5) does not access the array Pj beyond its boundaries: The condition
Li − 1 ≥ S j ensures that the array index Li − 1 does not exceed the left boundary of
the array Pj . Also, the index Li − 1 never exceeds the right boundary j of the array
Pj , since Li < j + 1 ≤ Ri , and therefore Li − 1 ≤ j . Thus, Pj [Li − 1] is always
defined when it is accessed.

Proof (of Lemma 3) We distinguish three cases.
Case 1 No interval ends at j , and accordingly, S j = j .
In this case Mi

j+1 = Mi
j in (3) since its rightmost set is empty. Since Li < j +1 ≤

Ri , we have Li − 1 < S j = j and, thus, the right side of (5) evaluates also to Mi
j .

Case 2 There exists an interval ending at j , and Li − 1 < S j . The right side of (5)
evaluates to Mi

j . In (3), intervals i
′ that end at Ri ′ = j have Li ′ ≥ S j > Li − 1. Thus,
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Algorithm 1: Weighted Maximum Induced Matching

 Preprocessing:
for r := 1 to nV do

Find startpoint Sr of the longest interval [Sr , r ] with endpoint r
Create an array Pr [Sr . . r ] and initialize it to 0.
(If there is no such interval with endpoint r , set Sr := r and create an array with a single dummy
entry Pr [r ] that will remain at 0.)


 Main program:
F := 0 
 maximum entry in finished intervals
for � := 1 to nV do


 F = max{P1[1], P2[2], . . . , P�−1[� − 1]}
for all rows i ∈ U with Li = � do 
 Process each interval i that starts at �

r := Ri


 Process the i th interval [Li , Ri ] = [�, r ] and fill row i of the table:

M := Mi
�

:= F 
 M will be the current value of Mi
j

Wi
�

:= Ci
�

+ M 
 leftmost entry
for j := � + 1 to r do 
 compute successive entries

if S j ≤ � − 1 then
M := max{M, Pj−1[� − 1]} 
 Mi

j := max{Mi
j−1, Pj−1[� − 1]}

Wi
j := Ci

j + M


 Go through the computed entries again to update the array Pr :
q := 0 
 the row maximum so far
for j := � to r do

q := max{q,Wi
j } 
 q = max{0,Wi

�
,Wi

�+1, . . . ,W
i
j }

Pr [ j] := max{Pr [ j], q}
F := max{F, P�[�]} 
 update F as � is incremented

return F 
 the maximum weight of an induced matching

an edge (i ′, j ′) with j ′ < Li and Ri ′ = j does not exist, and the second set in (3) is
empty. Therefore, (3) evaluates to Mi

j+1 = Mi
j .

Case 3There exists an interval ending at j , and Li−1 ≥ S j . In this case, Pj [Li − 1]
is defined:

Pj [Li − 1] = max{Wi ′
j ′ | Ri ′ = j, j ′ ≤ Li − 1, row i ′ already processed } (6)

For each entry Wi ′
j ′ with j ′ < Li , we conclude that Li ′ ≤ j ′ < Li and, thus,

row i ′ has already been processed. This means that the condition that row i ′ has been
processed is redundant, and (6) coincides with maximum of the right set in (3). ��

After processing row i with startpoint � = Li and endpoint r = Ri , we have to
update the values in Pr [ j]. This is straightforward.

It remains to discuss the computation of the first value Wi
� of the row. An

edge (i ′, j ′), j ′ < � and edge (i, �) are independent if and only if the interval i ′
ends before �, that is Ri ′ < �. Since we process the intervals in nondecreasing
order by their startpoints, it suffices to maintain a value F with the maximum Wi ′

j ′
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in all finished intervals: those intervals i ′ that end before �. In other words F =
max{P1[1], P2[2], . . . , P�−1[� − 1]}. This value is easily maintained by updating F
as � increases. The full details are stated as Algorithm 1.

The update of the array Pr [ j] in the second loop can be integrated with the com-
putation of Wi

j in the first loop. When this is done, the values Wi
j need not be stored

at all because they are not used.
As stated earlier, when no interval ends at a point r ∈ V , we set Sr = r . The

array Pr consists of a single dummy entry Pr [r ] = 0. In this way, this case needs no
special treatment in the algorithm.

We have described the computation of the value of the optimal matching. It is
straightforward to augment the program so that the optimal matching itself can be
recovered by backtracking how the optimal value was obtained, but this would clutter
the program.

Theorem 1 A maximum-weight induced matching of an edge-weighted convex bipar-
tite graph can be computed in O(n + m) time. ��

3 Maximum-Cardinality InducedMatchings

For the unweighted version of the problem, we assume a compact representation
of a convex bipartite graph G = (U , V , E), that is, for each i ∈ U we are given
the startpoint Li and endpoint Ri of its interval {Li , Li + 1, . . . , Ri }. This makes it
possible to obtain a linear runtime of O(n).

The recursion (1) can be specialized to the unweighted case by setting Ci
j ≡ 1.

Wi
j = 1 + max

(
{Wi ′

j ′ | Ri ′ < j, j ′ < Li } ∪ {0}
)

(7)

This recursion is related to the previous algorithms [3,27] for computingmaximum-
cardinality inducedmatchings (andminimum chain covers) in convex bipartite graphs:
Yu et al. describe a greedy procedure that colors the edges of the bipartite adjacency
matrixwith integer values Ŵ i

j [27,GreedyDecompositionAlgorithm]. This procedure
is later also used by Brandstädt et al. [3, Procedure: Greedy Coloring]. It assigns to
each edge (i, j) the smallest possible color Ŵ i

j such that independent edges receive
different colors. Figure 4 below shows an example of such a coloring. Formally, we
can express this approach as a recursion:

Ŵ i
j = min

(
{ 1, 2, . . . ,m }\{ Ŵ i ′

j ′ | Ri ′ < j, j ′ < Li }
)

(8)

Our assignment (7), by contrast, picks the next color after the largest color of an
independent edge. By Lemma 1 it can be derived that the choices (7) and (8) agree,
i.e.Wi

j = Ŵ i
j for every edge (i, j). Thus, our explicit dynamic programming approach

produces the same coloring as the algorithmofYu et al. and it gives a new interpretation
and a different explanation of the assigned colors.

The original implementation given in [27] runs in time O(m2). Brandstädt et al.
[3] give an improved implementation which obtains the colors Ŵ i

j in O(n2) time. Our
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Fig. 4 An example showing a
section of the computation of
Wi

j by Algorithm 4. The
threshold values t6 and t7 are
shown as they change with the
rows that are successively
considered. The shaded entries
form the chain subgraph Z7 that
is used for the chain cover

j

i

6 6 6 6 6 6 6 6
6 6 6 6 6 6
6 6 6 6 6 6

6 6 6

6

...

6 6 6 6 6 6 6 6 7 7 7
6 6 6 6

7
6 6 6 6
6 6 6 6

6
7 7 7 7

7 7 7 7 7 7 7
7 7 7 7 7 7 7

7
7 7 7 7 7 7 7

7 7 7 7 7 7 7
7 7 7 7 7 7 7

7 7

7 7 7

7

7 7 7 7 7
7 7 7 7
7 7 7 7

7 8 8 8 8

7 8 8 8 8 8 87
7 7

7 8 8
8 8 8 8 87 7 7

7 7

7 8 8 8 8
8 8 8 9

7
7
7
7

7

8

6 6 6 6

6 6 6
6 6 6 6 6 6

7

t6

t7

7 7

Algorithm 1 from Sect. 2 improves on these results as it obtains the values Wi
j = Ŵ i

j
in total time O(n + m).

Given a compact representation, a further speed-up to O(n) time is possible: we
exploit some straightforward structural properties of the filled dynamic-programming
table:

Lemma 4 [27, Lemma 5] The values Wi
j are nondecreasing in each row.

Proof In (7), the maximum is taken over a set which is increasing with j . ��
Lemma 5 [3, Lemma 3.3, Lemma 3.4] Each row contains at most two consecutive
values.

Proof Let Wi
j be the largest value in some row i . Then, if we take a corresponding

matching of sizeWi
j , it is easy to see that we can remove the last two edges and replace

them by an arbitrary edge (i, k). This proves that Wi
k ≥ Wi

j − 1.

More formally, we can argue by the recursion (7): Assume there are values Wi
k ≤

Wi
j −2 in row i . By Lemma 4 we can assume k < j . By (7),Wi

j = 1+Wi ′
j ′ = 2+Wi ′′

j ′′

with Ri ′′ < j ′ < Li for some i ′′ < i ′ < i . Thus, j ′′ ≤ Ri ′′ < j ′ < Li ≤ k and by
definition of Wi

k according to (7) we have Wi
j − 2 = Wi ′′

j ′′ < Wi
k ≤ Wi

j − 2, which is
a contradiction. ��

Specializing Algorithm 1 to the unweighted case leads to a solution with O(n+m)

running time.Our O(n)-time algorithmwill follow the general scheme ofAlgorithm1,
with the following modifications.

– (I) In view of Lemmas 4 and 5, we will not fill each row individually, but we will
just determine the leftmost value w and the position where the entries switch from
w to w + 1 (if any).

– (II) The computation of the leftmost entry is exactly as in Algorithm 1.
– (III) The position where the entries of row i switch from w to w + 1 can be
determined from (7): If there is a row i ′ containing an entry w left of Li , then
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Algorithm 2: Unweighted Maximum Induced Matching, initial version
Set Q1 := Q2 := · · · := QnU := 0
F := 0
for � := 1 to nV do

for all rows i ∈ U with Li = � do 
 Process each interval i that starts at �
w := F + 1 
 leftmost entry

tw := leftmost endpoint Ri
′
of a row i ′ that contains an entry Wi ′

j = w with j < Li ≡ �

if tw < Ri then 
 There are two values w and w + 1 in this row:

 Wi

j = w for j = Li , . . . , tw


 Wi
j = w + 1 for j = tw + 1, . . . , Ri

QRi := max{QRi , w + 1} 
 The largest entry is w + 1.
else
 The same entry w is used for the whole row.

QRi := max{QRi , w} 
 The largest entry is w.

F := max{F, Q�} 
 update F as � advances

return F

Algorithm 3: Unweighted Maximum Induced Matching, second version
� Set t1 := t2 := · · · := tnU := nV + 1 
 The value nV + 1 acts like ∞.

Set Q1 := Q2 := · · · := QnU := 0
F := 0
for � := 1 to nV do

for all rows i ∈ U with Li = � do 
 Process each interval i that starts at �
w := F + 1 
 leftmost entry

� 
 tw is no longer computed from scratch

if tw < Ri then 
 There are two values w and w + 1 in this row:

 Wi

j = w for j = Li , . . . , tw ,


 Wi
j = w + 1 for j = tw + 1, . . . , Ri .

QRi := max{QRi , w + 1} 
 The largest entry is w + 1.
else
 The same entry w is used for the whole row.

QRi := max{QRi , w} 
 The largest entry is w.

F := max{F, Q�} 
 update F as � is incremented

� for all entries Wi ′
�

in column � do

� w := Wi ′
�

� tw := min{tw, Ri
′ };

return F

Wi
j must be w + 1 as soon as j > Ri ′ . The algorithm determines the threshold

position tw as the smallest right endpoint Ri ′ under these constraints. Then the
entries w + 1 in row i start at j = tw + 1 if these entries are still part of the row.

– (IV)We do not maintain the whole array Pr for each r , but only its last entry Pr [r ];
this is sufficient for updating F and thus for computing the leftmost entries in the
rows. We call this value Qr .

This leads to Algorithm 2.
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Algorithm 4: Unweighted Maximum Induced Matching, final version
� Initialize lists T1, . . . ,TnV to empty lists

Set t1 := t2 := · · · := tnU := nV + 1
Set Q1 := Q2 := · · · := QnU := 0
F := 0
for � := 1 to nV do

for all rows i ∈ U with Li = � do 
 Process each interval i that starts at �
w := F + 1 
 leftmost entry

if tw < Ri then 
 There are two values w and w + 1 in this row:

 Wi

j = w for j = Li , . . . , tw ,


 Wi
j = w + 1 for j = tw + 1, . . . , Ri .

� add (w+1, Ri ) to the listTtw+1 
 don’t forget to update tw+1 when � reaches tw + 1

� add (w, Ri ) to the list T� 
 don’t forget to update tw when � advances
QRi := max{QRi , w + 1}

else
 The same entry w is used for the whole row.
� add (w, Ri ) to the list T�

QRi := max{QRi , w}
F := max{F, Q�} 
 update F as � advances

� for all (w, r) ∈ T� do tw := min{tw, r} 
 perform the necessary updates

return F

We will improve Algorithm 2 by maintaining the values tw instead of computing
them from scratch. We use the fact that the smallest value w in the row is known, and
hence we can associate tw with the value w instead of the row index i , as is already
apparent from our chosen notation. We update tw whenever � increases. The details
are shown in Algorithm 3. The differences to Algorithm 2 are marked by �.

This still does not achieve O(n) running time. The final improvement comes from
realizing that it is sufficient to update tw when Wi ′

l is the leftmost entry w in row i ′.
The time when such an update occurs can be predicted when a row is generated. To
this end, we maintain a list T j for j = 1, . . . , nV that records the updates that are due
when � becomes j . This final version is Algorithm 4.

The runtime ofAlgorithm4 isO(nU+nV ): Processing each interval i takes constant
time and adds at most two pairs to the lists T . Thus, processing the lists T for updating
the tw array takes also only O(nU ) time.

Some simplifications are possible: The addition of (w, Ri ) to the list T� in the
case of two values can actually be omitted, as it leads to no decrease in tw: tw is
already < Ri . The algorithm could be further streamlined by observing that at most
two consecutive values of tw need to be remembered at any time. Again, it is easy to
modify the algorithm to return a maximum induced matching in addition to its size.

Theorem 2 Given a compact representation, a maximum-cardinality induced match-
ing of a convex bipartite graph can be computed in O(n) time. ��
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4 Minimum Chain Covers

For convex bipartite graphs, we have the following important duality result of Yu et
al. [27], see also [3]:

Theorem 3 In a convex bipartite graph, the size of a maximum-cardinality induced
matching equals the number of chain subgraphs of a minimum chain cover.

Along the lines of this duality relation, we are going to extend Algorithm 4 to obtain
a minimum chain cover of a convex bipartite graph G = (U , V , E).

Let W ∗ be the cardinality of a maximum induced matching of G. Accordingly, the
values Wi

j cover the range {1, . . . ,W ∗}. We create W ∗ chain subgraphs Z1, . . . , ZW ∗

of G. The edges (i, j)withWi
j = w will be part of the chain subgraph Zw. As already

observed in [27], the edges with a fixed value of Wi
j may contain independent edges

and, thus, do not necessarily constitute a chain graph. Yu et al. [27] describe a strat-
egy to extend the edge set for each value of Wi

j = w to a chain graph Zw. Their

original implementation runs in time O(m2). Brandstädt et al. [3] give an improved
implementation with runtime O(n2). We improve on these previous results, by imple-
menting the extension strategy in O(n+m) time; and even in O(n) time if a compact
representation of the input graph is given.

The correctness of this approach was already shown in [27], thus establishing
Theorem 3. We give a new independent proof.

The following characterization is often used as an alternative definition of chain
graphs:

Lemma 6 A bipartite graph (Ū , V̄ , Ē) is a chain graph if and only if the sets of
neighbors V̄ (i) := { j ∈ V̄ | (i, j) ∈ Ē } of the vertices i ∈ Ū form a chain in the
inclusion order. (Equal sets are allowed.) In other words, among any two sets V̄ (i)
and V̄ (i ′), one must be contained in the other.

Proof This is a direct consequence of the fact that edges (i, j) and (i ′, j ′) are inde-
pendent if and only if j ′ /∈ V̄ (i) and j /∈ V̄ (i ′). ��

The condition that the neighborhoods must form a chain is apparently the reason
for calling these graphs chain graphs, however, we did not find a reference for this.

We use Uw to denote the set of rows that contain entries Wi
j = w. For every

row i ∈ Uw, we determine the beginning and ending points Bi
w, Ei

w with this color,
that is, Wi

j = w ⇐⇒ Bi
w ≤ j ≤ Ei

w. We extend every such interval [Bi
w, Ei

w] to
the left by choosing a new starting point B̂i

w according to the formula

B̂i
w := min

(
{Bi

w} ∪ { Bi ′
w | i ′ ∈ Uw, Ei ′

w < Ei
w }

)
(9)

= min
(
{Bi

w} ∪ { B̂i ′
w | i ′ ∈ Uw, Ei ′

w < Ei
w }

)
(10)

The second expression uses the new values B̂ on the right-hand side. It is easy to
see that the two expressions are equivalent: Using (9) for the definition of B̂i ′

w, the
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Algorithm 5: Creating a chain graph { (i, j) | i ∈ Uw, B̂i
w ≤ j ≤ Ei

w } for a
given w in the range 1 ≤ w ≤ W ∗


 Uw := { i ∈ U | row i contains an entry w }

 Let Bi

w and Ei
w such that in row i , the entries with Wi

j = w are those with Bi
w ≤ j ≤ Ei

w

Set G1 := G2 := · · · := GW∗ := nV + 1 
 The value nV + 1 acts like ∞
for r := 1 to nv do


 We maintain the quantities Gw ≡ min{Bi
w | Ei

w < r} for w = 1, . . . ,W∗.
for all (Bi

w, Ei
w,w) with Ei

w = r do
B̂i

w := min{Bi
w,Gw}

for all (Bi
w, Ei

w,w) with Ei
w = r do 
 update Gw for the increment of r

Gw := min{Bi
w,Gw}

expression (10) becomes

min
(
{Bi

w} ∪ { Bi ′
w | i ′ ∈ Uw, Ei ′

w < Ei
w }

∪ {Bi ′′
w | i ′′ ∈ Uw, Ei ′′

w < Ei ′
w < Ei

w, i ′ ∈ Uw}
)
.

(11)

The third set is contained in the second set, and thus, (11) is equal to B̂i
w according

to (9).
We construct the chain graph Zw as the graph with the extended intervals [B̂i

w, Ei
w].

Figure 4 shows an example. It is obvious by construction that these intervals satisfy
the conditions of a chain graph: By Lemma 6, we have to show that there are no two
intervals [B̂i

w, Ei
w], [B̂i ′

w, Ei ′
w] with B̂i ′

w < B̂i
w and Ei ′

w < Ei
w. But if the last condition

holds, (10) ensures that B̂i
w ≤ B̂i ′

w. The only thing that could go wrong is that B̂i
w

becomes too small so that the chain graph is not a subgraph of G. The following
lemma shows that this is not the case.

Lemma 7 B̂i
w ≥ Li for every i ∈ Uw.

Proof For the sake of contradiction, assume B̂i
w < Li . By (9), there is a row i ′ ∈ Uw

such that Bi ′
w < Li and Ei ′

w < Ei
w. Setting j = Ei

w and j ′ = Bi ′
w in the recursion (7),

we conclude that Ei
w ≤ Ri ′ , because otherwise, (7) would imply w = Wi

Ei
w

≥
1 + Wi ′

Bi ′
w

= 1 + w. Thus, (i ′, Ei
w) is an edge of G. By Lemma 5, Wi ′

Ei
w

= w + 1.

By (7), there is an edge (i ′′, j ′′) withWi ′′
j ′′ = w, Ri ′′ < Ei

w and j ′′ < Li ′ < Li . Again

by (7), such an edge (i ′′, j ′′) would imply that Wi
Ei

w
≥ w + 1, a contradiction. ��

Algorithm 5 carries out the computation of (9). It processes the triplets (Bi
w, Ei

w,w)

in increasing order of the endpoints Ei
w = r . This can be done in linear time, by first

sorting the O(nU ) triples (Bi
w, Ei

w,w) into nV buckets according to the value of Ei
w.

Thus, Algorithm 5 takes linear time O(n). By Lemma 6, the result is a chain cover,
which by duality is minimum. Each row belongs to at most two chain subgraphs,
and thus the chain cover consists of at most 2nU such row intervals in total. It is
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straightforward to extend Algorithm 4 to compute the sets Uw and the quantities
Bi

w, Ei
w, and thus the cover can be constructed in O(n) time in compressed form.

Theorem 4 Given a compact representation of a convex bipartite graph, a compact
representation of a minimum chain cover can be computed in O(n) time. ��

Given a compact representation of a minimum chain cover, we can list all the edges
of its chain subgraphs in O(n + m) time since every edge is contained in at most
two chain subgraphs. A compact representation of a convex bipartite graph can be
computed in O(n + m) time [2,23,25]. Thus, Algorithm 4 and Algorithm 5 can also
be used to obtain:

Theorem 5 A minimum chain cover of a convex bipartite graph can be computed
in O(n + m) time. ��

5 Certification of Optimality

An induced matching H together with a chain cover of the same cardinality provides
a certificate of optimality, of size O(n). As we will establish in the following dis-
cussion, it is easy to check this certificate for validity in linear time. This is easier
than constructing the largest induced matching with our algorithm. Thus, it is pos-
sible to establish correctness of the result beyond doubt, for each particular instance
of the problem, without having to trust the correctness of our algorithms and their
implementations, see [18] for a survey about this concept.

It is trivial to check whether the matching H is contained in the graph. To test
whether it forms an induced matching, we sort the edges (i, j) by j . This takes O(n)

time with bucket-sort. Then, by Lemma 1, it is sufficient to test consecutive edges for
independence, and each such test takes only constant time according to Proposition 1.

To establish the validity of a chain cover {Z1, . . . , ZW ∗}, we need to check that the
edges of G are covered and each Zw is a chain subgraph. The chain subgraphs Zw =
{ (i, j) | i ∈ Uw, B̂i

w ≤ j ≤ Ei
w }, for 1 ≤ w ≤ W ∗ are compactly representedby a set

of at most 2nU quadruples (w, i, B̂i
w, Ei

w). The following checking procedure works
in linear time for any chain cover as long as it consists of convex bipartite subgraphs.
It does not use any special properties of the cover produced by our algorithm.

We sort the quadruples (w, B̂i
w,−Ei

w, i) lexicographically. Then it is easy to
check the chain graph property using the characterization of Lemma 6: The inter-
vals [B̂i

w, Ei
w] that belong to a fixed chain graph Zw (these are consecutive in the list)

ought to be nested. Since the starting points B̂i
w are weakly increasing, this amounts

to checking that the endpoints Ei
w decrease weakly.

To check that the chain graphs are contained inG and they collectively cover G, we
sort the quadruples (i, B̂i

w, Ei
w,w). The union of the intervals [B̂i

w, Ei
w] that are the

neighbors of a fixed vertex i ∈ U (these are consecutive in the list) can be incrementally
formed, and the resulting interval is compared against [Li , Ri ]. As soon as a gapwould
form in this union, we can abort the test, since the intervals are sorted by left endpoint
and it is then impossible to form a connected interval [Li , Ri ].

The required lexicographic sorting operations can be carried out in O(n) time by
repeated bucket-sort (radix-sort).
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6 Outlook: Duality

The existence of a maximum induced matching and a smallest chain cover with the
same size is a manifestation of strong duality between independent sets and clique
covers in perfect graphs. Wementioned in the introduction that our maximum induced
matching problem is an instance of a maximum independent set problem in the square
of a line graph, and the chain cover is a covering by cliques. Yu et al. [27] established
that the square of the line graph of a convex bipartite graph is a co-comparability graph.
Therefore, it is also a perfect graph. It follows that the linear program for maximizing
the size of an induced matching in a convex bipartite graph is totally dual integral, see
[22, Corollary 65.2f]. As a corollary of this fact, we recover our strong duality result:
the existence of a primal optimal solution (maximum induced matching) and a dual
optimal solution (smallest chain cover) with matching objective function values, see
[22, Corollary 65.2d].

This duality relation for perfect graphs extends to the weighted version. Thus, there
should also be a weighted chain cover with the same weight as the maximum weight
of an induced matching. A weighted chain cover of a weighted graph consists of chain
subgraphs together with a positive real weight for each chain subgraph, such that for
every edge (i, j), the total weight of all chain subgraphs covering the edge (i, j) is
at least the weight Ci

j of this edge. The weight of a weighted chain cover is the sum
of all weights. It is an open problem to extend our primal Algorithm 1 in weighted
graphs to a fast combinatorial algorithm for finding minimum-weight chain covers, as
Algorithm 5 does for the unweighted version.
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