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Abstract
National mortality statistics commonly provide disease-specific absolute and rel-
ative frequencies of death by sex and age, but not by exposure status. However,
it is often of interest to know how many of the diseased individuals, that is the
cases, were exposed or not exposed to a specific risk factor. We present twometh-
ods to estimate the proportion and the number of exposed and nonexposed cases,
both of which require an estimate of the exposure prevalence in the nondiseased
population. Method I additionally requires an estimate of the relative effect of
exposure, that is a relative risk function if the exposure has a continuous distri-
bution, or a relative risk estimate for each category if the exposure is categori-
cal. Method II additionally requires an estimate of the disease rate among the
nonexposed. We provide theoretical justifications, discuss practical limitations,
and provide an R script to calculate the probability for nonexposure among the
diseased, and compare the approaches. Both methods are subsequently applied
to the estimation of the number of never smokers among lung cancer deaths.
The two suggested methods rely on the availability of specific data sources and
might therefore be applicable in different research settings. Both methods yield
unbiased estimates of the number of nonexposed cases, given that the respective
underlying assumptions are fulfilled.
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1 INTRODUCTION

Despite inherent limitations, mortality statistics in industrialized countries, such as Germany, can be considered suffi-
ciently reliable for use in public health or health policy making, for example, to plan interventions (Schelhase & Weber,
2007). However, mortality statistics are based on death certificates, which do not contain information on disease risk fac-
tors other than sex and age—as, for example, provided by the German Federal Statistical Office or theWHO (Statistisches
Bundesamt, 2019; WHO, 2019). Attempts to include information on smoking habits in death certificates have been investi-
gated and have been shown to be considerably difficult to implement (Sitas et al., 2019). This information would, however,
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be necessary to directly estimate the proportion of diseased individuals, that is the cases, whowere exposed or not exposed
to a specific risk factor. This number is of public health interest in order to assess the necessity of future or the effectiveness
of previous public health interventions. For example regarding second-hand smoke prevention, the aim is to estimate the
number of nonsmokers whose deaths resulting from lung cancer can be attributed to exposure to second-hand smoke,
as shown in previous studies, for example, in Heuschmann, Heidrich, Wellmann, Kraywinkel, and Keil (2007). Based
on mortality statistics, the yearly number of lung cancer deaths is relatively well known, likewise its distribution among
the respective sex and age groups. However, there is no information available on the number of smokers or nonsmokers
among these cases. The estimation of the proportion of smokers among cases is needed, but generally not readily available.
Mittleman (1995) uses a similar idea based on Bayes’ formula to solve a related problem, which is the estimation of

exposure prevalence in a population at risk, where exposure is assumed binary. Using the delta method, Mittleman also
gives a variance estimate for the resulting prevalence estimate.
The present paper deals with two methods to estimate the proportion and the total number of cases who were not

exposed to a specific risk factor, as this problem has received little attention in the past. In a general scenario, the expo-
sure is zero for nonexposed and follows some continuous distribution among the exposed. Therefore, the exposure is a
semicontinuous variable, also called a variable with a spike at zero (Royston, Sauerbrei, & Becher, 2010). Special scenarios
are that the exposure is a categorical or a binary variable only, where the latter simply distinguishes exposed from nonex-
posed. This paper is structured as follows:We present a general approach to estimate the proportion of nonexposed among
the cases, given the distribution of the exposure variable in the nondiseased population. One method additionally uses
the dose–response relationship, whereas the second is based on an estimate of the disease rate among the nonexposed.
Finally, we use a data example of second-hand smoke exposure and lung cancer deaths to demonstrate and compare these
methods. We provide an R script to estimate the proportion and absolute number of nonexposed among the cases given
some numerical examples and to reproduce the data example.

2 STATISTICALMETHODS

2.1 Preliminaries and notation

We consider mortality or incidence of an outcome Y (e.g., disease or disease group) with Y = 0 for nondiseased and Y = 1
for diseased and assume that data on the yearly number 𝑑 of incident cases or deaths are available by sex j (j = 1,2) and
age group k (k = 1, . . . , K), 𝑑𝑗𝑘, such that the total number of cases is 𝑑 =

∑
𝑑𝑗𝑘. We further assume that population

figures by sex and age group, 𝑛𝑗𝑘, are available, for example, from population registries, then the total population size is n
=
∑
𝑛𝑗𝑘. Using the rare disease assumption, we consider these population figures as proxies for the respective figures of

the nondiseased population. The numbers for nonexposed are denoted with the subscript 0, that is 𝑑0 denotes the number
of nonexposed cases, where for the ease of presentation we generally omit the index for age and sex in the following.

2.2 Method I

2.2.1 General case

Let X be the risk factor of interest. We assume that X takes the value 0 for nonexposed and an arbitrary distribution for
the exposed. If the distribution of the exposed is continuous, this is a so-called semicontinuous variable or a variable with
a spike at zero (Royston et al., 2010). Generally, the density function 𝑓𝑋(𝑥) of such a variable is given by

𝑓𝑋(𝑥) =

{
𝑝0 𝑋 = 0

(1 − 𝑝0) ⋅ 𝑓𝑋(𝑥) 𝑋 > 0
, (1)

with 𝑝0 = 𝑃(𝑋 = 0) being the probability of no exposure and 𝑓𝑋(𝑥) = 𝑓𝑋|𝑋⟩0(𝑥) being the conditional density function for
X given X > 0. Typical examples for variables with a spike at zero are smoking and alcohol consumption, where a certain
proportion of the population has zero exposure, and the nonzero exposure follows some arbitrary continuous distribution.
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In a previous paper, the odds ratio (𝑂𝑅) function given the distribution of X in diseased and nondiseased was derived
(Becher, Lorenz, Royston, & Sauerbrei, 2012) and can be obtained with the following equation:

𝑂𝑅𝑋=𝑥 𝑣𝑠 𝑋=𝑥0 =
𝑓𝑋|𝑌=1(𝑥) ⋅ 𝑓𝑋|𝑌=0 (𝑥0)
𝑓𝑋|𝑌=0(𝑥) ⋅ 𝑓𝑋|𝑌=1 (𝑥0) . (2)

In (2) 𝑓𝑋|𝑌=𝑖(𝑥) denotes the conditional density of the spike at zero variable X given Y = i, with i = 0,1. For x0 = 0 this
simplifies to

𝑂𝑅(𝑥) ∶= 𝑂𝑅𝑋=𝑥 𝑣𝑠 𝑋=0 =
𝑓𝑋|𝑌=1(𝑥) ⋅ (1 − 𝑝01) ⋅ 𝑝00
𝑓𝑋|𝑌=0(𝑥) ⋅ (1 − 𝑝00) ⋅ 𝑝01 , (3)

where 𝑝00 and 𝑝01 denote the probability of zero exposure in nondiseased and diseased, respectively. Given some distri-
butional assumption, the 𝑂𝑅 function can be derived. For example, if 𝑓𝑋|𝑌=𝑖 is a log-normal distribution with parameters
(𝜇𝑖, 𝜎), the resulting 𝑂𝑅 function is 𝑂𝑅(𝑥) = exp(𝛽0 + 𝛽1 log(𝑥)), with

𝛽0 =
𝜇20 − 𝜇

2
1

2𝜎2
+ ln

(
(1 − 𝑝01) 𝑝00
(1 − 𝑝00) 𝑝01

)
and 𝛽1 = (𝜇1 − 𝜇0)∕𝜎2. (Becher et al., 2012).
The current setting is different. Here, the distribution of X in the population and the 𝑂𝑅 function are assumed to be

known. Under the rare disease assumption, the distribution of X in the population can be used as a sufficient approxi-
mation of the distribution among the nondiseased. Then we are interested in the distribution of X among the diseased,
particularly in 𝑝01. From (3), we get

𝑓𝑋|𝑌=1(𝑥) ⋅ (1 − 𝑝01)
𝑝01

=
𝑂𝑅(𝑥) ⋅ 𝑓𝑋|𝑌=0(𝑥) ⋅ (1 − 𝑝00)

𝑝00
,

which yields

𝑝01 =
1

1 + 𝐶
with 𝐶 = 𝑂𝑅(𝑥) ⋅

𝑓𝑋|𝑌=0(𝑥) ⋅ (1 − 𝑝00)
𝑓𝑋|𝑌=1(𝑥) ⋅ 𝑝00 . (4)

In the following, we derive 𝑝01 for selected distributions.

2.2.2 Categorical case

Consider X being a categorical variable. In the simplest case, X is binary with values 0 and 1. More generally, X can take
values 0 to M with probabilities in the nondiseased population of 𝑝00, 𝑝10, 𝑝20, … , 𝑝𝑀0. A categorical X can also be the
result of a continuous X having been categorized into discrete levels, for example, none, low, medium, and high, which is
common in epidemiology. With 𝑂𝑅𝑋=𝑚 𝑣𝑠 𝑋=0 denoted as 𝑂𝑅𝑚, the density function is

𝑓𝑋|𝑌=0(𝑥) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝00 𝑋 = 0

𝑝10 𝑋 = 1

.

.

.

𝑝𝑀0 𝑋 = 𝑀

, (5)
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F IGURE 1 Nonexposure probability in cases (𝑝01) for M = 2, 𝑂𝑅1 = 1.2, p00 = 0.3, and some values of 𝑂𝑅2 (x-axis gives both p10 and
p20 = 1 − p00 − p10)

TABLE 1 Proportion of nonexposed cases (p01) for some selected 𝑂𝑅 functions and exposure distribution among the nondiseased

N 𝑶𝑹 function: 𝑶𝑹(X = x vs. X = 0)
Distribution of the exposure in the
nondiseased: 𝒇𝑿|𝒀=𝟎(𝒙) Result for 𝒑𝟎𝟏

1 𝑂𝑅 (X = 1 vs. X = 0) = 1.5 Categorical (three categories) 0.194
𝑂𝑅 (X = 2 vs. X = 0) = 2.5 p00 = 0.3

p01 = 0.5
p02 = 0.2

2 𝑂𝑅: exp(0.05 ∙ x) 0.1𝑥 ∈ (0, 10] 0.248
0 𝑥 > 10
exponential, λ = 0.2 0.243

3 𝑂𝑅: exp(0.5 ∙ ln(x)) 0.1𝑥 ∈ (0, 10] 0.169
0 𝑥 > 10
log-normal, μ = ln(5) − 0.5; σ = 1 0.178

4 𝑂𝑅: 2 0.1 𝑥 ∈ (0, 10] 0.176
Note: constant risk (risk is independent of dose) 0 𝑥 > 10

5 𝑂𝑅: exp(0.3 ∙ log(x + 1)) log-normal, μ = ln(5) − 0.5; σ = 1 0.260
6 𝑂𝑅: exp(0.1 ∙ (log(10 ∙ x)) + 0.1) log-normal, μ = ln(5) − 0.5; σ = 1 0.250
7 𝑂𝑅: exp(0.5 ∙ ln(x + 1)) exponential, λ = 0.2 0.158

1: p00 = 0.3 and X categorical (three categories 0,1,2).
2–7: p00 = 0.3 and X|X > 0 continuous with 𝐸(𝑋|𝑋 > 0) = 5.

and the solution for 𝑝01 is given as

𝑝01 =
𝑝00∑𝑀

𝑚=0
𝑂𝑅𝑚 ⋅ 𝑝𝑚𝑜

, with 𝑂𝑅0 = 1. (6)

To arrive at Equation (6), note that from the definition of the𝑂𝑅 it follows𝑂𝑅𝑚𝑝𝑚0 =
𝑝00

𝑝01
⋅ 𝑝𝑚1 form= 0, . . . ,M. Summing

fromm = 0 toM yields
∑𝑀

𝑚=0
𝑂𝑅𝑚 ⋅ 𝑝𝑚0 =

∑𝑀

𝑚=0

𝑝00

𝑝01
⋅ 𝑝𝑚1 =

𝑝00

𝑝01
⋅
∑𝑀

𝑚=0
𝑝𝑚1 =

𝑝00

𝑝01
as

∑𝑀

𝑚=0
𝑝𝑚1 = 1.

For illustration, Figure 1 shows the estimated values of 𝑝01 forM = 2, for fixed values of 𝑂𝑅1 and p00, and varying 𝑂𝑅2,
p10, and p20. For example, with 𝑂𝑅1 = 1.2 and 𝑂𝑅2 = 1.5 for exposure levels 1 and 2 compared to exposure 0, population
exposure frequencies of 0.3 for nonexposure, and exposure frequency increasing from 0.2 to 0.6 for exposure level 1 (corre-
sponding to a decreasing exposure level from 0.5 to 0.1 in exposure level 2), the frequency of nonexposure in the diseased
group increases from 0.23 to 0.26. Table 1 includes another example for a specific distribution (Table 1, Example 1).



518 BECHER and AIGNER

F IGURE 2 Proportion of nonexposed cases (p01) for log-normal distribution of exposure, the 𝑂𝑅 function 𝑒𝑥𝑝(𝛼 + 𝛽 ⋅ ln(𝑥∗)) with 𝛼 = 0
and 𝛽 between 0 and 3, and different proportions of nonexposed (p00)

2.2.3 Continuous case

The more general case is a continuous density function 𝑓𝑋(𝑥) for 𝑋 > 0 and a continuous risk function, where we get

𝑝01 =
𝑝00

𝑝00 + ∫ ∞
0
𝑂𝑅(𝑥) ⋅ 𝑓𝑋|𝑌=0(𝑥)𝑑𝑥 . (7)

Equation (7) is a direct extension of Equation (6) for the continuous case. It implies that the 𝑂𝑅 function must fulfill the
condition ∫ ∞

0
𝑂𝑅(𝑥) ⋅ 𝑓𝑋|𝑌=0(𝑥)𝑑𝑥 < ∞. For example, if 𝑋 follows a log-normal distribution, a possible 𝑂𝑅 function is

exp(𝛽 ln(𝑥)); however, exp(𝛽𝑥) is not valid. If 𝑋 follows an exponential distribution, both exp(𝛽 ln(𝑥)) and exp(𝛽𝑥) are
possible 𝑂𝑅 functions.
Combining (3) and (7) yields

𝑓𝑋|𝑌=1(𝑥) = (1 − 𝑝00) 𝑂𝑅(𝑥) ⋅ 𝑓𝑋|𝑌=0(𝑥)
∫ ∞
0
𝑂𝑅 (𝑧) ⋅ 𝑓𝑋|𝑌=0 (𝑧) 𝑑𝑧 ,

which is the density function of X in the diseased given 𝑋 > 0.
For illustration, let

𝑓𝑋|𝑌=0(𝑥) =
⎧⎪⎨⎪⎩

𝑝00 𝑋 = 0

(1 − 𝑝00) ⋅
1√
2𝜋𝑥

exp

(
−
ln (𝑥)

2

2

)
𝑋 > 0

,

that is the positive part of 𝑋 in the nondiseased is log-normally distributed with an expected value 1 and a spike at zero
probability of 𝑝00. Let the 𝑂𝑅 function be 𝑂𝑅𝑋=𝑥∗𝑣𝑠 𝑋=0 = 𝑂𝑅(𝑥∗) = exp(𝛼 + 𝛽 ⋅ ln(𝑥∗)). Solving Equation (7) with this
density and 𝑂𝑅 function yields

𝑝01 =
𝑝00

𝑝00 + (1 − 𝑝00) ⋅ exp
(
𝛼 +

𝛽2

2

)
(see Appendix). Figure 2 displays results for 𝑝01 for 𝛼 = 0,and varying values of 𝛽 and 𝑝00. For arbitrary 𝑂𝑅 functions, the
integral may not be solvable, such that the solution must be obtained numerically.
Table 1 (Examples 2–7) displays results for𝑝01 for some selected distributionswith the expected value among the exposed

in the nondiseased 𝐸(𝑋|𝑋 > 0, 𝑌 = 0) = 5 and selected 𝑂𝑅 functions. Figures A1 and A2 in the Appendix illustrate the
chosen 𝑂𝑅 and density functions used in Table 1.
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Since the total number of cases in a population, 𝑑, is known, the total number of nonexposed cases 𝑑0 is then given by
𝑑0 = 𝑑 ⋅ 𝑝01.

2.2.4 Implementing estimation of 𝒑𝟎𝟏 and 𝒅𝟎, including confidence intervals

R source code to calculate an estimate for 𝑝01 for the discrete and continuous case is available as Supporting Informa-
tion on the journal’s web page (http://onlinelibrary.wiley.com/doi/10.1002/bimj.201900190/suppinfo → link to R code
Calculation_Proportion_Unexposed_Cases_p01.R). The 𝑂𝑅 function, spike probability, and conditional density function
for X given X > 0 have to be specified. The program is flexible and may also be used to reproduce Figure 1, Figure 2, and
Table 1.
According to Equations (6) or (7), to estimate 𝑝01 we need an estimate of the distribution of the exposure in the popula-

tion of interest, as well as estimates for the categorical 𝑂𝑅𝑠 or the parameters of the 𝑂𝑅 function, respectively. Estimates
of the population distribution may be derived from population surveys, and estimates of the𝑂𝑅𝑠 or the𝑂𝑅 functions may
be available from large studies or meta-analyses. For both, estimates of their standard errors are commonly available.
As 𝑝01 is a complex function of the above estimates, we propose to derive a confidence interval (CI) for 𝑝01 by the

Monte-Carlo simulation and illustrate the procedure by two examples from Table 1.
In Example 1 of Table 1, we assumed a categorical variable X with three levels p00 = 0.3, p01 = 0.5, and

p02 = 0.2, and corresponding 𝑂𝑅𝑠 of 1.5 and 2.5. Simulating 100,000 independent normally distributed parameter sets
(�̂�00, �̂�01, �̂�02, ln(𝑂𝑅1), ln(𝑂𝑅2)) given their standard errors (0.02, 0.02, 0.02, 0.1, 0.1) and deriving the estimate of �̂�01, we
obtain a mean value for �̂�01 of 0.194 with an empirical standard error of 0.017, resulting in an 95% CI of 0.161–0.229.
In Example 3 of Table 1, we assume a log-normal distribution of X|X > 0 with μ = ln(5) − 0.5 and σ = 1, such that E(X |

X> 0,Y= 0)= 5 and for the𝑂𝑅 function we assume𝑂𝑅(X= x vs. X= 0)= exp(𝛼 +𝛽 ∙ln(x)). Let �̂�00= 0.3, �̂� = 0.0, 𝛽 = 0.5
be the parameter estimates with standard errors of 0.02 each. Simulating again 100,000 independent normally distributed
triples (�̂�00, �̂�, 𝛽) and deriving the estimate �̂�01, we obtain a mean value for �̂�01 of 0.179 with an empirical standard error
of 0.015 resulting in an 95% CI of 0.150–0.209. The estimation of 𝑑0 follows directly since 𝑑 is known with 𝑑0 = 𝑑 ⋅ �̂�01.
In practice, 𝑝01 is estimated separately by sex and age group, as in most cases the distribution of X is sex and age

dependent. Extending the approaches is straightforward, see the data example below.

2.2.5 Method II

In rare instances, a direct estimate of the incidence rate 𝜆0 per year among the nonexposed is available, for example,
from another population. Then trivial estimates for 𝑑0 and𝑝01 are 𝑑0 = 𝜆0�̂�00𝑛 and �̂�01 = 𝑑0∕𝑑. If the rates, risk factor
prevalence estimates, and population figures are given by sex j (j = 1,2) and age group k (k = 1, ...,K) as 𝜆0𝑗𝑘, 𝑝01𝑗𝑘, and
𝑛𝑗𝑘 (see data example), it follows that
𝑑0 =

∑
𝑗,𝑘
𝑑0𝑗𝑘 =

∑
𝑗,𝑘
�̂�0𝑗𝑘 ⋅ �̂�00𝑗𝑘𝑛𝑗𝑘, and �̂�01𝑗𝑘 = 𝑑0𝑗𝑘∕𝑑𝑗𝑘, where 𝑛𝑗𝑘 are the population figures of the nonexposed for

sex j and age group k in the population of interest. The method assumes that the specific estimate of 𝜆0 is available and
appropriate for the population of interest. This may not be the case if there are other major risk factors for the disease,
which have different distributions. This is further elaborated in the discussion and the data example.
We again propose to derive a CI for 𝑝01 by the Monte-Carlo simulation. This requires standard error estimates of the

prevalence of exposure as in Method I, but additionally also of all parameters of the risk function. Depending on the
research setting, these might be available and then simulations can be implemented accordingly.

3 EXAMPLE

In order to estimate the impact of second-hand smoke in a population, the proportion and number of never smokers
among all who died of lung cancer is needed. Based on mortality statistics, the yearly number of lung cancer deaths is
usually available, but there is commonly no information on the number of smokers, former smokers, and never smokers.
In the following, we use the two described methods to estimate the proportion and absolute number of never smokers

http://onlinelibrary.wiley.com/doi/10.1002/bimj.201900190/suppinfo
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among those who died of lung cancer in Germany in 2015, which is an expansion of the example presented in Becher et al.
(2017). The calculations can be reproduced with the provided R script.
Smoking is a complex exposure with many characteristics influencing its effect on lung cancer risk, such as age at start

of smoking, smoking dose by age, and, for former smokers, time since quitting (Gandini et al., 2008). However, public data
on smoking prevalence usually do not provide such detailed information. We therefore use the classification into never
(X = 0), former (X = 1), and current smokers (X = 2) by sex and age group as obtained from the German Health Interview
and Examination Survey for Adults (DEGS1) performed 2009–2011 (Robert Koch Institute [RKI], 2015) and sex-specific
relative effect estimates for lung cancer due to current smoking𝑂𝑅𝑗2 and former smoking𝑂𝑅𝑗1, relative to never smoking.
Such estimates are available in the literature and show that the relative effect estimates for these smoking categories are
lower in females than in males, presumably because the average smoking dose in male smokers is higher than in female
smokers. For our calculations, we use the 𝑂𝑅 estimates from Gandini et al. (2008) and estimates of age- and sex-specific
smoking categories from a survey in Germany (RKI, 2015) for the proportion of smokers 𝑝20,𝑗𝑘, former smokers 𝑝10,𝑗𝑘,
and never smokers 𝑝00,𝑗𝑘 within the nondiseased. The yearly number of lung cancer deaths by sex and age is obtained
frommortality statistics (RKI, 2017) and total population figures by sex and age from the German federal office of statistics
(Statistisches Bundesamt, 2015).

3.1 Application of Method I

According to Equation (7), the probability of being a never smoker among the lung cancer cases for sex j and age group k,
p01,jk is estimated as

𝑝01,𝑗𝑘 =
𝑝00,𝑗𝑘

𝑝00,𝑗𝑘 + 𝑂𝑅𝑗1 ⋅ 𝑝10,𝑗𝑘 + 𝑂𝑅𝑗2 ⋅ 𝑝20,𝑗𝑘
. (8)

Given the number of lung cancer deaths in Germany by sex j and age group k, 𝑑𝑗𝑘,we obtain estimates for the lung cancer
deaths among never smokers by sex j and age group k, 𝑑0𝑗𝑘 as 𝑑𝑋=0,𝑗𝑘 = 𝑝01,𝑗𝑘 ⋅ 𝑑𝑗𝑘. Based on our data, we estimate that
6,659 lung cancer deaths (95% CI 5,222–8,317) were never smokers from the total 44,813 deaths. This corresponds to a
proportion of 14.9% (95% CI 11.65–18.56). Table 2 gives the age-and sex-specific estimates with CIs.

3.2 Application of Method II

Several studies have provided age- and sex-specific estimates of the lung cancer mortality rate in nonsmokers (X = 0).
Combined estimates by sex (1-males; 2-females) as a continuous function of age were provided in provided in Becher
et al. (2018) as updated fromWinkler et al. (2011), as

λ01(age) = e
−39.8902+12.1409∗ log(age)−0.1155∗age∕100, 000, and

λ02(age) = e
−38.2996+11.6194∗ log(age)−0.1091∗age∕100, 000.

From these, we calculated sex- and age-group specific rates based on the average agewithin each age interval, asGerman
population figures and number of lung cancer deaths are given in 5-year intervals (see Appendix Table A1 for details). For
comparability, we use the same age groups as in Table 2. Based on this method, we estimate that 5,294 lung cancer deaths
were never smokers, which corresponds to a proportion of 11.3%. The derived age-and sex-specific estimates for the propor-
tion of never smokers among lung cancer cases and the absolute number of never smoking lung cancer cases are presented
in Table 3. As we lack measures of precision of the rate function’s parameters, we could not derive corresponding CIs.

3.3 Comparison of methods

A direct comparison of both methods shows that the two methods do not conclusively concur. The estimates of the total
number of never smoking lung cancer deaths are higher based on Method I compared to Method II (𝑑

0
= 6,659 vs. 5,294).
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TABLE 3 Estimated proportion of never smokers in cases (𝑝01) and absolute number of lung cancer cases by smoking status, based on
nonsmoker rates (Method II) and observed numbers, Germany, 2013

Sex
Age
group �̂�𝟎𝟏 (%)

Never
smokera �̂�

𝟎

Former
smokera �̂�

𝟏

Current
smokera �̂�

𝟐
Totala �̂� 𝒅𝒋𝒌

b

Males <45 14.09 31 68 340 439 220
45–65 4.77 382 2,731 4,286 7,399 8,168
>65 6.37 1,357 8,123 4,095 13,575 21,296
Total 5.96 1,770 10,922 8,721 21,413 29,684

Females <45 25.18 35 44 192 271 139
45–65 10.86 524 1,270 2,637 4,431 4,823
>65 29.16 2,965 2,793 2,844 8,602 10,167
Total 23.29 3,524 4,107 5,673 13,304 15,129

Total 11.81 5,294 15,029 14,394 34,717 44,813
aDerived based on prevalence of smoking status as in RKI (2015), the incidence rate function by age proxies as provided by Becher et al. (2018) as modified from
Winkler et al. (2011) and population figures as provided in Statistisches Bundesamt (2015).
bStatistisches Bundesamt (2015).

Over all age groups, our results suggest that the proportion of never smokers among the lung cancer cases is higher
among women than among men, which we think is reasonable due to the higher prevalence of never smoking women.
Only within the younger age group, the estimated proportion of never smokers is higher based onMethod II and therefore
the absolute number somewhat lower—for both males and females (Figure 3). Here Method II results in a much higher
proportion of cases than in the middle age 45–65, which seems implausible. In our example, this is probably due to an
overestimation of the lung cancer rate in the young age group. On the other hand, the rates are generally low at young
ages and contribute little to the total number.
All of this, however, does not indicate which of the two estimates is closer to the true value. To compare the methods

in more detail, we can additionally compare the number of former and current smokers among the lung cancer cases
as derived by the two methods, where we see the same trend in lower estimates for the two higher age groups based on
Method II (Appendix Figure A3).
R source code is available as Supporting Information on the journal’s web page (http://onlinelibrary.wiley.com/doi/10.

1002/bimj.201900190/suppinfo) which covers the full data example of second-hand smoking, including the data and can
be used to reproduce Figure 3.

4 DISCUSSION

We presented two methods to estimate the number of nonexposed cases in a population. Methods I and II both require
knowledge of the risk factor distribution in the nondiseased, as well as population figures for the nondiseased. The differ-
ence between the two methods is that Method I additionally requires an estimate of the risk function for a given exposure
relative to the nonexposed, whereasMethod II requires an estimate of the incidence/mortality rate in the nondiseased. An
estimate for the rate may generally not be available, that is Method II has practical limitations. For the presented example
of lung cancer deaths in Germany, with smoking as the exposure of interest, this estimate was available and—as such—
motivated the present paper. However, the estimates needed for Method I are available more frequently. For this method,
we developed an R script to calculate the estimated number of nonexposed cases.
Currently, population and mortality registries in Germany generally do not include information on previous exposures

other than sex and age, and we are not aware of any other national registries which do so. A change in public health policy
resulting in this information being included for mortality registries would render the presented methods superfluous.
However, such a policy change will take a substantial amount of time, and depending on the way this data was collected,
the reliability of it needs to be checked before it can be confidently used for research and other purposes.
In general, the estimates resulting from these methods are conceptually different, and are only unbiased if the underly-

ing assumptions are fulfilled. The assumptions underlying any of these procedures must be considered carefully. Method
I implies that the sum of the estimates of exposed and nonexposed cases yields exactly the known total number of cases.
In other words, if the total number of nonexposed cases is underestimated (e.g., if the relative effect is overestimated), the
total number of exposed cases is overestimated, and vice versa. Method II, on the other hand, also allows estimation of

http://onlinelibrary.wiley.com/doi/10.1002/bimj.201900190/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/bimj.201900190/suppinfo
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F IGURE 3 Comparison of Methods I and II to estimate the proportion of never smokers among lung cancer cases, just as the absolute
number of never smoking lung cancer cases in Germany, 2013

the number of exposed cases, if an effect estimate of the exposure is available. It is then possible to compare the sum of
the estimated number of cases over all exposure categories. In our example, the largest difference is found for the old age
group in males (13,575 vs. 21,296). This may indicate that the disease rate estimate underestimates the true risk in older
males; however, no data are available to further check this.
Furthermore, the incidence or mortality rate of a certain disease usually depends on multiple factors. For chronic dis-

eases, latency periods play amajor role, and the prevalence of an exposuremayhave an impact on themortality due to a cer-
tain disease only after some time. The estimate of a disease’s baseline rate among the nonexposed may be obtained from a
different population, for example, with a different distribution of other risk factors. Although conceptually appealing, this
seems to be a substantial limitation ofMethod II. The estimates needed forMethod I, on the other hand, seem less critical.
Relative effect estimates, especially if obtained from large studies or meta-analyses, may be accepted as relatively precise.
Prevalence estimates for the risk factor of interest, as needed for bothmethods, may be available from surveys. However,

two points need to be considered here. First, smoking is a multidimensional and continuous risk factor, and therefore a
major limitation lies in the fact that survey data, uponwhich prevalence estimates are based, usually only workwith broad
categories, for example, grouping individuals into never, former, and current smokers. By estimating relative effects based
on these categories, there is a subsequent correspondence to the average dose within a group. If, for example, the mean
cumulative dose is higher in the older age groups, a higher relative effect should be used. Thiswould increase the estimated
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total number of cases in Method I. We think, however, that the risk estimates are relatively precisely known, especially
compared to the other two parameters, the age- and sex-specific smoking prevalence estimates and the lung cancer rate in
never smokers. Second, the latency period from exposure to disease onset may cause considerable complications. This is
particularly relevant if the distribution changes over time, as is the case for smoking in many populations. In the example
and in the previous paper, we simply assumed that the deaths in 2013 can bemodeled using the prevalence estimates from
2009–2011 which is quite a simplification.
In our example, the prevalence estimates were taken from a national survey and the𝑂𝑅 estimates from ameta-analysis.

For both the approximate standard errors but no original data were available, such that we employed a Monte-Carlo
simulation to derive a CI of our parameter of interest based on these standard errors. If in another setting original data
are available, we would recommend to employ a bootstrap approach to derive a CI instead.
We presented two estimationmethods for possible application in other settings. As a general recommendation regarding

the choice of a method is not possible, the decision regarding method must be adapted to the specific situation at hand. If
estimates for all parameters are available, both methods should be used and compared against each another. Additionally,
issues regarding the reliability of individual estimates should be considered prior to the interpretation of results.
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APPENDIX
According to Equation (7) 𝑝01 =

𝑝00

𝑝00+∫ ∞0 𝑂𝑅(𝑥)𝑓𝑋|𝐷=0(𝑥)𝑑𝑥 , we have to solve ∫
∞

0
𝑂𝑅(𝑥)𝑓𝑋|𝐷=0(𝑥)𝑑𝑥

With 𝑂𝑅(𝑥) = exp(𝛼 + 𝛽 ln(𝑥)) and 𝑓𝑋|𝐷=0(𝑥) = 1√
2𝜋𝑥

exp(−
ln (𝑥)

2

2
), we get

F IGURE A1 Plot of 𝑂𝑅 functions as used in Table 1

TABLE A1 Method II: Estimated lung cancer deaths among never smokers (𝑑0𝑗𝑘) in Germany 2013, by sex j and age group k, based on
population figures 𝑛𝑗𝑘 , estimated lung cancer rates 𝜆𝑗𝑘 (rates per 100,000 per year), and number of lung cancer deaths (𝑑𝑗𝑘)

Men Women
Age
group 𝒏𝟏𝒌

𝝀𝟎𝟏𝒌 per
100,000a 𝒅𝟏𝒌

b �̂�𝟎𝟏𝒌
c 𝒏𝟐𝒌

𝝀𝟎𝟐𝒌 per
100,000a �̂�𝟎𝟐𝒌

b 𝒅𝟎𝟐𝒌
c

<25 2,290,000 0.01 4 0 2,171,000 0.01 5 0
25–29 2,720,000 0.06 9 1 2,567,000 0.06 4 1
30–34 2,604,000 0.25 16 2 2,497,000 0.25 8 3
35–39 2,481,000 0.80 39 8 2,425,000 0.76 28 9
40–44 2,504,000 2.06 152 20 2,457,000 1.88 94 22
45–49 3,291,000 4.47 558 39 3,211,000 3.97 412 53
50–54 3,508,000 8.45 1,385 79 3,440,000 7.35 960 106
55–59 3,012,000 14.31 2,541 115 3,024,000 12.26 1,504 155
60–64 2,530,000 22.10 3,684 149 2,673,000 18.72 1,947 210
65–69 2,082,000 31.58 4,017 247 2,253,000 26.54 2,069 425
70–74 1,848,000 42.21 6,077 293 2,125,000 35.28 2,522 533
75–79 1,882,000 53.24 5,265 377 2,376,000 44.38 2,131 750
80–84 1,015,000 63.84 3,747 244 1,502,000 53.18 1,696 568
>85 647,000 80.68 2,190 196 1,435,000 67.50 1,749 689

aBased on formula by Becher et al. (2018) as modified fromWinkler et al. (2011).
bStatistisches Bundesamt (2015).
cAdditionally, based on prevalence estimates by age and sex group as in Table 1.

https://doi.org/10.1002/bimj.201900190
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F IGURE A2 Plot of density functions as used in Table 1

F IGURE A3 Comparison of Methods I and II to estimate the absolute number of never, former and current smokers among lung cancer
cases in Germany, 2013

𝑓𝑋|𝐷=0(𝑥) = (1 − 𝑝00) 1√
2𝜋𝑥

exp(−
ln (𝑥)

2

2
) and it follows:

∫
∞

0

𝑂𝑅(𝑥)𝑓𝑋|𝐷=0(𝑥)𝑑𝑥) = ∫
∞

0

exp (𝛼 + 𝛽 ln(𝑥)) (1 − 𝑝00)
1√
2𝜋𝑥

exp

(
−
ln (𝑥)

2

2

)
𝑑𝑥
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= (1 − 𝑝00) exp (𝛼)∫
∞

0

1√
2𝜋𝑥

exp

(
−
ln (𝑥)

2

2
+ β ln (x)

)
𝑑𝑥

= (1 − 𝑝00) exp (𝛼)

∞

∫
0

1√
2𝜋𝑥

exp

(
−
(ln(𝑥) − 𝛽)

2

2
+
𝛽2

2

)
𝑑𝑥

= (1 − 𝑝00) exp

(
𝛼 +

𝛽2

2

) ∞

∫
0

1√
2𝜋𝑥

exp

(
−
(ln(𝑥) − 𝛽)

2

2

)
𝑑𝑥

= (1 − 𝑝00) exp

(
𝛼 +

𝛽2

2

)
Inserting the result in Equation (7) yields

𝑝01 =
𝑝00

𝑝00 + (1 − 𝑝00) ⋅ exp
(
𝛼 +

𝛽2

2

)

=
1

1 +
(1−𝑝00)

𝑝00
⋅ exp

(
𝛼 +

𝛽2

2

) .
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