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1 Introduction 

The effective treatment of infectious diseases is a valuable achievement and threatened by 

the emergence of antimicrobial resistances [1,2]. One main driver of antimicrobial resistances 

is the dissemination of extended-spectrum beta-lactamase- (ESBL) and plasmid-mediated 
AmpC beta-lactamase- (pAmpC) producing Enterobacterales. ESBL- and pAmpC- producing 

Enterobacterales are frequently multi-drug resistant, including resistances against clinically 

relevant antimicrobials other than cephalosporins [3]. Medical treatments with last resort 

antibiotics, namely carbapenems, became the “gold standard” for infections with these 
resistant bacteria in humans [4,5]. As antimicrobial resistance rises, ESBL- and pAmpC- 

producing Enterobacteriaceae were listed as one of the three most critical “priority pathogens” 

for developing new and effective antimicrobial agents [6]. Besides the detection in humans 

[7,8], ESBL- and pAmpC- producing Enterobacterales are detected in animals and the 
environment [9–11], raising the question of a transfer of resistance genes or resistant bacteria 

between these compartments in a “One health” approach [12]. 

For livestock, a high prevalence of ESBL- and pAmpC- producing Enterobacterales is known 
for broiler production [13,14]. In light of the high prevalence, broiler chickens are considered a 

reservoir for ESBL- and pAmpC- producing bacteria [15,16]. Investigations showed the 

presence of these resistant bacteria in the entire broiler production chain from (grand-)parent 

flocks [17–21], over the hatchery [19,20] and the fattening period [22,23] up to the 
slaughterhouse level [24] and broiler chicken meat [25,26]. It was demonstrated that day-old 

broiler chickens are already colonized with ESBL- and pAmpC- producing Escherichia coli (E. 

coli) [27]. As various transmission routes of horizontal and vertical transmission for ESBL- and 
pAmpC- producing bacteria were revealed [18,20,22,28], the question of the necessary 

minimal bacterial count for a broiler chickens’ colonization rose. Moreover, there was a growing 

need for targeted interventions to reduce the colonization of broiler chickens with ESBL- and 

pAmpC- producing Enterobacterales. 

Therefore, this thesis addresses: 

i) The determination of the minimal bacterial count for the colonization of day-old broiler 

chickens with ESBL- and pAmpC- producing E. coli. 

ii) The investigation of potential intervention measures on the colonization of broiler chickens 

with ESBL- and pAmpC producing E. coli throughout the fattening process. 

To achieve the objectives of the study, an ESBL- and pAmpC- colonization model (seeder-

bird) for broiler chickens was established (addressed in the first publication: “Low Dose 
Colonization of Broiler Chickens With ESBL-/ AmpC- Producing Escherichia coli in a Seeder-
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Bird Model Independent of Antimicrobial Selection Pressure.”). The established model was 
used to investigate distinct intervention measures (regarding the hygiene and the management 

throughout the fattening process) on their potential to reduce the colonization of broiler 

chickens with ESBL- and pAmpC- producing E. coli (addressed in the second publication: 
“Impact of different management measures on the colonization of broiler chickens with ESBL- 

and pAmpC- producing Escherichia coli in an experimental seeder-bird model.” and in the 

unpublished data of this thesis). 
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2 Literature 
2.1 Antimicrobial resistance and resistance to beta-lactam antimicrobials 

Antimicrobial resistance (AMR) is the ability of microorganisms to counteract a drug treatment 
and can lead to a failure of medical therapies [29]. At present, we are faced with a rising threat 

of AMR in both human and veterinary medicine [30]. Within the past century, many advantages 

in the medical field can be attributed to the discovery of the first antibiotic, Penicillin, by 
Alexander Fleming in 1928 [31]. With the beginning of the antibiotic era in the 1940s, bacterial 

infections were successfully treated after Penicillin G became clinically available [32]. New 

classes of antibiotics got constantly introduced to the market in the “Golden age” of antibiotic 

development until the 1960s [33]. Together with the coincidental discovery of Fleming, the first 
resistance mechanism to Penicillin was described already before its use in medical practice 

[34] and gave rise to the question of antimicrobial resistance development. Now many 

resistance mechanisms can already be traced back thousands of years and demonstrate that 
antibiotic resistance is ancient [35,36]. 

To date, global antibiotic consumption is increasing [37,38]. In human medicine, beta-lactam 

antibiotics are the most frequently used antimicrobial agents [39], and even after 90 years of 

discovery, penicillins are of continuing significance worldwide [40]. In veterinary medicine, 
penicillins are the most frequently consumed antibiotic class after tetracyclines [41,42]. As 

every treatment with antimicrobials selects for resistant bacteria [43–45], the excessive 

application of beta-lactam antimicrobials led to an increasing number of beta-lactam resistant 
bacteria. Between 2015 and 2019, the European Antimicrobial Resistance Surveillance 

Network (EARS-Net.) recognized a rising number of resistances to beta-lactam antimicrobials 

in E. coli. The EARS-Net. reports that half of the E. coli isolates and one-third of the Klebsiella 

pneumoniae isolates are resistant to at least one antimicrobial class and resistance to multiple 
antimicrobial classes as common [46]. 

Bacterial resistances are attributed to chromosomal mutations, or they are conveyed by mobile 

elements such as plasmids [47,48] and can protect bacteria against an antimicrobial treatment. 
Pathogenic bacteria acquiring resistance genes (e.g. through horizontal gene transfer) can 

cause severe infections of the host which can, in turn, be difficult to treat. Infections with beta-

lactam-resistant Enterobacterales are associated with increased mortality rates, increased 

time for effective therapy, a prolonged stay in the hospital, and thus higher healthcare costs 
[40,44,49]. With regard to the high antibiotic consumption, a review on antimicrobial resistance 

forecasts about ten million deaths caused by AMR each year [50]. The review by O’Neill 

demands global efforts in a “One Health” context to reduce the unnecessary use of 
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antimicrobials, improve the surveillance of antimicrobial resistances in humans and animals, 
and promote new diagnostics and treatment options for diseases. 

2.1.1 Beta-lactam antimicrobials 

The class of beta-lactam antimicrobials includes penicillins, cephalosporins, carbapenems, 
and monobactams [51] (Figure 1). The common structure of beta-lactam antimicrobials is a 

four-membered cyclic amide. Beta-lactam antimicrobials disrupt the cell wall synthesis by 

blocking the final step of the peptidoglycan cross-linking of both Gram-positive and Gram-

negative bacteria [51]. For cross-linking, a transpeptidase (the so-called Penicillin Binding 
Protein (PBP)) recognizes the terminal D-Ala-D-Ala-fragment of the peptidoglycan 

pentapeptide as its first substrate. Beta-lactam antimicrobials mimic the terminal peptide 

structure and form a covalent bond to the PBP. The peptidoglycan synthesis is inhibited and, 

consequently, ends in cell lysis as the cell wall becomes unstable and the osmotic pressure of 
the cell can not be maintained. 

Based on their effect spectrum in Gram-positive and Gram-negative bacteria, beta-lactam 

antimicrobials are characterized as narrow-, broad- or extended-spectrum antimicrobials. 
Cephalosporins belonging to the latter can be divided into five generations [52]. Several 

bacterial resistance mechanisms against beta-lactam antimicrobials are described, including 

a reduced permeability of the outer membrane by non-expression of porin genes, efflux pumps 

that additionally use beta-lactams as substrates, possession of altered or acquired PBPs with 
low affinity to beta-lactams, and inactivation by beta-lactamases [39,53]. To counter the latter, 

beta-lactamase inhibitors, such as clavulanic acid and avibactam, were introduced starting 

from the 1980s [54]. Still, the inhibition of Ambler class C and class B beta-lactamases (see 
below) by beta-lactamase inhibitors is very limited to nonexistent. 

 

Figure 1. Core structure of beta-lactam antimicrobials adapted from Bush et al. [32]. 
A) penicillins, B) cephalosporins, C) carbapenems, and D) monobactams. 
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2.1.2 Beta-lactamases 

Beta-lactamases are the primary resistance mechanism against beta-lactam antimicrobials in 

Gram-negative bacteria [36]. These enzymes can hydrolyze the basic structure of respective 
antimicrobials, the beta-lactam ring, by dissociating their amide bond (–CO–NH structure). The 

first chromosomal encoded beta-lactamase-producing E. coli was already described in 1940 

[34]. The worldwide emergence of beta-lactamases in Gram-negative bacteria can be 
attributed to the mobilization of the genes to mobile genetic elements like plasmids which 

encode many different beta-lactamases in combination with only little species barriers during 

transmission of those elements [36]. In 1965, the first plasmid-encoded beta-lactamase was a 

TEM-1 (Temoneira) producing E. coli isolated from a Greek patient [55], which rapidly 
disseminated worldwide. SHV (sulfhydryl variable) represents another class of beta-

lactamases with its first description of SHV-1 in 1972 [56]. Until the emerge of ESBL-producers, 

TEM was the most frequently detected beta-lactamase type followed by SHV and OXA 
(oxacillinase) enzymes [36], able to hydrolyze penicillins and first- and second-generation 

cephalosporins [32]. 

Beta-lactamases are classified based on their molecular structure by Ambler [57] or their 

functional classification by Bush and Jacoby [58,59] (Figure 2). The Ambler classification 
divides beta-lactamases into four classes. Class A, C, and D include enzymes which possess 

serine in their active site for beta-lactam hydrolysis, whereas class B enzymes require metal 

ions for the substrate hydrolysis. With respect to the clinical relevance and effective treatment, 
Bush and Jacoby consider the substrate and inhibitor profiles for their classification. The major 

groups of Bush and Jacoby correlate with the molecular classification of Ambler. Group 1 (class 

C) includes cephalosporinases which are predominantly located on the chromosomes of 

Enterobacterales and are not inhibited by beta-lactam inhibitors (e.g. clavulanic acid and 
avibactam). Group 2 (classes A and D) represents the biggest group of beta-lactamases as 

they include the extended-spectrum beta-lactamases in subgroup 2be, which are susceptible 

to beta-lactam inhibitors. Group 2 also describes broad-spectrum and inhibitor-resistant beta-
lactamases (including some ESBLs) as well as serine carbapenemases. Lastly, group 3 (class 

B) includes the metallo-beta-lactamases. This group differs structurally and functionally from 

the other groups by utilizing metal ions (usually a divalent zinc ion) at its active side. Beta-

lactamases of group 3 are not inhibited by beta-lactam inhibitors but by metal ion chelators 
(e.g. EDTA). 
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Figure 2. Classification of beta-lactamases based on their molecular structure or their 
functional classification adapted from Bush [36]. 

AV = avibactam, CA = clavulanic acid, EDTA = ethylenediaminetetraacetic acid, Cb = 
carbapenem, Cp = cephalosporin, E = expanded-spectrum cephalosporin, M = monobactam, 
P = penicillin, PC1 = penicillinase producing Staphylococcus aureus, TEM = Temoneira beta-
lactamase, SHV = sulfhydryl variable beta-lactamase, CTX-M = cefotaximase-Munich beta-
lactamase, ESBL = extended-spectrum beta-lactamase, IRT = inhibitor-resistant TEM 
enzymes, CARB = carbenicillin-hydrolyzing beta-lactamase, KPC = Klebsiella pneumoniae 
carbapenemase, SME = Serratia marcescens enzymes, AmpC = AmpC beta–lactamase, CMY 
= cephamycinase beta-lactamase, GC1 = beta-lactamase producing Enterobacter cloacae 
strain, OXA = oxacillinase beta-lactamase, IMP = imipenemase beta-lactamase, VIM = Verona 
integron-encoded metallo-beta-lactamase, NDM = New Delhi metallo-beta-lactamase, CphA 
= carbapenem-hydrolyzing metallo-beta-lactamase. + = inhibited, - = not inhibited 

 

2.1.2.1 Extended-spectrum beta-lactamases 
ESBLs possess an expanded activity against beta-lactam antibiotics and are able to hydrolyze 

oxyimino-cephalosporins (third- and fourth-generation cephalosporins) as well as 
monobactams, but not cephamycins or carbapenems [60]. 

The first ESBLs were variants of TEM and SHV enzymes whose substrate spectrum changed 

due to amino acid substitutions [61]. The first described ESBL was an SHV-2 producing 

Klebsiella ozeanae in 1983 [62], which differs from SHV-1 in the replacement of glycine by 
serine at position 238. The first TEM of ESBL type (TEM-3, also known as CTX-M-1) was 

described soon after [63–65]. Until now, 244 TEM- and 229 SHV variants are described (most 

of them belonging to ESBLs; http://bldb.eu, assessed on 14.10.2021), each owning only a 
limited number of amino acid substitutions and causing different phenotypes [66,67]. 

     β-Lactamases 
    
     
Active site                        Serine         Metallo (Zn2+) 
       
            
Molecular 
class                                          A  C                       D B 

               
Functional 
group                                          2  1  2d  3 

             
                     
Major 
functional 
subgroups 

2a 2b 2be 2br 2c 2f  1 1e  2d 2de 2df  3a 3b 

                  

Known 
substrates P P, Cp P,Cp,E,

M P P 
P,Cp,
Cb,E,

M 
 Cp CP,E  P P,E,M P,Cb  P,Cp,E,

Cb Cb 

                  
Inhibitor  AV 
Profile    CA 

+ + + + + +  + +  + + +  - - 
+ + + - +/- +/-  - -  +/- +/- -  - - 

 EDTA - - - - - -  - -  - - -  + + 
                  
Representa-
tive enzyme 
or enzyme 
family 

PC1 TEM-1 
SHV-1 

CTX-M 
ESBLs 
(TEM, 
SHV) 

IRT 
SHV-10 CARB-1 KPC 

SME  AmpC 
CMY GC1  OXA-1 

OXA-10 
OXA-11 
OXA-15 

OXA-23 
OXA-48  

IMP 
VIM 
NDM 

CphA 
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In the late 1990s, CTX-M (cefotaximase-Munich) beta-lactamases were firstly described and 
became a dominant contributor in resistances in Gram-negative bacteria from 2000 onwards 

[68]. In contrast to the ESBLs of TEM and SHV, which evolved from parent enzymes as TEM-

1/-2 and SHV-1, the CTX-M family derived from the chromosomes of Kluyvera species [69]. 
Until now, 246 CTX-M beta-lactamases are described (http://bldb.eu, assessed on 14.10.2021) 

and assigned into five subfamilies: CTX-M-1, -2, -8, -9 and -25 [66,69]. The subfamilies differ 

in > 10% of their amino acid identity. Within a subfamily, only minor differences of < 5% are 

present [70]. While the detection of TEM and SHV diminished, the detection of CTX-M beta-
lactamases increased with the highest detection rates of CTX-M-14, CTX-M-15, and CTX-M-

1 worldwide [45,69,71,72]. The global dissemination of CTX-M is attributed to high-risk clones 

like E. coli sequence type (ST)131, ST648, or ST410 carrying CTX-M-15 beta-lactamases 

[69,73,74]. High-risk clones are defined as globally distributed pathogens with various AMR 
determinants. They can cause severe infections in hosts and can be easily transmitted to other 

hosts, and are often characterized by a combination of antimicrobial resistance and enhanced 

pathogenicity and fitness [75]. Moreover, in recent years, the chromosomal integration of CTX-
M beta-lactamases in certain E. coli STs was observed, posing the risk of stable integration of 

the resistance determinants. However, the reasons why certain STs like ST38 are prone to 

chromosomal integration of CTX-M remains unclear [76].  

Another increasing beta-lactamase family is OXA [60]. Most OXA are assigned to Ambler class 
D or functional group 2d by Bush and Jakoby and are no ESBLs, as they exhibit activity against 

oxacillins but not against newer cephalosporins and are only poorly inhibited by clavulanic 

acid. Some OXA variants (e.g. OXA-2 and -10) show an ESBL-phenotype and are frequently 
detected in Pseudomonas aeruginosa and Enterobacterales [77]. Many OXA exhibit a 

hydrolytic profile against carbapenems as well, with OXA-48-like carbapenemases as the most 

important representatives [78]. 

 

2.1.2.2 AmpC beta-lactamases 
AmpC beta-lactamases (AmpCs) belong to the Ambler class C or functional group 1 by Bush 

and Jacoby [57–59]. In contrast to ESBLs, AmpCs show an additional efficacy against 

cephamycins and are not inhibited by older beta-lactamase inhibitors like clavulanic acid. They 
are inhibited by newer beta-lactamase inhibitors (e.g. avibactam) and show no efficacy against 

carbapenems. The resistance mechanisms of AmpC beta-lactamases are complex and can 

be classified into three mechanisms: (I) a chromosomally encoded resistance which can be 

induced by beta-lactam administration, (II) a non-inducible chromosomal mutation in regulatory 
AmpC genes leading to a stable derepression, and (III) an acquisition of pAmpC genes [79]. 
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The first detected resistance against beta-lactam antibiotics was a chromosomally encoded 
AmpC beta-lactamase in 1940 [34]. Forty-nine years after, the first pAmpC, CMY-1 

(cephamycinase), was described [80]. At present, the most prominent representative of 

pAmpC is known to be CMY-2. CMY-2 belongs to the CIT family of pAmpC beta-lactamases, 
with six families of pAmpC are described: ACC, CIT, DHA, EBC, FOX, and MOX [81,82]. Even 

though pAmpCs are frequently detected, ESBLs are of greater importance in distributing beta-

lactam resistances [82]. 

 

2.2 Escherichia coli 

E. coli is a Gram-negative, facultatively anaerobic, rod-shaped bacterium belonging to the 

family of Enterobacteriaceae [83] and was discovered by Theodor Escherich in 1885 [84]. It is 

a constituent of the vertebrates’ normal gut flora and one of the early gut colonizers [85]. E. 

coli serves as a reservoir for antimicrobial resistance genes and is characterized by its 
ubiquitous nature [86]. “It is a truth universally acknowledged that there are only two kinds of 

bacteria. One is Escherichia coli, and the other is not.” [87]. This quotation reflects the 

importance of E. coli in different research fields and many AMR surveillance programs (e.g. 
EFSA [88]) which use E. coli as an indicator for antimicrobial resistances caused by the 

selective pressure of antimicrobial usage [89]. For E. coli, resistances to all major antibiotic 

classes are described, such as resistances to beta-lactam antibiotics, carbapenems, 

fluoroquinolones, and polymyxins, and multidrug resistance to different classes is frequently 
detected [90]. The RKI (Robert Koch Institute; Berlin Germany) introduced the term ‘MRGN’ 

(multiresistant Gram-negative) in 2012 to categorize clinically relevant and multiresistant 

Gram-negative bacteria upon their resistance profile to four (classes of) antibiotics: piperacillin, 
fluoroquinolones, third-generation cephalosporins, and carbapenems [91]. The RKI describes 

a bacterial resistance of an isolate to more than two of the named antibiotic(s) (classes) as 

clinically relevant. As a resistance to carbapenems is rare, ESBL-producers are usually 

categorized as 3-MRGN when additionally resistant to fluoroquinolones. A 4-MRGN strain 
mostly arises after an acquisition of a carbapenemase by a 3-MRGN strain [92].  

As a commensal bacterium, E. coli rarely causes diseases. At the same time, pathogenic E. 

coli strains can cause severe infections. Pathogenic E. coli strains are traditionally divided into 
intestinal pathogenic E. coli (InPEC) and extra-intestinal pathogenic E. coli (ExPEC). The 

classification of these pathotypes is based on various criteria, inter alia, the disease location, 

the infected host, or the presence of specific genes or virulence factors [93]. InPEC pathotypes 

are primarily causing diarrhea and are divided into at least six pathotypes: enteropathogenic 
E. coli (EPEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), 
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enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), and diffusely adherent E. 
coli (DAEC). A seventh pathotype of adherent-invasive E. coli (AIEC) is also described [94,95]. 

ExPECs are divided into uropathogenic E. coli (UPEC), neonatal meningitis-causing E. coli 

(NMEC), sepsis-associated E. coli (SePEC), and avian pathogenic E. coli (APEC) [94–96]. 
Since an outbreak in Germany in 2011 caused by a strain harboring characteristics of the 

pathotypes EAEC and EHEC, the term ‘hybrid-pathotype’ arose [95,97,98]. Hybrid pathogenic 

E. coli commonly arise from the transfer of virulence-associated genes (VAG) by mobile 

plasmids or the acquisition of converting phages, including hybrids harboring InPEC- and 
ExPEC-related genes. [47,95,99]. Due to sequencing technologies, hybrid pathogenic E. coli 

are frequently detected with the most common detection of STEC hybrid pathotypes which 

may lead to a restructuring of the traditional pathotyping schemes in the future [47,95,99–101]. 

The course of infection with pathogenic E. coli varies widely from a self-limiting infection to a 
severe disease progression [83]. Of utmost importance are UTIs (urinary tract infections) 

caused by UPEC strains which account for 90% of community-acquired and 50% of 

nosocomial UTI in humans and are among the most frequent infectious diseases with 150 
million infections annually [102,103]. The most common treatment of UTIs are antibiotics. The 

excessive antibiotic use led to multiresistant UPEC strains, including 3- and 4-MRGN, which 

are limiting treatment options [92,104]. In light of the high number of recurrent and severe UTI, 

prevention strategies and new treatment options are needed [105,106]. As another example, 
infections with APEC strains causing clinical colibacillosis are leading to massive economic 

losses in poultry production. It was shown that commensal/”non-outbreak” E. coli strains harbor 

VAGs associated with APEC and can cause clinical signs of colibacillosis [107–109]. 

2.3 ESBL- and pAmpC- producing E. coli in different hosts and the environment 
2.3.1 ESBL- and pAmpC producing E. coli in the environment and wildlife 

As an effect of environmental pollution by humans, ESBL- and pAmpC- producing E. coli are 

frequently detected in environmental samples [110]. A study by Blaak et al. demonstrates the 
contribution of wastewater to the contamination of surface water in the Netherlands [111]. 

Similar studies are highlighting the impact of the “human footprint” on the contamination of the 

environment [112,113], and namely hospitals and livestock farming as two drivers of the 
dissemination of AMR [12,114–116]. Still, it is noteworthy that areas without human activity 

can harbor ESBL- producing bacteria, indicating a natural occurrence of antimicrobial-resistant 

bacteria in the environment [117]. 

The pollution of the water, sewage systems, landfills, or farm facilities can also serve as a 
source for disseminating AMR into the wildlife [118]. Wild animals are usually not medicated 

with antimicrobial agents and can, therefore, act as an indicator of environmental pollution by 
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antibiotic-resistant bacteria [119]. But it has to be examined whether anthropogenic causes 
are the only drivers of AMR in wildlife [120]. Conversely, wildlife is considered a reservoir and 

vector for disseminating and introducing AMR into the livestock and the community [110,121]. 

A frequent example are wild birds. Wild birds, especially migratory birds, are presumed to pass 
on acquired resistances over a considerable distance from populated areas even to remote 

areas and vice versa [122–124]. Wild animals could contaminate animal feed, pasture, urban 

environments, or reservoirs for drinking water [118,125]. Other animals frequently described 

as carriers of ESBL- producing bacteria are rodents and small mammals [126], as well as wild 
boars and foxes [127,128]. The prevalence of ESBL- producing bacteria in wild animals is 

supposed to be lower than in domesticated animals, but extensive population studies are still 

limited [129]. 

2.3.2 ESBL- and pAmpC- producing E. coli in companion animals and livestock  
(with focus on broiler chickens) 

In contrast to wild animals, farm animals and companion animals are frequently medicated 

with antimicrobial agents to treat infectious diseases [42]. Major economic losses are attributed 
to infections in livestock and led to excessive use of antimicrobial agents. In addition, the 

common practice of herd treatment in livestock selects for resistant bacteria in both diseased 

and healthy animals [130]. In companion animals, antimicrobial agents are frequently used 

without a reliable diagnosis or in the course of a wrong medical indication [131]. Additionally, 
antimicrobial agents restricted to humans can be used off-label in animals as a last resort 

during the application of the cascade [131]. As a consequence, antimicrobial-resistant bacteria 

are commonly detected in farm and companion animals [9,132–134]. Following the first 
description of an oxyimono-cephalosporinase producing E.coli (FEC-1) isolated from the fecal 

flora of a laboratory dog in 1988 to which various cephem antibiotics were administered before 

[135], the first ESBL-description in a companion animal (SHV-12 producing E. coli) was from 

a dog suffering from recurrent urinary tract infections in the year 2000 [136].  

In livestock, ESBL- and pAmpC- producing E. coli are detected in all relevant animal production 

systems, namely swine, cattle, and poultry [9,47,71]. Poultry, especially broiler chickens, is 

considered a reservoir for ESBL- and pAmpC- producing bacteria [15,24]. Since the early 
2000s, cephalosporin-resistant isolates have been detected in poultry production [137,138] 

even after the ban on cephalosporins from the use in poultry in the European Union in 2012 

[13,130]. Numerous studies provide evidence of ESBL- and pAmpC- producing E. coli in the 

entire broiler production pyramid [13,18,139]. Comprehensive data was generated for (grand-
) parent flocks [17,18,140], the hatchery [19,20], the fattening period [22,23] and the 

slaughterhouse level [15,24] up to the sellable products [14,141]. It was shown that day-old 



Literature 

11 
 

broiler chickens are already carrying ESBL- and pAmpC- producing E. coli [27]. To tackle the 
colonization of broiler chickens with ESBL- and pAmpC- producing bacteria, their transmission 

routes were thoroughly investigated [139]. The diversity of vertical and horizontal transfers of 

ESBL- and pAmpC- producing bacteria in the broiler production was categorized by Dame 
Korevaar et al. [139] as i) a vertical transmission between generations, ii) a transmission at 

hatcheries, iii) a horizontal transmission on the farm, iv) a horizontal transmission between 

farms, and via the environment of farms. The relative contribution of the listed transmission 

routes can not be named as quantitative data are missing [139]. 

The detection of ESBL- and pAmpC- producing E. coli in environmental samples from broiler 

chicken stables or adjacent areas is crucial. ESBL- and pAmpC- positive environmental 

samples include inanimate objects like barn equipment, dust, air, rinsed water, surface water, 

and soil, as well as animate beings like companion animals, livestock, insects, and birds 
[22,27,142–146]. The detection of ESBL- and pAmpC- producing E. coli in environmental 

samples points out the dynamic of possible introduction- or dissemination routes of resistant 

bacteria from or into the broiler stables environment. 

2.3.3 ESBL- and pAmpC- producing bacteria in a One Health perspective 

One health is an “approach, recognizing that human, animal, and environmental health are 

linked [and] is essential for developing comprehensive and integrative measures to address 

antimicrobial resistance” [147].  

Many pathogens are zoonotic agents and can infect more than one species [148]. From a 

global perspective, these agents are not only transmitted between local systems like farms, 

clinics, wastewater treatment plants, and the nearby environment. The transmission is indeed 
affected by our interconnected world, including the international trade of goods and animals 

and international travels, as well as animal migrations [12]. 

After the first detection of an ESBL- producing bacteria in humans in 1983 [62] and the first 

outbreak in an intensive care unit in 1986 [63], ESBL- and pAmpC- producing bacteria 
disseminated in clinical settings and since the 2000s in non-clinical settings worldwide with 

varying prevalence [77,149,150]. The description of ESBL- and pAmpC- producing bacteria in 

animals followed soon after [135–138] with frequent detections in livestock, wildlife, and the 
environment [9,111,117,126–128,132–134,145,146,151]. The most frequently detected beta-

lactamase types in livestock and companion animals are CTX-M-1, CTX-M-14, CTX-M-15, 

SHV-12, TEM-52, and CMY-2. The distribution varies depending on the host and the location. 

In humans, the most prevalent types are CTX-M-14 and CTX-M-15 without a difference in the 
spatial distribution [45,71,72,152]. 
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ESBL- and pAmpC- producing E. coli are zoonotic agents suspected to be directly transmitted 
between animals and humans [14,129,153,154]. The transmission seems to be likely, due to 

the close contact of farmers to livestock in the farm environment or pet owners to the pets in 

private households [71,129,153,155]. Another possible transmission route is the consumption 
of contaminated meat [14,141,156,157]. While the broiler meat consumption is increasing 

[130], ESBL- and pAmpC- producing bacteria are most frequently detected in broiler meat 

[156,158]. But interestingly, vegetarians are not at a lower risk for ESBL- or pAmpC- carriage 

than meat-eaters [159]. 

High-resolution methods as whole genome sequencing (WGS) are needed to investigate 

suspected isolates' phylogenetic and clonal relationship [160–162]. The low discriminatory 

power of classical typing methods can lead to wrong interpretations of potential transmission 

processes between humans and animals [160]. Still, detecting the same ESBL-/ pAmpC- 
producing enterobacterial clone is not proof of a direct transfer of the resistant bacteria from 

animals to humans or vice versa as these bacteria are omnipresent in the environment [129]. 

The evidence for direct transfers is rare [11,160,161], and the extent of transmission between 
humans and animals is a continuing debate and needs further investigations [14,129]. 

2.4 Experimental colonization of broiler chickens with E. coli 

As an enterobacterium, E. coli needs to enter the gastrointestinal tract and pass the stomach's 

acid environment for a following growth and colonization in the moderate acidic environments 
of the small and large intestine [163–166]. One exception is APEC strains, which are able to 

colonize via oral and respiratory routes [167]. A spray application or an intratracheal infection 

is more often described for the experimental colonization with APEC strains via the respiratory 
route [108,168,169]. Another approach to colonize broiler chickens with APEC or commensal 

E. coli is in ovo models [170,171]. As this study deals with the intestinal colonization of broiler 

chickens with E. coli, the focus is on the fecal-oral colonization route. For the oral colonization 

of broiler chickens, the application into the beak (per os) or instillation into the crop is described 
for E. coli [172–178]. The conducted studies vary in i) the day of inoculation of the broiler 

chickens (day-old to several week old broiler chickens), ii) the bacterial counts used for the 

oral E. coli administration (104 colony forming units (cfu) to 1010 cfu), and iii) the number of 
inoculated broiler chickens per trial (all broilers to various inoculation ratios). The inoculation 

of only a part of the broiler chickens (seeder-birds) in a trial and placing them together with 

non-inoculated and susceptible broiler chickens (sentinel-bird) is called ‘seeder-bird’ method. 

The seeder-bird method is applied for different enteral bacteria, such as E. coli, Salmonella 
enterica, and Campylobacter species [172,179,180]. This method is used to mirror the route 

of fecal-oral colonization in experimental settings. The bacterium is shed via fecal droppings 
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of colonized broiler chickens and taken up by all broiler chickens due to their pecking and 
feeding behavior, leading to a (re-) colonization with the bacterium. For ESBL- and pAmpC- 

producing E. coli, an inoculation at day one to day five with 104 – 106 cfu of the bacterial strain 

is most frequently described using an inoculation of all broiler chickens in a trial or inoculation 
ratios of 1:2 to 1:6 (seeder:sentinel) [172,176,178,181,182].  

2.5 Intervention measures against the colonization of broiler chickens with ESBL- and 
pAmpC- producing bacteria on farm level 

The high complexity of the broiler chicken production system causes a need for interventions 
at every level of the production chain to reduce the colonization of broiler chickens and to 

reduce the contamination of retail products with ESBL- and pAmpC- producing bacteria [18]. 

Interventions at the farm level are necessary to reduce the broiler chickens’ colonization 

throughout a fattening process. The colonization status at the farm level is affected by the 
ESBL- and pAmpC- status of previous production stages (e.g. broiler breeders or hatchery) 

and can itself influence the ESBL- and pAmpC- status of subsequent production stages (e.g. 

slaughterhouse) [18,20,24,139]. Another challenge for implementing effective intervention 
measures is the diversity of vertical and horizontal transfers of ESBL- and pAmpC- producing 

bacteria in the broiler production as mentioned above. 

Biosecurity measures can prevent the introduction of potentially pathogenic microorganisms 

into a broiler farm (external biosecurity measures) or can avoid the spread of an introduced 
microorganism within a broiler farm (internal biosecurity measures) [183]. External biosecurity 

includes the control of (unauthorized) visitors, companion animals, rodents, wild animals and 

insects, farm equipment, transport vehicles, as well as feed and water as they can introduce 
ESBL- and pAmpC- producing bacteria into the farm. Internal biosecurity refers to a strict 

hygiene concept like a proper cleaning and disinfection regime, protective clothing, no shared 

equipment for different stables, and includes veterinary care [183,184]. 

Farm management can affect the health and performance of the broiler chickens and, in turn, 
the farm's profitability [185–187]. Management factors are also discussed to influence the 

colonization of broiler chickens with ESBL- and pAmpC- producing bacteria as the general 

housing system (conventional vs. organic), the breed, the stocking density, the litter or 
antimicrobial treatments [188,189]. In Germany, broilers are most commonly fattened in an 

intensive fattening system using the breed Ross 308, a stocking density of 39 kg/m2 without 

any enrichment, and conventional feed and water ad libitum. Various concepts aim to modulate 

the microbial composition of the gastrointestinal tract as a pivotal point to enhance the broilers’ 
performance and health status. One approach is the early administration of live bacteria to 
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newly hatched broiler chickens to protect them from colonization with certain other bacteria 
[172,190]. These cultures can consist of a single defined strain or a complex and undefined 

culture, whereas only defined cultures are approved in the European Union [191,192]. Another 

approach is feed additives like essential oils or acidification of the water, feed, or litter 
throughout the fattening process to reduce the colonization of broiler chickens with pathogenic 

or antimicrobial-resistant bacteria, including ESBL- and pAmpC- producing bacteria [193–196]. 

Although scientific evidence on the efficacy of most of the measures is lacking, several 

measures are already applied and combined in broiler farming.



Publications 

15 
 

3 Publications 
3.1 Publication I 

 

 

 

Robé, C.; Blasse, A.; Merle, R.; Friese, A.; Roesler, U.; Guenther, S. (2019): 

Low Dose Colonization of Broiler Chickens With ESBL-/ AmpC- Producing Escherichia coli in a 

Seeder-Bird Model Independent of Antimicrobial Selection Pressure. 

 

Front. Microbiol.; 10, S. Article 2124 

 

https://doi.org/10.3389/fmicb.2019.02124 

 

Submitted: 11.03.2019 

Accepted: 29.08.2019 

Published: 13.09.201

https://doi.org/10.3389/fmicb.2019.02124


ORIGINAL RESEARCH
published: 13 September 2019
doi: 10.3389/fmicb.2019.02124

Frontiers in Microbiology | www.frontiersin.org 1 September 2019 | Volume 10 | Article 2124

Edited by:

Miklos Fuzi,

Semmelweis University, Hungary

Reviewed by:

Yvonne Pfeifer,

Robert Koch Institute, Germany

Jan Arend Stegeman,

Utrecht University, Netherlands

*Correspondence:

Caroline Robé

caroline.robe@fu-berlin.de;

tierhygiene@vetmed.fu-berlin.de

Specialty section:

This article was submitted to

Antimicrobials, Resistance and

Chemotherapy,

a section of the journal

Frontiers in Microbiology

Received: 11 March 2019

Accepted: 29 August 2019

Published: 13 September 2019

Citation:

Robé C, Blasse A, Merle R, Friese A,

Roesler U and Guenther S (2019) Low

Dose Colonization of Broiler Chickens

With ESBL-/AmpC- Producing

Escherichia coli in a Seeder-Bird

Model Independent of Antimicrobial

Selection Pressure.

Front. Microbiol. 10:2124.

doi: 10.3389/fmicb.2019.02124

Low Dose Colonization of Broiler
Chickens With ESBL-/AmpC-
Producing Escherichia coli in a
Seeder-Bird Model Independent of
Antimicrobial Selection Pressure
Caroline Robé 1*, Anja Blasse 1, Roswitha Merle 2, Anika Friese 1, Uwe Roesler 1 and

Sebastian Guenther 1,3

1 Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany, 2 Institute for Veterinary

Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany, 3 Institute of Pharmacy, Pharmaceutical Biology,
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Extended-spectrum beta-lactamase- (ESBL-) and AmpC beta-lactamase- (AmpC-)

producing Enterobacteriaceae pose a risk for both human and animal health. For

livestock, highest prevalences have been reported in broiler chickens, which are therefore

considered as a reservoir of multidrug-resistant bacteria. The possibility of transfer to

humans either by a close contact to colonized broiler flocks or through contaminated

retail meat results in the necessity to develop intervention measures for the entire broiler

production chain. In this regard, a basic understanding of the colonization process

is mandatory including the determination of the minimal bacterial load leading to a

persistent colonization of broiler chickens. Therefore, we conducted a bivalent broiler

colonization study close to real farming conditions without applying any antimicrobial

selection pressure. ESBL- and AmpC- negative broiler chickens (Ross 308) were

co- colonized on their third day of life with two strains: one CTX-M-15-producing

Escherichia coli-ST410 and one CMY-2/mcr-1-positive E. coli-ST10. Colonization was

assessed by cloacal swabs over the period of the trial, starting 24 h post inoculation.

During the final necropsy, the contents of crop, jejunum, cecum, and colon were

quantified for the occurrence of both bacterial strains. To define the minimal oral

colonization dosage 104 to 101 colony forming units (cfu) were orally inoculated to

four separately housed broiler groups (each n = 19, all animals inoculated) and a

dosage of already 101 cfu E. coli led to a persistent colonization of all animals of

the group after 3 days. To assure stable colonization, however, a dosage of 102

cfu E. coli was chosen for the subsequent seeder-bird trial. In the seeder-bird trial

one fifth of the animals (seeder, n = 4) were orally inoculated and kept together

with the non-inoculated animals (sentinel, n = 16) to mimic the route of natural

infection. After 35 days of trial, all animals were colonized with both E. coli strains.
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Given the low colonization dosage and the low seeder/sentinel ratio, the rapid spread of

ESBL- and AmpC- producing Enterobacteriaceae in conventional broiler farms currently

seems inevitably resulting in an urgent need for the development of intervention strategies

to reduce colonization of broilers during production.

Keywords: ESBL, AmpC, Escherichia coli, broiler chicken, colonization, antimicrobial selection pressure, seeder

bird model

INTRODUCTION

Antimicrobial resistance is an increasing problem in
veterinary and human medicine and the spread of extended-
spectrum beta-lactamase- (ESBL-) and AmpC beta-lactamase-
(AmpC-) producing Enterobacteriaceae was demonstrated in
wildlife (Guenther et al., 2011; Alcalá et al., 2016), livestock
(Laube et al., 2013; Liebana et al., 2013; Hille et al., 2018), and
companion animals (Rubin and Pitout, 2014; Schaufler et al.,
2015; Kaspar et al., 2019) as well as in retail meat (Cohen Stuart
et al., 2012; Kola et al., 2012) and out of human origin (Pitout,
2013; Valenza et al., 2014; Mazzariol et al., 2017).

Livestock animals, including broiler chickens, show high
prevalences (EFSA, 2019) and are considered to be a reservoir
of ESBL- and AmpC- producing enterobacteria (Costa et al.,
2009; Reich et al., 2013). Recently, it was shown by Projahn
et al. (2017) and Daehre et al. (2018b) that transmission
of resistant bacteria can take place at a very early stage of
the broiler production chain: pseudo-vertical from the parent
flock to the eggs in the hatchery and horizontal through
the contaminated farm environment 24 h after the placing
of the broiler chickens. Genes encoding ESBLs and AmpCs
are frequently located on mobile genetic elements such as
plasmids (Carattoli, 2013). Commonly detected resistance genes
include blaCTX−M−1, blaCTX−M−14, blaCTX−M−15, blaSHV−12,

and blaCMY−2 in livestock and companion animals (Ewers et al.,
2012). The question of a possible transfer of resistance from
animals to humans remains controversial and constitutes a major
concern of public health (Cortés et al., 2010; Leverstein-van
Hall et al., 2011; Ewers et al., 2012; Dorado-García et al., 2018;
Pietsch et al., 2018). Close contact of humans to colonized
animals (Dierikx C. et al., 2013; Huijbers et al., 2014) and
the consumption of contaminated meat (Vincent et al., 2010;
Leverstein-van Hall et al., 2011) are considered to be especially
important risk factors, and have been thoroughly investigated.

By contrast, to our knowledge, there have not been any
studies investigating the minimal bacterial load that is necessary
for a stable colonization of broiler chickens (Daehre et al.,
2018b). Therefore, the aim of our study was to define the
minimal colonization dosage of broiler chickens with ESBL- and
AmpC- producing Escherichia coli (E. coli) without applying any
antimicrobial selection pressure. In the second step, a seeder-
bird colonization model that mimics real farming conditions
was conducted for the investigation of the spread of ESBL- and
AmpC- producing E. coli in flocks. These investigations paved the
way for the follow-up studies that are currently being conducted
at our institute and aim to examine potential intervention
strategies regarding hygiene- and management measures to

reduce the colonization of broiler chickens with ESBL- and
AmpC- producing Enterobacteriaceae.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in accordance with the National
Animal Protection Guidelines. The protocol was approved by
the German Animal Ethics Committee for the protection of
animals of the Regional Office for Health and Social Affairs Berlin
(“Landesamt für Gesundheit und Soziales,” LAGeSo, registration
number G 0193/16).

Housing Conditions
All trials were conducted at the experimental facilities of the
Center for Infection Medicine of the Freie Universität Berlin,
department of Veterinary Medicine. The animals were kept in
controlled rooms with attached separate lockrooms for changing
of clothes and shoes. Before starting the trial, rooms were
cleaned and disinfected with hydrogen peroxide fumigation and
the complete experimental setup was tested for the absence of
ESBL-/AmpC- producing bacteria (see “ESBL-/AmpC- status
prior to the trial”). An individual ventilation was achieved
by using HEPA filter. The study was structured in two
parts: a colonization dosage part followed by a seeder-bird
colonization model.

For each trial, eggs of the breed Ross 308, received from a
commercial hatchery in Germany, were hatched in-house for 21
days. The first disinfection of the eggs using formaldehyde gas
was performed at the hatchery and the second disinfection with
WESSOCLEAN R© K 50 Gold Line containing 2.37% hydrogen
peroxide and 0.015% peracetic acid (Wesso AG, Hersbruck,
Germany) following the transportation to the experimental
facilities before incubation in a separate hatcher. After hatch,
broilers were conventionally housed in with a stocking density
of 39 kg/m2, fresh litter once at the beginning of the trial, no
enrichment and conventional feed and water ad libitum. The
feeding regime included a starter feed and a grower feed with
coccidiostats (decoquinate and narasin/nicarbazin). The finisher
feed did not include any coccidiostats and was fed 5 days prior to
necropsies. The feed did not contain any antimicrobial agents.

First, four colonization dosage trials were performed. Each of
the four groups consisted of 19 chickens. Every group was kept
separately in an experimental room for a period of 2 weeks in
aviaries to define theminimal oral colonization dosage. Following
these colonization dosage experiments, 20 chickens were kept
in floor keeping for the seeder-bird model trial. For the seeder-
bird trial, four chickens were orally inoculated (seeder birds) with
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the minimal oral colonization dosage determined previously and
kept together with 16 non-inoculated animals (sentinel birds).
During the seeder-bird trial, the chickens were kept up to a weight
of two kilograms, corresponding to the duration of 5 weeks.

In the later course of the colonization dosage trial using 102

cfu/E. coli (day 11) and the seeder-bird trial (day 16) each time
one animal died without any sign of infection or illness.

Bacterial Colonization Strains
Two avian E. coli strains were used for co-colonization of
the birds. Both strains were originally isolated from healthy
chickens during a previous research project on ESBL- producing
E. coli in chickens in 2011 (Falgenhauer et al., 2016; Hering
et al., 2016). Both strains were investigated using whole-genome
analysis as described in Falgenhauer et al. (2016). One strain
is an ESBL- producing E. coli {CTX-M-15 [chromosomally
encoded (Arredondo-Alonso et al., 2018)]; multilocus sequence
type ST410; phylogenetic group B1; internal number 10716;
published as R56 in Falgenhauer et al. (2016)} with resistances
to cephalosporins and enrofloxacin, and the other strain
is an AmpC- producing E. coli {CMY-2 [plasmid encoded
(Arredondo-Alonso et al., 2018)]; ST10; phylogenetic group A;
internal number 10717}, resistant to cephalosporins and colistin,
as shown in Table 1. In addition, phenotypic antimicrobial
resistance analysis was performed by using VITEK 2 system
(bioMérieux, Marcy-l’Étoile, France). These avian commensal
E. coli strains were selected because of their resistance profile,
representative for the situation in German chicken production
and their ability to colonize broiler chickens digestive tract.

Microorganisms were stored at −80◦C in Luria Bertani broth
(LB; Carl Roth, Karlsruhe, Germany) containing 20% glycerol
(Carl Roth, Karlsruhe, Germany). For the preparation of the
bacterial suspension both bacterial strains were streaked out
on columbia agar containing 5% sheep blood (Oxoid, Wesel,
Germany) and were incubated for 24 h at 37◦C. Overnight
cultures originating from a single colony from each strain were
grown in 5ml LB broth. On the following colonization day,
40–60 µl of these bacterial suspensions were seeded in 5ml of
fresh LB broth each until the desired optical density of 0.04
(OD600) was obtained. The bacterial cultures were grown at 37◦C
and 200 rounds per minute (rpm) to the optical density of 1.0
(OD600), corresponding to 1 × 108 colony forming units (cfu)
per ml. One ml per culture was centrifuged at 7,000 rpm for
10min at 4◦C, the supernatant was removed and the cells were

resuspended in 1ml phosphate buffered saline (PBS; Phosphate
Buffered Saline tablets, Oxoid, Wesel, Germany). The desired
colonization dose was adjusted via a 10-fold dilution series in
PBS. For co-colonization, both dilutions were mixed, placed on
ice, and used for inoculation of broilers within 30minutes. The
concentration of the colonization dose was verified by direct
plating of appropriate dilutions of the inoculum.

Oral Colonization of Broilers
On the third day of life, broilers were orally inoculated into
the crop with 200 µl of bacterial suspension in PBS containing
a mixture of both bacterial strains in equal parts. For the
colonization dosage trials, all animals of the group were orally
inoculated, starting with a colonization dosage of 104 cfu E.
coli/200 µl followed by 103, 102, and 101 cfu E. coli/200 µl in
the following experiments to verify the cfu that is necessary to
colonize all animals within 24 h post inoculation (p.i.).

In contrast to the colonization dosage trials, not all animals
of the seeder-bird model trial were orally inoculated. The
inoculation was performed at the ratio of 1:5 (seeder: sentinel),
resulting in four seeders, which are expected to colonize the 16
non-inoculated, susceptible broilers (sentinels) over the period of
the trial. From the beginning of the trial, the seeder- and sentinel
birds were housed in together. Similarly to the dosage trials, all
inoculated animals should be colonized within 24 h p.i.

Samplings and Analyses
Samples were initially processed on chromogenic agar
(CHROMagar Orientation, Mast Diagnostica, Reinfeld,
Germany) for a rapid identification of E. coli colonies.
Confirmation of single bacterial E. coli colonies with a typical
morphology and of all untypical colony morphologies was
performed using MALDI- TOF (MALDI Microflex LT R© and
Biotyper database R©; Bruker Daltonics, Bremen, Germany).
Phenotypic antimicrobial resistance analysis of randomly
picked colonies of the cecum samples obtained in necropsy was
performed by using VITEK 2 system to confirm their identity as
the inoculated ESBL- and AmpC- strains.

ESBL-/AmpC- Status Prior to the Trial
Before starting a trial, the complete experimental setup was tested
for the absence of ESBL-/AmpC- producing bacteria after the
introduction of the litter, feed, and water into the experimental
room. Walls/doors, floor, table, heating lamps, feeding-, and

TABLE 1 | Characteristics of E. coli strains used for colonization dosage trials (101 − 104 cfu E. coli) and seeder-bird colonization model.

Strain Origin MLST Phylogenetic

group

ESBL-/AmpC type None ESBL-/AmpC resistance genes Phenotypic resistances

10716 Chicken ST410 B1 bla*
CTX−M−15

aadA1*, aac(3)-IIa*, aadA5+, aadB+, mph(A)+,

catA1*, floR+, sul1+, tet(A)+, dfrA17+
ATM, CAZ, CIP, CTX, GM, PIP,

TZP, SXT, TM

10717 Chicken ST10 A bla+
CMY−2

bla+TEM−1, aadA1
+, aadA2+, mcr-1+, cmIA1+,

sul3+
ATM, CAZ, CTX, CST, PIP, TZP

10716 = ESBL- E. coli R56, 10717 = AmpC- E. coli G148-1 (Falgenhauer et al., 2016; Hering et al., 2016); *chromosomally encoded; +plasmid encoded [determination

using mlplasmids (Arredondo-Alonso et al., 2018)]; ATM, aztreonam; CAZ, ceftazidim; CIP, ciprofloxacin; CTX, cefotaxime; CST, colistin; GM, gentamicin; PIP, piperacillin; TZP,

piperacillin/tazobactam; TM, tobramycin; SXT, trimethoprim/sulfamethoxazole.
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drinking troughs were sampled with sterile and moistened gauze
swabs. For moistening, 5ml PBS were used. In addition, 5 g
of litter, and feed were collected. Following the sampling, the
gauze swabs, litter, and feed were transferred into 50ml LB
broth in each case and incubated for 24 h at 37◦C before 10
µl were streaked out on chromogenic agar containing 2µg/ml
cefotaxime (AppliChem, Darmstadt, Germany) and incubated
for 24 h at 37◦C.

Directly after hatching, the absence of ESBL and AmpC-
producing bacteria in the egg shells was confirmed. Five egg shells
were crushed, transferred into 50ml LB broth and incubated for
24 h at 37◦C before 10 µl were streaked out on chromogenic agar
containing 2µg/ml cefotaxime and incubated for 24 h at 37◦C.

The absence of ESBL and AmpC in the 1 day-old broiler
chickens was confirmed by cloacal swabs of all individually
tagged animals. Swabs were transferred into reaction tubes
containing 500 µl PBS and were thoroughly vortexed. Fifty
microliter were streaked out onto chromogenic agar containing
2µg/ml cefotaxime and incubated for 24 h at 37◦C.

Sampling During the Trial
Colonization of broilers was analyzed via cloacal swabs during
the trial starting 24 h and 72 h p.i. and followed by samplings of
each individual three times in the second week of a trial, followed
by two samplings a week up to the end of a trial. Swabs were
transferred into reaction tubes containing 500 µl PBS and were
thoroughly vortexed. Fifty microliter were streaked out onto agar
and incubated for 24 h at 37◦C for semiquantitative analysis. A
subjective measurement using eight categories from zero (“no
growth”) to seven (“overgrown”) was applied for the evaluation
of the colonization (Figure S1) and a set of four chromogenic
agar plates was used. One plate without selective media for
the total count of E. coli colonies (positive control). One plate
containing 2µg/ml cefotaxime and 4µg/ml enrofloxacin (Sigma-
Aldrich, Steinheim, Germany) for the growth of the ESBL- E.
coli 10716 and another plate containing 2µg/ml cefotaxime and
7µg/ml colistin (Carl Roth, Karlsruhe, Germany) for the growth
of the AmpC- E. coli 10717. A fourth plate contained all three
antibiotics in the given concentrations (negative control).

Finalization of the Trial
Following each trial, a necropsy of all broilers was performed on
day 14 in the colonization dosage trials and on day 35 in the
seeder-bird model trial. Contents of crop, jejunum, cecum, colon
as well as organ samples of liver and spleen were analyzed using
the plate set described above.

The samples of crop, jejunum, cecum, and colon were
quantified. First, up to one gram of the content was weighed out
in a reaction tube and PBS was added at the ratio of 1:2, followed
by a dilution series in PBS, depending on the expected bacterial
growth. Finally, 100 µl each of the suspension were plated on the
plate set, as described above. For quantification, a minimum of
two different dilution levels were counted.

The organ samples of liver and spleen were qualitatively
analyzed via direct processing. For this, the organs were cut in
half with sterile scissors, pressed on the agar and spread out

with an inoculation loop (Selbitz et al., 2015). All samples were
incubated for 24 h at 37◦C.

Statistical Analysis
Sample size calculation was based on the hypothesis that the
logarithmic mean values in the colonized ceca were equal in each
of the different colonization dosage groups (NCSS PASS 14.0).
Ceca were selected because ceca are known to be the reservoir
for ESBL- E. coli. Equivalence was defined as follows: the 95%
confidence interval (CI) of the investigated group is within one
log unit cfu/g cecal content compared to the mean value of the
minimal colonization dosage group. Standard deviation of log 0.9
cfu/g cecal content was assumed. To ensure alpha error of 0.05
and power of 0.90, 19 animals per group were required. Twenty
animals were used for the seeder-bird colonization model to have
a comparable group size for the defined inoculation ratio of 1:5
(4 seeder birds: 16 sentinel birds).

Statistical analysis was performed by using Excel 2013
(Microsoft Corporation, Washington, USA) and SPSS Statistics
25 (IBM, New York, USA). To obtain normally distributed
data, all bacteriological results were log10 transformed. CI of
proportions were calculated using Clopper-Pearson method.

To compare the level of colonization in between the four
colonization dosage groups, equivalence testing (Thrusfield,
2007) was performed. For this test, a margin of one log unit
difference between the groups was defined acceptable to be equal.
It was tested whether the margins of the 95% CI are within the
range of one log unit.

Differences between different groups regarding the
logarithmic bacteriological mean values of the samples were
investigated using t-test for independent samples: first, the
colonization levels between the colonization dosage group
102 cfu/E. coli and the seeder-bird colonization model were
investigated separately for the locations crop, jejunum, cecum,
and colon. Second, the results of the seeder- and sentinel birds of
the seeder-bird model were compared. The probability level of
0.05 was used to denote significance.

RESULTS

Colonization Dosage
By applying a series of colonization dosages ranging from 104,
103, and 102 to 101 cfu E. coli, we were able to demonstrate that
a dosage of 102 cfu E. coli per animal led to an almost complete
colonization of a broiler group within 24 h p.i (Figure S1). Even
a dosage of 101 cfu E. coli was sufficient to colonize the majority
of the animals within 24 h p.i. For the colonization dosage trials,
all animals in a group were orally inoculated with both bacterial
strains on their third day of life and the successful colonization
was initially assessed via cloacal swabs 24 h p.i. For colonization
dosages 104 and 103 cfu E. coli, all animals were colonized within
24 h p.i. up to the end of the trial. Continuing with a dosage of 102

cfu E. coli, only one animal was tested negative 24 h p.i. for one of
the strains (AmpC- E. coli 10717, 95%CI: 73.97–99.87%). At the
second sampling 72 h p.i., however, all animals inoculated with
102 cfu E. coli were colonized over the entire period of the trial.
The dosage trials were completed with 101 cfu E. coli resulting in
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FIGURE 1 | Equivalence testing of ESBL- E. coli 10716 and AmpC- E. coli 10717 in samples of crop (A), jejunum (B), cecum (C), and colon (D) in between the four

colonization dosage groups (101-104 cfu/E. coli) at necropsy. 95%CI = 95% confidence interval; all data shown are log10 transformed (log10 cfu/g); margin of < 1

log of 95%CI of dosage groups 101, 103, and 104 cfu/E. coli to the mean value of the minimal colonization dosage group (102 cfu/E. coli) shows equivalence.

a colonization rate of 84% (ESBL- E. coli 10716, 95%CI: 60.42–
96.62%) and 95% (AmpC- E. coli 10717, 95%CI: 73.97–99.87%)
of the animals positive for the strains 24 h p.i. In this group,
complete colonization was detectable within 72 h p.i. up to the
end of the trial. Based on the results obtained from cloacal swabs
during the trial, a minimal dosage of 102 cfu E. coli was necessary
to colonize a broiler group in the given experimental setup within
24 h p.i.

The bacterial counts of the cecum samples obtained at the
necropsies of all four trials (104 to 101 cfu E. coli) were of
equal value in the equivalence test. In contrast to this, samples
of crop, jejunum, and colon were non- equivalent (Figure 1).
The mean colonization values of the digestive tract samples for
both bacterial strains are summarized in Figure 2 and Table S1.
Overall, maximum values were attained in cecum samples with
mean values between 8.84 to 9.22 log10 cfu ESBL- E. coli/g cecal
content and 8.32 to 8.69 log10 cfu AmpC- E. coli/g cecal content,
except for the content of crop and jejunum in the dosage trial
using 103 cfu E. coli. Compared to the cecum samples, lower
mean values occurred in colon samples and lowest mean values
were evident in the content of crop and jejunum (Table S1).
Independent from the original colonization dosage, the results
of cecum samples were equivalent with a deviation less than
one log unit to the values of the colonization dosage of 102

cfu E. coli and every broiler was colonized with both bacterial

strains 2 weeks p.i. For samples of crop, jejunum and colon,
equivalence between dosages was not shown. The values of crop
and jejunum samples differed in each trial. Highest values were
given in the dosage trial using 103 cfu E. coli, lowest values
occurred while using 104 cfu E. coli. In contrast to this, less
variation was given in colon samples with mean values between
7.05 to 7.91 log10 cfu ESBL- E. coli/g colon content and 6.67
to 7.15 log10 cfu AmpC- E. coli/g colon content, but without
showing equivalence.

In conclusion, the colonization of the cecum with both
bacterial strains 2 weeks after inoculation with 102 cfu E. coli
was equal to the colonization after inoculation with 104, 103, and
101 cfu E. coli. In contrast to these correlating results of cecum
samples obtained at necropsy, we observed lower percentages of
colonized animals 24 h after inoculation by using 101 cfu E. coli
compared to the other tested dosages. Based on these results,
a dosage of 102 cfu E.coli was chosen for the following seeder-
bird colonization model trial balancing between a low dose,
comparable to the situation in the course of natural infection and
a colonization of the animals during the trial.

Seeder-Bird Colonization Model
A ratio of 1:5 orally inoculated (seeder) to non- inoculated
broilers (sentinel) and a dosage of 102 cfu ESBL-/AmpC-
E. coli were sufficient to colonize an entire broiler group
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FIGURE 2 | Comparison of the bacterial counts of ESBL- E. coli 10716 and AmpC- E. coli 10717 in samples of crop (A), jejunum (B), cecum (C), and colon (D) in

between the four colonization dosage groups (101-104 cfu/E. coli) at necropsy.

within 72 h (Figure S1). The seeder birds were completely
colonized 24 h p.i. with both bacterial strains. At this early
time point 69% of the 16 sentinels were tested positive for
the ESBL- E. coli strain 10716 (95%CI: 41.34–88.98%) and
50% positive for AmpC- E. coli 10717 (95%CI: 24.65–75.35%).
Three days p.i., at the second sampling, all animals of the
broiler group were colonized with both bacterial strains up
to the end of the trial. As a result, an oral colonization
of one fifth of a broiler group with 102 cfu E. coli on
their third day of life resulted in colonization of the entire
broiler group.

At necropsy, cecum colonization of all seeder- and sentinel
birds was observed, with mean values of 6.69 log10 cfu ESBL-
E. coli/g cecal content and 6.57 log10 cfu AmpC- E. coli/g
cecal content (Table S1). Furthermore, no significant difference
in bacterial counts between seeder birds and sentinel birds
was evident at the end of the trial (t-test p-values > 0.05).
Corresponding to the colonization dosage trials, the maximum
values of E. coli were found in the cecum irrespective of being
a seeder- or sentinel bird. Compared to the cecum samples,
reduced values occurred in colon samples and lowest mean
values were evident in crop and jejunum samples. Similarly, no
association with the origin of the bird as a seeder- or sentinel was
observed (t-test p-values > 0.05).

However, compared to the dosage trial using 102 cfu E. coli,
the colonization in different parts of the digestive tract of the
seeder-bird group was significantly lower (t-test p-values< 0.001;
Figure 3). In all necropsy samples taken, we observed lower total
numbers of both bacterial strains 5 weeks p.i. in the seeder-bird
model compared to the initial colonization dosage trial with a
duration of 2 weeks. In summary, a comparable colonization of
all seeder- and sentinel birds in a group was achieved by an oral
colonization dosage of 102 cfu E. coli in combination with an oral
inoculation of one fifth of the broiler chickens on their third day
of life.

To conclude, without any antimicrobial selection pressure by
antibiotic usage, both commensal ESBL- and AmpC- producing
E. coli strains colonized all broilers digestive tract independent
of being an orally inoculated seeder bird or a susceptible sentinel
bird. For all four colonization dosage trials and the seeder-bird
trial we did not detect any colonization of liver or spleen with our
bacterial strains tested. By analyzing the respective antimicrobial
resistance patterns via VITEK 2 of the strains derived from the
cecum samples at the necropsies, we did not observe major
changes in the resistance profile of the inoculation isolates to the
isolates at the end of the trial. The rate of transfer of resistance
plasmids to other strains can therefore be considered to be of
low importance, as some of our resistance markers were also
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FIGURE 3 | Comparison of the bacterial counts of ESBL- E. coli 10716 (A) and AmpC- E. coli 10717 (B) in samples of crop, jejunum, cecum, and colon at necropsy

between the minimal colonization dosage group (102 cfu/E. coli; necropsy on day 14; all animals inoculated on third day of life) and the seeder-bird model (necropsy

on day 35; inoculation ratio of 1:5 on third day of life). ***p < 0.001 (t-test).

chromosomally encoded, such as fluoroquinolone resistance. In
addition, we did not observe changes in the morphotypes of the
isolates during the trials.

DISCUSSION

Our study points out that (i) a colonization dosage of 102

cfu E. coli per animal is sufficient for a successful long-
time colonization of broiler chickens and (ii) a ratio of 1:5
inoculated seeder birds to non- inoculated sentinel birds is
sufficient to colonize a complete broiler group even in the
absence of antimicrobial selection pressure. In addition, we
also demonstrated that even a very low colonization dosage of
101 cfu E. coli leads to a colonization of broilers in the given
experimental setup using a study design based on parameters
of real farming conditions. The animals were treated equally to
those in conventional fattening farms. This includes a stocking
density of 39 kg/m2, fresh litter once at the beginning of the
trial, no enrichment and conventional feed and water ad libitum.
Neither the utilized eggs and animals, nor the feed, water or
litter were additionally processed for the reduction of germs
than usual in the broiler production. In agreement, we received
all eggs, litter and feed from a commercial poultry producer in
Germany. To ensure comparable conditions in all trials, we used
batches from one single producer and all trials were conducted
within 6 months. Hence, an interaction between the animals and
their surrounding environment including the present bacterial
spectrum was possible before inoculation of the broiler chickens
with the bacterial strains (Apajalahti et al., 2004; Ballou et al.,
2016; Kumar et al., 2018). As the surrounding can be a source of
ESBL- and AmpC- acquisition (Dierikx C. M. et al., 2013; Daehre
et al., 2018b), we tested the complete experimental setup for the
absence of ESBL-/AmpC- producing bacteria prior to the trial to
exclude the possibility of a colonization out of the environment.

We inoculated our broiler chickens on the third day of
life with two bacterial strains, harboring frequently detected
ESBL- and AmpC- resistance profiles in fattening chickens

(Ewers et al., 2012; Valentin et al., 2014). This is in accordance
with numerous studies assuming a very early colonization of
the broilers in the production chain. Projahn et al. (2017)
describes a possible transfer of resistant bacteria already in the
hatchery and during the transportation of the hatchlings to the
fattening farm (Projahn et al., 2018). Furthermore, the fattening
stable itself (Daehre et al., 2018b) or the surrounding areas
(Laube et al., 2014) are potential sources of the acquisition
of resistant bacteria. At the same time, investigations of the
ESBL- and AmpC- prevalence of day- old broiler chickens are
heterogeneous, varying between 95 and 0% in the analyzed
broiler flocks (Laube et al., 2013; Daehre et al., 2018b). Thereby,
both studies analyzed seven broiler flocks via cloacal swabs of 20
(Laube et al., 2013) or 40 broiler chickens (Daehre et al., 2018b)
and both used a pre-enrichment in LB to determine the ESBL-
and AmpC- prevalence. The wide variations may be caused by
the selected sampling times. Laube et al. (2013) sampled within
the first two days of life. In contrast to this, Daehre et al. (2018b)
sampled immediately after placing the broiler chickens into the
stable. However, it must be noted, that the overall prevalence
of the investigated flocks is higher in the study by Laube et al.
(2013). As it is known, compared to other species, the relation
between the body length and the length of the gastrointestinal
tract of chickens is relatively short with a rapid passage time
(Hughes, 2008). To attain a reliable detection of our bacterial
strains, we decided for an initial validation of our bacterial
strains 24 h after inoculation. At this early time point, more
than half of the sentinel birds in the seeder-bird trial had been
tested positive for the ESBL- and AmpC- producing strains. This
indicates a double passage of the gastrointestinal tract of firstly
the seeder birds and following the sentinel birds within 24 h.
These results were obtained by direct processing of the cloacal
swabs without enrichment. To ensure a strong colonization of
the broiler chickens, a direct detection of the bacterial strains
is required. At the same time, a swab sampling provides only
limited information about the intestinal colonization of the birds.
The detection is strongly influenced by the amount of feces on
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the swab. Thus, our detection limit is relatively high, depending
on the cloacal excretion during the sampling. For this reason, we
decided for a minimal colonization dosage of 102 cfu E. coli even
if one broiler chicken was tested negative for one of the bacterial
strains 24 h p.i.

As this study aims to mimic the route of natural infection with
ESBL- and AmpC- producing Enterobacteriaceae, a housing of
all broiler chickens immediately from the beginning of the trial
in one pen is important. Under real farming conditions, it is
not possible to distinguish between colonized and non-colonized
birds as well. Consequently, a distinction between colonization
with the bacterial strains via inoculation or through the oral
uptake out of the contaminated environment was not aimed
in our trial. Although we cannot exclude that the colonization
via inoculation of the seeder birds might have failed and an
oral uptake of droppings from colonized chickens led to a
colonization, this does not reduce the importance for the practice.
Rather, it reflects the circumstances affecting a colonization
under field conditions. Both, the colonization of the sentinel
birds as well as the seeder birds is dependent upon the initial
colonization of the seeder birds via inoculation. The dependency
between seeder birds and sentinel birds and the resulting
colonization with ESBL- E. coli was described by Ceccarelli et al.
(2017) and is neglected in our colonization model. Moreover,
besides our housing conditions, the sampling frequency does not
allow to draw a conclusion of the transmission rate of ESBL- and
AmpC- producing Enterobacteriaceae: our study is focused on
the outcome of a practical orientated colonization.

Since the genes encoding for ESBLs and AmpCs are frequently
located on plasmids (Carattoli, 2013), the possibility of a
horizontal gene transfer (HGT) to other Enterobacteriaceae has
to be considered. Even in the absence of antimicrobial selection
pressure a transmission of resistance genes is possible (Smet
et al., 2011). To ensure a reliable detection of our E. coli strains,
a chromogenic agar was used and colony morphologies were
checked up on their belonging to both strains. Additionally,
in all digestive tract samples taken at necropsy, an agar plate
without antibiotics was used to quantify the total count of E.
coli colonies (data not shown). The total count of E. coli was
congruent with the sum of our quantified ESBL- and AmpC-
strains in all trails. Furthermore, out of the cecal content, colonies
from the selective agar plates for the growth of the ESBL- and
AmpC- E. coli strains were randomly selected and checked for
their phenotypic antimicrobial resistances using VITEK 2. The
profile of the examined colonies corresponded to those of our
inoculation strains. The possibility of a HGT to other E. coli
strains resident in the digestive tract cannot be entirely ruled out,
but a colonization based on in vivo HGT seems to be unlikely, as
in all colonization dosage trials equivalence of the cecum samples
was shown. An equal HGT to other E. coli strains harboring
the same resistance profile in all trials is highly unlikely, taking
into consideration the chromosomally encoded resistances of our
ESBL- E. coli strain.

Our results confirm the hypothesis that the uptake of only
a few bacteria is sufficient to colonize broiler chickens with
ESBL- and AmpC- producing Enterobacteriaceae. In fact, an
inoculation of 101 cfu E. coli leads to a colonization of broiler

chickens. Due to a continuous cleaning and disinfection regime,
the bacterial load at every level of the broiler production chain is
supposed to be minimized. Nevertheless, there is still remaining
bacteria detectable after cleaning and disinfection (Luyckx et al.,
2015). Furthermore, ESBL- and AmpC- producing bacteria are
found frequently (Dierikx C. M. et al., 2013; Daehre et al., 2018a).
Even if there is no detailed information available about the
detected quantities of these resistant bacteria after cleaning and
disinfection, it is practically impossible to achieve procedures that
will result in such a very low bacterial load, that a colonization of
broiler chickens from the subsequent flock does not take place. In
addition, the process of colonization with resistant bacteria can
be greatly strengthened by applying selection pressure through
antimicrobial treatment of the birds during the fattening period.
The importance of cleaning and disinfection measures in broiler
fattening stables is underlined by Schulz et al. (2016). The study
by Schulz et al. points out, that antimicrobial resistant E. coli is
able to survive for decades in dust samples with concentrations
up to 104 cfu per gram dust.

In our study, an instillation into the crop with 101 cfu E.
coli led to an equivalent colonization of broiler chickens as the
higher tested doses. These data were obtained by inoculating
every single animal of the group. To obtain data closer to
real farming conditions, we conducted a seeder-bird model by
inoculating only one fifth of the animals (seeder birds) in a
group with our defined minimal colonization dosage of 102

cfu E. coli. In literature, different methods of administration
of E. coli to poultry are described. Besides an oral inoculation
into the beak (Wang et al., 2017), a spray application over
the nose and eyes of the birds and a treatment of the feeders
has been implemented (Huff et al., 2011). A safer method to
ensure the uptake of the bacterial suspension is an instillation
into the crop. Thereby, to mimic the route of natural bacterial
infection in animal trials, the seeder-bird model is frequently
used and described for different enteral bacteria, such as E.
coli, Salmonella enterica and Campylobacter spec. (Ratert et al.,
2015; Schneitz and Hakkinen, 2016; Ceccarelli et al., 2017). The
non- inoculated, susceptible sentinel birds mirror the animals
naturally infected by the oral uptake of resistant bacteria from
their surrounding environment after they were shed by the
seeder birds. In the course of this, a variety of different ratios is
known and a ratio of 1:5 seeder- to sentinel birds is more often
described for the inoculation with Enterobacteriaceae (Methner
et al., 2011; de Cort et al., 2015; Kilroy et al., 2015). Using this
relation led to a complete colonization of all birds within our
group. For us, with regard to future studies, a colonization in
combination with an approximation to real farming conditions
was the most important. As there is no data available about
the number of initially colonized broiler chickens with resistant
bacteria through contaminated farm environment, other ratios
were not tested. Lower ratios of inoculated to non-inoculated
broiler chickens might lead to lower prevalences of the flocks but
can still constitute a source for contamination in further steps of
the broiler production chain. In this connection, an introduction
of resistant bacteria and cross- contamination at slaughterhouse
level was proven by von Tippelskirch et al. (2018). As another
consequence, remaining bacteria in the fattening stable after
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cleaning and disinfection is a source for the colonization of the
subsequent broiler flock as described above.

After 35 days of the seeder-bird trial, the bacterial count
observed in all necropsy samples taken is similar for all
broilers, irrespective of being an artificially inoculated seeder
bird or naturally colonized sentinel bird. This clearly shows the
impact of the oral (re-) colonization with ESBL- and AmpC-
producing Enterobacteriaceae during the ongoing trial. Even if
the inoculation of only one fifth of the broilers initially resulted
in a higher percentage of colonized seeder birds, observed in the
cloacal swabs taken, the oral uptake of resistant bacteria from
their surrounding environment seems to be of great importance
for the colonization. In this way, all sentinel birds achieved a
comparable colonization as the seeder birds over a period of 35
days. Interestingly, the bacterial count in all necropsy samples
from the seeder-bird group is significantly lower compared to the
dosage trial using 102 cfu E. coli. A first possible explanation is
the different number of ESBL- and AmpC- inoculated broilers
per trial. The oral colonization of only one fifth of the broilers in
the seeder-bird model initially leads to less shedding of resistant
bacteria into the animal housing. Thus, the contamination of the
environment with the bacterial strains and in consequence, the
oral (re-) colonization of the birds in the seeder-bird group is
lower compared to the dosage trial using 102 cfu E. coli. The lower
bacterial contamination of the environment might also explain
the lower initial prevalence observed in the colonization dosage
trials using 101 and 102 cfu ESBL- and AmpC- E. coli compared
to 103 and 104 cfu. However, a reasonable explanation for the
different colonization levels in the seeder-bird trial compared
to the trial using 102 cfu E. coli are the durations of the trials.
With regard to strict animal welfare norms, a duration of 2
weeks was found to be adequate to demonstrate a colonization
of our chickens with the E. coli strains in the colonization
dosage trials. After defining the minimal colonization dosage
of 102 cfu E. coli, a duration of 5 weeks was chosen for the
subsequent seeder-bird trial, to mimic real farming conditions.
This discrepancy between the experimental periods leads to a
change in microbial flora of the broilers gastrointestinal tract. Up
to an age of 49 days significant differences in the composition
of the cecal content for Ross-hybrids were shown by Lu et al.
(2003). This is in agreement with other studies postulating a
change of the predominant bacteria in broilers at older age (Amit-
Romach et al., 2004; Crhanova et al., 2011). These changes in the
microbial flora might lead to a competition of ESBL- and AmpC-
producers with other bacteria, resulting in a decrease of ESBL-
and AmpC- colonization.

As the reservoir for ESBL- and AmpC- producing E. coli, the
cecum has a predominant role to evaluate the colonization of the
broilers in the final necropsy. In contrast to the other samples of
the colonization dosage trials taken during necropsy, the values
gained from the content of the cecum are comparable between
the trials. Whereas a fermentation of the bacteria takes places in
both ceca, the content of crop and jejunum do simply reflect the
recent uptake of the resistant bacteria out of the surrounding.
This is strongly influenced by the feeding and drinking behavior
of the broilers immediately before the necropsy. Because of the
contamination with feces, an increased pecking in the litter

leads to a large intake of bacteria compared to a pecking out
of the feeding troughs or drinking and provides a reasonable
explanation for the different bacterial counts observed in crop
and jejunum samples.

Without applying any antimicrobial selection pressure to the
birds, a colonization was achieved in our trials using a low dose
of ESBL- and AmpC- producing E. coli. The usage of antibiotics
in animal farming is discussed controversially, with studies
indicating an impact of antibiotic treatment on co-selection and
occurrence of resistant bacteria (Costa et al., 2009; Persoons et al.,
2011; Dierikx C. M. et al., 2013). In recent years, an increasing
number of studies are concluding that the occurrence of ESBL-
and AmpC- producing bacteria in fattening chickens is not
related to antibiotic treatment (Hiroi et al., 2012; Huijbers et al.,
2016; Projahn et al., 2018). Our study reinforces these findings,
showing a colonization even of the susceptible sentinel birds
using a low dose of ESBL- and AmpC- producing E. coli without
applying any antimicrobial selection pressure. In support of this,
numerous studies are reporting a carriage of ESBL- and AmpC-
resistant bacteria in wild bird species that have never been faced
with any antibiotics before (Guenther et al., 2012; de Cort et al.,
2015; Alcalá et al., 2016). Both of our inoculation strains were
derived from a previous research project on ESBL- and AmpC-
E. coli from chicken farming in Germany, thus presenting actual
strains occurring in broiler chicken production (Falgenhauer
et al., 2016; Hering et al., 2016). Besides that, ST10 and ST410
were chosen due to their ubiquitous nature as ST10 presents an
ancient sequence type often present in livestock farming. ST410
was chosen due to its recent emergence as high risk clone in
Germany and worldwide (Falgenhauer et al., 2016; Schaufler
et al., 2016, 2019).

As a limitation, we investigated only one animal group per
colonization dosage and we have no information on the variation
between groups with the same colonization dosage. Although
the inoculation of four different colonization dosages verified the
general method, a repetition of the equal dosage or inoculation
ratio of the broiler chickens might result in higher or lower
initial colonization rates. Furthermore, an intra-herd correlation
between the broiler chickens of one group is present and the
results of the birds within one group are dependent upon each
other. The effects shown can be group-specific and through a
possible underestimation of variance in our analysis the results
cannot be generalized completely.

Nonetheless, we showed a colonization of broiler chickens
with a low colonization dosage of 102 cfu E. coli and a small
number of orally inoculated broilers in the seeder-bird model.
This might be a feasible explanation for the global spread of
ESBL- and AmpC- producing enterobacteria in conventional
broiler farms. With regard to an assumed transmission
of resistant bacteria to humans through close contact to
colonized broilers or the consumption of contaminated retail
meat, further steps for the reduction of ESBL- and AmpC-
producing bacteria have to be considered. Consequently,
based on this practical orientated colonization model, different
hygiene- and management measures as well as gut microbiota
influencingmeasures are currently being investigated as potential
intervention strategies to reduce the colonization of broilers.
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Abstract

The colonization of broilers with extended-spectrum β-lactamase- (ESBL-) and plasmid-

mediated AmpC β-lactamase- (pAmpC-) producing Enterobacteriaceae has been exten-

sively studied. However, only limited data on intervention strategies to reduce the coloniza-

tion throughout the fattening period are available. To investigate practically relevant

management measures for their potential to reduce colonization, a recently published

seeder-bird colonization model was used. Groups of 90 broilers (breed Ross 308) were

housed in pens under conventional conditions (stocking of 39 kg/m2, no enrichment, water

and feed ad libitum). Tested measures were investigated in separate trials and included (I)

an increased amount of litter in the pen, (II) the reduction of stocking density to 25 kg/m2,

and (III) the use of an alternative broiler breed (Rowan x Ranger). One-fifth of ESBL- and

pAmpC- negative broilers (n = 18) per group were orally co-inoculated with two E. coli

strains on the third day of the trial (seeder). One CTX-M-15-positive E. coli strain (ST410)

and one CMY-2 and mcr-1-positive E. coli strain (ST10) were simultaneously administered

in a dosage of 102 cfu. Colonization of all seeders and 28 non-inoculated broilers (sentinel)

was assessed via cloacal swabs during the trials and a final necropsy at a target weight of

two kilograms (= d 36 (control, I-II), d 47 (III)). None of the applied intervention measures

reduced the colonization of the broilers with both the ESBL- and the pAmpC- producing E.

coli strains. A strain-dependent reduction of colonization for the ESBL- producing E. coli

strain of ST410 by 2 log units was apparent by the reduction of stocking density to 25 kg/m2.

Consequently, the tested management measures had a negligible effect on the ESBL- and

pAmpC- colonization of broilers. Therefore, intervention strategies should focus on the pre-

vention of ESBL- and pAmpC- colonization, rather than an attempt to reduce an already

existing colonization.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0245224 January 7, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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Introduction

Antibiotic resistance is an increasing threat to global public health and concerns human- and

veterinary medicine [1]. Special attention is required for extended-spectrum β-lactamase

(ESBL-) and plasmid-mediated AmpC β-lactamase- (pAmpC-) producing Enterobacteriaceae

as they can limit therapeutic options with critically important antimicrobials, such as cephalo-

sporins of 3rd, 4th and 5th generation as well as monobactams [2].

Broiler chickens are considered as a reservoir for ESBL- and pAmpC- producing bacteria, it

with frequently confirmed high prevalence [3, 4]. These antibiotic-resistant bacteria are

detected at every level of the broiler production chain. Comprehensive data on ESBL- and

pAmpC- detection are available for parent- and grandparent stocks [5], the hatchery level [6],

the fattening period [7, 8], the slaughterhouse level [9], and the commercial product [10]. Vari-

ous transmission routes are described for ESBL- and pAmpC- producing bacteria. Dame-Kor-

evaar et al. [11] reviewed transmission routes in the broiler production chain and categorized

them as 1) vertical transmission between generations, 2) transmission at hatcheries, 3) hori-

zontal transmission on the farm, 4) horizontal transmission between farms, and via the envi-

ronment of farms. A transmission can lead to colonization of young broiler chickens through

the oral uptake of the resistant bacteria. The spread of ESBL- and pAmpC- producing Escheri-
chia coli (E. coli) in the broiler production chain can partly be attributed to the very low coloni-

zation dosage. Recent findings have shown that 101 to 102 colony forming units (cfu) of orally

administered ESBL- and pAmpC- producing E. coli can already lead to colonization of broiler

chickens [12, 13]. Cleaning and disinfection procedures can lower the risk of transmission of

cephalosporin-resistant E. coli from one flock to the subsequent flock in broiler fattening

farms [14]. Nevertheless, a reduction of the microbial load through intense cleaning and disin-

fection processes cannot eliminate ESBL- and pAmpC- producing bacteria and the recircula-

tion of resistant bacteria from earlier production rounds could play a role in contaminating

the consecutive flock [5].

Different measures to influence the microbial composition of the broiler chickens’ guts and

to affect the colonization of broiler chickens with ESBL- and pAmpC- producing Enterobac-

teriaceae are discussed in literature. One approach is the direct modulation of the broiler

chickens’ microbiota to influence the early colonization with ESBL- and pAmpC- producing

bacteria. For example, probiotics such as commercial Competitive Exclusion cultures and phy-

tobiotics showed promising results to reduce the ESBL- and pAmpC- colonization of broiler

chickens [15–18]. Another approach is to modify the conventional housing conditions during

the fattening process. A modification of the conventional conditions by an environmental

enrichment is applied frequently in broiler production to increase animal welfare. However,

information on the practical application and the economics of the production systems is often

lacking certainty [19]. The conventional conditions for broiler production in Germany most

commonly include the broiler breed Ross 308, no environmental enrichment during the fat-

tening process, a stocking density of 39 kilograms per square meter (kg/m2), and water and

feed ad libitum. Due to the variety of study designs, no clear statement on the impact of practi-

cally relevant management measures on the colonization of broiler chickens with ESBL- and

pAmpC- producing Enterobacteriaceae is possible. We aimed to investigate different manage-

ment measures which are taken during the fattening process on their potential to reduce the

spread of ESBL- and pAmpC- producing bacteria. We investigated the replacement of the

broiler breed Ross 308 with the broiler breed Rowan x Ranger, increase of the common litter

quantity of one kg/m2 to three kg/m2, and reduction of the common stocking density of 39 kg/

m2 to 25 kg/m2. In our study, the investigated management measures had a negligible impact

on the ESBL- and pAmpC- colonization of the broiler chickens.
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Materials and methods

Ethics statement

This study was carried out following the National Animal Protection Guidelines. The protocol

was approved by the German Animal Ethics Committee for the protection of animals of the

Regional Office for Health and Social Affairs Berlin (“Landesamt für Gesundheit und

Soziales”, LAGeSo, permission number G 0193/16). All applicable national and institutional

guidelines of the Freie Universität Berlin for the care and use of animals were followed. Experi-

mental treatments of animals were classified as to lead to no worse than minor discomfort in

the animals due to low pain of very short duration and were approved by LAGeSo.

Housing conditions

All trials were set up successively in the experimental facilities of the Center for Infection Med-

icine of the Department for Veterinary Medicine, Freie Universität Berlin, using controlled

rooms with respective ventilation and HEPA filtration of the exhaust air. Before each trial,

related room was disinfected using hydrogen peroxide fumigation, and the absence of ESBL-

and pAmpC- producing bacteria was confirmed. Before entering the room, daily clothes and

shoes were changed with trial specific clothing in an attached separate anteroom.

In accordance with our recently established seeder-bird colonization model [12], a control

group, having the broiler breed Ross 308 (mixed gender), was kept in a pen until the broilers

reached a target weight of two kilograms (= 36 days (d) of trial). Ninety broiler chickens were

housed under conventional conditions, with one-fifth of them (n = 18) being orally co-inocu-

lated with 102 cfu of one ESBL- and one pAmpC- producing E. coli on the third day of the trial

(Fig 1). Said conventional conditions included a stocking density of 39 kg/m2 corresponding

to 4.6 m2 for 90 broiler chickens, fresh litter once at the beginning of the trial (one kg/m2), no

environmental enrichment, and conventional feed and water ad libitum. The light regime was

set to 11 hours of light and 13 hours of dark with a dimming period of 30 minutes. The floor

temperature was decreased from 28˚C (d 1–6), over 26˚C (d 7–13) and 24˚C (d 14–20) to 22˚C

(d 21 to the end of the trial) with a relative humidity of 55%. The broiler chickens were fed a

commercial starter feed (d 1–7), grower feed, and a finisher feed (five days before finalization

of each trial) from a commercial broiler producer. Except for the finisher feed, coccidiostats

were included in the feed (decoquinate and narasin/nicarbazin). Neither in the control nor the

intervention groups antimicrobial agents were administered.

The intervention groups (I-III, Fig 1) were kept under the same conditions as the control

group, altering only one management measure in each group. To evaluate their impact on the

colonization of the broiler chickens with ESBL- and pAmpC- producing E. coli,

Fig 1. Study design of the experimental groups (control group, increased litter (I), reduced stocking density (II), and alternative breed

(III)). d = day of trial.

https://doi.org/10.1371/journal.pone.0245224.g001
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1. the litter quantity in kg/m2 was tripled from one kg/m2 to three kg/m2 over the course of

the trial. We procured the litter which consisted of pelletized straw granules from a com-

mercial broiler producer. The broiler breed (Ross 308, mixed gender), the number of

broiler chickens (n = 90), the stocking density of 39 kg/m2, and the trial period of 36 days

remained unchanged.

2. the common stocking density of 39 kg/m2 in Germany [20] was reduced to 25 kg/m2, as

described in the Commission Regulation (EC) No. 543/2008 [21]. For this, the effective

area of the experimental setup was enlarged from 4.6 m2 to 7.2 m2, whilst the broiler breed

(Ross 308, mixed gender), the number of broiler chickens (n = 90), the litter quantity of one

kg/m2 and the trial period of 36 days remained unchanged.

3. the broiler breed Rowan x Ranger (mixed gender) was included. In contrast to Ross 308,

this breed is included in ‘slow-growing’ broiler concepts with an extended fattening period.

The duration of the trial was set to 47 days so that the broilers reach the target weight of two

kg. The number of broiler chickens per trial (n = 90), the stocking density of 39 kg/m2, and

the litter quantity of one kg/m2 remained unchanged.

For each trial, we procured eggs from a commercial hatchery. The first disinfection using

formaldehyde gas was already performed in the hatchery. After the transportation to the exper-

imental facilities, the second liquid disinfection of the eggs was performed using WESSO-

CLEAN1 K 50 Gold Line containing 2.37% hydrogen peroxide and 0.015% peracetic acid

(Wesso AG, Hersbruck, Germany). Following the second disinfection, the eggs for each exper-

imental group were hatched in-house for 21 days. The eggs were incubated from day 1 to day

18 at 37.8˚C and 60% relative humidity in a setter. From day 18 to day 21, the eggs were incu-

bated at 37.2˚C and 80% relative humidity for hatching.

Before the trial, the absence of ESBL- and pAmpC- producing bacteria was confirmed in

the eggshells and in the one-day-old broiler chickens as well as in the experimental room and

on the equipment as described in our seeder-bird colonization model [12].

ESBL- and pAmpC- colonization strains

We used two avian E. coli strains to co-colonize our broiler chickens. One ESBL- producing E.

coli strain (CTX-M-15; multilocus sequence type (ST) 410; phylogenetic group B1; internal

number 10716) published as R56 by Falgenhauer et al. [22] and one pAmpC- producing E. coli
strain (CMY-2, mcr-1; ST10; phylogenetic group A; internal number 10717). Both strains were

isolated in a previous research project [23] and were recently used to establish our seeder-bird

colonization model [12]. In this colonization model, both commensal E. coli strains colonized

the digestive tracts of broilers with high bacterial counts and without causing any clinical

signs.

The bacterial suspension for the inoculation of the broiler chickens with the ESBL- and

pAmpC- E. coli strains was prepared, according to Robé et al. [12].

Oral ESBL- and pAmpC- inoculation of the broilers

On the third day of trial, one-fifth of the broilers (n = 18) were orally co-inoculated with 102

cfu E. coli of both bacterial strains in equal parts (Fig 1). These 18 seeder-birds were randomly

selected prior to the trial and for the inoculation, 200 μl of the bacterial suspension were

administered into the crop via a crop needle. After inoculation, the broiler chickens were

immediately put back into the pen to the 72 non-inoculated broiler chickens (sentinel-birds).

Regardless of the subsequent colonization status of the seeder-birds after inoculation, all broil-

ers were kept together in one experimental setup to mimic real farming conditions.

PLOS ONE ESBL-/pAmpC- colonization of broilers and impact of management measures

PLOS ONE | https://doi.org/10.1371/journal.pone.0245224 January 7, 2021 4 / 15

https://doi.org/10.1371/journal.pone.0245224


Samplings and analyses

The sample processing was identical to the one which was described in our seeder-bird coloni-

zation model [12]. Chromogenic orientation agar (CHROMagar Orientation, Mast Diagnos-

tica, Reinfeld, Germany) was used for a reliable identification of the E. coli colonies. To

confirm the ESBL-/ pAmpC- absence in the experimental room and the newly hatched broiler

chickens, the agar was supplemented with two μg/ml cefotaxime (AppliChem, Darmstadt,

Germany). In order to process all other samples, a set of four chromogenic agar plates which

has proven suitable for our study was used. The total count of E. coli colonies was determined

using an agar plate without selective media (positive control). For the detection of the ESBL- E.

coli 10716, one plate was supplemented with two μg/ml cefotaxime and four μg/ml enrofloxa-

cin (Sigma- Aldrich, Steinheim, Germany). For the detection of the pAmpC- E. coli 10717, one

agar plate was supplemented with two μg/ml cefotaxime and seven μg/ml colistin (Carl Roth,

Karlsruhe, Germany). The fourth agar plate contained all three antibiotics in the given concen-

trations (negative control). All samples were incubated for 24 h at 37˚C. Every untypical E. coli
colony morphology was further analyzed using MALDI- TOF (MALDI Microflex LT1 and

Biotyper database1; Bruker Daltonics, Bremen, Germany).

Colonization status during the trial. The colonization of all 18 seeder-birds and 28

selected sentinel-birds with both E. coli strains was monitored over the entire period of each

trial via cloacal swabs. The investigated birds were randomly selected before the trial and

repeatedly sampled during the trial, first of which was done 24 h post-inoculation (p.i.). Groups

using the breed Ross 308 (control group, increased amount of litter in the pen (I), and reduced

stocking density (II)) were sampled for ten times during the 36 days of trial. The group using

the breed Rowan x Ranger (III) was sampled 13 times during the 47 days of trial (sampling

1 = 24 h p.i., 2 = 72 h p.i., 3–5 = second week of trial, 6–7 = third week of trial, 8–9 = fourth

week of trial, 10–11 = fifth week of trial, 12–13 = sixth week of trial (Fig 1)). To evaluate the

colonization status of the broiler chickens, the swabs were immediately transferred into reac-

tion tubes containing 500 μl PBS, thoroughly vortexed, and 50 μl were streaked out onto the

chromogenic agar set as described above.

Colonization status at necropsy. A necropsy was performed at a target weight of two kilo-

grams for all sampled seeder- and sentinel-birds (= d 36 (control, I-II) and d 47 (III); Fig 1). For

sedation, ketamine hydrochloride (43 mg/kg body weight, Ketamin 10%, Bremer Pharma

GmbH, Warburg, Germany), xylazine hydrochloride (1.75 mg/kg body weight, Xylavet 20mg/

ml, cp-pharma, Burgdorf, Germany), and midazolam hydrochloride (0.85 mg/kg body weight,

Midazolam 5mg/ml, Braun, Melsungen, Germany) were administered into the pectoral muscle.

Animals were sacrificed by an intracardiac injection of tetracaine hydrochloride, mebezoniom

iodide, and embutramid (1 ml/kg, T61, Intervet Deutschland GmbH, Germany). Digestive tract

samples of crop, jejunum, cecum, and colon were quantitatively analyzed, and organ samples of

liver and spleen were qualitatively analyzed for the occurrence of both bacterial strains as

described in Robé et al. [12]. In brief, the digestive tract content was weighed in a reaction tube

into which PBS was added at the ratio of 1:2. A dilution series in PBS was performed, and appro-

priate dilutions were plated on the plate set as described above. For quantification, a minimum

of two dilution levels were counted. In addition, to exclude the possibility of systemic spread,

organ samples of liver and spleen were investigated qualitatively as described before [12].

Statistical analysis

Statistical analysis was carried out using SPSS Statistics 25 (IBM, New York, USA). Confidence

intervals of proportions were calculated using the Clopper-Pearson method. For all analyses,

the probability level to denote significance was set to 0.05.
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The effects of the tested management measures on the colonization of broiler chickens with

ESBL- and pAmpC- producing E. coli during the trials were analyzed via a logistic mixed

regression model. The variables ‘group’, ‘sampling time’, and ‘animal’ were included in the

analysis for both E. coli strains. To account for the repeated measurement of the same individ-

ual, ‘ID number’ and ‘sampling time’ were included in the analysis as random effects. Using

backward selection, the best fitting model from a full model, including 2- and 3-way interac-

tions, was obtained. The model with the lowest AIC value and lowest number of included

effects was chosen, with an AIC change of two or less considered as equal. It resulted in the

model with all main factors and the interaction term ‘animal and sampling time’. Residuals

were inspected for normality and homoscedasticity for each sampling time point.

Mann-Whitney-U-Tests were performed to compare the level of colonization between the

seeder- and sentinel-birds at necropsy. Kruskal-Wallis-Tests were performed to compare the

final colonization of the digestive tracts of the tested groups to the control group at necropsy.

Due to multiple comparisons in the Kruskal-Wallis-Test, the level of significance was set to

0.0167 (Bonferroni correction).

Results

Cloacal swabs

Colonization of broiler chickens with the ESBL- and pAmpC- E. coli strains was monitored via

cloacal swabs throughout each trial, starting 24 h p.i. A strain-dependent course of coloniza-

tion was evident in the investigated groups (Fig 2, S1 Fig and S1 Table). ‘Group’, ‘animal’,

‘sampling time’ as well as the interaction between ‘animal and sampling time’ were statistically

significant (Table 1). Compared to the control group for the ESBL- E. coli strain, a reduced

hazard of colonization was solely apparent under the reduction of stocking density to 25 kg/

m2, with a hazard ratio (HR) of 0.18 (95% CI: 0.12–0.28). An increased amount of litter in the

pen led to a higher risk of colonization for both E. coli strains (ESBL- E. coli HR 2.38 (95% CI:

1.49–3.82); pAmpC- E. coli HR 4.58 (95% CI: 2.09–10.06)), while the use of an alternative

breed showed no effect on the hazard of colonization of broiler chickens with both E. coli

Fig 2. Prevalence of broiler chickens with (A) ESBL- and (B) pAmpC- producing E. coli throughout the different

trials (control group, increased litter, reduced stocking density (reduced stocking) and alternative breed).

See = seeder-birds, Sen = sentinel-birds; sampling 1 = 24 h post-inoculation, 2 = 72 h post-inoculation, 3–5 = 2nd week

of trial, 6–7 = 3rd week of trial, 8–9 = 4th week of trial, 10–11 = 5th week of trial, 12–13 = 6th week of trial.

https://doi.org/10.1371/journal.pone.0245224.g002
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strains (ESBL- E. coli HR 1.01 (95% CI: 0.66–1.56); pAmpC- E. coli HR 1.25 (95% CI: 0.65–

2.40)).

For the ESBL- E. coli, the hazard rate of colonization was lower for sentinel-birds compared

to seeder-birds with a hazard ratio of 0.11 (95% CI: 0.05–0.23). A reduced hazard for sentinel-

birds could not be shown for the pAmpC- E. coli, while the interaction between ‘animal and

sampling time’ was highly significant (Table 1).

Except the seventh sampling time point, the hazard rates of colonization for the ESBL- E.

coli strain were higher at all sampling times after 24 h. Regarding the pAmpC- E. coli strain,

the hazard rates of colonization were higher at all sampling times after 24 h. However,

Table 1. Hazard ratios (HR) of broiler chickens’ colonization with ESBL- and pAmpC- producing E. coli in the four investigated groups (control group, increased

litter, reduced stocking density (reduced stocking) and alternative breed) adjusted for interaction ‘animal and sampling time’.

Strain Factor p-value HR (95% CI)

ESBL- E. coli Group < 0.001 Control (reference) 1

Increased litter (3 kg/m2) 2.38 (1.49–3.82)

Reduced Stocking (25 kg/m2) 0.18 (0.12–0.28)

Alternative breed (Rowan x Ranger) 1.01 (0.66–1.56)

Animal < 0.001 Seeder (reference) 1

Sentinel 0.11 (0.05–0.23)

Sampling time < 0.001 1 (reference) 1

2 3.90 (1.68–9.10)

3 6.46 (2.57–16.25)

4 7.54 (2.91–19.54)

5 6.49 (2.57–16.36)

6 2.36 (1.06–5.26)

7 1.82 (0.83–3.97)

8 4.35 (1.83–10.34)

9 5.58 (2.26–13.75)

10 4.91 (2.03–11.87)

pAmpC- E. coli Group < 0.001 Control (reference) 1

Increased litter (3 kg/m2) 4.58 (2.09–10.06)

Reduced Stocking (25 kg/m2) 0.94 (0.50–1.78)

Alternative breed (Rowan x Ranger) 1.25 (0.65–2.40)

Animal > 0.999 Seeder (reference) not estimated

Sentinel

Sampling time < 0.001 1 (reference) 1

2 10.56 (1.29–86.71)

3 not estimated

4 not estimated

5 not estimated

6 3.41 (0.86–13.48)

7 1.61 (0.53–4.93)

8 1.01 (0.36–2.80)

9 10.83 (1.31–89.49)

10 2.00 (0.62–6.49)

95% CI = 95% confidence interval; sampling time: 1 = 24 h post inoculation, 2 = 72 h post inoculation, 3–5 = 2nd week of trial, 6–7 = 3rd week of trial, 8–9 = 4th week of

trial, 10 = 5th week of trial.

https://doi.org/10.1371/journal.pone.0245224.t001
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statistical significance could only be shown for the second and ninth sampling time points due

to strong interactions with the animal (Table 1).

Necropsy

At necropsy, respective contents of crop, jejunum, cecum, and colon were analyzed. As there

was no significant difference in the level of colonization between the seeder- and sentinel-

birds in any of the experimental groups (Mann-Whitney-U-Test, p> 0.05, S2 Table), each

digestive tract sample per group was analyzed jointly for all investigated birds. None of the

applied measures significantly reduced the bacterial counts of both the ESBL- and the

pAmpC- E. coli strains in any of the digestive tract samples compared to the control group

(Kruskal-Wallis-Test, Fig 3 and S2 Fig). We focused on the cecum samples for the following

analyses as the results of all digestive tract samples correlated (Fig 3 and S2 Fig). By the reduc-

tion of the stocking density to 25 kg/m2, a strain-dependent significant reduction of cecum

colonization of the ESBL- E. coli (Kruskal-Wallis-Test, p< 0.001, Fig 3) with a considerably

lower prevalence of 63% (95% CI: 48–77%) compared to the control group (93%; 95% CI: 82–

99%) was observed (S1 Table). On the other hand, the bacterial counts for the pAmpC- E. coli
in the group with the reduced stocking density were significantly higher (Kruskal-Wallis-Test,

p< 0.001, Fig 3) compared to the control group, with almost all broiler chickens pAmpC-colo-

nized (96%; 95% CI: 85–99%, S1 Table). A significant increase in the cecum colonization with

both bacterial strains (Kruskal-Wallis-Test, p< 0.001, Fig 3) was evident for the experimental

Fig 3. Cecum colonization of broiler chickens (log10 cfu/g) with ESBL- and pAmpC- producing E. coli in the four investigated

groups (control group, increased litter, reduced stocking density (reduced stocking) and alternative breed) determined at

necropsy. ��� p< 0.001 (Kruskal-Wallis-Test).

https://doi.org/10.1371/journal.pone.0245224.g003
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group with the measure of a tripled amount of litter in the pen. The alternative broiler breed

Rowan x Ranger caused no effect on the colonization with both bacterial E. coli stains (Krus-

kal-Wallis-Test, p> 0.05, Fig 3). These results are correlating to the analyses of the cloacal

swabs (except the increased pAmpC- E. coli colonization in the group with reduced stocking

density).

In summary, none of the tested measures prevented the colonization of broiler chickens

with both the ESBL- and the pAmpC- producing E. coli strains. There was a significant reduc-

tion of the prevalence and the bacterial counts of the ESBL- E. coli in the group with the

reduced stocking density. Besides, we did not detect colonization of the liver or spleen with

our bacterial strains in any of our experimental groups.

Discussion

In our experiments, none of the applied intervention measures reduced the broiler chickens’

colonization with both the ESBL- and the pAmpC- producing E. coli strains. All measures

were tested separately under controlled conditions in a setup close to the real farming condi-

tions, according to Robé et al. [12]. To the best of our knowledge, only little information about

trials having our tested management measures to reduce the broiler chickens’ colonization

with ESBL- and pAmpC- producing bacteria is available.

A study by Guardia et al. [24] demonstrated an effect of high stocking densities on the

composition of commensal bacteria in the digestive tracts of young broilers. A decrease in

the overall bacteria and E. coli in the chickens’ ceca at the age of three weeks followed by a

reduced effect at the age of six weeks, was shown. Also, reduced stocking densities have been

shown to affect the colonization of different bacteria, including pathogens such as Clostrid-
ium perfringens, Campylobacter spp. and Salmonella spp. [25–27]. A reasonable explanation

is that the reduced bacterial contamination per square meter of the litter caused the effect on

colonization [24]. As the intestinal microbiota of broiler chickens is affected by the composi-

tion, type, and quality of the litter [28, 29], an improved litter quality through less bacterial

contamination could also lead to a reduced load of ESBL- and pAmpC- producing bacteria,

particularly at the beginning of the fattening period. However, our results did not prove a

general positive effect of reduced stocking density on the ESBL- and pAmpC- colonization

of broiler chickens. On the one hand, we showed a significant reduction of cecum coloniza-

tion of the ESBL- E. coli. On the other hand, a significant increase of the pAmpC- E. coli colo-

nization of the broiler chickens was evident. Even though the co-colonization of different

ESBL- and pAmpC- producing bacteria represents the real scenario of colonization [17],

there is a lack of broiler studies using this approach. Based on our results, we hypothesize

that different intervention measures have strain-dependent effects on the ESBL- and

pAmpC- colonization of broiler chickens. A study by Nuotio et al. [15] described a variation

in the effect of a commercial Competitive Exclusion culture on the broiler colonization with

three separately tested ESBL- and pAmpC- E. coli strains. Thus, a combination of different

approaches might be needed to reduce the spread of these resistant bacteria in the broiler

production chain [17, 30].

A similar approach of less contact to contaminated feces was taken for the experimental

group with increased amount of litter in the pen. We hypothesized that the fecal droppings

which harbor the resistant bacterial strains mix in the bedding material, for example, due to

the movement of the chickens. Conversely, the cecum colonization of both the ESBL- and the

pAmpC- E. coli strains was significantly higher at necropsy compared to the control group.

We assume that an increased amount of litter leads to a more pronounced explorative behavior

of the broiler chickens with a higher oral intake of litter and results in an intensified (re-)
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colonization with the resistant bacteria [12]. The described quantities of bedding material used

for broiler chickens range from 1 kg/m2 [31], which reflects the commercial standard in Ger-

many and was applied in our control group, up to 6 kg/m2 [24] in some studies. However,

because of practical reasons, a tripled amount of litter (3 kg/m2) was used in our related experi-

mental group. A study by Persoons et al. [32] showed an impact of different litter materials on

the occurrence of ceftiofur-resistant E. coli in broilers, with a higher risk for straw compared to

wood curls. An effect of the bedding material on the ESBL- and pAmpC- colonization cannot

be ruled out in our study, as all trials were conducted using pelletized straw granule. The fine

litter structure of straw granule could cause a higher oral intake of the bedding material com-

pared to other materials and a higher oral intake could have led to a higher (re-) colonization

of the broiler chickens in our trial. As we want to mimic real farming conditions, we used pel-

letized straw granule which is most frequently used as bedding material in broiler fattening

farms in Germany. As fresh litter is known to carry enteral bacteria [33], the absence of ESBL-

and pAmpC- producing bacteria was confirmed before the trials. In order to reflect real farm-

ing conditions to the best of our ability, we did not sterilize the litter. Hence, an interaction

between the broiler chickens and the surrounding environment including the present bacterial

spectrum was possible as usual in broiler production [34].

An impact of the broiler breed on the microbial composition and colonization of the gut

with resistant or pathogen bacteria is discussed [32, 35–37]. A strong influence of the environ-

ment on the microbial composition with a minor impact of the used broiler breed was con-

cluded by Richards et al. [38]. Contrastingly, Schokker et al. [39] drew a different conclusion

with a major influence of broilers’ genetic on microbial gut colonization. These diverse results

of the two exemplary mentioned studies could also be caused by the different experimental

designs. While Richards et al. [38] placed all breeds together in one pen, Schocker et al. [39]

housed the investigated breeds simultaneously, but separately, under identical conditions for

the chickens. Furthermore, Rychlik [40] demonstrated a highly variable microbiota develop-

ment even in the ceca of chickens of the same line, which had the same background but were

not kept simultaneously. A general statement on the impact of the breed on broiler chickens’

gut colonization is not possible yet, due to the different housing conditions and a large variety

of breeds used in various studies. In our trial, we placed the broiler breeds separately but under

identical conditions. Investigating the broiler breeds Ross 308 and Rowan x Ranger, no signifi-

cant difference in colonization with the ESBL- and the pAmpC- E. coli was apparent. Thus,

our results support the findings of Richards et al. [38] even though we placed the two broiler

breeds in separate pens.

Various scenarios can lead to ESBL- and pAmpC- colonization of broiler chickens, as

reviewed by Dame-Korevaar et al. [11]. Transmission of antibiotic-resistant bacteria can take

place before the arrival of the broiler chickens on the fattening farms [6] as well as after the

placement of the chickens [7]. We investigated the impact of singularly applied management

measures on the colonization of both the ESBL- and the pAmpC- inoculated seeder-birds and

non-inoculated sentinel-birds. In our recently published broiler colonization model, a ratio of

1:5 ESBL- and pAmpC- inoculated seeder-birds to non-inoculated sentinel-birds on the third

day of the trial led to the colonization of all seeder-birds 24 h p.i. and colonization of all senti-

nel-birds 72 h p.i. [12]. In contrast to our broiler colonization model, the resulting prevalence

of the seeder- and sentinel-birds of our control group in the current study was lower, 24 h and

72 h p.i. The lower prevalence may be due to the differences in the group size, with 20 broiler

chickens in the colonization model compared to 90 broiler chickens in the current study. A

bigger group size results in a larger pen, which might have affected the group dynamics. Com-

pared to the control group, the prevalence in the intervention groups might be due to an

impact of the applied intervention measure itself or can partly be a result of the variability of
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cloacal swab samples. As fermentation of the bacteria takes place in the ceca [41], and the cecal

content is ejected only twice a day [40], the detection rate of our colonization strains might be

affected by the chosen sampling type. Stanley et al. [42] pointed out the need of cloacal swab

samples from the same birds for a repeated measurement in a trial but also showed quantita-

tive differences between the analysis results of cloacal swab samples and cecal samples. How-

ever, statistical analyses of the swab samples revealed results comparable to the results for cecal

samples. Additionally, there was a correlation among the analysis results of crop-, jejunum-,

colon-, and the cecum samples per experimental group. As the contents of crop and jejunum

simply reflect the recent uptake of the resistant bacteria from the surrounding, they are

strongly influenced by the eating and drinking behavior of the broilers immediately before the

necropsy [12]. Nevertheless, a reasonable explanation for the correlating results for the differ-

ent digestive tract samples is that the uptake of fecal droppings caused an oral (re-)colonization

of the broiler chickens. Consequently, cecum samples are needed in order to have the ESBL-

and pAmpC- status of the broilers evaluated [40].

To summarize, the effects of the tested management measures, namely (I) an increased

amount of litter in the pen, (II) the reduction of stocking density to 25 kg/m2, and (III) the use

of an alternative broiler breed, are negligible on the ESBL- and pAmpC- colonization of broiler

chickens. Nevertheless, these results do not entirely exclude the possibility of management

measures reducing the colonization of broiler chickens with ESBL- and pAmpC- producing

bacteria. Particularly, microbiome-directed measures could represent a promising effect as

they directly address the digestive tract. Probiotics such as commercial Competitive Exclusion

cultures and phytobiotics already showed positive results of reducing the ESBL- and pAmpC-

colonization of broiler chickens [15–18] and should be further investigated. In addition, a

combination of promising measures is another approach which needs to be evaluated for a

potential synergistic effect against the ESBL- and pAmpC- colonization of broiler chickens.

Apart from the colonization of the broiler chickens, the external contamination with ESBL-

and pAmpC- producing bacteria has to be considered as a source of contamination at slaugh-

terhouse level. In terms of the consumer protection, investigations on the external contamina-

tion of broiler chickens are necessary.
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S1 Fig. Prevalence of seeder-birds and sentinel-birds throughout all trials (control group,

increased litter, reduced stocking density, and alternative breed) with (A) ESBL- and (B)

pAmpC- producing E. coli. Samplings: 1 = 24 h post-inoculation, 2 = 72 h post-inoculation,

3–5 = 2nd week of trial, 6–7 = 3rd week of trial, 8–9 = 4th week of trial, 10 = 5th week of trial;

Error bar = 95% Confidence interval.

(TIF)

S2 Fig. Colonization of broiler chickens (log10 cfu/g) with ESBL- and pAmpC- producing

E. coli in (A) crop, (B) jejunum, and (C) colon in the four investigated groups (control

group, increased litter, reduced stocking density (reduced stocking) and alternative breed)

determined at necropsy. ��� p< 0.001 (Kruskal-Wallis-Test).

(TIF)

S1 Table. Prevalence of ESBL- and pAmpC- producing E. coli of seeder-birds and sentinel-

birds determined during the trial (cloacal swabs) and at necropsy of the four investigated

groups (control group, increased litter, reduced stocking density (reduced stocking) and

alternative breed). � Prevalence in percent (%); 10716 = ESBL- E. coli, 10717 = pAmpC- E.

coli; See = seeder-birds, Sen = sentinel-birds; sampling: 1 = 24 h post-inoculation, 2 = 72 h
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4 Unpublished data 
4.1 Intervention groups: Competitive Exclusion- culture, Competitive Exclusion- 

strain and drinking water acidification 

Publication I covers the establishment of the broiler chickens colonization model using one 
ESBL- and one pAmpC- producing E. coli strain for the co-colonization of the animals. 

Following, publication II deals with the potential of three distinct intervention measures to 

reduce the colonization of broiler chickens with ESBL- and pAmpC- producing E. coli 

throughout the fattening process using the established colonization model. The published 
intervention measures are (i) the reduction of the common stocking density from 39 kilograms 

per square meter (kg/m2) to 25 kg/m2, (ii) the use of an alternative, ‘slow-growing’ broiler breed 

(Rowan x Ranger) and (iii) the increase of the common litter quantity of one kg/m2 to three 

kg/m2. In addition to the published data on the groups mentioned above, three more 
intervention measures were investigated separately. In accordance with the groups i-iii, the 

additionally tested measures were investigated using the same study design, including the 

experimental setup, sample collection and –processing, and data analysis. The so far 
unpublished tested measures are: 

1. The acidification of the drinking water with a commercially available product. The water 

supplement is based on organic acids and was administered at three different times 

throughout the trial as recommended by the manufacturer (day 1-7, day 15-19 and day 
31-38).  

2. The application of a Competitive Exclusion (CE)- strain, isolated by the Institute of 

Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen. 0.5 ml 
of the nonpathogenic Enterobacterales strain (IHIT36098) were orally administered 

once in a bacterial count of 108 cfu to each day-old broiler chicken right after hatch and 

before placing the animals into the experimental facilities. 

3. The application of a complex, non-defined available CE- culture originated from specific 
pathogen-free chickens' cecum content. The culture was prepared following the 

manufacturer's specifications. Right after hatch and before placing the animals into the 

experimental facilities, 0.1 ml of the culture were orally administered to each day-old 
broiler chicken. 
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4.2 Results 
4.2.1 Cloacal swabs 

The broiler chickens’ colonization was assessed via cloacal swabs throughout each trial, 
starting 24 h p.i. (post inoculation). The determined prevalence of the seeder- and sentinel-

birds of all investigated groups is shown in Figure 3 and Supplement Table 1. 

The two investigated ESBL- and pAmpC-producing E. coli strains showed correlating results 
with all investigated factors statistically significant, namely ‘group’, ‘animal’ and ‘sampling time’ 

and the interaction ‘animal and sampling time’ (Table 1). Compared to the control group, a 

reduced hazard ratio for both the ESBL- and pAmpC- E. coli strain was apparent after the 

application of the single CE-strain (ESBL- E. coli hazard ratio (HR) 0.02 (95% CI: 0.01-0.03); 
pAmpC- E. coli HR: 0.38 (95% CI: 0.20-0.70) and the application of the complex CE-culture 

(ESBL- E. coli hazard ratio (HR) 0.002 (95% CI: 0.001-0.006); pAmpC- E. coli HR 0.001 (95% 

CI: 0.001-0.003)). In contrast to the two CE-groups, the acidification of the drinking water led 
to a higher risk of colonization for both E. coli strains (ESBL- E. coli HR: 59,88 (95% CI: 14.20-

252.57); pAmpC E. coli HR 8.02 (95% CI: 3.21-20.03)). 

For both E. coli strains, the hazard of colonization was lower for sentinel-birds than seeder-

birds with hazard ratios of 0.003 (95% CI: 0.000-0.017) for the ESBL- E. coli and 0.03 (95% 
CI: 0.01-0.09) for the pAmpC- E. coli. 

At no sampling time, the hazard of colonization was lower than at the first sampling time (24 h 

p.i.). For the pAmpC- E. coli, the hazard rates of colonization were significantly higher starting 
from the fourth sampling time. For the ESBL- E. coli, significantly higher hazard rates were 

only apparent at sampling times three and nine due to strong interactions of the variables 

‘sampling time’ and ‘animal’ in the logistic mixed regression model. 
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Figure 3. Prevalence of broiler chickens with (A) ESBL- and (B) pAmpC-producing E. coli 
throughout the different trials (Control group, Acidified drinking water (Acidified water), 
Competitive Exclusion- (CE-) strain, and CE-culture). 

See = Seeder-birds, Sen = Sentinel-birds; sampling 1 = 24 h post inoculation, 2 = 72 h post 
inoculation, 3-5 = 2nd week of trial, 6-7 = 3rd week of trial, 8-9 = 4th week of trial, 10 = 5th week 
of trial. 

 

 

Table 1. Hazard ratios of the broiler chickens’ colonization with ESBL- and pAmpC-producing 
    E. coli in the four investigated groups. 

  ESBL E. coli pAmpC E. coli 
Factor  p-value HR (95% CI) p-value HR (95% CI) 

Group Control ≤ 0.001 1 (reference) ≤ 0.001 1 (reference) 

 Acidified 
drinking water  59.88 (14.20-252.57)  8.02 (3.21-20.03) 

 CE-strain  0.02 (0.011-0.03)  0.38 (0.20-0.70) 

 CE-culture  0.002 (0.001-0.006)  0.001 (0.001-0.003) 

Animal Seeder ≤ 0.001 1 (reference) ≤ 0.05 1 (reference) 

 Sentinel  0.003 (0.000-0.017)  0.03 (0.01-0.09) 

Sampling 1 ≤ 0.001 1 (reference) ≤ 0.001 1 (reference) 

 2  2.52 (0.67-9.50)  1.20 (0.37-3.96) 
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 3  4.71 (1.29-17.22)  3.33 (0.80-13.77) 

 4  1.59 (0.42-6.05)  7.27 (1.53-34.69) 

 5  3.13 (0.84-11.71)  7.23 (1.52-34.49) 

 6  2.01 (0.53-7.62)  10.94 (2.28-52.60) 

 7  1.00 (0.27-3.77)  4.75 (1.06-21.23) 

 8  2.52 (0.67-9.50)  4.77 (1.07-21.26) 

 9  3.86 (1.04-14.29)  7.19 (1.52-34.02) 

 10  1.26 (0.33-4.78)  16.08 (3.43-75.28) 
 

95% CI = 95% confidence interval; HR = Hazard ratio; CE = Competitive Exclusion; sampling 
1 = 24 h post inoculation, 2 = 72 h post inoculation, 3-5 = 2nd week of trial, 6-7 = 3rd week of 
trial, 8-9 = 4th week of trial, 10 = 5th week of trial 

 

4.2.2 Necropsy 

At necropsy, the content of crop, jejunum, cecum, colon, and organ samples from spleen and 

liver, were analyzed for the occurrence of the two investigated ESBL- and pAmpC- E. coli 
strains (Figure 4, Supplement Table 1 and 2). In principle, the detected quantities of the ESBL- 

and pAmpC- E. coli in the investigated intestinal samples of crop, jejunum, cecum, and colon 

per experimental group are correlating at necropsy (Figure 4). The seeder- and sentinel-birds 

were jointly analyzed as there was no significant difference in the colonization of the broiler 
chickens in any of the investigated intestinal samples (Mann-Whitney-U-Test, p ≥ 0.05, 

Supplement Table 2). As the cecum is the reservoir for ESBL- and pAmpC- producing bacteria, 

we focused on the cecum samples to evaluate the colonization of the broiler chickens with the 
ESBL- and pAmpC- producing E. coli. 

The administration of the CE-culture led to a significant reduction of the broiler chickens’ 

colonization with both the ESBL- and pAmpC- E. coli strain (Kruskal-Wallis-Test, p ≤ 0.001, 

Figure 4) along with a prevalence of almost zero in the cecum samples (ESBL- E. coli 0% (95% 
CI: 0-8%) and pAmpC- E. coli 4% (95% CI: 1-15%), Supplement Table 1). A significant 

reduction of colonization of the ESBL- E. coli was also apparent under the administration of 

the CE-strain (Kruskal-Wallis-Test, p ≤ 0.001, Figure 4) with a detected prevalence of 2% (95% 
CI: 0-11%). No effects of the CE-strain on the colonization of the broiler chickens were shown 

for the pAmpC- E. coli strain with most birds colonized (96%, 95% CI: 85-99%). In contrast to 

the two CE-groups, the acidification of the drinking water led to a significant increase of the 
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colonization with both investigated ESBL- and pAmpC- E. coli strains (Kruskal-Wallis-Test, p 
≤ 0.001, Figure 4) and a prevalence of 100% (ESBL- E. coli 100% (95% CI: 92-100%) and 

pAmpC- E. coli 100% (95% CI: 92-100%), Supplement Table 1). 

The results of the intestinal samples determined at necropsy are correlating with the results of 
the cloacal swab analyses (except a predicted lower colonization of the broiler chickens 

concerning the pAmpC- E. coli in the CE-strain group). In addition, no growth in any of the 

analyzed liver and spleen samples was apparent. 

 

Figure 4. Broiler chickens’ colonization of A) crop, B) jejunum, C) cecum, and D) colon (log10 
cfu/g) with ESBL- and pAmpC-producing E. coli in the four investigated groups (Control group, 
Acidified drinking water (Acidified water), Competitive Exclusion- (CE-) strain, and CE-culture) 
attained at necropsy. * p ≤ 0.05, *** p ≤ 0.001, not significant results are not highlighted 
(Kruskal-Wallis-Test)  
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5 Discussion 

Antimicrobial-resistant bacteria can cause difficulties in treating bacterial infections in animals 

and humans and might worsen the prognosis of an illness. Additionally, the colonization of 
broiler chickens with antimicrobial-resistant bacteria like ESBL- and pAmpC- producers poses 

a risk for transmitting these bacteria to humans. As the number of infections with antimicrobial-

resistant bacteria is rising in both human and veterinary medicine, this study aimed to 
investigate potential intervention measures to reduce the colonization of broiler chickens with 

ESBL- and pAmpC- producing bacteria in the course of the fattening period. The reduction of 

antimicrobial-resistant bacteria at this step of the broiler production chain is crucial for reducing 

the contamination of the broiler chickens. A reduced load of resistant bacteria during the 
fattening period can decrease the transmission to the broiler chickens’ surrounding 

environment and carcasses at the slaughterhouse level, which reduces the load of ESBL- and 

pAmpC- producing bacteria on the sellable products. 

To investigate potential intervention measures, we established a broiler chicken colonization 

model. We determined the minimal bacterial count for the colonization of broiler chickens to 

elucidate the transmission dynamics of ESBL- and pAmpC- producing bacteria within a broiler 

flock. Following, distinct hygiene- and management measures were analyzed on their potential 
to lower the ESBL- and pAmpC- prevalence of broiler chickens in the course of the fattening 

period. 

5.1 Broiler chicken colonization model for ESBL- and pAmpC- producing E. coli 

We aimed to establish a broiler chicken colonization model close to real farming conditions to 

comply with commercial broiler production conditions and reflect the ESBL- and pAmpC- 

transmission dynamics in broiler fattening flocks. Several factors need to be considered for a 

practically relevant setup, such as the bacterial inoculation and the broiler chickens’ keeping 
conditions, including the feed, water, and litter. For the bacterial inoculation, the day of 

inoculation, the route of administration, the growth phase and the bacterial counts of the 

administered bacterial strains, as well as the number of inoculated broiler chickens (inoculation 
ratio) are of crucial importance. The broiler chickens were kept conventionally with a stocking 

density of 39 kg/m2, no enrichment, fresh litter once at the beginning of the trail, and 

conventional feed and water ad libitum. No antimicrobial agents were administered to the 

broilers in any of the trials. 
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5.1.1 Determination of the minimal bacterial count 

To determine the bacterial count for the subsequent seeder-bird trials, we decided to co-

inoculate all broiler chickens with the two ESBL- and pAmpC- E. coli strains at the third day of 
trial (corresponding to the third day of life). In separate trials, the bacterial strains were orally 

administered into the crop using end log phase bacterial counts of 101 to 104 cfu. Already a 

bacterial count of 101 cfu led to the colonization of all broiler chickens in the trail 72 h p.i. All 
other tested bacterial counts of 102, 103, and 104 cfu caused the colonization of all broiler 

chickens 24 h p.i. (except one animal in the trial using 102 cfu). The bacterial count of 102 cfu 

ESBL- and pAmpC- E. coli was determined as the minimal bacterial count necessary for the 

colonization within 24 hours. 

The bacterial counts of ESBL-producing E. coli used for the colonization experiments in animal 

trials are usually high and range between 105 - 108 cfu for day-old broiler chickens 

[172,178,181,182]. Day-old broiler chickens are not exposed to such high loads of resistant E. 
coli in real livestock farming. The bacterial burden in broiler production is minimized due to a 

continuous cleaning and disinfection regime at every level of the production chain. Still, 

residual bacteria can be detected after cleaning and disinfection [197,198], including ESBL- 

and pAmpC- producing bacteria [18,22,199]. High bacterial counts are used to ensure the 
colonization of all broiler chickens in a trial for a quantitative evaluation of the investigated 

measure (e.g. effects of probiotics). These trials are designed to prove the applied concept, 

wherefore the stable colonization of the tested animals is necessary to measure the efficacy 
of a specific product or method. To mimic real farming conditions, we aimed to determine the 

minimal bacterial count necessary to colonize broiler chickens with ESBL- and pAmpC- 

producing E. coli. Our results highlight that already an oral uptake of a very low bacterial count 

of 101 cfu ESBL- and pAmpC- producing E. coli leads to the colonization of broiler chickens 
without applying any antimicrobial selection pressure. Furthermore, we demonstrated an 

equivalent quantitative cecum colonization independent of the investigated bacterial counts 

after two weeks of trial. Independent of our study, concordant results for ESBL- and pAmpC- 
producing E. coli were obtained by another research group [200]. In the study by Dame-

Korevaar et al. [200], no significant differences in the excretion of the bacterial strains were 

apparent 32 h p.i. using bacterial counts of 101 to 105 cfu ESBL- and pAmpC- producing E. 

coli. Interestingly, a colonization study by Nair et al. [201] shows a bacterial count as low as 
102 cfu to be sufficient to colonize turkeys with Salmonella enterica, but lower bacterial counts 

were not tested. The low bacterial count necessary for the colonization is a reasonable 

explanation for the frequent detection of ESBL- and pAmpC- producing bacteria in broiler 
chickens. The oral uptake of bacteria out of the surrounding environment can lead to a 

colonization and multiplication of the bacteria in the broilers ceca. A spread of resistant bacteria 
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is plausible by a subsequent shedding of the bacteria and the possibility of horizontal gene 
transfers within a flock. 

Antimicrobial treatments are assumed to be a driving factor for the selection of resistant 

bacteria and the colonization of broiler chickens with ESBL- and pAmpC- producing bacteria 
[18,189,202]. The antibiotic is supplied in the feed or water to all broiler chickens to treat 

bacterial infections in a flock causing a selection of resistant bacteria in both diseased and 

healthy animals [130]. A growing number of studies report transmission and persistence of 

ESBL- and pAmpC- producing bacteria in the broiler production chain without any selection 
pressure by antimicrobial treatments [142,203,204]. Furthermore, the colonization of wild birds 

with ESBL- and pAmpC- producing bacteria is frequently confirmed, which have never been 

faced with antibiotics [76,123,151]. Our results support the assumption that the occurrence of 

ESBL- and pAmpC- producing bacteria in broiler chickens is not necessarily linked to antibiotic 
treatment, showing the colonization of the broiler chickens with bacterial counts as low as 101 

cfu. 

A carriage of different or multiple E. coli strains represents the broilers' gut’s physiological 
conditions [172]. It was already demonstrated that the colonization capabilities vary between 

different E. coli strains and the impact of applied intervention measures is affected by the 

investigated E. coli strain [176,182]. Still, all conducted studies on the ESBL- and pAmpC- 

colonization of broiler chickens are applying an inoculation with only a single bacterial E. coli 
strain per trial. We used a co-colonization with two E. coli strains previously isolated from 

broiler chickens which represent commonly detected commensal strains with one ESBL- 

producing (CTX-M-15, ST 410, phylogenetic group B1) and one pAmpC- producing (CMY-2, 
ST 10, phylogenetic group A) strain [144]. Using a co-colonization, we showed significant 

differences in the colonization of the two E. coli stains while applying distinct intervention 

measures in separate trials (see below). 

We inoculated the broiler chickens on the third day of trial. In this way, an interaction between 
the broiler chickens and the surrounding bacterial spectrum was possible before the 

inoculation with the ESBL- and pAmpC- producing E. coli strains [205]. Additionally, field 

studies have already demonstrated that day-old broiler chickens are colonized with ESBL- and 
pAmpC- producing E. coli [18,22,27]. Thereby, the detected prevalence in day-old broiler 

chickens varies between the conducted studies. The different study designs might cause a 

diverse prevalence. In two studies that used the same study design, the detection frequencies 

vary between 0% [22] and 95% [27]. Both studies investigated seven broiler flocks using 20 
cloacal swabs [27] or 40 cloacal swabs [22] per sampling and used a pre-enrichment in Luria 

Bertani Broth (LB) to determine the ESBL- and pAmpC- prevalence. Interestingly, the 
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differences between the two studies are in the chosen sampling time points. While Daehre et 
al. [22] sampled right after placing the broiler chickens into the stable, Laube et al. [27] sampled 

within the first two days of life. However, it has to be mentioned that the overall prevalence of 

the seven investigated flocks was higher in the study by Laube et al. [27]. Consequently, an 
inoculation on the third day of trial was chosen to stick to real farming conditions. 

We inoculated our broiler chickens with a crop needle to ensure the uptake of the bacterial 

strains. Other application methods for intestinal E. coli colonization appear to be closer to real 

farming conditions as an application into the beak [174] or a treatment of the feeders [206]. 
Still, the determination of a minimal bacterial count requires a safe method of inoculation. 

Another prerequisite to determine the minimal bacterial count is the absence of other ESBL- 

and pAmpC-producers, as they could compete with the inoculated bacterial strains and distort 

the results. To ensure the absence of ESBL- and pAmpC- producing bacteria, the entire 
experimental setup, including litter and feed as well as the broiler chickens, were tested 

beforehand, and the absence was confirmed before each trial. We did not treat the feed, water, 

and litter other than usual in the broiler production. No reduction of germs (e.g. irradiation) was 
applied to create a setup close to real farming conditions. 

Even in the absence of antimicrobial selection pressure, a horizontal gene transfer of ESBL- 

or pAmpC- resistance genes has to be considered since the coding genes are frequently 

located on plasmids [207,208]. Genetic exchange between the two colonization strains or the 
colonization strain(s) and other bacterial strains resident in the broiler chickens’ gut (including 

E. coli) is plausible in our trials. The acquisition of the resistance determinants that we used to 

screen for the colonization strains could lead to a misinterpretation of our data due to 
recombinant strains from horizontal gene transfer events. To minimize the probability of false-

positive isolates, we used various mechanisms to verify the numbers and identity of the 

bacterial colonization strains. First, antibiotic supplemented chromogenic agar plates were 

used to detect the E. coli colonization strains and check the colony morphologies. In addition, 
an agar plate without antibiotic supplementation was used to quantify the total E. coli count. 

The sum of the quantified ESBL- and pAmpC- strains corresponded to the total E. coli counts 

in the separate trials using bacterial counts of 101 to 104 cfu. Second, colonies grown on the 
selective agar plates extracted from cecal samples were checked for their phenotypic 

antimicrobial resistance patterns using VITEK 2. The resistance profile of the randomly 

selected colonies corresponded to the resistance profiles of the inoculation strains. Third, the 

statistical analysis revealed an equivalent cecum colonization between the four conducted 
trials to determine the minimal bacterial count for a broiler chickens’ colonization. An equal 

horizontal gene transfer to other E. coli strains harboring identical antimicrobial resistance 

patterns seems to be of low probability. Still, an exchange of mobile genetic elements carrying 
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resistance mechanisms can not be excluded entirely in our experiments but one should keep 
in mind that an exchange represents the dynamics affecting the colonization of broiler chickens 

with antimicrobial-resistant bacteria under real farming conditions [118,209]. 

5.1.2 Seeder-bird model 

The seeder-bird method is used to approximate animal models to real farming conditions and 

described for different enteral bacteria [172,178–180,210–212]. In a seeder-bird trial, only a 

part of the broilers is inoculated with the bacterial suspension (seeder-birds), while the other 

broilers remain untreated (sentinel-birds). The non-inoculated sentinel-birds mirror the route of 
natural colonization with the bacteria by the oral uptake of the contaminated material out of the 

surrounding environment [212,213]. We demonstrated that an oral uptake of ESBL- and 

pAmpC- producing E. coli by the sentinel-birds leads to a comparable colonization of all broiler 

chickens (n = 20) after 35 days of trial while inoculating one-fifth of the broilers (n = 4) with 102 
cfu of the bacterial strains at the third day of trial. Our results underline the importance of the 

oral bacterial uptake for the colonization of broiler chickens with ESBL- and pAmpC- producing 

E. coli. 

Various inoculation ratios for enteral bacteria in seeder-bird trials are described in the literature 

ranging from 1:2 to 1:20 [172,178,180,210,211,214–216]. We decided to inoculate one-fifth of 

the broiler chickens (1:5) as similar ratios are more frequently applied. In many seeder-bird 

studies, the seeder-birds are kept separately after inoculation to verify the colonization with the 
inoculated strains. We decided to keep the seeder-birds and sentinel-birds together right from 

the beginning of the trail to mimic the course of a natural infection. Perhaps the inoculation of 

a seeder-bird failed in our experimental setup, and the colonization took place due to the 
uptake out of the housing environment. Still, these dynamics also affect the colonization under 

real farming conditions as the differentiation of colonized and non-colonized broilers is not 

possible in livestock farming. 

The bacterial counts obtained from the seeder-bird trial are lower than the colonization trials 
using 102 cfu ESBL-/pAmpC- E. coli. The lower bacterial counts are apparent in all investigated 

sample types of crop, jejunum, cecum, and colon attained at necropsy. The discrepancies in 

the experimental designs might cause different bacterial counts. All broiler chickens were 
inoculated with the ESBL- and pAmpC- producing E. coli strains for the trials determining the 

minimal bacterial count. The initial lower rate of inoculated broiler chickens in the seeder-bird 

trial might have caused less shedding of the bacterial strains and led to a lower oral uptake 

vice versa. Moreover, a study by Cox et al. [212] points out that the bacterial challenge of the 
pen mates in seeder-bird models is difficult to estimate because it is unknown how much the 
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birds take up contaminated material. Another reasonable explanation for the discrepancy in 
the bacterial counts is the difference in the durations of the trials, with 14 days of the 

colonization trial to 35 days of the seeder-bird trial. As E. coli is an early gut colonizer, it can 

already be detected within the first day after hatch in the broiler chickens microbiota [217]. 
While aging, the broiler chickens' microbial flora composition changes, and the complexity of 

the detected bacterial genera increases [218]. The Enterobacteriaceae content decreases over 

time with a shift in the predominantly Gram-negative composition to a more Gram-positive 

composition of the microbiota [219]. The changes in the microbial composition could cause a 
competition of the inoculated bacterial E. coli strains with other strains resident in the gut and 

could lead to a decrease of the ESBL- and pAmpC- colonization of the broiler chickens in the 

seeder-bird trial. Changes of the cecal flora of Ross hybrids were described by Lu et al. [220] 

up to an age of 49 days (= end of the trial). Still, it has to be mentioned that the composition of 
the broiler chickens’ gut microbiota in our trials and livestock farming is artificial and does not 

reflect the microbiome of a mature chicken [221,222]. 

5.1.3 Sampling strategy 

We used cloacal swabs and a direct processing of the samples without an enrichment step to 

determine the colonization status of the broiler chickens during the trials. The sampling 

strategy could affect the detection frequency of the ESBL- and pAmpC- producing E. coli 

strains in the colonization trials and the seeder-bird model trial. Our detection limit is fairly high, 
as the investigated amount of fecal content is limited using cloacal swab sampling. Additionally, 

the detection in fecal samples is also dependent on the cecal excretion of the bacterial strains 

[221,223]. Cecal sampling is a safer method to ensure bacterial detection as the cecum has 
the greatest bacterial diversity in the broiler chickens' gut [205,222] and is the reservoir for 

ESBL- and pAmpC- producing bacteria [16,222]. Cloacal swab sampling is widely used as 

cecal samples require a necropsy and do not allow a repeated measurement of the same 

broiler chicken [224,225]. Two studies investigated the comparability of cloacal swabs and 
cecal samples for broiler chickens. Both the ‚Cobb 500‘-study by Stanley et al. [224] and the 

‚Ross 308’-study by Andreani et al. [225] demonstrated a good comparability of the results 

from cloacal swab and cecal samples. Andreani et al. [225] limit the results to abundant taxa, 
as less abundant taxa from the cecum can not be detected in cloacal samples. As a limitation, 

only 19 to 31 day old broilers were investigated in the studies. Still, a very early cloacal 

detection of ESBL- and pAmpC- producing E. coli in day-old broiler chickens only nine hours 

after inoculation with 102 cfu was shown for Ross 308 by Dame-Korevaar et al. [200]. 
Consequently, a cloacal swab sampling was used to allow a repeated measurement of the 

same broiler. Cecal samples were obtained at necropsy to ensure a reliable quantification of 
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the bacterial strains. In addition, due to the high detection limit, we decided for the bacterial 
count of 102 cfu of the bacterial strains even if one animal was not tested positive for the ESBL- 

and pAmpC- E. coli strains 24 h p.i. 

5.2 Intervention measures against an ESBL- and pAmpC- colonization of broilers 

There is a need for intervention as ESBL- and pAmpC- producing bacteria are frequently 

detected in broiler chickens and transmission to humans via direct contact, or the consumption 

of contaminated meat is assumed. High prevalence and various transmission routes for ESBL- 

and pAmpC- producing bacteria are described as mentioned above, with only 101 to 102 cfu of 
the resistant bacteria necessary for colonization of broiler chickens. Various studies 

investigated diverse measures like feed additives, alternative medical treatments to antibiotic 

administration, or different broiler management systems. The comparability of different studies 

is limited as they use various study designs and frequently combine distinct measures within 
one trial. We aimed to separately investigate distinct intervention measures on their potential 

to reduce the colonization of broiler chickens with ESBL- and pAmpC- producing E. coli. Using 

the seeder-bird colonization model, we aimed to emulate real farming conditions while testing 
the measures under controlled conditions at the same time. We modified the broiler chickens 

conventional conditions (used broiler breed, different amount of bedding material, and a 

reduced stocking density) as one approach and used probiotics and the acidification of the 

drinking water to investigate their impact on the broiler chickens’ colonization with ESBL- and 
pAmpC- producing E. coli as another approach. 

5.2.1 Broiler breed 

From the current literature, no reliable conclusion can be drawn between the broiler chickens’ 
breed and the colonization of broiler chickens with antimicrobial-resistant bacteria. Some 

studies conclude an impact of the genetic background [189,226], whereas other studies point 

out the importance of environmental factors affecting the broiler chickens’ colonization [227–

229]. The different results might be caused by the diverse experimental setups used in these 
studies. Are the tested breeds obtained from the same hatchery, are the broiler chickens 

housed together in one experimental room or separate rooms, and are the broiler chickens 

reared under identical conditions? All these factors can influence the outcome of a study. A 
study by Shokker et al. [226] drew the conclusion of a major impact of the used broiler breed 

on the microbial gut colonization while housing the broiler breeds separately but 

simultaneously under identical conditions. By contrast, a study by Richards et al. [227] 

concluded a strong impact of the environment on the microbial composition of the broiler 
chickens’ gut with a minor impact of the genetic background by housing the different breeds 
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together in one pen. An impact of the environmental factors on the broiler chickens’ 
colonization is supported by a retrospective comparison of 17 different control groups using 

the same broiler breed obtained from the same hatchery and housed in the same experimental 

facilities by Rychlik [221] as different microbial cecum compositions were shown for the 
analyzed groups. We obtained the broiler chickens’ eggs for Ross 308 and Rowan x Ranger 

from different hatcheries and housed the broiler chickens in separate rooms but under identical 

conditions. No dependency of the broiler chickens’ ESBL- and pAmpC- colonization on the 

breed was found as the bacterial counts determined at necropsy showed no significant 
differences. Our results are in line with Richards et al. [227], assuming a major impact of the 

environment on the broiler chickens’ gut colonization, even though we did not house the broiler 

breeds together in one pen. 

5.2.2 Litter quantity 

One kilogram of litter per square meter is a common quantity used for bedding material in 

German broiler production [230]. We compared the commercial standard to a tripled amount 

of litter (three kg/m2) to investigate a potential impact of an increased amount of litter on the 
colonization of broiler chickens with ESBL- and pAmpC- producing E. coli. Studies 

investigating the microbial composition of the broiler chickens’ gut are using various amounts 

of litter with up to six kg/m2 [231]. Higher litter quantities than a tripled amount of litter could 

cause different dynamics but were not applied due to the practical irrelevance in German 
broiler production. As the broiler chickens constantly ingest the litter, the quality and 

composition affect the broiler chickens' intestinal microbiota [232,233] and might influence the 

detection of the bacterial strains. We hypothesized that the fecal droppings might mix in the 
larger amount of litter due to the movement of the broiler chickens, thereby lowering the 

“concentration” of droppings in the litter. But, in contrast to our assumption, the tripling of the 

litter led to higher colonization of the broiler chickens with both the ESBL- and pAmpC- 

producing E. coli strains in our trial. An increased amount of litter might cause an intensified 
explorative behavior of the broiler chickens with a more frequent ingestion, particularly at the 

beginning of the fattening period.  

An impact of the type of bedding material on the microbial composition of broiler chickens is 
controversially discussed [233–235] and can not be excluded by our study as only pelletized 

straw granule was investigated. For the colonization with ceftiofur-resistant E. coli, Persoons 

et al. [189] concluded a higher risk when broilers are kept on straw compared to wood curls. 

As we only investigated pelletized straw granule, no statement on the impact of the type of 
bedding material on the colonization of broiler chickens with ESBL- and pAmpC- producing E. 

coli is possible in our trials. The fine structure of pelletized straw granule could lead to a higher 
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ingestion of litter compared to more rough-textured bedding materials and causing a higher 
(re-) colonization with the bacterial strains. 

5.2.3 Stocking density 

Stocking densities are controversially discussed to influence the performance and welfare of 
broiler chickens [236–240] as well as the microbial composition of broiler chickens' gut 

[231,241–244]. A study by Guardia et al. [231] demonstrated an effect of high stocking 

densities on the composition of the microbial flora of young broiler chickens. An overall 

decrease in the commensal bacteria and the E. coli population in cecal samples was observed 
for three-week-old broiler chickens while comparing stocking densities of 12 to 17 birds/m2. 

Contrastingly, for Ross hybrids at the age of four weeks and six weeks, no impact of the 

stocking densities of 12 to 16 birds/m2 on the microbial cecum composition including E. coli 

was concluded by Li et al. [241]. Other studies concluded an effect of different stocking 
densities on the detection of various pathogenic bacteria [242–244]. We hypothesized an effect 

of the stocking density on the colonization of broiler chickens with ESBL- and pAmpC- 

producing E. coli, as the lower number of broiler chickens per square meter might lead to lower 
contamination of the surrounding environment, thus, leading to less contact with the resistant 

bacterial strains. A subsequent experimental slaughter of 40 of our sentinel-birds was 

conducted and confirmed a significantly lower detection of the ESBL- and pAmpC- producing 

E. coli for the broiler chickens’ carcasses together with less dirty and less wet feathers of the 
broiler chickens upon arrival at the slaughtering facilities [245]. However, our data are 

heterogeneous, with a significant decrease in the cecum colonization of the ESBL- E. coli and 

a significant increase in the cecum colonization of the pAmpC- E. coli. Our results support the 
assumption that a combination of different intervention measures is necessary to counter the 

colonization of broiler chickens with different ESBL- and pAmpC- producing bacteria [172,246]. 

5.2.4 Drinking water acidification 

Since the ban of antibiotic growth promoters in the European Union in 2006, organic acids 
have been investigated for their potential as “natural growth promoters” [247]. Thus, organic 

acids are widely used in broiler production as feed additives to enhance the performance of 

broiler chickens and to influence the bacterial colonization of the broiler chickens’ 
gastrointestinal tract [248–250]. For a reliable reduction of specific bacteria, a high efficacy 

level of formulations in vitro has to be confirmed in vivo as the complex interactions of the 

gastrointestinal tract can only be poorly mirrored in laboratory experiments [251]. In our broiler 

chicken trial, applying a commercially available formulation for drinking water acidification 
based on organic acids led to significantly higher colonization rates of the broiler chickens’ gut 
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with the two investigated ESBL- and pAmpC- producing E. coli strains. To the best of our 
knowledge, a significant increase of the E. coli counts in acidification experiments in vivo was 

not shown before for broiler chickens [195,248,252–255]. Still, the level of comparability for the 

conducted studies is low as they use various study designs. One important factor is that most 
studies are based on a ‘natural colonization’ in feeding experiments rather than a bacterial 

challenge to evaluate the effect of organic acids on the broiler chickens’ gut colonization with 

different bacteria [248,252–254]. Two recent studies used an oral E. coli challenge of Ross 

hybrids to evaluate the effect of the applied organic acids [195,255]. Both studies used high 
bacterial counts for colonization by inoculating every second broiler with 106 cfu E. coli [195] 

or every broiler with 108 cfu E. coli [255]. Both studies used a mixture of formic and propionic 

acids, while acetic acid was included in the formulation used by Roth et al. [195]. No significant 

differences in the cecal E. coli count after 38 days of trial were shown by Roth et al., even if 
the bacterial count for inoculation and the inoculation ratio was lower in the study and the 

concentrations of the administered organic acids were higher (0.2%) than in the study by 

Emami et al. [255]. In contrast, Emami et al. [255] showed significant reductions in cecal E. 
coli colonization after 35 days of trial by using different concentrations of formic and propionic 

acids ranging from 0.07% to 0.4%. The contrasting results of the two exemplary named studies 

highlight the complexity of in vivo studies. Other factors might influence the colonization 

dynamics in the trials as the husbandry conditions, the day of the oral E. coli challenge, or the 
applied E. coli strain. 

E. coli can withstand acid stress due to multiple acid resistance and acid tolerance systems 

[166]. Without growth, E. coli can survive for several hours at pH 2.0 [164]. In combination with 
the low bacterial count of 102 cfu, E. coli is able to passage the acid environment of the stomach 

(pH 1.5-2.5) [163,165]. In the small intestine, E. coli encounters a less acid environment of pH 

4.0-6.0. The ability to survive the stomach's highly acidic environment and the quick growth in 

moderate acidic environments leads to the successful colonization of E. coli [166]. 
Interestingly, acid-tolerant E. coli strains are described, able to survive in different acidic 

environments like soil, farm water, or meat with several cross-protective benefits like enhanced 

antimicrobial resistance, biofilm formation, or pathogenic adhesion [256]. 

Besides the type of acid, the concentration of the acid, the period of application, and the applied 

form of the acid formulation might be an crucial influencing factor for the efficacy of an acid 

formulation. Formic acid, propionic acid, acetic acid, and citric acid are frequently used in 

broiler chicken production. These acids vary in their chemical characteristics, such as the 
solubility in water and their acid dissociation constants (pKa) [249]. Most acids have a pKa 

value between three and five, with lower pKa values describing stronger acids. As high acid 

concentrations might affect the palatability and thus affecting the feed intake and the 
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performance of the broiler chickens, the applied acid concentrations have to be considered 
[249]. When administered to the broiler chickens, a positive effect of a discontinuous 

administration was shown by Hamid et al. [248]. Moreover, it was demonstrated that 

microencapsulation can protect the acids from modifications in the stomach with a slow release 
in the intestine, thus, leading to stronger effects when the acid is applied in the broilers’ feed 

[253,257]. In our trial, an acid formulation without microencapsulation with a low pKa value 

was administered discontinuously to the drinking water of the broiler chickens, leading to 

higher colonization rates of the investigated ESBL- and pAmpC- E. coli strains. A possible 
explanation for the higher colonization in our trial might be a higher oral uptake of the E. coli 

strains out of the environment due to an appetite stimulation of the broiler chickens and/or a 

low efficacy of the applied product (e.g. caused by a low acid concentration in the administered 

drinking water). Another explanation might be a survival of the ESBL- and pAmpC- producing 
E. coli strains in the acidic environment due to an enhanced stress tolerance as described 

above.  

5.2.5 Competitive Exclusion 

CE is based on an early application of living bacteria to broiler chickens to protect them from 

colonization with other bacteria [190,258]. Different CE-products consisting of a single strain 

or a mixed culture of different strains are available for poultry [259]. Because many of the 

complex CE-cultures are of undefined composition as they are derived from specific-pathogen-
free chickens, they are not approved by the European Union [192]. The impact of complex CE-

cultures on the infection of broiler chickens with different pathogenic bacteria was investigated 

with promising results [177,180,260,261]. In recent years more studies focused on the effects 
of complex CE-cultures on the colonization of broiler chickens with ESBL- and pAmpC- 

producing bacteria. Several factors need to be considered to evaluate the different projects. 

Some studies used high bacterial counts of 105-106 cfu ESBL- and pAmpC- producing E. coli 

to colonize the broiler chickens in the trial [172,176,178]. The high bacterial counts do not 
reflect the exposure of broiler chickens under real farming conditions as the bacterial counts 

are much lower [190]. All studies showed a reduction of the ESBL- and pAmpC- colonization 

of the broiler chickens but not a protection from colonization what might be caused by the high 
bacterial counts used for the initial ESBL- and pAmpC- E. coli inoculation. Besides the applied 

bacterial counts, the ratio of ESBL-/pAmpC- inoculated to non-inoculated broiler chickens 

affects the colonization with the resistant bacteria. An inoculation of every broiler chicken 

[176,182] or low ratios of 1:2 [172,190] do not reflect the colonization frequencies of day-old 
broiler chickens in livestock farming as the load of ESBL- and pAmpC- producing bacteria is 

minimized due to a strict cleaning and disinfection regime [197]. Consequently, low bacterial 
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counts in combination with a high inoculation ratio should be preferred for the broiler chickens’ 
colonization with ESBL- and pAmpC- producing E. coli to evaluate the efficacy of CE- cultures. 

Studies using higher bacterial counts with the inoculation of all broiler chickens can be seen 

as ‘proof of principle’ studies and are important for the overall evaluation of the performance 
of CE- products. 

No studies for ESBL- and pAmpC- producing bacteria are available which investigated the 

effect of CE- cultures consisting of a single strain. A reasonable explanation would be that the 

results of complex CE-cultures are expected to be of greater importance as a single strain 
does not reflect the complex microbial composition of a broiler chickens’ gut. We investigated 

a complex CE-culture on the one hand and a single CE-strain on the other hand on their 

potential to reduce the colonization of broiler chickens with ESBL- and pAmpC- producing E. 

coli. Using a co-colonization with 102 cfu of one ESBL- and one pAmpC- producing E. coli 
strain (inoculation ratio 1:5), we were able to investigate strain-dependent effects of the applied 

CEs. The complex CE-culture led to a significant reduction in the colonization of both the 

ESBL- and pAmpC- E. coli with a prevalence close to zero percent, whereas the single CE-
strain reduced the ESBL- E. coli close to zero percent but had almost no impact on the 

colonization of the pAmpC- E. coli strain. The limited effect of the CE-strain supports the 

assumption of complex interactions in the gastrointestinal tract, which affect the microbial 

colonization of the broiler chickens. 

The inoculation of broiler chickens with only one ESBL- or pAmpC- producing E. coli strain is 

another weakness of CE- studies. Methner et al. [178] and Nuotio et al. [176] investigated the 

effects of complex CE-cultures on the colonization of different ESBL- and pAmpC- producing 
E. coli strains. Both studies showed strain-dependent results but investigated every bacterial 

strain separately. The individual trials do not reflect the complex scenario affecting the 

colonization of broiler chickens in livestock [172,259] as different bacterial strains might affect 

or outcompete each other (see above). 

We inoculated the broiler chickens directly after the hatch into the crop to ensure the uptake 

of the CE- suspension. The individual application is not possible under real farming conditions. 

A practical approach of CE- administration was carried out by Dame-Korevaar et al. [190,262] 
as they supplied the CE- culture to newly hatched chickens for seven or 14 days in the drinking 

water. Still, whether a prolonged application has a beneficial effect on the colonization of broiler 

chickens compared to a single application and whether an interference with other procedures 

(e.g. vaccination) exists needs further investigations. 
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6 Conclusion 

We established a broiler chicken colonization model close to real farming conditions and 

determined the minimal bacterial count necessary to colonize day-old broiler chickens with 
ESBL- and pAmpC- producing E. coli. Subsequently, distinct intervention measures were 

investigated on their potential to reduce the colonization of broiler chickens with ESBL- and 

pAmpC-producing bacteria throughout the fattening process. The fact that already a bacterial 
count as low as 101 cfu (by inoculating every broiler chicken) to 102 cfu (by inoculating one-

fifth of the broiler chickens in a seeder-bird model) of ESBL- and pAmpC- producing E. coli 

strains was sufficient for the colonization of all day-old broiler chickens in a trial is a reasonable 

explanation for the high detection frequencies of ESBL- and pAmpC- producing bacteria in the 
broiler production chain. The resistant bacteria are shed by colonized broiler chickens and can 

be easily transmitted to other broiler chickens. Therefore, an intervention should be 

implemented as early as possible to protect the broiler chickens from colonization with ESBL- 
and pAmpC- producing bacteria rather than an attempt to reduce an already existing 

colonization. A promising approach is the application of a complex CE-culture, and partly the 

application of a single strain CE-culture, whereas other separately applied management 

measures were not capable of reducing the broiler chickens’ colonization with both the ESBL- 
and pAmpC- producing E. coli strains. It needs further investigations whether a combination of 

different measures can contribute to a reduced colonization of broiler chickens with ESBL- and 

pAmpC- producing bacteria.  
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7 Summary 

Management measures to reduce the prevalence of broiler chickens with ESBL-
/pAmpC- producing enterobacteria 

Extended-spectrum beta-lactamase (ESBL) and plasmid-mediated AmpC beta-lactamase 

(pAmpC) producing bacteria are frequently detected in the broiler production chain. 

Investigations revealed a high prevalence of ESBL- and pAmpC- producing bacteria 
throughout the broiler fattening process up to the slaughterhouse level and consumer goods 

and revealed several transmission routes of these antibiotic-resistant bacteria. Insights into the 

colonization dynamics of broiler chickens and possible intervention measures are needed as 

the transmission of ESBL- and pAmpC- producing bacteria to humans via close contact with 
livestock or the consumption of contaminated meat is assumed. This thesis aimed to determine 

the minimal bacterial count necessary to colonize broiler chickens with ESBL- and pAmpC- 

producing Escherichia coli (E. coli) and to establish a broiler chicken colonization model 
(seeder-bird) close to real farming conditions without applying any antimicrobial selection 

pressure. Subsequently, we aimed to evaluate distinct intervention measures on their potential 

to reduce the colonization of broiler chickens with ESBL- and pAmpC- producing E. coli 

throughout the fattening process. 

For the determination of the minimal bacterial count, ESBL- and pAmpC- negative day-old 

broiler chickens (Ross 308) were kept under conventional conditions and were orally co-

inoculated on day three of the trial with 104,103, 102, or 101 colony forming units (cfu) of one 
ESBL- (CTX-M-15) and one pAmpC- (CMY-2) producing E. coli strain in separate trials. All 

investigated bacterial counts led to the colonization of all broiler chickens in the trials, with all 

broiler chickens tested positive after 24 h (104-102 cfu) or 72 h (101 cfu) post inoculation (p.i.) 

up to the end of each trial. At necropsy (14 d p.i.), the cecal colonization with the ESBL- and 
pAmpC- producing E. coli strains of all investigated bacterial counts showed equivalence in 

the statistical analysis. To assure stable colonization, the bacterial count of 102 cfu ESBL- and 

pAmpC- producing E. coli was chosen to establish the seeder-bird model. An inoculation of 
one-fifth of the day-old broiler chickens with 102 cfu E. coli led to the colonization of all 

inoculated broiler chickens (seeder-birds) after 24 h p.i. and all non-inoculated broiler chickens 

(sentinel-birds) after 72 h p.i. up to the end of the trial. At necropsy (35 d p.i.) no significant 

differences in the cecal colonization with the ESBL- and pAmpC producing E. coli strains was 
apparent between the seeder-birds or sentinel-birds. 

Distinct intervention measures were subsequently investigated on their potential to reduce the 

colonization of broiler chickens with ESBL- and pAmpC- producing E. coli throughout the 
fattening process using the established seeder-bird model. Applying a complex, non-defined 
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Competitive Exclusion-culture led to a significant reduction of both the ESBL- and pAmpC- 
producing E. coli strain in our trial. Applying a single CE-strain or reducing the stocking density 

to 25 kg/m2 led to a strain-dependent reduction of the ESBL- E. coli strain but had no impact 

on the colonization with the pAmpC- E. coli strain. No effect on the colonization of broiler 
chickens with ESBL- and pAmpC- producing E. coli was evident for the use of an alternative, 

slower-growing broiler breed (Rowan x Ranger). A negative effect on the colonization of broiler 

chickens with ESBL- and pAmpC- producing E. coli was shown for the application of a tripled 

amount of litter in the pen and the acidification of the drinking water with a commercially 
available product. 

The minimal bacterial counts of 101 to 102 cfu ESBL- and pAmpC- producing E. coli highlight 

the need for effective intervention measures to reduce the broiler chickens’ colonization with 

ESBL- and pAmpC- producing bacteria including improved biosecurity- and disinfection 
measures. A promising approach is the application of a Competitive Exclusion-culture, 

whereas other separately applied management measures were not capable of reducing the 

broiler chickens’ colonization with both the ESBL- and pAmpC- producing E. coli strains. It 
needs further investigations whether a combination of different measures can contribute to a 

reduced colonization of the broiler chickens’ with ESBL- and pAmpC- producing bacteria.  
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8 Zusammenfassung 

Managementmaßnahmen zur Senkung der Prävalenz ESBL-/ pAmpC- bildender 
Enterobakterien beim Masthähnchen 

Extended-Spektrum Beta-Laktamase (ESBL) und plasmid-vermittelte AmpC Beta-Laktamase 

(pAmpC) produzierende Bakterien können häufig in der Masthähnchenproduktionskette 

nachgewiesen werden. Untersuchungen zeigten hohe Prävalenzen und identifizierten 
verschiedenste Transmissionswege sowohl im Mastprozess und auf Schlachthofebene als 

auch auf Hähnchenfleisch-Produkten. Da ein Übertrag auf den Menschen durch einen engen 

Kontakt zu Nutztieren oder durch den Verzehr von kontaminiertem Fleisch angenommen wird, 

sind Erkenntnisse über die Kolonisierungsdynamiken von Masthähnchen und über mögliche 
Interventionsmaßnahmen erforderlich. Die vorliegende Dissertationsschrift hatte zum Ziel, die 

geringste erforderliche Bakterienzahl an ESBL- und pAmpC- produzierenden Escherichia coli 

(E. coli) für eine Kolonisierung von Masthähnchen zu ermitteln und ein praxisnahes 
Kolonisierungsmodell (Seeder-Bird) zu entwickeln, ohne dabei einen antimikrobiellen 

Selektionsdruck auszuüben. Ein weiteres Ziel der vorliegenden Arbeit war die Evaluation 

verschiedener Interventionsmaßnahmen, um die Kolonisierung von Masthähnchen mit ESBL- 

und pAmpC- produzierenden E. coli während des Mastprozesses zu reduzieren. 

Für die Ermittlung der geringsten erforderlichen Bakterienzahl wurden ESBL- und pAmpC- 

negative Eintagsküken (Ross 308) konventionell aufgestallt und in separaten Versuchen 

jeweils am dritten Versuchstag mit einem ESBL- (CTX-M-15) und einem pAmpC- (CMY-2) 
produzierenden E. coli Stamm bivalent kolonisiert. Alle untersuchten Keimzahlen von 104,103, 

102 und 101 koloniebildenden Einheiten (KbE) führten zu einer Kolonisierung aller 

Masthähnchen in den einzelnen Versuchen. Eine Kolonisierung aller Tiere war mittels 

Kloakentupfer 24 h (104-102 KbE E. coli) oder 72 h (101 KbE E. coli) nach Inokulation bis zum 
Versuchsende nachweisbar. Die am Versuchsende durchgeführte Sektion (14 d nach 

Inokulation) zeigte eine äquivalente zäkale Kolonisierung der ESBL- und pAmpC- 

produzierenden E. coli Stämme in allen Versuchsgruppen. Für eine sichere experimentelle 
Kolonisierung der Masthähnchen wurde bei der Etablierung des Seeder-Bird 

Kolonisierungsmodells eine Bakterienzahl von 102 KbE ESBL- und pAmpC- produzierende E. 

coli genutzt. Im Seeder-Bird Modell führte eine Inokulation von einem Fünftel der Eintagsküken 

mit 102 KbE E. coli nach 24 h zu einer Kolonisierung aller inokulierten Tiere (Seeder-Birds) 
und nach 72 h zu einer Kolonisierung aller nicht inokulierten Tiere (Sentinel-Birds). Im 

Folgenden war die Kolonisierung über den gesamten Versuchszeitraum nachweisbar. Zu 

Versuchsende (35 d nach Inokulation) war kein statistisch signifikanter Unterschied der 
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zäkalen Kolonisierung von Seeder-Birds und Sentinel-Birds mit den ESBL- und pAmpC- 
produzierenden E. coli Stämmen nachweisbar. 

Das etablierte Seeder-Bird Modell wurden nachfolgend genutzt, um unterschiedliche 

Interventionsmaßnahmen auf ihr Potenzial einer Reduktion der ESBL- und pAmpC- 
Kolonisierung von Masthähnchen während des Mastprozessen hin zu untersuchen. Eine 

signifikante Reduktion beider eingesetzter E. coli Stämme war unter Anwendung einer nicht 

definierten, komplexen Competitive Exclusion-Kultur ersichtlich. Eine stammabhängige 

Reduktion des ESBL- E. coli Stammes, ohne einen Effekt auf die Kolonisierung der 
Masthähnchen mit dem pAmpC- E. coli Stamm, war sowohl unter der Applikation eines 

einzelnen CE-Stammes als auch bei der Reduktion der Besatzdichte auf 25 kg/m2 

nachweisbar. Keinen Effekt auf die Kolonisierung von Masthähnchen mit ESBL- und pAmpC- 

produzierenden E. coli zeigte sich beim Einsatz einer alternativen, langsam-wachsenden 
Rasse (Rowan x Ranger). Eine stärkere Kolonisierung von Masthähnchen mit ESBL- und 

pAmpC- produzierenden E. coli lag bei der Verdreifachung der Einstreumenge im Stall und bei 

der Ansäuerung des Tränkwassers mit einem kommerziell erwerblichen Produkt vor. 

Die sehr geringe Keimzahl von 101-102 KbE ESBL- und pAmpC- produzierender E. coli zeigt 

die Notwendigkeit von effektiven Interventionsmaßnahmen zur Reduktion der Kolonisierung 

von Masthähnchen mit ESBL- und pAmpC- produzierenden Bakterien, einschließlich 

verbesserter Biosicherheits- und Desinfektionsmaßnahmen. Ein vielversprechender Ansatz ist 
die Applikation von Competitive Exklusion-Kulturen. Alle anderen einzeln untersuchten 

Maßnahmen konnten die Kolonisierung mit jeweils beiden eingesetzten ESBL- und pAmpC- 

produzierenden E. coli Stämmen nicht reduzieren. Weitere Untersuchungen sind in diesem 
Kontext notwendig, um den Einfluss einer Kombination von Maßnahmen auf die Reduktion der 

ESBL- und pAmpC- Kolonisierung von Masthähnchen zu evaluieren.  
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10 Appendix 
Supplement Table 1. Prevalence of ESBL- and pAmpC-producing E. coli of seeder- and sentinel-birds attained in the ongoing trial and at necropsy of the four 
investigated groups (Control group, Acidified drinking water (Acidified water), Competitive Exclusion- (CE-) strain, and CE-culture). 

 
Group Control group 

 
 Acidified water 

  CE-strain 
  CE-culture 

 
Strain 10716 10717  10716 10717  10716 10717  10716 10717 

            
Animal See* Sen* See* Sen*  See* Sen* See* Sen*  See* Sen* See* Sen*  See* Sen* See* Sen* 

    
1 56 7 78 39  100 36 100 54  28 0 83 0  6 0 0 0 
2 72 61 94 93  100 100 100 100  33 4 72 32  6 4 0 0 
3 94 79 100 100  100 100 100 100  33 7 89 75  0 0 0 4 
4 89 68 100 100  100 100 100 100  11 7 94 93  0 4 6 4 
5 100 79 100 100  100 100 100 100  17 4 100 100  0 7 0 0 
6 89 68 94 100  100 100 100 100  17 11 100 96  0 4 11 11 
7 89 71 89 93  100 100 100 100  0 7 100 93  0 0 6 14 
8 100 71 83 71  100 100 100 100  11 7 89 96  0 0 22 7 
9 100 100 100 93  100 100 100 100  22 18 100 100  0 0 17 11 
10 94 96 94 96  100 100 100 100  0 4 100 100  0 0 17 18 

Necropsy     
               

 
Crop 56 50 39 50 

 
100 96 100 100  0 4 83 89  0 0 11 4 

(See+Sen) (52) (46)  (98) (100)  (2) (87)  (0) (7) 
            

Jejunum 33 29 72 75  72 89 100 100  0 0 78 86  0 0 17 14 
(See+Sen) (30) (74)  (83) (100)  (0) (83)  (0) (15) 

            
Cecum 94 93 94 96  100 100 100 100  0 4 100 93  0 0 6 4 

(See+Sen) (93) (96)  (100) (100)  (2) (96)  (0) (4) 
            

Colon 78 89 100 96  94 93 94 96  0 4 100 96  0 0 6 0 
(See+Sen) (85) (98)  (93) (96)  (2) (98)  (0) (2) 

            
* Prevalence in percent (%); 10716 = ESBL E. coli, 10717 = pAmpC E. coli; See = Seeder-birds, Sen = Sentinel-birds; sampling 1 = 24 h post inoculation, 2 = 
72 h post inoculation, 3-5 = 2nd week of trial, 6-7 = 3rd week of trial, 8-9 = 4th week of trial, 10 = 5th week of trial 
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Supplement Table 2. Mean values and confidence intervals of ESBL- and pAmpC-producing E. coli of digestive tract samples (crop, jejunum, cecum, and 
colon) of the four investigated groups (Control group, Acidified drinking water (Acidified water), Competitive Exclusion- (CE-) strain, and CE-culture) attained at 
necropsy. 

Sample  Crop  Jejunum  Cecum  Colon 
Strain  10716 10717  10716 10717  10716 10717  10716 10717 
  Mean ± CI Mean ± CI  Mean ± CI Mean ± CI  Mean ± CI Mean ± CI  Mean ± CI Mean ± CI 
Control group 
Seeder-birds 
 
 
Sentinel-birds 
 

1.18 
 
 

1.50 

0.66 
1.71 

 
0.89 
2.10 

0.78 
 
 

1.03 

0.03 
1.04 

 
0.62 
1.43 

 

0.80 
 
 

0.67 

0.20 
1.39 

 
0.23 
1.12 

1.88 
 
 

2.00 

1.28 
2.48 

 
1.49 
2.51 

 

3.70 
 
 

3.57 

3.00 
4.32 

 
2.98 
4.16 

 3.51 
 
 

3.35 

2.95 
4.07 

 
2.97 
3.74 

 

2.84 
 
 

3.07 

2.00 
3.68 

 
2.50 
3.63 

3.41 
 
 

 3.03 

2.89 
3.93 

 
2.68 
3.37 

Acidified water 
Seeder-birds 
 
 
Sentinel-birds 

 

4.34 
 
 

4.02 

3.82 
4.85 

 
3.62 
4.42 

5.31 
 
 

5.13 

4.82 
5.80 

 
4.77 
5.48 

 

 2.49 
 
 

 2.94 

1.70 
3.27 

 
2.36 
3.52 

4.25 
 
 

4.14 

3.83 
4.66 

 
3.68 
4.59 

 

6.30 
 
 

6.55 

5.81 
6.79 

 
6.11 
6.98 

 6.50 
 
 

6.65 

6.12 
6.88 

 
6.27 
7.02 

 

5.53 
 
 

4.66 

4.67 
6.38 

 
4.11 
5.21 

 5.79 
 
 

 5.26 

4.99 
6.58 

 
4.76 
5.76 

CE-strain 
Seeder-birds 
 
 
Sentinel-birds 

 

0.00 
 
 

0.05 

0.00 
0.00 

 
0.00 
0.14 

2.99 
 
 

2.99 

2.28 
3.70 

 
2.43 
3.54 

 

0.00 
 
 

0.00 

0.00 
0.00 

 
0.00 
0.00 

2.60 
 
 

2.78 

1.87 
3.32 

 
2.27 
3.30 

 

0.00 
 
 

0.11 

0.00 
0.00 

 
0.00 
0.31 

4.37 
 
 

3.68 

4.74 
3.99 

 
3.15 
4.22 

 

0.00 
 
 

0.10 

0.00 
0.00 

 
0.00 
0.30 

4.10 
 
 

3.56 

3.60 
4.61 

 
3.03 
4.08 

CE-culture 
Seeder-birds 
 
 
Sentinel-birds 

 

0.00 
 
 

0.00 

0.00 
0.00 

 
0.00 
0.00 

0.19 
 
 

0.04 

0.00 
0.46 

 
0.00 
0.10 

 

0.00 
 
 

0.00 

0.00 
0.00 

 
0.00 
0.00 

0.50 
 
 

0.31 

0.00 
1.02 

 
0.02 
0.61 

 

0.00 
 
 

0.00 

0.00 
0.00 

 
0.00 
0.00 

0.09 
 
 

0.15 

0.00 
0.27 

 
0.00 
0.43 

 

0.00 
 
 

0.00 

0.00 
0.00 

 
0.00 
0.00 

0.08 
 
 

0.00 

0.00 
0.24 

 
0.00 
0.00 

10716 = ESBL E. coli, 10717 = pAmpC E. coli; all data shown are log10 transformed (log10 cfu/g); ± CI = ± 95% confidence interval 
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