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Abstract (Deutsch) 

Beim Prostatakarzinom, der häufigsten Krebserkrankung des Mannes, kann die Bedeutung 

präziser Diagnosestellung und Risikoabschätzung kaum überschätzt werden. Der Verlauf der 

Erkankung variiert von ungefährlich bis hochaggressiv, dementsprechend unterscheiden sich auch 

die jeweiligen therapeutischen Ansätze. Deshalb ist es ein Problem, dass Prostatabiopsien derzeit 

hohe Raten an falsch-negativen Befunden oder fehleingeschätzter Aggressivität liefern. 

Verbesserungsmöglichkeiten bieten metabolomische Daten, insbesondere aus histologisch 

benignem Prostatagewebe. In der vorliegenden Arbeit untersuchen wir erstmalig an ganzen 

Organen, ob metabolomische Profile aus histologisch benignem Gewebe über den Abstand zu 

einem benachbarten Krebsherd und dessen Ausmaß und Aggressivität informieren können.  

Spektroskopische Daten aus je sechzehn Gewebeproben aus zehn mittels Radiakale 

Prostatektomie gewonnenen Organen wurden mittels protonenbasierter, hochauflösender 

sogenannter magic angle spinning Magnetresonanzspektroskopie erhoben. Anschließend wurden 

diese Gewebeproben sowie das verbleibende Gewebe der Organe histologisch begutachtet. Dann 

wurden die Organe virtuell dreidimensional rekonstruiert. Univariate und multivariate Analysen, 

letztere mit und ohne Überwachung, ergaben signifikante Unterschiede der metabolomische 

Profile histologisch benigner (Hb) Gewebeproben aus verschiedenen Abständen zu einem 

Krebsherd (HbA, ≤ 5 mm, n=124; HbB,  > 5 mm, ≤10 mm, n=6; HbC, >10 mm, n=4). Dazu trugen 

maßgeblich die Metabolite Myo-Inositol, Cholin, Cholin-enthaltende Moleküle und Lipide bei. 

Signifikant unterschiedlich waren auch metabolomische Profile aus der Nachbarschaft von Krebs 

mit unterschiedlichem Gleason Score (GS) (≤ 3+4, HbA n=60, HbB und HbC n=7; ≥ 4+3, HbA 

n=60, HbB und HbC n=3), allerdings lediglich bei kleinem Abstand zum Krebsherd (≤ 5 mm). 

Maßgeblich trugen Myo-Inositol, Polyamine und Zitrat zu den Unterschieden bei. Auch 

unterschieden sich metabolomische Profile aus der Nachbarschaft von Krebs unterschiedlicher 

Größe (klein, HbA n=21; groß, HbA n=99, HbB and HbC n=10) mit den Schlüsselmetaboliten 

Taurin und Polyamin. Diese Ergebnisse zeigten sich auch innerhalb einzelner Organe. In 

Analysen, bei denen die Gewebeproben nach ihrem Anteil an Stroma stratifiziert wurden, waren 

die Unterschiede ebenfalls signifikant, allerdings nur in der Untergrupe mit hohem Stromaanteil 

(> 80%). 

Zusammenfassend haben wir gezeigt, dass metabolomische Profile aus histologisch benignem 

Prostatagewebe aus unmittelbarer Nähe eines Krebsherdes (1.) je nach GS und räumlichem 

Ausmaß des Herdes variieren und (2.) sich von Gewebeproben aus größerer Entfernung 

unterscheiden. Im wissenschaftlichen Bereich lassen diese Ergebnisse die gängige Praxis, 

histologisch benignes Gewebe von krebsbefallenen Prostatas als bloße “gesunde Kontrolle” zu 
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verwenden, fragwürdig erscheinen und stellen eine mögliche Erklärung für variierende Ergebnisse 

bisheriger Studien dar. In der klinischen Anwendung könnten metabolomische Messungen den 

Zielbereich der Biopsie vergrößern, dadurch das bisherige diagnostische Verfahren ergänzen und 

die Raten an falsch-negativen Befunden und unterschätzer Aggressivität verkleinern. 
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Abstract (Englisch) 

In prostate cancer, the most frequent malignancy in men, the importance of accurate detection and 

assessment of aggressiveness cannot be overestimated. The behavior of the disease varies from 

indolent to fatal, requiring different treatment strategies. However, prostate biopsies have high 

rates of missed cancers, undergrading and overdiagnosis. Metabolomic data, especially from 

histologically benign tissue, offer possibilities for improvement. Here, we examine for the first 

time the potential of spectroscopic data from histologically benign prostate tissue from whole 

organs to indicate an adjacent cancer´s distance, extent and aggressiveness.  

Sixteen samples per organ from ten prostatectomy-removed organs were measured non-

destructively with proton high-resolution magic angle spinning magnetic resonance spectroscopy, 

followed by quantitative histology of the scanned samples and the remaining tissue of the whole 

organs, and virtual 3D reconstruction of the prostates. Both overall-organ and within-organ, 

univariate as well as unsupervised and supervised multivariate analysis were applied. 

Metabolomic profiles in histologically benign (Hb) tissue differed significantly at different 

distances from the cancer (HbA, ≤ 5 mm, n=124; HbB, > 5 mm, ≤ 10 mm, n=6; HbC, > 10 mm, 

n=4) with key discriminatory metabolites myo-inositol, choline, choline containing compounds 

and lipids. Profiles in histologically benign samples adjacent to cancer varied with Gleason Score 

(GS) (GS ≤ 3+4, HbA n=60, HbB and HbC n=7; GS ≥ 4+3, HbA n=60, HbB and HbC n=3) and 

extent (extent less, HbA n=21; extent more, HbA n=99, HbB and HbC n=10) of the adjacent 

cancer; but, interestingly, at distances > 5 mm these differences disappeared (GS) or were less 

prominent (extent). Major distinguishing metabolites were myo-inositol, polyamines and citrate 

for GS and taurine and polyamines for extent. These findings were stable in within-organ analyses 

and in analyses matched for tissue composition of stroma and glands, but, notably, only in tissue 

with higher percentages of stroma (> 80%).  

Overall, we revealed that metabolomic profiles in histologically benign prostate tissue close to 

cancer (1) vary with GS and the extent of the cancer and (2) differ from samples at greater distance. 

These findings challenge the use of histologically benign tissue from cancerous prostates as a mere 

healthy control, without taking distance to cancer into account, a common practice and possible 

explanation for varying results in studies. Metabolomic measurements could ultimately 

complement the current diagnostic procedure, thus enlarging the target area for biopsies into 

histologically benign environments, and decrease rates of missed cancers, undergrading and 

overdiagnosis.   
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1. Introduction 

1.1. Prostate cancer diagnosis 

Prostate cancer is the most frequently diagnosed malignancy affecting men in Germany, with 

58,780 new cases in 2016.1 The clinical behavior of the disease ranges from indolent, non-invasive 

tumors to aggressive metastatic cancer with considerable morbidity and mortality, making it the 

second leading cause of cancer death for men in Germany with 14,417 deaths in 2016.1,2 

The gold standard for diagnosis is a transrectal ultrasound (TRUS)-guided biopsy. The indications 

for men aged 45 years or older with a life expectancy of at least ten years comprise an abnormal 

digital rectal examination (DRE) and repeatedly elevated or rising levels of prostate specific 

antigen (PSA).3 Unfortunately, the weak sensitivity and specificity of PSA, DRE and TRUS for 

detecting cancer lead to high rates of both missed and unnecessary biopsies.3,4 

A TRUS-guided biopsy encompasses ten to twelve biopsy cores that are taken systematically, with 

additional cores targeting regions that were identified to be suspicious in the DRE or TRUS.3 

Cancerous tissue samples are graded based on their glandular architecture to give a Gleason Score 

(GS), which indicates prostate cancer´s aggressiveness. The clinical decisions that follow the 

diagnosis, ranging from non-invasive monitoring to surgery and radiation, are based on these 

grades.2 However, systematic biopsies miss 30% of all cancers and 21% of the clinically 

significant cancers, defined as high-risk cancers of GS ≥ 4+5.5,6 Furthermore, as 90% of prostate 

cancers are multifocal with lesions of varying GS, a biopsy may miss the most aggressive lesion.7 

20–70% of all cases are thus subject to the under-grading of the GS.8,9 At the same time, 

overdiagnosis, the detection of cancer that grows so slowly that death from other causes may 

precede prostate cancer symptoms, occurs at high rates.10 While 30 to 70% of men older than 60 

years of age have potentially detectable prostate cancer, the lifetime risk of death or metastatic 

disease is as low as 4%.11 

For special questions and in the case of re-biopsy, pre-biopsy multiparametric magnetic resonance 

imaging (mpMRI), which uses multiple MRI sequences conjunctively, and MRI-guided biopsies 

are recommended.3 A pre-biopsy mpMRI could reduce potentially unnecessary biopsies by 

excluding 27% of the men from biopsies, thereby reducing overdiagnosis by 5%.10 However, due 

to false negative findings in 11% of cases, a biopsy should be offered anyway.3 At the same time, 

the mpMRI, having a specificity of 41%, leads to false positive findings and unnecessary 

biopsies3,10 Meanwhile, MRI-targeted biopsies can either be conducted by simply remembering 

the suspicious locations on mpMRI images during a TRUS-guided biopsy, or in a software-assisted 

manner by combining mpMRI images with real-time TRUS, or by conducting the biopsy directly 

within the mpMRI scanner.4 These three techniques have equal performance in detecting clinically 
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significant cancers.10,12 The percentage of biopsy cores that are positive for clinically significant 

cancers increases from 10% in systematic biopsies to 29% in MRI-targeted biopsies.13 At the same 

time, overdiagnosed cases are halved.5 Unfortunately, false negative MRI-targeted biopsies occur 

in 10% of the cases.10 As the missed lesions differ from those that are missed in systematic 

biopsies, a combination of systematic and targeted biopsies can reduce the number of missed 

cases.3,14 However even then, false negative cases remain an unsolved problem and the advantage 

may only be relevant to subgroups, for example, for men with high prostate volumes.5,15 

Inaccuracies in cancer detection and the assessment of aggressiveness can lead to both 

underdiagnosis and overdiagnosis. Under-grading correlates with higher rates of extraprostatic 

tumor extension (22% vs 4%, p < 0.01) and relapse (10% vs 3%, p < 0.01).8 Underdiagnosis and 

under-grading lead to undertreatment and repeated biopsies, with the associated risks. Two percent 

of men undergoing prostate biopsies experience bleeding, infection, or urinary obstruction and 1% 

require hospitalization.16,17 Overdiagnosis, on the other hand, exposes men to the psychological 

distress of a cancer diagnosis and overtreatment.18 Even though only 20% of men diagnosed with 

prostate cancer are high-risk, up to 50% receive intense therapy, such as a radical prostatectomy 

or radiation therapy, with risk of severe side-effects.16,19 Underdiagnosis, overdiagnosis, and 

unnecessary biopsies lead to worse patient outcomes and high public health costs. The lesson 

learned is that tools for prostate cancer detection and the assessment of aggressiveness cannot be 

separated from one another as the behavior of the disease and the related clinical decisions vary 

substantially. Currently, clinical decision-making that meets the needs of each individual patient 

is not possible. Complementary approaches to gain information about the presence and 

aggressiveness of prostate cancer are urgently needed. 

 

1.2. Metabolomic prostate cancer biomarkers 

The term “metabolomics” translates to small-molecule products of metabolic processes (“metabo-

”) that are analyzed holistically as large sets (“-omics”).20 Metabolites summarize the upstream 

processes of biological information flow, including genomics and proteomics, and are influenced 

by the environment. Because they most closely represent biochemical activity and a system’s 

phenotype, they are attractive for biomarker research.22 Either untargeted or targeted studies can 

be conducted. In an untargeted study, as many metabolites as possible are captured simultaneously 

without prior hypotheses. Subsequent analyses aim to identify a metabolomic profile that 

characterizes a biological process, for example prostate cancer. Untargeted studies are typically 

used for biomarker discovery and hypothesis generation and were used in the work presented here. 

A targeted study, on the contrary, is hypothesis-driven and often used for validation studies looking 
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at a predefined, small set of metabolites.21,23 For example, sarcosine was first identified as a 

potential biomarker in tissue for prostate cancer in an untargeted study and then, later on, re-

examined by targeted studies.24,25 

The two main measurement platforms for metabolomic data are mass spectroscopy (MS) and 

magnetic resonance spectroscopy (MRS). In MS, ionized compounds of samples are separated 

relative to their mass and characterized by mass-to-charge ratios. This is often preceded by a 

separation step in liquid or gas chromatography columns. MRS is based on energy absorption and 

re-emission of atoms in an external magnetic field. Due to its natural abundance, hydrogen is the 

most widely used nucleus in spectroscopy, followed by phosphorus.23 Representative MRS spectra 

are given in Fig. 1. 

 

 
 

FIGURE 1. Representative one-dimensional MRS spectra of tissue. The position of a peak on the x-axis is called 
chemical shift and is given in parts per million (ppm). Characteristic peaks are labeled with corresponding metabolites. 
The y-axis represents the relative concentration. In general, metabolomic studies aim to identify peaks that vary 
between comparison groups. Here, representative spectra from three tissue samples from one prostate are given. The 
three samples are histologically benign and have different distances to a nearby cancer lesion: (A) ≤ 5 mm, (B) > 5 
mm and ≤10 mm, and (C) > 10 mm. Exemplary peaks that decrease in intensity with increasing distance to cancer 
((A) to (B) to (C)) are highlighted in boxes. Figure adapted with permission from REF26, CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 

 

Peak patterns are characteristic for each molecule, as the position on the x-axis depends on the 

local chemical and magnetic environment of the atom. The position of the peaks is called chemical 
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shift and is given in parts per million (ppm). The ppm value makes spectra obtained at different 

field strengths comparable. It is calculated as the difference of the resonance frequencies of an 

added reference compound, typically 3-trimethylsilylpropionate, and the metabolite of interest, 

divided by the operating frequency. Of note, several metabolites can contribute to one peak, and 

one metabolite can cause several peaks. The value on the y-axis represents the relative 

concentration. Absolute concentrations can be measured relative to a reference of known 

concentration. Two-dimensional MRS can separate overlaps with two spectral axes that display 

measurements varying in frequencies, nuclei of interest, or different pulse sequences.23 In 

comparison with MRS, MS requires only a small amount of the sample. It is less costly and has a 

sensitivity of two to three orders of magnitude higher compared to MRS, making it superior for 

targeted studies. However, whereas MS requires technical variations for different metabolites, 

MRS can simultaneously measure large amounts of metabolites. Also, MRS has a higher 

reproducibility, requires minimal sample preparation, and can identify previously unknown 

metabolites by providing information about their chemical structure. Therefore, MRS is preferable 

for untargeted analysis and was chosen for the study presented here.21  

Most commonly, metabolomic cancer biomarker studies are conducted in serum, urine, or 

tissue.27,28 Studies in serum or urine assume that cancer causes global changes in an organism and 

compare groups differentiated by patient metadata, e.g. cancer patients vs. healthy controls. In 

tissue, on the contrary, sample characteristics need to be considered as well. There is for example 

a difference between cancerous and benign tissue from a cancer patient. Therefore, non-destructive 

metabolomic measurements that enable subsequent histopathological evaluation are needed.29 In 

traditional MRS measurements of liquid samples, the molecules’ rapid isotropic motion averages 

out the anisotropic interactions, leading to high resolution. Previously, the destructive procedure 

of chemical extraction was needed to obtain an equal resolution in solid tissue.30 Subsequently, in 

1996, the laboratory in which the work presented here was conducted introduced the technique of 

proton high-resolution magic angle spinning magnetic resonance spectroscopy (1H HRMAS 

MRS).31 The intact tissue sample is spun at the so-called magic angle of 54,7° relative to the 

magnetic field. The spinning frequency in kilohertz exceeds the anisotropic interactions, averages 

them to their isotropic value, and removes magnetic susceptibility, resulting in highly resolved 

spectra.29,32 To date, at least 21 metabolomic tissue studies of prostate cancer have been 

published.27 Metabolomics can successfully distinguish cancerous from healthy prostate tissue.32–

42 Measurements in cancer tissue samples were correlated successfully with PSA,32,40 prostate 

volume,40 features of prostate biopsies (GS, benign prostatic hyperplasia, inflammation, and 

percentage of cancer in a biopsy core)32–34,38–42, pTNM stages,32,38–40,43 and biochemical recurrence 
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(BCR).34,40,44 Histologically benign tissue from cancerous prostates is mostly used as mere control 

group with no subgroup analysis within the benign samples.24,25,34,36,40,41 

 

1.3. Metabolomics in histologically benign prostate tissue adjacent to cancer 

In 1953, Slaughter described “histologically abnormal tissue surrounding cancerous lesions.” He 

named this phenomenon “field cancerization” because it occurred in an entire field of tissue. For 

him, this phenomenon was the reason for multifocality and local recurrence of oral squamous cell 

carcinoma.45 Over time, and with the rise of the -omics, the definition transitioned to “molecular 

alterations in […] cells that are part of histologically normal tissue.”46 It is still under discussion 

whether these alterations precede cancerous lesions or are caused by them.47 Compared to the more 

extensively researched concept of tumor microenvironment, these fields cover a larger area 

surrounding the lesion, mostly in the range of centimeters.48–51 Field cancerization is referred to as 

tumor indicating normal tissue,48,52 field defects,53 or field effects.47 Here, the term field effects 

will be used.  

The examination of metabolomic field effects in prostate cancer were encouraged by studies that 

reported epigenomic, genomic, proteomic, and lipidomic alterations in histologically benign tissue 

adjacent to prostate cancer.46,47,54 Apart from prostate cancer, metabolomic field effects were 

described in patients with esophageal cancer and colorectal cancer.49–51 In prostate tissue, 

metabolomic cancer field effects were first mentioned in 2005 by Cheng et al. in an 1H HRMAS 

MRS study, including 179 samples of histologically benign tissue adjacent to cancer from 82 men. 

In univariate analysis, two principal components (PCs) separated GS 6 and 7 (p < 0.008). One PC 

reflected changes in polyamines and citrate.32 Later on, 1H HRMAS MRS studies by Vandergrift 

et al. and Stenman et al. confirmed that metabolomic levels in histologically benign tissue adjacent 

to cancer vary with the GS of nearby cancer. Key metabolites were myo-inositol and choline.48,55 

Vandergrift et al. collected samples of histologically benign tissue adjacent to cancer from 158 

prostate cancer patients: 179 samples for training and 159 samples for testing.55 In this study, 

prostate cancer prognostic grade groups (PCPGG), which is a score that evolved from GS, was 

used for grading.56 In univariate analysis, the region representing myo-inositol, 

glycerophosphocholine, phosphocholine, and valine was significantly elevated in PCPGG 1 and 

2, compared to 3 and 4 (testing cohort p < 0.0001 and area under the receiver operating 

characteristic (AUROC) 0.705).55 Stenman et al. included 40 patients and collected 41 cancer 

samples and 108 samples of histologically benign tissue adjacent to cancer. The metabolomic 

profiles of the histologically benign tissue adjacent to cancer could significantly discriminate GS 

6 and 7 based on the ratios of myo-inositol/scyllo-Inositol and choline/creatine (OR 0.22, p = 0.002 
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and OR 12.8, p < 0.001, respectively). Interestingly, at the same time, this separation was not 

possible in analyses that included the cancer samples only.48 Furthermore, Cheng et al. and 

Vandergrift et al. reported successful correlation of metabolic data from the histologically benign 

tissue adjacent to cancer with BCR, PSA, perineural invasion, and pT stages.32,55 Stenman et al. 

also reported metabolomic differences in samples of histologically benign tissue adjacent to cancer 

collected from different distances to the cancerous lesion (myo-inositol/scyllo-Inositol (b = 0.1, 

SE b = 0.11, p = 0.03) and (glycerophosphocholine + phosphocholine)/creatine (b = –0.46, SE b 

= 0.11, p < 0.001).48 

A possible confounding factor not considered by most of the studies mentioned above is tissue 

composition. Prostate tissue samples are composed of different percentages of stroma and glands. 

The metabolomic profiles of these components vary in linear regression, for example the levels of 

citrate and polyamines (glands: r = 0.381, p < 0.0001; stroma: r = −0.303, p < 0.0001).32 The fact 

that the metabolomic profile that differentiates stroma vs. glands and the metabolomic profile that 

characterizes cancer tissue vs. histologically benign tissue have overlapping key metabolites, 

highlights the need to take tissue composition into account.48 Interestingly, subgroups of cancerous 

tissue with the same percentage of cancerous tissue have greater metabolomic inter-sample 

variability than benign samples with varying percentages of glands and stroma.48 This may explain 

the better performance of histologically benign samples to be separated based on GS of an adjacent 

lesion compared to analysis within cancer samples, that was reported by Stenman et al. reported.48  

The studies on prostate cancer field effects leave unanswered questions. Cheng et al. and 

Vandergrift et al. did not measure the distance between the histologically benign samples and the 

lesions. Stenman et al. did not quantify the distance in total numbers.32,48,55 No study has examined 

whether the correlation of metabolomic levels in histologically benign tissue adjacent to cancer 

with characteristics of the cancerous lesion depends on the distance from or the extent of the closest 

cancer. In this work, motivated by the urgent need to improve prostate cancer detection and 

assessment of aggressiveness, we will explore whether metabolomic profiles in histologically 

benign tissue can inform us on the presence and characteristics of a nearby cancer and whether 

these effects are distance-related. The data presented here were published in 2019 in NMR in 

Biomedicine.26 
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2. Methods 

2.1. Patient recruitment and collection of clinical data and samples 

Partners Human Research Committee, an institutional review board at Massachusetts General 

Hospital (MGH) in Boston, USA, approved this study. All steps were carried out according to the 

guidelines and regulations. All participating men gave informed, written consent to an MGH staff 

physician before surgery. Criteria for inclusion were a past diagnostic needle biopsy positive for 

prostatic acinar adenocarcinoma, no prior prostate cancer treatment, and an upcoming laparoscopic 

radical prostatectomy without robotic assistance. After inclusion, clinical data was obtained from 

Partners HealthCare EPIC database. The recorded items included age, past medical history, present 

illness, medication, drug use, and prostate-cancer specific data, including histopathologic results 

of past biopsies, pre-surgical serum PSA, and history of PSA values. To minimize variability, all 

prostatectomies were conducted by one of two surgeons, and one pathologist did all postsurgical 

sectioning. All three of them are highly competent MGH staff members, each with over ten years 

of experience. Starting immediately after surgical removal, the organs were kept at 4°C. 

Examination of specimen and sectioning was conducted mostly within 30 minutes post-removal 

and within one hour at most. A delay time of that magnitude was shown to have a negligible effect 

on metabolomic measurements.57 Parameters were recorded following the Protocol of the College 

of American Pathologists, including weight and size.58 The organs’ lobes were inked in different 

colors, and the apex and base were sectioned off 

(Fig. 2). Then, the organs were cut into quarters 

and four transversal slices per quarter. 

Subsequently, one sample of 5 mm x 5 mm x 5 mm 

was taken per slice, making a total of 16 samples 

per organ. Samples were taken approximately 3 

mm away from the margin where the peripheral 

zone is located, reflecting a trade-off of collecting 

tissue from where most cancers occur in the organ 

and preserving surgical margins for standard 

histopathological procedures. As shown in Fig. 2, 

size and orientation were captured on pictures 

during all steps to allow for the organs’ later virtual 

reconstruction. 

Immediately after cutting, the 16 tissue samples were placed on dry ice and transported to the 

laboratory, where samples were stored at -80°C until MRS analyses were conducted. This 

 

 

FIGURE 2. Prostate cutting. Surfaces of the right 
and the left lobe were inked in blue and black; the 
organ was cut in half (1) and quarters (2). The 
quarters were cut into four slices (3) and, from each 
slice, a sample was taken for scanning (box and 
arrow). Source: Personal collection. 

(1)(2)

(3)
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procedure does not significantly influence metabolomic profiles.59 The remaining parts of the 

prostate specimens were directly transferred to histopathological examination, as described below. 

Both the samples for MRS scanning and the samples directly transferred to histopathology were 

labeled so that their origin could be retraced back to the specific organ. 

 

2.2. Intact tissue MRS and data processing 

Tissue samples of 10 mg were cut and weighted on dry ice without thawing and then transferred 

into a zirconia rotor of 4 mm with Kel-F 10 µL plastic inserts. For field locking, 1 µL D2O (99.8%) 

was added. An in-house developed protocol was used for 1H HRMAS MRS measurements. On a 

vertical Bruker (Billerica, MA) AVANCE spectrometer, metabolomic spectra were recorded at 

600 MHz (14.1 T) at 4°C. The spectrometer frequency was centered on the water resonance. Data 

were recorded with and without water suppression, using a repetition time of 5 s and a rotor-

synchronized Min(A,B) procedure spinning at 600 and 700 (±1.0) Hz.60,61 Measurements were 

performed blind to the clinical and pathological status of the samples. After scanning, tissue 

samples were fixed in 10% formalin. 

A MATLAB tool, which was built in our laboratory, was used for pre-processing the raw data. 

After a Fourier transformation, spectra were deposed to manual correction of phase and baseline 

to remove frequency artifacts.21 The intensity values between 4.5 and 0.5 ppm, a segment in which 

water peaks do not overlap metabolite peaks, were fitted with the curve of Lorentzian–Gaussian 

line shapes. Then, the spectra were manually aligned based on the creatine peak (3.026 ppm) and 

the left peak of alanine (1.467 ppm). Normalization was accomplished using the creatine peak’s 

intensity from the full integral value of the water-unsuppressed file.23 The resulting relative 

intensity values were reduced by summing neighboring ppm values to obtain values with two, 

instead of three, digits after the point. All values smaller than 1% of the median were considered 

noise and set to zero.  

Regions of interest (ROI) were defined by summing up neighboring columns of ppm values with 

values that exceeded zero in > 80% of the samples. At most, three columns were combined, 

reflecting a trade-off between loss of information on one hand and reducing errors from possibly 

imperfect spectral alignment and multiple testing on the other hand. 

 

2.3. Histopathological examination 

The scanned samples and the remaining prostatectomy specimens that were not used for MRS 

were subject to histopathological processing and assessment. The tissue was embedded in paraffin, 

cut into sections of 5 µm at intervals of 100 µm throughout the entire sample, put on glass slides, 
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and stained with hematoxylin and eosin. A genitourinary pathologist with more than 15 years of 

experience, blind to the spectroscopic results, assessed the slides visually. The following 

parameters were recorded: GS (most predominant and second most common patterns); percentages 

of Gleason patterns and percentages of the components of tissue (cancer, glands, and stroma) 

estimated to the nearest 5%;  extent of cancer classified into levels less and more (a quantitative 

estimation taking into account the size and scatter of the lesion); further histopathologic 

characteristics (intraductal carcinoma, inflammation, hyperplasia, or high-grade prostatic 

intraepithelial neoplasia) and the presence of nerves, blood vessels, seminal vesicles or lymph 

vessels. From the samples used for MRS scanning, the total area of tissue on each slide was 

measured using a conventional scanner and the software ImageJ.62 Volume percentage (Vol%) of 

each tissue component (cancer, glands, and stroma) was calculated for each sample. The formula 

below is exemplary for an imaginary sample (s) with three histopathological slides, denoted by the 

subscripts 1 to 3, for the type of tissue (t). The total area (A) of the specimen and the percentage 

(P) of the tissue component may vary from slide to slide. Equal height (h) is assumed for all 

samples. 

 

𝑉𝑜𝑙%%,' =
𝑃* × 𝐴*ℎ +	𝑃0 × 𝐴0ℎ +	𝑃1 × 𝐴1ℎ

𝐴*ℎ +	𝐴0ℎ +	𝐴1ℎ
 

 

2.4. 3D organ reconstruction and grouping of samples 

Based on the pictures taken during the postsurgical sectioning, each organ was virtually 

reconstructed in a coordinate system with units in mm. Subsequently, the distance of scanned 

samples to the closest cancer was measured in three dimensions. Based on these measurements, 

histologically benign samples (HbABC) were subgrouped using a categorical system with a cut-

off point of 5 mm (HbA, ≤ 5 mm; HbB, > 5 mm, ≤ 10 mm; HbC, > 10 mm). This threshold was 

set because the samples were 5 mm3 in size, and our experimental set-up did not allow 

measurements of distance within the samples. Cancer samples (Ca) were subdivided according to 

GS (≤ 3+4, ≥ 4+3) and  histologically benign samples (HbA, HbB, HbC) were subdivided 

according to characteristics of the closest cancer. In case several cancer nodules within one 

prostate had the same proximity to a histologically benign sample, the one with the highest GS or 

the largest extent was chosen for grouping. The groups HbB and HbC were combined (HbBC) for 

analyses on overall-organ levels due to small and unequal sample size.  
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2.5. Data analysis and biological interpretation 

Regions were mean-centered and auto-scaled, meaning that the intensity value was divided by 

each variable’s standard deviation.63 For outlier detection visual inspection of principal component 

analysis (PCA) score plots and a random forest analysis with a fixed cut-off of eight were 

conducted.64 

Then, the spectral regions’ relative intensities and PCs with an Eigenvalue (EV) > 1 were subject 

to univariate analyses. For binary categorical variables (see Fig. 3 for grouping: Ca vs. HbABC, 

Ca subgroup GS high vs. Ca subgroup GS low, HbA subgroup GS high vs. HbA subgroup GS 

low, HbA subgroup extent more vs. HbA subgroup extent less, HbA vs. HbBC, HbBC subgroup 

GS high vs. HbBC subgroup GS low, HbABC subgroup GS high vs. HbABC subgroup GS low, 

HbABC subgroup extent more vs. HbABC subgroup extent less, HbBC vs. HbA subgroup GS 

high, HbBC vs. HbA subgroup GS low, HbBC vs. HbA subgroup extent more, HbBC vs. HbA 

subgroup extent less), Student's t-test (for normal distributions according to Shapiro–Wilk test, 

with or without equal variance) or Mann–Whitney–Wilcoxon test (for non-normal distributions) 

were used. For ≥ ternary comparisons (HbA vs. B vs. C), analysis of variance (ANOVA, for normal 

distributions) or Kruskal–Wallis–Wilcoxon test (for non-normal distributions) were used. Two-

sided testing was applied. The use of Bonferroni-corrected thresholds, for example, p < 0.000794 

for 63 defined spectral regions, is indicated in the text and figures. To generate receiver operating 

characteristics curves (ROC), in a first step a logistic regression based on all ROIs that were 

significant in the previous univariate analysis was conducted and in a second step the curves were 

drawn based on the fitted values.  

Unsupervised and supervised multivariate analysis was then applied to all above-listed comparison 

groups. PCA score plots were used to assess the clustering of samples visually. Loading plots of 

PCs of interest helped to identify the most influential metabolites. The regions that contribute to 

the loading are not always listed because the nature of PCs is that they represent metabolites 

holistically. Partial least square discriminant analysis (PLS-DA) was conducted and validated by 

ten-fold cross-validation to control for overfitting. Univariate and multivariate approaches have 

different strengths and weaknesses for metabolomics data, as discussed elsewhere.21,65,66 

Therefore, we combined the two criteria univariate significance and Variable Importance in the 

Projection (VIP) > 1 in PLS-DA models to select variables of interest. This is a common approach 

in the field.67  

Possible confounding factors were addressed. Inter-patient differences were excluded by 

conducting within-organ analyses wherever sample sizes allowed it (Fig. 4B, F, G) and by 

including patients as random effects in mixed models. Varying tissue composition was taken into 
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account. First, as a proof of concept, a linear mixed-effects model was applied to identify 

metabolomic characteristics of the tissue component stroma. Regions (ROI), log-transformed if 

skewed, and PCs with EV > 1 were regressed against the Vol% of stroma (stroma Vol%). The 

presence of cancer (cancer) in the sample was used as a fixed effect and the patient as a random 

effect 

 

((ROI or PC) ~ stroma Vol% + cancer + (1|patient)). 

 

Significance was tested with the likelihood-ratio test, meaning that the model without stroma 

Vol%, called null model, was compared to the model with the factor. Second, all compared groups 

were tested for differences in Vol% of stroma using the above-listed univariate approaches. 

Moreover, all comparisons conducted previously with samples stratified for stroma Vol% were re-

run. 

The assignment of ppm values to metabolites and metabolites to pathways was conducted based 

on the Human Metabolome Database (HMDB) and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG), as well as existing literature.68,69 We name the metabolites in Fig. 4 and, when 

relevant, in the discussion. In the results section, ppm values are used. Statistical analyses were 

performed using the R environment and the web-based platform MetaboAnalyst.70,71 

 

3. Results 

3.1. Patients and samples 

160 samples were collected from ten organs (size: median 92 cm3, range 33.75–141.75 cm2; 

weight: median 50.5 g, range 33.8–70 g) from patients with prostatic acinar adenocarcinoma (age: 

median 62 years, range 53–77 years). Pathological characteristics were recorded, including 

percentage of organ affected by cancer (median 27.5%, range 10–90%), highest overall GS per 

organ (GS 3 + 3 number of organs n = 1, 3 + 4 n = 4, 4 + 3 n = 1, 4 + 4 n = 1, 4 + 5 n = 2, and 5 + 

5 n = 1), and pT stages (pT2a n = 1, pT2c n = 5, pT3a n = 3 and pT3b n = 1). Perineural invasion 

(pN) was found in nine cases and lymph nodes were surgically removed in eight cases (pN1 n = 

2, pN0 n = 6). In no case metastases were found during the 12 months of follow-up after organ 

collection. Sample information is presented in Fig. 3. Two samples were excluded prior to raw 

data processing due to irregularities during MRS data acquisition. Two further samples were 

excluded after being identified as outliers, as described in the methods section. Data processing 

led to 63 ROIs. 
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FIGURE 3. Sample characteristics and grouping. (A) Cancer samples (red) were grouped based on GS. 
Histological benign samples (green and blue) were grouped based on distance to and characteristics of the closest 
cancer. Due to group size, HbB and HbC were merged for overall-organ analyses. (B) Distribution of volume 
percentage (Vol%) of the tissue components cancer, stroma and glands in cancer samples (red), HbA (green), and 
HbBC (blue) is presented in a scatterplot. In the cancer samples, the median of Vol% cancer is 19.67 (range 2–100), 
of glands 7.83 (0–31.25) and of stroma 66.37 (0–83.75). In the histological benign samples, the median of Vol% 
glands is 9.5 (range 0–56.27) and of stroma 90.50 (43.75–100). (A) Adapted with permission from REF26, CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). (B) Source: Personal collection. 

 

3.2. Metabolomics differ in cancer and benign tissue and in cancer tissue of different GS  

Ca and HbABC samples were visually separable in a PCA score plot. A PLS-DA model was built 

(R2Y = 0.33 and Q2Y = 0.18). In Bonferroni-corrected univariate analysis, two ROIs (4.34–4.32 

and 3.22–3.20) were significantly different, both had a VIP > 1 and increased levels in Ca (Fig. 

4A). From 12 PCs with an EV > 1, three were significantly different (PC3 p < 0.05, PC5 p < 0.001, 

PC6 p < 0.0001). Within-organ analysis confirmed that the findings were not caused by between-

patient differences (PLS-DA R2Y = 0.99 and Q2Ycum = 0.45) (Fig. 4B).  

Ca samples of low GS (≤ 3 + 4) were visually separable from Ca samples of high GS (≥ 4+ 3) in 

PCA score plots. A PLS-DA model (R2Y = 0.84 and Q2Ycum = 0.48) and Bonferroni-corrected 

univariate analysis revealed two significantly different regions (3.24–3.23 and 2.31–2.30), both 

with a VIP > 1 (Fig. 4C). The intensities of both regions increased with increasing GS. Of ten PCs 

with an EV > 1, two were significantly different (PC2 p < 0.01, PC5 p < 0.05). 
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FIGURE 4. Univariate and multivariate results. For the analysis presented in column (A) to (G), the top rows 
indicate included organs, included samples and comparison groups. Results of univariate (red, blue) and multivariate 
PLS-DA (yellow) analyses are color-coded. For overall-organ analyses, sample sizes can be found in Fig. 3A. Within-
organ analyses, conducted when samples sizes allowed it, are presented in columns (B), (F) and (G): (B) Ca n=9, 
HbABC n=7, all histologically benign samples were adjacent to a cancer lesion of extent more; (F) HbA subgroup 
extent more n = 9, HbA subgroup extent less n=5, all histologically benign samples were adjacent to cancer of GS 
low; (G) HbA n=8, HbB n=3, HbC n=4. Levels of significance: 4.07–4.05 between HbA, HbB, and HbC, 0.95–0.93 
between HbA and HbB; 3.99–3.97 and 3.90–3.89 between HbA and HbC only. Assignment of ROIs to metabolites 
was done wherever possible. choCC, choline containing compounds and choline; amino acids, mainly leucine, valine, 

and isoleucine. Adapted with permission from REF26, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).  
 

3.3. Metabolomics in histologically benign tissue close to cancer (≤5 mm) vary with GS and 

extent of the closest lesion 

Within the group of histopathological benign samples, the two comparison groups extent of cancer 

(levels less and more) and GS (levels high and low) were not correlated. Visual inspection of the 

HbA samples’ PCA score plots showed trends of separation of HbA subgroup GS high vs. HbA 

subgroup GS low. The same applies for HbA subgroup extent more vs. HbA subgroup extent less. 

Multivariate models were built (GS high vs. low R2Y = 0.07 and Q2Y = 0.02; extent more vs. less 

R2Y = 0.06 and Q2Y = 0.02). In a Bonferroni-corrected univariate analysis the regions 3.30–3.28, 

2.70–2.68, and 2.57–2.55 were negatively correlated with GS (Fig. 4D), while the region 4.45–

4.44 was positively correlated with the extent of cancer (Fig. 4E). All of them had a VIP > 1. From 

11 PCs with an EV > 1 within the group of HbA, PC1 (p < 0.05) was significantly different in both 

extent more vs. less and GS high vs. GS low, while PC6 (p < 0.01) was only significantly different 

in extent more vs. less. A within-organ analysis confirmed metabolomic separability of HbA 

subgroup extent more vs. less (Fig. 4F). The groups were visually separable in a PCA score plot. 

16 ROIs differed in univariate analysis. All of them had a VIP > 1 (PLS-DA R2Y = 0.582 and 

Q2Y = 0.153), but lost significance after Bonferroni correction. Nine ROIs were overlapping in 

within-organ and overall-organ analyses. Of seven PCs with an EV > 1, PC1 was significantly 

different (p < 0.05). Due to sample availability, no within-organ analysis could be conducted for 

HbA subgroup GS high vs. low. 

 

3.4. Metabolomics in histologically benign tissue vary with distance from closest cancer 

Due to the small sample sizes, samples at distances > 5 mm and ≤ 10 mm (HbB) and > 10 mm 

(HbC) were grouped for the overall-organ analysis (HbBC). The two groups HbA vs. HbBC 

showed trends of separation in a PCA score plot. Univariate analysis based on all organs showed 

that the regions 0.97–0.96 (p < 0.01); 2.02–2.00, 4.29–4.27, 4.31–4.30, 4.16– 4.15 and 0.92–0.89 

(p < 0.05) all decreased in intensity with increasing distance from the cancer (HbA to HbBC). The 

unequal group size of HbBC (n = 10) vs. HbA (n = 124) did not allow us to build a multivariate 

model. In order to offer a multivariate perspective nonetheless, the loading plot of a PC that was 
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significantly different in univariate analysis after Bonferroni correction is given in Fig. 5. 

Metabolites that had both high loading in PCA and significance in univariate analysis are 

highlighted. On the organ level, HbA (n = 8), HbB (n = 3) and HbC (n = 4) were compared. For 

representative spectra from this organ, see Fig. 1. The groups were visually separable in PCA score 

plots, and PC2 was significantly different (p < 0.05). In univariate analysis, three ROIs differed 

(4.07–4.05, 3.99–3.97, and 3.90–3.89 ppm), all of them had a VIP > 1 (R2Y = 0.634 and Q2Y = 

0.18) but lost significance after Bonferroni correction (Fig. 4G). All three ROIs showed decreasing 

concentrations with increasing distance from the cancer. The comparability of within-organ and 

overall-organ analysis is limited as for latter HbB and HbC were merged. Still, it is noteworthy 

that although the differentiating metabolites of within organ (see Fig. 4G) and overall-organ (see 

Fig. 5) vary partly, the differentiating regions that do not overlap are neighboring.  

 
3.5. Metabolomic variation in histologically benign tissue with GS and extent of the closest 

cancer is less prominent at a greater distance from the cancer (> 5 mm) 

Contrary to HbA, the metabolomic profiles of HbBC samples did not vary with the GS of the 

closest cancer. No multivariate model could be built. Only two regions were significantly different 

in univariate analyses between HbBC close to GS high vs low, but barely exceeded the level of 

significance (2.81–2.79, 2.17–2.16, p < 0.05; increased in the subgroup GS high) and lost 

significance after Bonferroni correction. The weaker performance of HbABC to distinguish GS 

high vs GS low of a nearby cancer compared to the performance of HbA is underlined by ROCs: 

Within HbA subgroup GS high vs. subgroup GS low AUROC = 0.830 (95% CI, 0.76–0.91) and 

within HbABC subgroup GS high vs. subgroup GS low AUROC = 0.765 (95% CI, 0.69–0.85). 

Similarly, a PLS-DA model based on HbABC samples was weaker than HbA samples only 

(HbABC, R2 = 0.0631and Q2 = 0.0021 vs. HbA, R2Y = 0.07 and Q2Y = 0.02).  

In line with these findings, the performance of HbABC to distinguish the extent of a nearby cancer 

was weaker than in analyses based on HbA only: 1.73–1.71 and 0.92–0.89 lost significance in 

univariate analysis, and one newly significant region appeared at a very low level of significance 

(3.67–3.66 ppm, p = 0.044; concentration higher in subgroup extent more). No PLS-DA model 

could be built. Due to sample size, no analysis could be conducted in HbBC only. The AUROC 

was smaller within HbABC (AUROC = 0.870 [95% CI, 0.80–0.94]) compared to HbA (AUROC 

= 0.918 [95% CI, 0.86–0.98]). After finding that HbBC does not, or does but only to a small extent, 

vary with GS and extent, but that HbA does, we conducted analyses of HbBC vs. following 

subgroups of HbA: HbA subgroup GS high, HbA subgroup GS low, HbA subgroup extent more, 

and HbA subgroup extent less. PC7 was significantly different between HbBC compared to each 
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of the subgroups as well as in HbBC vs. HbA. The major contributing regions of PC7 are labeled 

in Fig. 5. 

Interestingly, in univariate analysis no difference could be found in HbA subgroup extent less vs. 

HbBC, whereas HbA subgroup extent more differed significantly from HbBC (4.31–4.30, 4.29–

4.27, 4.16–4.15, 2.02–2.00, 0.97–0.96 and 0.92–0.89, p < 0.05; all increased in HbA). There were 

significant differences in univariate analysis between HbBC vs. HbA subgroup GS low (4.29–4.27 

p < 0.01; 0.97–0.96, 4.43–4.41, 4.31–4.30, 3.01–2.98 and 2.02–2.00 p < 0.05; all increased in 

HbA) and between HbBC vs. HbA subgroup GS high (0.97–0.96 p < 0.05; decreased in HbA). 

 

 

FIGURE 5. Loading plot of PC7 of PCA based on all benign samples (HbABC). In univariate analysis, PC7 was 
significantly different between HbA and HbBC (p < 0.05 after Bonferroni correction) and between HbBC vs. each of 
the subgroups of HbA (GS high, GS low, extent more, extent less). The most influential regions are labeled and the 
regions among them that also differed significantly in univariate analysis of HbA vs. HbBC are printed bold. Red, 

positive loading value; blue, negative loading value; * p < 0.05, ** p < 0.01. Source: Personal collection.  
 

3.6. Influence of tissue composition 

A mixed model revealed metabolic differences between tissue components. The following ROIs 

differed significantly based on  stroma Vol% after Bonferroni-correction: 3.15-3.13 (χ2(1)=26.19), 

3.12-3.10 (χ2(1)=29.72), 2.73-2.71 (χ2(1)=24.71), 2.57-2.55 (χ2(1)=28.62), 2.12-2.10 

(χ2(1)=21.14), 2.09-2.07 (χ2(1)=20.00), 1.77-1.74 (χ2(1)=20.15) and 1.48-1.47 (χ2(1)= 16.38), (p 

< 0.0001); and 4.34-4.32 (χ2(1)=13.47), 3.61-3.59 (χ2(1)=14.39), 3.22-3.20 (χ2(1)=14.98), 2.70-

2.68 (χ2(1)=12.17), 2.53-2.50 (χ2(1)=10.96), 2.31-2.30 (χ2(1)=14.32), 2.05-2.03 (χ2(1)=11.62), 

1.73-1.71 (χ2(1)=11.11), 1.70-1.67 (χ2(1)=13.95), 0.97-0.96 (χ2(1)= 11.40), (p < 0.001). All ROI 
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decrease in intensity with increasing stroma Vol%. One PC was significantly affected by stroma 

Vol% (PC1 (χ2(1)=18.46), p < 0.0001). Its major contributing metabolites in the loading plot also 

appear among the above listed significant metabolites, namely 2.09–2.07, 2.12–2.1, and 3.61–3.59 

(loading decreasing). 

Then, all compared groups reported in the results sections were univariately tested for differences 

in stroma Vol%. We found no significant differences, exemplarily shown for one ROI in Fig. 6A.  

 

 

 
 
 

 
FIGURE 6. Influence of varying Vol% stroma on HbA. (B) HbA samples, colorcoded for subgroups based on the 
GS of an adjacent lesion (low, ≤ 3+4, orange; high, ≥ 4+3, blue) are presented in a scatterplot. The subgroups (A) do 
not differ in Vol% stroma, (C) but do differ significantly in relative intensity in ROI 3.15–3.13 in analysis stratified 
for Vol% stroma, but only in Vol% stroma > 80%. Red and grey brackets, levels of significance in univariate analysis; 

* p < 0.05, ** p < 0.01, *** p < 0.0001. Source: Personal collection. 

 

For all reported comparisons, all regions previously identified as significant were tested again in 

groups stratified for stroma Vol%. This is presented exemplarily in Fig. 6C for ROI 3.15–3.13 and 

the comparison HbA subgroup GS high vs. HbA subgroup GS low. For the comparisons within 

histologically bening samples (HbA, HbB and HbC), all ROIs remained significant in stroma 

Vol% > 80%; in stroma Vol% < 80% significance was lost in most of the ROIs. 
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4. Discussion 

4.1. Biological interpretation of the findings 

This study evaluated the diagnostic and prognostic utility of prostate tissue metabolite profiles 

measured in histologically benign tissue with high-field (14.1 T) 1H HRMAS MRS. We reported 

(1) the proof of concept that cancer vs. histologically benign tissue as well as cancer tissue of low 

vs. high GS are metabolomically different; (2) that metabolomics in histologically benign samples 

adjacent to cancer vary with characteristics of cancer (extent and GS), but—and this has not been 

previously published—only if the distance from the cancer is small (≤ 5 mm); and (3) that 

histologically benign samples are significantly different at different distances from the cancer (≤ 

5 mm vs. > 5 mm and ≤ 10 mm vs. > 10 mm). Interestingly, the differences between histologically 

benign tissue close to a cancerous lesion (≤ 5 mm) and tissue at a greater distance (> 5 mm) were 

more prominent in tissue adjacent to cancer of a larger extent. Possibly, a certain amount of 

prostate cancer mass is needed to produce these effects. For the first time, metabolomic prostate 

cancer field effects were reported in within-organ analyses in the work presented here. The effects 

were stable in analyses matched for tissue composition of stroma and glands, but, of note, the 

effects in histologically benign tissue were more prominent in samples with higher percentages of 

stroma.  

Although we seek to report metabolomic profiles rather than individual metabolites, key 

discriminatory metabolites are summarized here: For cancer vs. histologically benign, choline, 

choline containing compounds, aspartate and lipids (Fig. 7B, underlined) and for cancer tissue of 

low vs. high GS, aspartate, taurine and glutamate. In histologically benign tissue, myo-inositol, 

polyamines and citrate correlated with the GS, and taurine and polyamines correlated with extent 

of a nearby cancer. Lipids, myo-inositol and choline and choline containing compounds varied 

with the distance between the histologically benign sample and the cancerous lesion.  

Physiologically, the metabolism of prostatic glandular epithelium differs from other mammalian 

cells. It is characterized by enhanced aerobic glycolysis, diminished oxidative phosphorylation, 

and a truncated tricarboxylic acid (TCA) cycle (Fig. 7A). Zinc impairs m-aconitase, which enables 

citrate to be used as an end-product for secretion into the prostatic fluid or, to a lesser extent, an 

intermediate for lipid synthesis. The TCA cycle is supplied with precursors, including oxaloacetate 

from aspartate and alpha-ketoglutarate from glutamate. In malignant prostate cells, zinc is no 

longer accumulated. The activity of the TCA cycle and oxidative phosphorylation increase.72,73 

Hence, the levels of citrate and the end-products of anaerobic glycolysis, lactate and alanine, 

decrease.74 Glycolysis is downregulated, and, instead of glucose, fatty acids serve as dominant 
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substrates (Fig. 7B).75 Of note, in highly advanced cancer, metabolic alterations may occur such 

as the Warburg effect and a decrease of the activity of the mitochondrial creatine kinase.72,76  

 

(A) Cancer-free prostate epithelial cell     (B) Prostate cancer cell 

 
 

FIGURE 7. Selected metabolic processes in healthy prostate epithelial cells and in low-grade prostate cancer 
cells. (A) Cancer-free prostate epithelial cells are metabolomically unique with high aerobic glycolysis and low 
oxidative phosphorylation. Zinc inhibits m-aconitase and impairs the TCA Cycle. Compared to other mammalian 

cells: red, incrased; blue, decreased. (B) In prostate cancer cells citrate is oxidized in the TCA Cycle, glucose uptake 
is decreased, and fatty acids are the main substrates for energy production. De novo lipogenesis and oxidative 
phosphorylation are enhanced. Compared to (A): red, incrased; blue, decreased (according to the literature); 

underlined, univariate differences between Ca and HbABC in the data presented in this study (Fig. 4A). α-KG, α-

ketoglutarate; Ala, alanine; Cho, choline; Crea, Creatine; FA, fatty acids; NAA, n-acetylaspartate; PhCrea, 

phosphocreatine; PhoCho, phosphatidylcholine; Succ-CoA, Succinyl-CoA; TCA, tricarboxylic acid; ZIP1, zinc 
transporter 1. Source: Personal collection. 

 

In line with the described alterations of the TCA cycle in cancer cells, decreased levels of citrate 

in cancerous tissue vs. histologically benign25,33,41,42 (Fig. 7B), and in cancerous tissue of higher 

vs. lower GS were reported here and in other studies.25,33,41,42,77 Here and in previously published 

studies, levels of citrate in histologically benign tissue correlate negatively with the GS of an 

adjacent cancer.32,48 Alterations of the anaplereutic metabolites for the TCA cycle were reported 

here and in other publications: Aspartate was increased in cancer vs. benign (Fig. 7B)78 and in 

cancer tissue of high vs. low GS. Glutamate and glutamine correlated with the extent and GS of a 

nearby lesion in histologically benign tissue adjacent to cancer.  

Previously described alterations of lipid metabolism in prostate cancer include upregulated de 

novo lipid biosynthesis possibly for membranogenesis, a prerequisite for proliferation, and for 

fatty acid ß-oxidation for ATP-production.79 Here and in previous studies, lipids were increased 

in cancer compared to histologically benign tissue38,39,77,80 (Fig. 7) and in cancerous tissue of high 

GS vs. low GS.37,78 In histologically benign tissue adjacent to cancer, lipids correlated positively 

with the extent of cancer and negatively with the GS of and distance to cancer. Correlations 
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between levels lipids in histologically benign tissue and grades of a nearby prostate cancer were 

reported in previous publications.81 

The carnitine cycle regulates fatty acid mitochondrial import and export and was shown to be 

upregulated in prostate cancer.81,82 In line with other publications, we found higher levels of 

carnitine in cancer vs. histologically benign tissue (Fig. 7B)35,37,80 and in cancer of high vs. low 

GS.38 

Phospholipid metabolism with its key enzyme choline kinase, which synthesizes constituents of 

cell membranes, is known to be upregulated in prostate cancer.79 Choline has even been 

successfully used as an alternative tracer for positron emission tomography (PET) imaging81 and 

was suggested to serve as biomarker for in vivo prostate spectroscopy84. In our dataset and other 

studies, choline and choline-containing metabolites were increased in prostate cancer tissue 

compared to healthy controls (Fig. 7B);25,32,33,36,39,41,42,77,80,85 they positively correlated with GS 

both in cancer 25,33,42,77 and histologically benign tissue48,55 and negatively correlated with distance 

to cancer in histologically benign tissue48. Paracrine introduction of changes in the choline 

phospholipid metabolism in adjacent histologically benign cells could be an explanation for the 

alterations that we found in histologically benign tissue adjacent to cancer.84 It has been suggested 

that choline is more suitable as a biomarker than, for example, citrate because it varies much less 

between stromal and glandular tissues.25,48,85,86  

Increased levels of n-acetylaspartate (NAA) in prostate cancer compared to histologically benign 

tissue, which we and other studies reported (Fig. 7B)80, could reflect a general increase of 

metabolic rates in rapidly dividing cells, or specific changes associated with the oncogenic 

process.39,87 In neural tissue, NAA provides acetate for the synthesis of fatty acids, and in lung 

cancer, it may regulate the utilization of nutritients including glutamine.87 In our dataset, NAA 

was also major contributing metabolite to the PC that separated histologically benign samples at 

different distances to cancer. Furthermore, levels of NAA in histologically benign tissue correlated 

positively with GS and correlated negatively with the extent of the closest cancer. 

Creatine is important in energy metabolism, as phosphocreatine supplies phosphate to ADP to gain 

ATP.88 In prostate cancer, mitochondrial creatine kinase was shown to have increased activity 

compared to histologically benign.76 Accordingly and in line with other publications, we reported 

elevated levels of creatine in cancer compared to histologically benign samples (Fig. 7B).42,80 

Furthermore, levels in cancer samples correlated positively with GS42 and levels in histologically 

benign tissue varied with increasing distance from the cancer.47  

The polyamines putrescine, spermidine, and spermine are involved in processes of cell growth and 

survival.89 Spermine, which is secreted  into the prostatic fluid, has a higher concentration in the 
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prostate than in any other organ.80 Spermine has cytostatic and cytotoxic effects and was suggested 

to be an endogenous inhibitor of prostate cancer growth. Concentration in tissue were previously 

reported to correlate with the volume of healthy, cancer-free prostatic epithelial cells.80,90 In our 

dataset, levels of polyamines in histologically benign tissue increased with the GS of an adjacent 

cancer, a finding supported by previous publications.32,55  

Myo-inositol is involved in osmo- and volume regulation and cell signaling, for example, the 

oncogenic PI3K pathway.48 It may be an endogenous tumor suppressor.55 In our dataset, levels of 

myo-inositol in histologically benign tissue decreased with the GS of an adjacent cancer and 

increased with distance to cancer, findings supported by previous publications.48,55,91 

Taurine, a non-essential amino acid effecting oxidative processes, immune surveilance and 

apoptosis, was suggested to be crucial in prostate cancer regulation.80,92 Here and in previous 

publications, levels of taurine were significantly different in cancer compared to histologically 

benign tissue.80,85,93 As the ROI that represents taurine also contains signals from choline and 

choline containing compounds in the data presented here, the direction of fold change cannot be 

interpreted clearly. Furthermore, we reported altered levels of taurine in cancerous tissue of high 

vs. low GS and in histologically benign tissue close to cancer of extent more vs. extent less.  

In our dataset, key metabolites that differed between the tissue compartments stroma and glands, 

were polyamines and citrate, all decreasing with the Vol% of stroma. Previous studies are in line 

with these findings.25,32,77,85,86 A methodological standardization for the handling of varying 

percentages of stroma and glands in HRMAS MRS studies is yet to be established. Some studies 

do not take this possible confounding factor into account at all, others stratified the samples for 

tissue components prior to the analysis94 or, and this approach was chosen in the work presented 

here, did a second round of analysis to control if the findings remain significant in groups stratified 

for tissue composition.55 Other authors suggested to take only those metabolites into consideration 

as biomarkers that do not vary at all between tissue components.48 Ideally, metabolomic variation 

due to different tissue components could be excluded prior to statistical analysis. Of great help 

would be a description of each component’s pure spectra. This could be achieved by matrix-

assisted MS combined with microscopic assessment.80,95,96 These pure spectra could serve as a 

baseline, similar to the idea behind the human genome project. For a given tissue sample, one 

could calculate the cancer-free profile (e.g., 30% stroma and 70% glands). The aberrations would 

largely reflect the variations of interest, for example, cancer vs. benign. 

Furthermore, open to further research remains the question of the cancer fields’ origin. On the one 

hand, other -omic levels offer evidence that field effects constitute precancerous lesions.47 On the 

other hand, alterations might be the response of neighboring tissue to the cancerous lesion. It has 
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also been suggested that low-weight molecules could migrate from the cancer to its surroundings.97 

Processes in the surrounding stroma were discussed under the name “reactive stroma,” possibly 

induced via TGFß98,99 and promoting, in turn, angiogenesis and tumorigenesis. The reactive stroma 

concept is in line with the tissue organization field theory (TOFT). It states that cancer is a tissue-

based, instead of cell-based, disease, in contrast to the well-known somatic mutation theory.100 

Most probably, the phenomena that have so far been subsumed under the term “field effects” are 

partly precancerous conditions and partly induced by a nearby cancerous lesion. Deeper 

understanding could be gained, for example, by a simultaneous collection of data on several -omic 

levels. Some studies have shown successful combinations of metabolomics and 

transcriptomic,36,99,101 genomic,102,103 or immunohistochemical data.34 Another approach would be 

a thorough examination of cancer-free organs, possibly from organ donors. Metabolomic fields 

that precede prostate cancer could be detectable, although the time of ischemia could influence the 

data. Moreover, longitudinal study designs could help. For example, in a nested case-control study, 

men with the same likelihood for prostate cancer detection would undergo several biopsies at 

different points along a timeline. The men that are subsequently diagnosed with prostate cancer 

would make up the group “cases,” while the ones that remain cancer-free would be the “healthy 

controls.”  

 

4.2. Limitations and weaknesses 

A limitation of the work presented here is that some groups were relatively small and of unequal 

sizes, such as samples at a larger distance than 5 mm from prostate cancer. This is due to the 

multifocality of prostate cancer. Consequently, it was not possible to divide the dataset into a 

training and a testing cohort. Instead we evaluated the models by ten-fold cross-validation. 

Moreover, PLSDA, being vulnerable to unequal group sizes, could not be conducted for all 

comparison groups.59 To gain a multivariate perspective nevertheless, PCs were subject to 

univariate analysis. 

In addition, 5-mm steps for grouping the samples for distance to cancer are relatively large. 

Experimental designs with smaller tissue samples could help. A software-based reconstruction of 

the organs could improve accuracy further.106 

Furthermore, we did not include tissue from cancer-free organs as a control group. These could be 

obtained from cystoprostatectomy in bladder cancer surgery, however, samples could be impaired 

by the patients’ age, the bladder cancer or treatment, or from organ donors, but the time of ischemia 

could be a limiting factor. Biopsies from healthy men are not feasible due to invasiveness.47 
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Finally, there are widely acknowledged weaknesses in the field of metabolomics in general. There 

is a lack of methodological standardization. There is reason to be optimistic, however, as initiatives 

like Coordination of Standards in Metabolomics (COSMOS) are developing guidelines; open-

access tools for reproducible data processing and analysis, such as MetaboAnalyst and a multitude 

of R packages, are becoming more widely used; and databases for reliable metabolite and pathway 

assignments are constantly growing, including KEGG and HMDB.68–71,107 Statistical approaches 

to remove metabolomic variation due to biological factors including age, diet, medication, physical 

activity and genetic background are being developed and discussed in the literature.108 Due to the 

structure of the dataset presented here with relatively few individuals and many samples per 

individual, we rather focused on within-organ analyses.  

 

4.3. Scientific implications and clinical applications 

The presence of metabolomic field effects challenges the use of histologically benign prostate 

tissue from cancerous organs as mere healthy controls. This procedure, besides the lack of 

methodological standardization in metabolomic studies in general, may contribute to the 

considerable variation among published metabolomic tissue biomarkers. This is underlined by our 

finding that the metabolomic profile that distinguishes histologically benign tissue in proximity 

vs. at greater distances to cancer and the profile that varies between histologically benign tissue 

and cancerous tissue have overlapping key metabolites, for example, choline and choline 

containing compounds (3.34–4.32 ppm and 3.22–3.2ppm). We call for researchers to take field 

effects into account in study design and data analysis. 

The findings presented here encourage validation studies. In a clinical setting, metabolomic field 

effects could enlarge the target area for biopsies, reducing the number of false-negative and under-

graded biopsies. Increased diagnostic accuracy of biopsies could reduce cases of undertreatment. 

At the same time, this approach could also help identify low-risk cancer and make active 

surveillance a more attractive alternative to potentially harmful procedures, thereby reducing 

overtreatment.46 Once established, an approach like this could exclude men from potentially 

unnecessary re-biopsies and may help to reduce the number of needed biopsy cores, thereby 

lowering patients’ biopsy-associated risks. As the acquisition of metabolomics data is near real-

time metabolomic profiles could be measured during interventions. This approach could help to 

decide immediately during biopsy whether to resample or stop sampling. An NMR-based 

approach’s translatable capacity is significant, as due to its non-destructive nature it can be added 

to the current clinical workflow of histopathological assessment without impairing it. It also 

requires minimal sample preparation, has high throughput, and is cost-effective, automated, and 
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reproducible. In contrast to histopathological assessment, where GS grading shows inter-observer 

variations, the data is objective.81 At present, smaller machines are being developed that are less 

expensive and suitable for a clinical setting.109 This approach is in line with the precision medicine 

initiative that seeks individualized clinical decision-making to find the best strategy for each 

individual patient.  

The ultimate goal is the translation to in vivo MRS to gain diagnostic and prognostic information 

non-invasively. 18F-fluorodeoxyglucose PET, an imaging modality often used in solid cancers of 

other organ systems, is not feasible, as the Warburg effect with increased glucose uptake is not 

present in prostate cancer, except for more advanced cases.72,73,75,110 In vivo MRS can, at present, 

acquire metabolomic profiles per 0.5 cm3 voxels in clinically feasible measurement time.111–113 To 

meaningfully interpret the spectra in vivo, studies that correlate ex vivo spectroscopic data directly 

to histopathological features, as in the work presented here, are indispensable. Spectroscopic 

findings in the prostate from ex vivo studies are translatable to in vivo, as shown by a study that 

found a strong correlation between GS and the ratio (choline + creatine + spermine)/citrate both 

in vivo and ex vivo.42 

We recommend (1) taking the next steps toward validation studies and, if successful, ultimately 

toward translation into the clinical workflow as a complementary ex vivo tool for bioptic prostate 

cancer detection and assessment of aggressiveness; (2) including the concept of field effects as a 

possible confounding factor in metabolomic study designs and data analysis; and (3) exploring 

field effects in other organ systems because there may be implications for both scientific and 

clinical applications as well. 
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In this article, we review the state of the field of high resolution magic angle spinning

MRS (HRMAS MRS)‐based cancer metabolomics since its beginning in 2004; discuss

the concept of cancer metabolomic fields, where metabolomic profiles measured from

histologically benign tissues reflect patient cancer status; and report our HRMAS MRS

metabolomic results, which characterize metabolomic fields in prostatectomy‐

removed cancerous prostates. Three‐dimensional mapping of cancer lesions through-

out each prostate enabled multiple benign tissue samples per organ to be classified

based on distance from and extent of the closest cancer lesion as well as the Gleason

score (GS) of the entire prostate. Cross‐validated partial least squares‐discriminant

analysis separations were achieved between cancer and benign tissue, and between

cancer tissue from prostates with high (≥4 + 3) and low (≤3 + 4) GS. Metabolomic

field effects enabled histologically benign tissue adjacent to cancer to distinguish

the GS and extent of the cancer lesion itself. Benign samples close to either low GS

cancer or extensive cancer lesions could be distinguished from those far from cancer.

Furthermore, a successfully cross‐validated multivariate model for three benign tissue

groups with varying distances from cancer lesions within one prostate indicates the

scale of prostate cancer metabolomic fields. While these findings could, at present,

be potentially useful in the prostate cancer clinic for analysis of biopsy or surgical

specimens to complement current diagnostics, the confirmation of metabolomic fields

should encourage further examination of cancer fields and can also enhance under-

standing of the metabolomic characteristics of cancer in myriad organ systems. Our

results together with the success of HRMAS MRS‐based cancer metabolomics pre-

sented in our literature review demonstrate the potential of cancer metabolomics to

provide supplementary information for cancer diagnosis, staging, and patient

prognostication.

Abbreviations used: AUC, area under the curve; Cho, choline; Cre, creatine; GPCho, glycerophosphocholine; GS, Gleason score; Hb Barrett, histologically benign tissue

adjacent to Barrett's esophagus disease; HbA, histologically benign tissue adjacent to cancer; HC, healthy control; m‐Ino, myo‐inositol; OPLS‐DA, orthogonal partial

least squares‐discriminant analysis; PCA, principal component analysis; PCho, phosphocholine; PLS‐DA, partial least squares‐discriminant analysis; ROC, receiver

operating characteristic; s‐Ino, scyllo‐inositol
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1 | INTRODUCTION AND REVIEW

Cancer annually causes multiple millions of deaths globally and is the second leading cause of death after cardiovascular diseases.1 While inves-

tigations of cancer genomics and proteomics have shown great potential to enhance the collective understanding of cancer and its detection and

treatment options, cancer metabolomics, which measures the output from these upstream processes in the form of small molecules, presents

direct signatures of biochemical activity and can be more closely associated with disease phenotypes.2

Metabolomics aims to investigate relationships between the ensemble of metabolic alterations and disease phenotypes by revealing metabolic

differences measured among samples of different clinical and pathological status. The introduction of high‐resolution magic angle spinning mag-

netic resonance spectroscopy (HRMAS MRS) in 19963 allowed for analysis of intact human tissue samples at high spectral resolution,4-7 while pre-

serving tissue histological structures. It inspired widespread studies of global metabolite profiling by showing that, compared with single

metabolites, metabolomic analyses could distinguish cancer from non‐cancer tissue with improved accuracy. In an early work, Tate and colleagues

showed that unsupervised principal component analysis (PCA) could distinguish kidney cortical cancer tissue from normal, and supervised linear

discriminant analysis (LDA) presented the possibility of distinguishing them with 100% accuracy.8

Considering the current state of HRMAS MRS‐based metabolomics and our recent work to expand its utility in investigations of histologically

benign tissue adjacent to cancer, in this article we will first review the field of HRMAS MRS‐based metabolomic (meaning not purely single metab-

olite) investigations of human cancers conducted with multivariate analysis (along with or without univariate methods), and then demonstrate the

utility of human prostate cancer metabolomics in characterization of the disease with analyses of multiple cancer and histologically benign intact

tissues sampled throughout surgically removed prostates from prostate cancer patients.

1.1 | The current state of HRMAS MRS‐based human cancer metabolomics

Our review of the literature indicated that investigations of human cancer tissue with HRMAS MRS‐based metabolomics have been conducted

in many organ systems since 2004, including adrenal,9-11 bone,12 brain,13-17 breast,18-29 colorectal,30-32 esophagus,33 lung,34 pancreas,35

prostate,36-41 rectum,42 skin,43 stomach,44 thyroid,45-47 etc. Selected papers with sample sizes of 100 or more are summarized in Table 1.

1.1.1 | Methodological considerations

The reviewed studies have invoked unsupervised or supervised multivariate analytical methods to generate metabolomic profiles. The unsuper-

vised analyses include PCA, hierarchical cluster analysis (HCA), or self‐organizing maps (SOMs), while the supervised studies primarily used partial

least squares‐discriminant analysis (PLS‐DA), orthogonal partial least squares‐discriminant analysis (OPLS‐DA), or support vector machines. Rigor-

ous analysis requires a training–testing cohort design, with a separate testing cohort to be analyzed when sample size permits, or permutation

testing, repeated cross‐validation such as Monte Carlo cross‐validation, or leave‐one‐out approaches in the case of smaller sample sizes. To ensure

the relevance of the measured metabolomic profiles with disease status, the metabolomic profiles need to be evaluated for disease‐relevant met-

abolic pathways.48

In addition, HRMAS MRS preserves tissue histopathological structures and thereby enables metabolomic profiles to be directly correlated

with the percentage of different pathological features. Mass spectrometry (MS) or mass spectrometry imaging (MSI), in contrast, destroy the sam-

ple during metabolite extraction from the tissue (MS) or the laser ablation process of measuring a tissue slice (MSI). While MS techniques are more

sensitive and can detect concentrations as low as picomolar rather than just the millimolar concentrations of HRMAS MRS, the selection of ions to

detect complicates the MS measurement process. Furthermore, MS measurement takes usually three times longer than MRS. These characteris-

tics, and in particular the preservation of tissue in HRMAS MRS, make it especially useful for human cancer tissues, since each sample unavoidably

contains a heterogeneous mixture of pathological features, such as cancer, stroma, and benign epithelia in prostate. However, only a few studies

have actually considered the different pathological components in samples, and thus far there is no uniform analytical approach to account for

pathology heterogeneity. In a variety of studies, metabolites were analyzed by percentages of pathological features with linear regression49,50

or least‐square regression analyses.51-54 Other methods include separating samples into high tumor load (>50%) and low tumor load (<50%)

groups,55 using PCA,56 utilizing a partial volume artifacts approach employed for in vivo imaging,57,58 or simply measuring a pure tissue of nanoliter

sample size,59 which is a technical marvel but challenging for general clinical applications.

Metabolomics has also been investigated in conjunction with its upstream biological processes of genomics and transcriptomics. Correlating

HRMAS MRS results with gene mutations and transcript alterations helps to relate the measured metabolomic profiles to all the involved meta-

bolic pathways and assists in sub‐classifying cancers.26,60-62 The strengths of such multi‐modal investigations were demonstrated by use of a

machine learning framework, which combined metabolomic data and gene transcriptome profiling for human brain tumors; the heterogeneous

data combination outperformed analysis conducted with either single ‘‐omics’ data type.63

HRMAS, as an ex vivo method, has also been correlated with in vivo MRS observations64,65 and with PET and MRI.19,64 These studies highlight

the ability of HRMAS MRS to complement in vivo imaging modalities in the clinic by offering additional diagnostic or prognostic information, or

demonstrate the potential for it to directly translate to clinical applications in vivo MRS.
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TABLE 1 Selected HRMAS MRS metabolomic studies within the past 10 years. Reviewed reports both published within the last 10 years and

with total sample sizes of 100 or more are summarized. Control sample size of 0 indicates that a study only compared tumor or disease sub‐types.

Abbreviations: BBNs, Bayesian belief networks; PNNs, probabilistic neural networks

Sample size

Authors Year Organ Primary findings
n (tumor or
disease) n (control) Ref.

Vandergrift

et al.

2018 prostate ‐ Metabolic profiles of histologically benign prostate tissue from

cancerous prostates
• Show elevated myo‐inositol, an endogenous tumor suppressor

and potential mechanistic therapy target, in patients with highly

aggressive cancer

• Identify a patient sub‐group with less aggressive prostate cancer

to avoid overtreatment if analyzed at biopsy

• Subdivide the clinicopathologically indivisible PGG2 group into

two distinct Kaplan–Meier recurrence groups, thereby identifying
patients more at risk for recurrence

27 338 41

Battini et al. 2017 pancreas ‐ Validated OPLS‐DA distinguished pancreatic parenchyma (PP) and
pancreatic adenocarcinoma (PA) (R2Y = 0.82, Q2 = 0.69)

• Increased myo‐inositol and glycerol in PP

• Increased glucose, ascorbate, ethanolamine, lactate, and taurine in PA

‐ Increased ethanolamine was correlated with worse survival in Kaplan–
Meier analysis

106 17 35

Haukaas et al. 2016 breast ‐ Hierarchical cluster analysis (validated with PLS‐DA (p < 0.001)) of breast
cancer tumors revealed three significantly different metabolic clusters:

• Mc1 had highest glycerophosphocholine and phosphocholine

• Mc2 had highest glucose

• Mc3 had highest lactate and alanine

‐ Genetic and protein subtypes were also divided along cluster groupings

228 0 18

Hansen et al. 2016 prostate ‐ Validated PLS‐DA analysis differentiated prostate samples with high
likelihood of having the poor‐prognosis‐related TMPRSS‐ERG fusion

gene (TMPRSS‐ERGhigh) from those with low likelihood

(TMPRSS‐ERGlow) (p < 0.001):

• Increased choline‐containing metabolites in TMPRSS‐ERGhigh

• Decreased citrate and polyamines in TMPRSS‐ERGhigh

‐ Metabolic alterations are more pronounced in TMPRSS‐ERGhigh

samples—possible risk‐stratification identifier

95 34 36

Tian et al. 2016 colorectal ‐ Validated OPLS‐DA distinguished colorectal cancer (CRC) samples from

adjacent non‐involved tissue (R2X = 0.37, Q2 = 0.64) and low‐grade and

high‐grade tumors (R2X = 0.36, Q2 = 0.44):
• Increased lactate, choline, phosphorylcholine, glycerophosphocholine,

phosphoethanolamine, scyllo‐inositol, glutathione, taurine, uracil, and

cytosine in CRC

• ROC model with these metabolites showed AUC = 0.965 for predicting

CRC versus non‐tumor

• ROC model for predicting low‐grade versus high‐grade showed

AUC = 0.904
‐ Stage I CRC samples were the most differentiated from their matched

adjacent non‐involved tissue samples

50 50 30

Jimenez et al. 2013 colorectal ‐ Validated OPLS‐DA distinguished colorectal cancer (CRC) samples from

adjacent mucosa (R2X = 0.72, Q2 = 0.45):

• Increased taurine, isoglutamine, choline, lactate, phenylalanine, tyrosine

in CRC

• Decreased lipids and triglycerides in CRC

‐ Evidence of metabolic field effects:

• Tumor‐adjacent mucosa (10 cm from tumor margin) has unique

metabolic field changes that distinguish tumors by T‐ and N‐stage more
accurately than tumor tissue itself

83 87 31

Bathen et al. 2013 breast ‐ Doubled cross‐validated PLS‐DA discriminated breast tumor tissue from
adjacent benign with sensitivity and specificity of 91% and 93%,

respectively:

• Increased choline‐containing metabolites for tumor

‐ These findings could allow on‐line analysis of resection margins during
breast cancer surgery

263 65 22

Giskeodegard
et al.

2013 prostate ‐ PLS‐DA
• Separated cancer tissue from normal with sensitivity 86.9% and

specificity 85.2%

• Achieved correct classifications of 85.8%,77.4%, and 65.8% for

GS ≥ 7, GS = 6, and normal tissue

111 47 24

(Continues)
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1.2 | Fields of investigation and clinical applications

Metabolomic studies have also extended to cancer pharmacology evaluations for the effects of therapies, such as those seen in primarily breast

cancer23,64,66-68 and brain tumor glioblastoma,69 and have formed a field now termed pharmacometabolomics.

The primary goal for the development of HRMASMRS‐based cancermetabolomics is to assist diagnosis and treatment decision‐making in the clinic.

This can be accomplished by a variety of methods, ranging from needle biopsy to surgery, the latter being demonstrated by a study that reported suc-

cessful distinction between ductal carcinoma in situ lesions with or without an invasive component.20 The challenge of determining surgical margins dur-

ing breast cancer surgery can also be addressed potentially by usingmetabolic profiles of resected tissue to reduce the potential for re‐surgery and risk of

recurrence.22 To enable utilization of these findings, there has been increasing establishment of automatedMRS facilities attached to surgical theaters.70

HRMASMRSmetabolomic measurements of cancer field effects in purely histologically benign tissues from cancerous organs can also be useful for

clinical applications. The concept of cancer fields was first used by Dr Danely Slaughter and co‐workers in 1953 to describe histological abnormalities in

grossly normal‐appearing tissue and explainmultifocality and local recurrence in oral squamous cell carcinoma,71 and is deemed one of the landmark con-

cepts of cancer research in the past 100 years.72However, it has now evolved to describe disease‐relatedmolecular alterations in microscopically normal

or histologically benign tissue,73 observed in cancers of many organ systems and detectable at the epigenomic,74,75 genomic,76-80 proteomic,81-84 or

metabolomic levels.31,33,41,50,70,85,86 Metabolomic field effects were reported in a APCMin/+ mouse model87 with gastrointestinal tumorigenesis and

in human esophageal cancer,70,85 oral squamous cell carcinoma,86 colorectal cancer31 and prostate cancer.41,50 Most significantly, and of great clinical

translational potential, histologically benign tissue adjacent to human colorectal cancer could not only predict 5‐year survival with high accuracy (area

under the curve, AUC= 0.88) but distinguish tumor stagewith higher predictive capacity than results frommetabolomicmeasurements from tumor tissue

itself.31 Major findings in ex vivo MRS studies on metabolomic cancer fields in humans are summarized inTable 2.

1.3 | Investigation of prostate cancer metabolomic field effects

In 2011, Stenman et al. reported that key metabolites in histologically benign tissue adjacent to prostate cancer vary significantly depending on the

GS of the closest cancer.50 In histologically benign tissue samples a GS of 3 + 3 versus 3 + 4 in adjacent cancer at various distances was strongly

correlated with myo‐inositol/scyllo‐inositol (p = 0.002) and choline/creatine (p < 0.001) ratios. Most recently, we have reported that analyses of

histologically benign prostate tissue from cancerous prostates allow differentiations of not only GS but also pathological stage, and recurrence

potential of human prostate cancer.41 We attributed these distinctions to the existence of metabolomic fields. Since these measurements, in prin-

ciple, can be carried out at the time of biopsy prior to prostatectomy or other radical procedures, HRMAS MRS metabolomics stand to become a

complementary method to aid routine histopathology and assist clinical decision‐making for cancer diagnosis and treatment planning. This ability

would be particularly useful for prostate cancer management, as it could reduce the high number of false negative biopsies by enlarging the biopsy

TABLE 1 (Continued)

Sample size

Authors Year Organ Primary findings
n (tumor or
disease) n (control) Ref.

‐ Decreased spermine and citrate in low grade prostate cancer tissue

‐ Increased levels of the clinically applied measure (total choline +
creatine + polyamines)/citrate ratio in cancer

Miccoli et al. 2012 thyroid ‐ OPLS‐DA distinguished thyroid tumor from normal (Q2 = 0.37):
• Increased lactate and taurine in tumor

• Decreased choline, phosphocholine, myo‐inositol, scyllo‐inositol

in tumor

‐ ROC curve showed prediction accuracy of 77%

68 32 45

Torregrossa

et al.

2012 thyroid ‐ Permutation‐validated OPLS‐DA distinguished thyroid tumor from

benign tissue (R2Y = 0.82, Q2 = 0.37):
• Increased phenylalanine, taurine, and lactate in tumor

• Decreased choline and choline derivatives (myo‐ and scyllo‐inositol)

in tumor

• ROC curve showed 77% prediction accuracy

‐ Biopsied thyroid lesions often receive an indeterminate diagnosis and

require surgical excision for histopathological examination, but

metabolomic classification of biopsies may assist in pre‐surgical
classification

72 28 46

Giskeodegard
et al.

2010 breast ‐ PLS‐DA, BBNs, and PNNs were used to analyze the important
prognostic factors of lymph node and receptor status in breast

cancer tissue:

• PLS‐DA best predicted estrogen and progesterone receptor status

in cancer tissue (44/50 and 39/50 correct classification, respectively)

• BBN correctly classified 34/50 samples

160 0 27
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target zones or provide further certainty about the aggressiveness of prostate cancer lesions to prevent overtreatment.55 Another use of

histologically benign tissue for clinical decision‐making is to tackle the challenge of handling GS heterogeneity within one prostate. Stenman

et al. found that specimens containing a particular fraction of tumor tissue showed substantially higher inter‐sample variations in some spectral

regions than non‐malignant tissue samples, which suggests that benign tissue may be a more reliable metabolic indicator than cancer tissue.

Stenman et al. also reported that metabolite ratios change with increasing distance from the lesion. The distance from the nearest tumor was

correlated with the myo‐inositol/scyllo‐inositol (p = 0.03) and (glycerophosphocholine + phosphocholine)/creatine (P < 0.001) ratios; they noted

that this was a significant but weak correlation. Analyses that examine the effect of distance and GS were not conducted, and only a limited range

of GSs were included in the study (3 + 3 and 3 + 4). Moreover, the extensiveness of cancer patterns and the crossed effects of pattern and dis-

tance were not examined. To further investigate these observed cancer metabolomic field effects, we measured HRMAS MRS metabolomics for

multiple tissues sampled systematically throughout prostatectomy‐removed cancerous prostates.

2 | METHODS

2.1 | Patient recruitment and sample collection

The study was approved by the institutional IRB at Massachusetts General Hospital (MGH). Tissue specimens and related clinical data were

collected with written consent from 10 patients undergoing radical prostatectomy at MGH. The patients had not received any cancer treatment

prior to surgery. After surgical removal, the organs were kept at 4°C and sectioned within 1 h. The apex and base were sectioned off. The organ

was cut into quarters and slices. Sixteen rectangular approximately 5 mm × 5 mm tissue samples about 3 mm away from the margin were collected

from the peripheral zone (Figure 1), to preserve surgical margins. Photographs of prostate sections where samples were obtained were recorded

with a ruler for quantitative measurements. The collected tissue samples were placed on dry ice and then stored at −80°C until MRS analyses.

Standard H&E staining (Figure 1) and clinical pathology were performed for the entire removed prostates as per routine clinical pathology.

Sample collection details are summarized in Table 3.

FIGURE 1 Study design. (1) The removed prostate was cut into 16 sections, and a sample was taken from each section; only one sample is

shown here. (2a) HRMAS 1H MRS. (2b,c) Histopathological examination of both the MRS‐scanned sample (2b) and routine pathology of the

remainder of the sections (2c). (3) Three‐dimensional categorization system, where the shown sample is assigned to Group A according to its

benign histopathology and distance from cancer
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2.2 | HRMAS MRS and histopathology

2.2.1 | HRMAS

Tissue samples of about 10 mg were scanned using HRMAS MRS on a vertical Bruker AVANCE spectrometer operating at 600 MHz (14.1 T)

(Figure 1). A 4 mm zirconia rotor with Kel‐F 10 μL inserts was used, with D2O added for field locking. Spectra, with and without water suppression,

were recorded at 4°C using a rotor‐synchronized Min(A,B) protocol with spinning at 600 and 700 Hz.88 Data were processed and curve fitted

using an in‐house developed MATLAB program, and metabolite intensity was calculated by normalizing each curve fitted peak by the intensity

of the creatine region (3.03 ppm) from the full integral value of the water‐unsuppressed file. Spectral regions between the ppm values 0.5 and

4.5. where more than 80% of samples had detectable values (n = 63), were further analyzed and matched to corresponding relevant metabolites

(Supplementary Table S1). As one region may contain several metabolites due to overlapping peaks, we talk about ppm values rather than concrete

metabolites throughout the manuscript.

2.2.2 | Histopathology

Following HRMAS MRS, tissue samples were fixed in 10% formalin, embedded in paraffin, cut into 4 sections of 5 μm, and H&E stained (Figure 1).

The histopathology analysis was conducted by a single pathologist with more than 15 years' experience, blinded to spectroscopic results. Tissue

samples were read for percentage of three pathological features (stroma, glands, cancer) to the nearest 5%. GS and the presence of nerves and

vessels, inflammation, low‐grade prostatic intraepithelial neoplasia (LGPIN), and high‐grade (HG) PIN were also recorded. The area of each tissue

specimen was measured using the software imageJ.89 Volume percentage (Vol%) for each pathological feature was calculated for each sample

under the assumption of equal thickness of the tissue samples. Clinically processed prostate slides were examined for the presence, GS, and pat-

terns of cancer to identify the location and nature of cancer lesions throughout the prostate.

2.3 | MRS sample categorization

We used a categorical system to estimate the three‐dimensional distances between the measured tissue samples and the closest cancer lesions. A

distance of 5 mm was designated as the cut‐off point because when prostates are sectioned after removal they are cut into 5 mm thick slices to fit

in histopathology processing cassettes. Histologically benign (Hb) samples were assigned to three categorical groups according to their distance

from the closest cancer lesion(s) (HbA, <5 mm; HbB, ≥5 mm, ≤10 mm; HbC, >10 mm) and the pattern of the closest cancer lesion, with ‘more’

indicating a cancer pattern to be ‘extensive’ or ‘many’, and ‘less’ indicating ‘moderate’, ‘small’, or ‘focal’.

TABLE 3 Clinical information summarized for whole prostates and MRS‐scanned prostate samples

Organs MRS samples

Cancer Benign

Samples (n) median (range) Total 10 26 134

Per organ — 1.5 (0–9) 14.5 (7–16)

Weight (g) median (range) 50.5 (33.8–70) — —

Vol (cm3) median (range) 92 (33.75–141.75) — —

Tissue composition (%)

median (range)

Cancer 27.5 (10–90) 19.67 (2–100) —

Benign glands — 7.83 (0–31.25) 9.5 (0–56.27)
Stroma — 66.37 (0–83.75) 90.50 (43.75–100)

GS Low 3 + 3 1 10 —

3 + 4 4 4 —

High 4 + 3 1 — —

4 + 4 1 3 —

4 + 5 2 — —

5 + 5 1 9 —

Pathological stage (pTNM) Tumor stage pT2a 1 — —

pT2c 5 — —

pT3a 3 — —

pT3b 1 — —

Lymph node stage N1 2 — —

N0 6 — —

NX 2 — —

Perineural invasion 9 — —
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2.4 | Statistical analysis

Autoscaling and mean centering were applied to the data set prior to analyses.90 Unsupervised (PCA) and supervised (PLS‐DA) multivariate sta-

tistical analyses were performed. Outliers were identified in the PCA plot (Supplementary Figure S1). The predictive performance Q2 of the

PLS‐DA model was obtained by 10‐fold cross‐validation (CV). Receiver operating characteristic (ROC) curves were determined using cross‐

validated predictive Y‐values of the PLS‐DA data, and the AUC was also calculated for each model. For univariate analysis, Wilcoxon rank sum

tests with Benjamini‐Hochberg correction for multiple comparisons were conducted. Relative intensities of fold changes were determined for

the discriminant metabolite signals for all models. Analyses were performed in RStudio91 and on the web‐based platform MetaboAnalyst.92

3 | RESULTS

3.1 | Sample classification

From 10 patients (age: median, 62; range, 53–77 years) with prostatic acinar adenocarcinoma undergoing radical prostatectomy, 16 samples were

collected from each prostate, resulting in a total of 160 samples. Characteristics for all cases and MRS‐scanned samples are summarized inTable 3.

Following three‐dimensional mapping of the locations of cancer lesions for each prostate, histologically benign (Hb) samples were assigned to the

previously defined three categorical groups according to the distance from the closest cancer and two groups based on cancer patterns (Table 4).

Due to the multifocality of prostate cancer, there were only small numbers of samples in the HbB and HbC groups. Thus, these two groups were

merged to form group HbBC (n = 10) except for analyses at the individual prostate level. In addition, all samples were also grouped based on a ‘low’

(≤3 + 4) or ‘high’ (≥4 + 3) GS of the individual prostate from which they originated according to the pathology reports (Table 4). Four samples of

group HbA were excluded due to measurement issues or identification as outliers in the PCA score plot (Supplementary Figure S1). Finally, per-

centage of pathological features was compared between sample groups. Univariate comparisons between HbAless versus HbAmore versus HbB

indicated no significant differences for percentage of benign epithelial glands or stroma (Supplementary Figure S3). Cancer samples were signif-

icantly different (all p < 0.002) from each group only for stroma percentage (Supplementary Figure S2). Representative spectra for each group

are displayed in Figure 2.

3.2 | Cancer samples: differentiating cancer versus benign and high versus low GS

We evaluated the metabolomic differences between cancer and histologically benign samples (Figure 3) and between cancer samples with low

(≤3 + 4) and high (≥4 + 3) GS (Figure 4). Visual inspection of PCA score plots revealed tendencies for group separation (Figure 3A and

Figure 4A). A 10‐fold cross‐validated PLS‐DA model showed good separation between cancer and benign samples with good predictability

(R2Y = 0.33 and Q2Ycum = 0.18, Figure 3B). An excellent separation between CaGS low (≤3 + 4) and CaGS high (≥4 + 3) was also achieved among

the cancer samples in a 10‐fold cross‐validated PLS‐DA model (R2Y = 0.84 and Q2Ycum = 0.48) (Figure 4B).

Major contributing regions were identified by applying the criterion of variable importance of projection (VIP) > 1 in the PLS‐DA models

(Figure 3C and Figure 4C) in combination with p < 0.05 in univariate Wilcoxon rank sum analysis with Benjamini‐Hochberg false discovery rate

adjustment (Supplementary Table S2). In addition to the 15 significant metabolic regions seen in PLS‐DA for cancer versus benign samples

(Figure 3C), 4 other regions (2.97–2.95, 2.81–2.79, 2.09–2.07, 1.73–1.71 ppm) were also significant in univariate analysis. All 19 regions showed

increased spectral intensities in cancer when compared with histo‐benign samples. Among the most significant metabolites are taurine,

phosphocholine, and lipids. For the differentiation of CaGS high versus CaGS low, univariate analysis revealed 10 significantly different regions, with

5 shared among the above 19 regions. Apart from the 3.90–3.89 ppm and 2.45–2.43 ppm regions, the remaining eight regions were also identified

in the multivariate model (Figure 4C). For these 10 regions from the univariate analysis, the spectral intensities were increased in the CaGS high

group for all except 2.53–2.50 ppm (Supplementary Table S3). Glutamate, taurine, and tyrosine were identified as major distinguishing metabo-

lites. Remaining relevant metabolites associated with each spectral region are located in Supplementary Table S1.

TABLE 4 Tissue sample classification system

Groups Subgroups

n Distance from closest cancer

GS Cancer pattern (scatter, size)

≤3 + 4 ≥4 + 3 less more

Cancer Ca 26 — 14 12 —

Histologically benign HbABC 134 HbA ≤5 mm 124 60 60 21 99

HbB ≥5 mm, ≤10 mm 6 HbBC 10 7 3 0 10

HbC ≥10 mm 4
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3.3 | Histologically benign samples close to cancer (HbA): distinguishing between cancer grade and pattern

Prostate tissue metabolomics revealed differences in cancer status between tissue groups that were histologically benign. In univariate analysis,

we identified significantly different regions by comparing histologically benign tissue (HbA) in a prostate of low GS (≤3 + 4) (n = 60) with high

GS (≥4 + 3) (n = 60). All 29 significant spectral regions showed higher values for HbAGS low (Supplementary Table S4). Analysis of benign tissue

adjacent to more extensive patterns of cancer (HbAmore, n = 99) revealed 17 significantly different regions that all presented higher values than

benign tissue near less extensive cancer (HbAless, n = 21) (Figure 5; Supplementary Table S5). The majority of significant regions were unique

for each of these comparisons, as only seven regions were overlapped between the two. The two comparison groups of cancer pattern and GS

are not correlated, meaning that in Wilcoxon comparisons there were no significant differences of the distribution of cancer pattern samples in

the HbAGS high versus HbAGS low subgroups and no significant difference of GS in the HbAmore versus HbAless groups.

FIGURE 2 Representative spectra for the comparison groups: cancer (Ca, top) and histologically benign samples at different distances from

cancer (increasing distance: HbA, HbB, HbC). All samples are from the same prostate, which was also used for the analysis at organ level.

Metabolites were assigned based on literature values (Supplementary Table S1), and visually distinct peaks are labeled here. Exemplary regions

that appeared significant in multivariate analysis are boxed (Ca versus HbABC, cancer versus benign; HbA versus HbB versus HbC, differences

between histologically benign tissue at different distances)
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In a comparison of all benign tissue (HbABC), differentiation betweenGS groups and closest cancer pattern presented fewer significant regions than

when only the above‐mentioned benign tissues closest to cancer (HbA) were considered. For the comparison of the GS group using all benign tissue

when distance from the closest cancer was not considered (HbABCGS low versus HbABCGS high), four regions that were discriminatory in the analysis

of exclusively HbAGS low versus HbAGS highwere no longer significant (4.14–4.13, 4.07–4.05, 2.64–2.62, 2.02–2.00 ppm). Only one region appeared sig-

nificant that was not significant previously (3.95–3.93 ppm) (p = 0.047, Supplementary Table S6). The same reduction of significant regions occurred

when all benign samples, regardless of distance from cancer, were grouped together for analysis of adjacent cancer patterns (HbABCmore versus

HbABCless). Specifically, two regions that were important in the analysis of exclusively HbA were no longer significant (1.73–1.71, 0.92–0.89 ppm),

and only one region appeared significant that was not significant previously (3.67–3.66 ppm) (p = 0.044, Supplementary Table S7). Furthermore, predic-

tive ability for both GS and cancer pattern comparisons improved when using only the HbA samples. For differentiating high and low GS with HbA and

with HbABC samples, AUC= 0.83 (95%CI, 0.761–0.908) and AUC= 0.765 (95%CI, 0.690–0.850), respectively (Figure 6A). In distinguishing cancer pat-

terns, only using HbA samples achieved AUC = 0.918 (95% CI, 0.857–0.978) and HbABC samples had AUC = 0.87 (95% CI, 0.800–0.941) (Figure 6B).

3.4 | All histologically benign samples: characterization of the field effect

A univariate analysis of benign samples of all organs revealed that with decreasing distance from cancer (HbA compared with HbBC), six regions

were found to increase significantly in spectral intensity (first column in Figure 7 and Supplementary Table S8), most importantly valine and

phosphocholine. The 2.02–2.00 and 0.92–0.89 ppm regions, which were significant in Figure 7, were also significant in the above‐mentioned com-

parisons of GS and cancer pattern, but only when distance from cancer was considered for benign samples. This discrepancy further suggests the

existence of distance‐dependent metabolomic fields. Subsequent comparisons of HbBC and various subgroups of HbA suggested that the meta-

bolic differences between the two groups are present for benign samples from low GS prostates (HbAGS low, third column) and for benign samples

FIGURE 3 PCA and PLS‐DA distinguish cancer versus benign samples. All MRS‐scanned samples, benign (n = 134) versus cancer (n = 26). A, PCA

score plot with PC1 (40.4% of variance), PC2 (8.3%), and PC3 (6%). B, 10‐fold cross‐validated PLS‐DA score plot (R2Y = 0.33 and Q2Ycum = 0.18).

Component 1 explains 35.1% of variance, Component 2 explains 11.1%, and Component 3 explains 5.6%. C, PLS‐DA VIP scores of Component 1

that are greater than 1 and corresponding fold changes for regions are presented. All red squares in the right‐hand column indicate that each

spectral region had higher intensity in cancer compared with benign samples. All spectral regions listed had VIP > 1 and were also significant in

univariate analysis. Metabolites associated with each spectral region can be found in Supplementary Table S1
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adjacent to more extensive cancers (HbAmore, fourth column). However, distance‐dependent metabolic differences are diminished between HbAGS

high and HbBC samples (second column) and are non‐existent between HbAless and HbBC samples (none to report).

3.5 | Within a single prostate: HbA versus HbB versus HbC groups

Since 7 out of 10 samples of the merged group HbBC originated from a single prostate, an analysis was carried out for HbA (n = 8) versus HbB

(n = 4) versus HbC (n = 3) because the small sample size is not confounded by between‐patient effects. A PCA score plot revealed a clear trend of

FIGURE 4 PCA and PLS‐DA distinguish GS among cancer samples. Cancer samples, with CaGS high defined as 4 + 3 or higher (n = 12) versus CaGS

low as 3 + 4 or lower (n = 14). A, PCA score plot with PC1 (40% of variance), PC2 (12.1%), and PC3 (9.9%). B, 10‐fold cross‐validated PLS‐DA score

plot (R2Y = 0.84 and Q2Ycum = 0.48) with Component 1 (33% of variance), Component 2 (17.1%), and Component 3 (6.3%). C, PLS‐DA VIP scores

of Component 1 that are greater than 1 and corresponding fold changes for regions are presented. A red square indicates that the sample group

has a higher spectral intensity for a given region. Bold spectral regions indicate which regions both had VIP > 1 and were significant in univariate

analysis

FIGURE 5 Univariate comparisons within the HbA group. Wilcoxon rank sum comparisons of HbAmore (n = 99) versus HbAless (n = 21) and

HbAGS high (n = 60) versus HbAGS low (n = 60) indicated several spectral regions that could differentiate between the subgroups with

Benajmini‐Hochberg adjustment. The red square in the upper left indicates that HbAmore had significantly higher (p < 0.001) intensity in the 4.45–

4.44 ppm region than did HbAless. The blue square for 4.43–4.41 ppm indicates that HbAGS high has lower intensity than AGS low. n.s., not

significant
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group separation (Figure 8A). A leave‐one‐out cross‐validated PLS‐DA model showed excellent separation between the three subgroups and

explained a large percentage of variability with good predictability (R2Y = 0.63 and Q2Y = 0.18, Figure 8B). Three of the four regions that were

found to be significant in univariate analysis (Supplementary Table S9) were confirmed by multivariate analysis (4.07–4.05, 3.99–3.97, and

FIGURE 6 Improved prediction accuracy when considering distance from closest cancer. To generate ROC curves, all spectral regions significant

in the respective univariate analyses were subject to logistic regression. ROC curves were generated from the resulting fitted values. A, HbA and

HbABC samples were used to predict GShigh versus GSlow with HbA AUC = 0.83 (95% CI, 0.761–0.908) and HbABC AUC = 0.765 (95% CI, 0.690–

0.850). B, HbA and HbABC samples were used to predict ‘more’ versus ‘less’ with HbA AUC = 0.918 (95% CI, 0.857–0.978) and HbABC

AUC = 0.870 (95% CI, 0.800–0.94). For both comparisons, prediction accuracy was increased when the samples close to cancer were separated

from samples far from cancer

FIGURE 7 Univariate comparisons between HbA and HbA subgroups versus HbBC. Mann–Whitney‐Wilcoxon comparisons of HbA (n = 124)

versus HbBC (n = 10), HbAGS high (n = 60) versus HbBC, HbAGS low (n = 60) versus HbBC, and HbAmore (n = 99) versus HbBC indicated several

spectral regions that could differentiate between the subgroups with Benjamini‐Hochberg adjustment. The orange square in the top row indicates

that HbAGS low had significantly higher (p < 0.02) intensity in the 4.43–4.41 ppm region than did HbB. There were no regions with significant

differences between HbAless and HbBC
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3.90–3.89 ppm). In all three regions, spectral intensity and distance from cancer were inversely correlated (Figure 8D), a trend that was also seen in

analysis of all samples (Figure 7).

4 | DISCUSSION

A large body of literature data demonstrates the strength of MRS‐based metabolomics in disease assessment due to the close association of meta-

bolomics and disease phenotypes. By considering the ensemble of all measurable low molecular weight metabolites in a biological system, many

ex vivo metabolomic studies have indicated the greater sensitivity of global metabolite profiles, with or without univariate metabolite analysis, in

representing disease status compared with single metabolites.8,29,93-95 While ex vivo metabolomic evaluations can assist current clinical diagnosis

and staging by providing biological information that cannot be obtained by histological evaluation,41 through the existence of cancer field effects,

translating ex vivo findings to in vivo methods is the ultimate aim. A current challenge to this translation is that in vivo MRS studies typically focus

on a select few, high‐intensity metabolites,96 primarily due to resolution constraints. Nevertheless, results from the examination of whole, cancer-

ous prostates on a 7 T MR scanner indicated the potential of metabolomics for in vivo MRS, where metabolomic profiles measured from the

removed prostates located cancer lesions with overall 93% accuracy.97 Promising results from a comparison between in vivo MRS and ex vivo

HRMAS MRS measurement of prostates and prostate tissue, respectively, further suggested that ex vivo metabolomics can be translated to clinical

evaluations. In this study, the metabolic ratio of (choline + citrate + spermine)/citrate in prostate cancer showed strong positive correlations

between the ex vivo and in vivo measurements.98

In contrast to in vivo measurements, ex vivo HRMAS MRS confers an advantage for metabolomic measurement by allowing intact tissue mea-

surement. This aspect of the method enables histopathological assessment and thereby calibration according to pathological features of each indi-

vidual tissue sample, as well as examination of other ‐omics levels for an inclusive systems biology approach.

As a demonstration of the potential of HRMAS MRS metabolomics, our measurements of histologically benign samples collected from can-

cerous prostates can correlate with both the GS of the whole prostates and the pattern of the closest cancer lesion. These results, achieved with

histo‐benign tissue that was less than 5 mm from cancer (HbA), support the concept of tissue metabolomics in characterizing disease beyond the

ability of routine histopathology.31,33,41,50,70,85,86 Particularly, our results indicated the existence of a measurable scale of metabolomic fields. This

finding was indicated by the reduction of the number of significant metabolic regions and decreased prediction accuracy (Figure 6) in

distinguishing GS of the prostate and cancer patterns when all histo‐benign samples are considered as a single group when compared with

distinguishing using just the cancer‐close HbA group.

FIGURE 8 Within‐organ analysis for a single prostate case. A, PCA score plot with PC1, PC2, and PC3, explaining 39.9%, 24.1%, and 10% of the

variance, respectively. B, 10‐fold cross‐validated PLS‐DA score plot (R2Y = 0.63 and Q
2
Y = 0.18) with Component 1 (30.3% of variance),

Component 2 (28.5%), and Component 3 (11.1%). C, PLS‐DA VIP scores of Component 1 that are greater than 1 and corresponding fold changes

for regions. The three colored columns correspond to HbA, HbB, and HbC groups. Colors indicate relative intensity for each group. For example,

the first row that is red, yellow and green from left to right. indicates that spectral intensity is highest for HbA samples, of medium intensity for

HbB samples, and lowest for HbC samples, for the 2.81–2.79 ppm region. Bold spectral regions indicate which regions had VIP > 1 and were

significant in univariate analysis. D, Four regions that were significant in univariate Wilcoxon rank sum analysis of HbA, HbB, and HbC are shown.

Red brackets indicate which pairwise comparisons were significant with Benjamini‐Hochberg false discovery rate adjustment. Inter‐quartile range

is illustrated by the dashed lines. Standard deviation, mean, and confidence interval can be found in Supplementary Table S9
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Our findings regarding specific metabolites agree with those reported elsewhere. Elevated phosphocholine and glycerophosphocholine were

identified in esophageal cancer,70 and the enzyme that forms phosphocholine was found to be overexpressed in several cancers.99 Previous stud-

ies characterizing prostate cancer field effects found myo‐inositol41 and ratios of myo‐inositol/scyllo‐inositol and (glycerophosphocholine +

phosphocholine)/creatine50 to be altered. At an organ level, our analysis confirmed altered levels of the metabolites phosphocholine and creatine,

as well as myo‐inositol and glycophosphocholine. Previously, some of these metabolites were shown to be independent of possibly confounding

factors, such as prostate tissue composition of glands and stroma for choline levels or patients age for myo‐inositol.100,101 Previously altered levels

of these metabolites were assigned to processes in cancer; for example, altered levels of choline compounds were assigned to membraneogenesis

for cancer cell proliferation, creatine was assigned to cancer energy metabolism102 and myo‐inositol was suggested to be an osmoregulator101 and

binding factor for polyamines.103 Of special interest are polyamines, as the prostate gland has the highest levels of polyamines and they were

repeatedly shown to metabolomically differentiate cancer from healthy prostate tissue and different grades of GS.39,52 Interestingly, we found

polyamine levels to vary in histologically benign tissue adjacent to cancer depending on the GS of the cancer itself.

Figure 7 further presents the influence of cancer lesion extent on the measured metabolomic profiles of benign tissue. Although the group of

benign samples close to cancer (HbA) could be distinguished from the group of benign samples far from cancer (HbBC), HbBC samples were not

distinguishable from benign samples adjacent to a cancer lesion that is less extensive (HbAless). HbBC samples were, however, significantly differ-

ent from those adjacent to more extensive cancer (HbAmore). Possibly a threshold quantity of cancer cells is needed to make a metabolomic field

arise, and less extensive lesions may not exert enough influence to cause HbAless to be different from samples further away (HbBC). Alternatively,

certain conditions may change the scale of metabolomic fields. This latter consideration may be illustrated by the fact that benign samples far from

cancer were barely distinguishable from benign samples close to cancer for a prostate with a high GS, but were very distinct from benign, cancer‐

proximate samples of a prostate with a low GS. We hypothesize that the effect of a high GS cancerous lesion may be so great that its metabolomic

field extends beyond the distance of 5 mm, as there is no longer a change of metabolic intensity for most metabolites at that point, as defined for

this study. These findings regarding metabolomic field effects suggest caution when using benign tissue samples as controls in biomarker studies

as is often done, especially in prostate cancer research,104 due to the difficulty of obtaining truly cancer‐free organs.105 We urge that distance

from and pattern of the nearest cancer lesion should be considered. The fact that histologically benign samples can provide information regarding

cancer status affirms that metabolomic fields can help overcome diagnostic challenges of prostate cancer by potentially enlarging the target biopsy

zone to help reduce false negatives.105

This above explanation assumes that cancer causes the metabolomic field, but Slaughter et al. originally proposed that an altered molecular

field may be the precursor of cancer.71 Under this hypothesis, different metabolomic fields may result in the more or less aggressive GSs or varied

patterns of cancer that we observed to be distinguishable with benign tissue. There is likely bi‐directional interplay between lesions and fields.

Future explorations will help elucidate the relationship between metabolomic lesions and fields, as would genetic‐metabolomic correlations.

One limitation of this study is that only metabolomic evaluations were investigated. A second limitation was the multifocality of prostate cancer

(the existence of multiple lesions throughout the prostate), which meant that the total number of samples at long distances from cancer was small.

Of the 10 prostates examined, only three had samples in both categorization groups of ‘5–10 mm’ and ‘>10 mm’ from cancer, and seven had only

samples less than 5 mm from cancer. Unequal sample size also prevented a satisfactory multivariate model from being constructed and evaluated

to rigorously evaluate the difference between HbA and HbBC groups, so two comparisons were performed: a comparison of HbA versus HbBC (all

benign samples from all organs) and a comparison of HbA versus HbB versus HbC (benign samples from one organ). As a result, different signif-

icant metabolites were identified for each, which can be explained by the aggregation of the HbB and HbC groups in the first comparison.106 Mis-

matched group size was especially problematic for the already small group of benign samples 5–10 mm from cancer because 7 of the 10

specimens were from the same patient. Thus, it is also possible that comparisons of all benign tissue close to cancer (HbA) versus benign tissue

further from cancer (HbBC) reflect interpersonal differences rather than generalizable effects. Nevertheless, within one prostate in Figure 8, where

inter‐patient differences are non‐existent, metabolomic profiles measured from all three benign tissue groups indeed indicated the possibility of

quantifying the metabolomic field scale with the current method.

Ultimately, since sample classification in this report is a semi‐quantitative estimate, a more extensive characterization system must be invoked,

where cancer lesions and MRS‐scanned sample location can be quantitatively pinpointed in three‐dimensional space. Histopathological three‐

dimensional reconstruction of prostate cancer architecture, as undertaken by Tolkach and colleagues,107 may enable this localization and allow

characterization of metabolomic fields at intervals even smaller than 5 mm.

5 | CONCLUSIONS

Our review of the current state of HRMASMRS‐based investigations of cancer indicated that multivariate methods of metabolomics, with or with-

out information provided by univariate analyses, are superior to univariate methods alone. Building upon the concept of metabolomic field effects,

we report a semi‐quantitative, three‐dimensional method of mapping cancer lesions and scanned samples, which enabled the distance‐dependent

existence of metabolomic fields and particularities regarding pathological features of the closest cancer to be identified in prostates. This study

with its proof‐of‐principle distinction of cancer versus benign tissue and characterization of new aspects of cancer fields in histologically benign
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tissue opens the path to myriad applications of the phenomenon of metabolomic field effects, ranging from decreasing false negatives during pros-

tate biopsy to defining tumor margins in a variety of organ systems.

REVIEW CRITERIA

PubMed was searched for articles about metabolomics of human cancer tissue, using the following criteria: [(cancer) AND (hrmas OR high reso-

lution magic angle spinning) AND (metabo* OR pca OR pls da OR pls‐da OR discriminant analysis OR linear discriminant analysis OR canonical

analysis OR unsupervised OR hierarchical cluster analysis OR self‐organizing maps OR supervised)]. The search was performed on 20 October

2017, and the resulting 132 papers were reviewed for inclusion. Additional relevant papers discovered in the references of included studies were

screened for inclusion. Reviews, studies with animals or cells, and in vivo only studies were excluded, which resulted in 39 papers to be included in

the review.
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