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Abstract (Deutsch)

Beim Prostatakarzinom, der hdufigsten Krebserkrankung des Mannes, kann die Bedeutung
priziser Diagnosestellung und Risikoabschitzung kaum iiberschitzt werden. Der Verlauf der
Erkankung variiert von ungefahrlich bis hochaggressiv, dementsprechend unterscheiden sich auch
die jeweiligen therapeutischen Ansétze. Deshalb ist es ein Problem, dass Prostatabiopsien derzeit
hohe Raten an falsch-negativen Befunden oder fehleingeschitzter Aggressivitit liefern.
Verbesserungsmoglichkeiten bieten metabolomische Daten, insbesondere aus histologisch
benignem Prostatagewebe. In der vorliegenden Arbeit untersuchen wir erstmalig an ganzen
Organen, ob metabolomische Profile aus histologisch benignem Gewebe iiber den Abstand zu
einem benachbarten Krebsherd und dessen Ausmall und Aggressivitét informieren konnen.
Spektroskopische Daten aus je sechzehn Gewebeproben aus zehn mittels Radiakale
Prostatektomie gewonnenen Organen wurden mittels protonenbasierter, hochaufldsender
sogenannter magic angle spinning Magnetresonanzspektroskopie erhoben. AnschlieBend wurden
diese Gewebeproben sowie das verbleibende Gewebe der Organe histologisch begutachtet. Dann
wurden die Organe virtuell dreidimensional rekonstruiert. Univariate und multivariate Analysen,
letztere mit und ohne Uberwachung, ergaben signifikante Unterschiede der metabolomische
Profile histologisch benigner (Hb) Gewebeproben aus verschiedenen Abstinden zu einem
Krebsherd (HbA, <5 mm, n=124; HbB, > 5 mm, <10 mm, n=6; HbC, >10 mm, n=4). Dazu trugen
mafgeblich die Metabolite Myo-Inositol, Cholin, Cholin-enthaltende Molekiile und Lipide bei.
Signifikant unterschiedlich waren auch metabolomische Profile aus der Nachbarschaft von Krebs
mit unterschiedlichem Gleason Score (GS) (< 3+4, HbA n=60, HbB und HbC n=7; > 4+3, HbA
n=60, HbB und HbC n=3), allerdings lediglich bei kleinem Abstand zum Krebsherd (< 5 mm).
MaBgeblich trugen Myo-Inositol, Polyamine und Zitrat zu den Unterschieden bei. Auch
unterschieden sich metabolomische Profile aus der Nachbarschaft von Krebs unterschiedlicher
GroBe (klein, HbA n=21; groBl, HbA n=99, HbB and HbC n=10) mit den Schliisselmetaboliten
Taurin und Polyamin. Diese Ergebnisse zeigten sich auch innerhalb einzelner Organe. In
Analysen, bei denen die Gewebeproben nach ihrem Anteil an Stroma stratifiziert wurden, waren
die Unterschiede ebenfalls signifikant, allerdings nur in der Untergrupe mit hohem Stromaanteil
(> 80%).

Zusammenfassend haben wir gezeigt, dass metabolomische Profile aus histologisch benignem
Prostatagewebe aus unmittelbarer Néhe eines Krebsherdes (1.) je nach GS und rdumlichem
Ausmall des Herdes variieren und (2.) sich von Gewebeproben aus groflerer Entfernung
unterscheiden. Im wissenschaftlichen Bereich lassen diese Ergebnisse die géingige Praxis,

histologisch benignes Gewebe von krebsbefallenen Prostatas als bloe “gesunde Kontrolle” zu
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verwenden, fragwiirdig erscheinen und stellen eine mdgliche Erklirung fiir variierende Ergebnisse
bisheriger Studien dar. In der klinischen Anwendung konnten metabolomische Messungen den
Zielbereich der Biopsie vergroBBern, dadurch das bisherige diagnostische Verfahren erginzen und

die Raten an falsch-negativen Befunden und unterschitzer Aggressivitdt verkleinern.
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Abstract (Englisch)

In prostate cancer, the most frequent malignancy in men, the importance of accurate detection and
assessment of aggressiveness cannot be overestimated. The behavior of the disease varies from
indolent to fatal, requiring different treatment strategies. However, prostate biopsies have high
rates of missed cancers, undergrading and overdiagnosis. Metabolomic data, especially from
histologically benign tissue, offer possibilities for improvement. Here, we examine for the first
time the potential of spectroscopic data from histologically benign prostate tissue from whole
organs to indicate an adjacent cancer’s distance, extent and aggressiveness.

Sixteen samples per organ from ten prostatectomy-removed organs were measured non-
destructively with proton high-resolution magic angle spinning magnetic resonance spectroscopy,
followed by quantitative histology of the scanned samples and the remaining tissue of the whole
organs, and virtual 3D reconstruction of the prostates. Both overall-organ and within-organ,
univariate as well as unsupervised and supervised multivariate analysis were applied.
Metabolomic profiles in histologically benign (Hb) tissue differed significantly at different
distances from the cancer (HbA, <5 mm, n=124; HbB, > 5 mm, < 10 mm, n=6; HbC, > 10 mm,
n=4) with key discriminatory metabolites myo-inositol, choline, choline containing compounds
and lipids. Profiles in histologically benign samples adjacent to cancer varied with Gleason Score
(GS) (GS < 3+4, HbA n=60, HbB and HbC n=7; GS > 4+3, HbA n=60, HbB and HbC n=3) and
extent (extent less, HbA n=21; extent more, HbA n=99, HbB and HbC n=10) of the adjacent
cancer; but, interestingly, at distances > 5 mm these differences disappeared (GS) or were less
prominent (extent). Major distinguishing metabolites were myo-inositol, polyamines and citrate
for GS and taurine and polyamines for extent. These findings were stable in within-organ analyses
and in analyses matched for tissue composition of stroma and glands, but, notably, only in tissue
with higher percentages of stroma (> 80%).

Overall, we revealed that metabolomic profiles in histologically benign prostate tissue close to
cancer (1) vary with GS and the extent of the cancer and (2) differ from samples at greater distance.
These findings challenge the use of histologically benign tissue from cancerous prostates as a mere
healthy control, without taking distance to cancer into account, a common practice and possible
explanation for varying results in studies. Metabolomic measurements could ultimately
complement the current diagnostic procedure, thus enlarging the target area for biopsies into
histologically benign environments, and decrease rates of missed cancers, undergrading and

overdiagnosis.
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1. Introduction

1.1. Prostate cancer diagnosis

Prostate cancer is the most frequently diagnosed malignancy affecting men in Germany, with
58,780 new cases in 2016.! The clinical behavior of the disease ranges from indolent, non-invasive
tumors to aggressive metastatic cancer with considerable morbidity and mortality, making it the
second leading cause of cancer death for men in Germany with 14,417 deaths in 2016.!-2

The gold standard for diagnosis is a transrectal ultrasound (TRUS)-guided biopsy. The indications
for men aged 45 years or older with a life expectancy of at least ten years comprise an abnormal
digital rectal examination (DRE) and repeatedly elevated or rising levels of prostate specific
antigen (PSA).> Unfortunately, the weak sensitivity and specificity of PSA, DRE and TRUS for
detecting cancer lead to high rates of both missed and unnecessary biopsies.>*

A TRUS-guided biopsy encompasses ten to twelve biopsy cores that are taken systematically, with
additional cores targeting regions that were identified to be suspicious in the DRE or TRUS.3
Cancerous tissue samples are graded based on their glandular architecture to give a Gleason Score
(GS), which indicates prostate cancer’s aggressiveness. The clinical decisions that follow the
diagnosis, ranging from non-invasive monitoring to surgery and radiation, are based on these
grades.? However, systematic biopsies miss 30% of all cancers and 21% of the clinically
significant cancers, defined as high-risk cancers of GS > 4+5.5¢ Furthermore, as 90% of prostate
cancers are multifocal with lesions of varying GS, a biopsy may miss the most aggressive lesion.”
20-70% of all cases are thus subject to the under-grading of the GS.®° At the same time,
overdiagnosis, the detection of cancer that grows so slowly that death from other causes may
precede prostate cancer symptoms, occurs at high rates.!® While 30 to 70% of men older than 60
years of age have potentially detectable prostate cancer, the lifetime risk of death or metastatic
disease is as low as 4%.!!

For special questions and in the case of re-biopsy, pre-biopsy multiparametric magnetic resonance
imaging (mpMRI), which uses multiple MRI sequences conjunctively, and MRI-guided biopsies
are recommended.> A pre-biopsy mpMRI could reduce potentially unnecessary biopsies by
excluding 27% of the men from biopsies, thereby reducing overdiagnosis by 5%.!° However, due
to false negative findings in 11% of cases, a biopsy should be offered anyway.? At the same time,
the mpMRI, having a specificity of 41%, leads to false positive findings and unnecessary
biopsies*!® Meanwhile, MRI-targeted biopsies can either be conducted by simply remembering
the suspicious locations on mpMRI images during a TRUS-guided biopsy, or in a software-assisted
manner by combining mpMRI images with real-time TRUS, or by conducting the biopsy directly

within the mpMRI scanner.* These three techniques have equal performance in detecting clinically



significant cancers.!®!? The percentage of biopsy cores that are positive for clinically significant
cancers increases from 10% in systematic biopsies to 29% in MRI-targeted biopsies.!* At the same
time, overdiagnosed cases are halved.® Unfortunately, false negative MRI-targeted biopsies occur
in 10% of the cases.!® As the missed lesions differ from those that are missed in systematic
biopsies, a combination of systematic and targeted biopsies can reduce the number of missed
cases.>!* However even then, false negative cases remain an unsolved problem and the advantage
may only be relevant to subgroups, for example, for men with high prostate volumes.>!3

Inaccuracies in cancer detection and the assessment of aggressiveness can lead to both
underdiagnosis and overdiagnosis. Under-grading correlates with higher rates of extraprostatic
tumor extension (22% vs 4%, p < 0.01) and relapse (10% vs 3%, p < 0.01).8 Underdiagnosis and
under-grading lead to undertreatment and repeated biopsies, with the associated risks. Two percent
of men undergoing prostate biopsies experience bleeding, infection, or urinary obstruction and 1%
require hospitalization.'®!” Overdiagnosis, on the other hand, exposes men to the psychological
distress of a cancer diagnosis and overtreatment.'® Even though only 20% of men diagnosed with
prostate cancer are high-risk, up to 50% receive intense therapy, such as a radical prostatectomy
or radiation therapy, with risk of severe side-effects.!®!” Underdiagnosis, overdiagnosis, and
unnecessary biopsies lead to worse patient outcomes and high public health costs. The lesson
learned is that tools for prostate cancer detection and the assessment of aggressiveness cannot be
separated from one another as the behavior of the disease and the related clinical decisions vary
substantially. Currently, clinical decision-making that meets the needs of each individual patient
is not possible. Complementary approaches to gain information about the presence and

aggressiveness of prostate cancer are urgently needed.

1.2. Metabolomic prostate cancer biomarkers

The term “metabolomics” translates to small-molecule products of metabolic processes (“metabo-
") that are analyzed holistically as large sets (“-omics™).?® Metabolites summarize the upstream
processes of biological information flow, including genomics and proteomics, and are influenced
by the environment. Because they most closely represent biochemical activity and a system’s
phenotype, they are attractive for biomarker research.?? Either untargeted or targeted studies can
be conducted. In an untargeted study, as many metabolites as possible are captured simultaneously
without prior hypotheses. Subsequent analyses aim to identify a metabolomic profile that
characterizes a biological process, for example prostate cancer. Untargeted studies are typically
used for biomarker discovery and hypothesis generation and were used in the work presented here.

A targeted study, on the contrary, is hypothesis-driven and often used for validation studies looking



at a predefined, small set of metabolites.?!?* For example, sarcosine was first identified as a
potential biomarker in tissue for prostate cancer in an untargeted study and then, later on, re-
examined by targeted studies.?**

The two main measurement platforms for metabolomic data are mass spectroscopy (MS) and
magnetic resonance spectroscopy (MRS). In MS, ionized compounds of samples are separated
relative to their mass and characterized by mass-to-charge ratios. This is often preceded by a
separation step in liquid or gas chromatography columns. MRS is based on energy absorption and
re-emission of atoms in an external magnetic field. Due to its natural abundance, hydrogen is the

most widely used nucleus in spectroscopy, followed by phosphorus.?® Representative MRS spectra

are given in Fig. 1.
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FIGURE 1. Representative one-dimensional MRS spectra of tissue. The position of a peak on the x-axis is called
chemical shift and is given in parts per million (ppm). Characteristic peaks are labeled with corresponding metabolites.
The y-axis represents the relative concentration. In general, metabolomic studies aim to identify peaks that vary
between comparison groups. Here, representative spectra from three tissue samples from one prostate are given. The
three samples are histologically benign and have different distances to a nearby cancer lesion: (A) <5 mm, (B) > 5
mm and <10 mm, and (C) > 10 mm. Exemplary peaks that decrease in intensity with increasing distance to cancer
((A) to (B) to (C)) are highlighted in boxes. Figure adapted with permission from REF?*, CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

Peak patterns are characteristic for each molecule, as the position on the x-axis depends on the

local chemical and magnetic environment of the atom. The position of the peaks is called chemical



shift and is given in parts per million (ppm). The ppm value makes spectra obtained at different
field strengths comparable. It is calculated as the difference of the resonance frequencies of an
added reference compound, typically 3-trimethylsilylpropionate, and the metabolite of interest,
divided by the operating frequency. Of note, several metabolites can contribute to one peak, and
one metabolite can cause several peaks. The value on the y-axis represents the relative
concentration. Absolute concentrations can be measured relative to a reference of known
concentration. Two-dimensional MRS can separate overlaps with two spectral axes that display
measurements varying in frequencies, nuclei of interest, or different pulse sequences.? In
comparison with MRS, MS requires only a small amount of the sample. It is less costly and has a
sensitivity of two to three orders of magnitude higher compared to MRS, making it superior for
targeted studies. However, whereas MS requires technical variations for different metabolites,
MRS can simultaneously measure large amounts of metabolites. Also, MRS has a higher
reproducibility, requires minimal sample preparation, and can identify previously unknown
metabolites by providing information about their chemical structure. Therefore, MRS is preferable
for untargeted analysis and was chosen for the study presented here.?!

Most commonly, metabolomic cancer biomarker studies are conducted in serum, urine, or
tissue.?”?8 Studies in serum or urine assume that cancer causes global changes in an organism and
compare groups differentiated by patient metadata, e.g. cancer patients vs. healthy controls. In
tissue, on the contrary, sample characteristics need to be considered as well. There is for example
a difference between cancerous and benign tissue from a cancer patient. Therefore, non-destructive
metabolomic measurements that enable subsequent histopathological evaluation are needed.?® In
traditional MRS measurements of liquid samples, the molecules’ rapid isotropic motion averages
out the anisotropic interactions, leading to high resolution. Previously, the destructive procedure
of chemical extraction was needed to obtain an equal resolution in solid tissue.?® Subsequently, in
1996, the laboratory in which the work presented here was conducted introduced the technique of
proton high-resolution magic angle spinning magnetic resonance spectroscopy (‘H HRMAS
MRS).?! The intact tissue sample is spun at the so-called magic angle of 54,7° relative to the
magnetic field. The spinning frequency in kilohertz exceeds the anisotropic interactions, averages
them to their isotropic value, and removes magnetic susceptibility, resulting in highly resolved
spectra.?®32 To date, at least 21 metabolomic tissue studies of prostate cancer have been
published.?’” Metabolomics can successfully distinguish cancerous from healthy prostate tissue.>~
42 Measurements in cancer tissue samples were correlated successfully with PSA,*?40 prostate
volume,*® features of prostate biopsies (GS, benign prostatic hyperplasia, inflammation, and

32,38-40,43

percentage of cancer in a biopsy core)*? 343842 pTNM stages, and biochemical recurrence



(BCR).**404 Histologically benign tissue from cancerous prostates is mostly used as mere control

group with no subgroup analysis within the benign samples,42%-34:36:4041

1.3. Metabolomics in histologically benign prostate tissue adjacent to cancer

In 1953, Slaughter described “histologically abnormal tissue surrounding cancerous lesions.” He
named this phenomenon “field cancerization” because it occurred in an entire field of tissue. For
him, this phenomenon was the reason for multifocality and local recurrence of oral squamous cell
carcinoma.® Over time, and with the rise of the -omics, the definition transitioned to “molecular
alterations in [...] cells that are part of histologically normal tissue.”¢ It is still under discussion
whether these alterations precede cancerous lesions or are caused by them.*” Compared to the more
extensively researched concept of tumor microenvironment, these fields cover a larger area
surrounding the lesion, mostly in the range of centimeters.*3>! Field cancerization is referred to as
tumor indicating normal tissue,*®>? field defects,>® or field effects.*’” Here, the term field effects
will be used.

The examination of metabolomic field effects in prostate cancer were encouraged by studies that
reported epigenomic, genomic, proteomic, and lipidomic alterations in histologically benign tissue
adjacent to prostate cancer.**#7>* Apart from prostate cancer, metabolomic field effects were
described in patients with esophageal cancer and colorectal cancer.*! In prostate tissue,
metabolomic cancer field effects were first mentioned in 2005 by Cheng et al. in an 'H HRMAS
MRS study, including 179 samples of histologically benign tissue adjacent to cancer from 82 men.
In univariate analysis, two principal components (PCs) separated GS 6 and 7 (p < 0.008). One PC
reflected changes in polyamines and citrate.’? Later on, '"H HRMAS MRS studies by Vandergrift
et al. and Stenman et al. confirmed that metabolomic levels in histologically benign tissue adjacent
to cancer vary with the GS of nearby cancer. Key metabolites were myo-inositol and choline. >
Vandergrift et al. collected samples of histologically benign tissue adjacent to cancer from 158
prostate cancer patients: 179 samples for training and 159 samples for testing.> In this study,
prostate cancer prognostic grade groups (PCPGG), which is a score that evolved from GS, was
used for grading.®® In univariate analysis, the region representing myo-inositol,
glycerophosphocholine, phosphocholine, and valine was significantly elevated in PCPGG 1 and
2, compared to 3 and 4 (testing cohort p < 0.0001 and area under the receiver operating
characteristic (AUROC) 0.705).% Stenman et al. included 40 patients and collected 41 cancer
samples and 108 samples of histologically benign tissue adjacent to cancer. The metabolomic
profiles of the histologically benign tissue adjacent to cancer could significantly discriminate GS

6 and 7 based on the ratios of myo-inositol/scyllo-Inositol and choline/creatine (OR 0.22, p =0.002



and OR 12.8, p < 0.001, respectively). Interestingly, at the same time, this separation was not
possible in analyses that included the cancer samples only.*® Furthermore, Cheng et al. and
Vandergrift et al. reported successful correlation of metabolic data from the histologically benign
tissue adjacent to cancer with BCR, PSA, perineural invasion, and pT stages.>>>> Stenman et al.
also reported metabolomic differences in samples of histologically benign tissue adjacent to cancer
collected from different distances to the cancerous lesion (myo-inositol/scyllo-Inositol (b = 0.1,
SEb=0.11, p = 0.03) and (glycerophosphocholine + phosphocholine)/creatine (b =—0.46, SE b
=0.11,p<0.001).8

A possible confounding factor not considered by most of the studies mentioned above is tissue
composition. Prostate tissue samples are composed of different percentages of stroma and glands.
The metabolomic profiles of these components vary in linear regression, for example the levels of
citrate and polyamines (glands: » = 0.381, p < 0.0001; stroma: r = —0.303, p < 0.0001).3 The fact
that the metabolomic profile that differentiates stroma vs. glands and the metabolomic profile that
characterizes cancer tissue vs. histologically benign tissue have overlapping key metabolites,
highlights the need to take tissue composition into account.*® Interestingly, subgroups of cancerous
tissue with the same percentage of cancerous tissue have greater metabolomic inter-sample
variability than benign samples with varying percentages of glands and stroma.*® This may explain
the better performance of histologically benign samples to be separated based on GS of an adjacent
lesion compared to analysis within cancer samples, that was reported by Stenman et al. reported.*®
The studies on prostate cancer field effects leave unanswered questions. Cheng et al. and
Vandergrift et al. did not measure the distance between the histologically benign samples and the
lesions. Stenman et al. did not quantify the distance in total numbers.*>#%3 No study has examined
whether the correlation of metabolomic levels in histologically benign tissue adjacent to cancer
with characteristics of the cancerous lesion depends on the distance from or the extent of the closest
cancer. In this work, motivated by the urgent need to improve prostate cancer detection and
assessment of aggressiveness, we will explore whether metabolomic profiles in histologically
benign tissue can inform us on the presence and characteristics of a nearby cancer and whether
these effects are distance-related. The data presented here were published in 2019 in NMR in

Biomedicine.2®



2. Methods

2.1. Patient recruitment and collection of clinical data and samples

Partners Human Research Committee, an institutional review board at Massachusetts General
Hospital (MGH) in Boston, USA, approved this study. All steps were carried out according to the
guidelines and regulations. All participating men gave informed, written consent to an MGH staff
physician before surgery. Criteria for inclusion were a past diagnostic needle biopsy positive for
prostatic acinar adenocarcinoma, no prior prostate cancer treatment, and an upcoming laparoscopic
radical prostatectomy without robotic assistance. After inclusion, clinical data was obtained from
Partners HealthCare EPIC database. The recorded items included age, past medical history, present
illness, medication, drug use, and prostate-cancer specific data, including histopathologic results
of past biopsies, pre-surgical serum PSA, and history of PSA values. To minimize variability, all
prostatectomies were conducted by one of two surgeons, and one pathologist did all postsurgical
sectioning. All three of them are highly competent MGH staff members, each with over ten years
of experience. Starting immediately after surgical removal, the organs were kept at 4°C.
Examination of specimen and sectioning was conducted mostly within 30 minutes post-removal
and within one hour at most. A delay time of that magnitude was shown to have a negligible effect
on metabolomic measurements.’’ Parameters were recorded following the Protocol of the College

of American Pathologists, including weight and size.’® The organs’ lobes were inked in different

colors, and the apex and base were sectioned off
(Fig. 2). Then, the organs were cut into quarters

and four transversal slices per quarter.

i ,,,,

Subsequently, one sample of 5 mm x 5 mm x 5 mm

@N

was taken per slice, making a total of 16 samples

per organ. Samples were taken approximately 3

mm away from the margin where the peripheral
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zone is located, reflecting a trade-off of collecting

’”’/””’”’ ’”’l’"’ﬂ”"""]"'"""ﬂmf ‘\—\ \‘ | s \ ‘ \ s ( < \ : \ <1 tissue from where most cancers occur in the organ
5657585960616263646566676359 . . .

and preserving surgical margins for standard
FIGURE 2. Prostate cutting. Surfaces of the right

and the left lobe were inked in blue and black: the histopathological procedures. As shown in Fig. 2,
organ was cut in half (1) and quarters (2). The
quarters were cut into four slices (3) and, from each

slice, a sample was taken for scanning (box and  dyring all steps to allow for the organs’ later virtual
arrow). Source: Personal collection.

size and orientation were captured on pictures

reconstruction.
Immediately after cutting, the 16 tissue samples were placed on dry ice and transported to the

laboratory, where samples were stored at -80°C until MRS analyses were conducted. This



procedure does not significantly influence metabolomic profiles.”® The remaining parts of the
prostate specimens were directly transferred to histopathological examination, as described below.
Both the samples for MRS scanning and the samples directly transferred to histopathology were

labeled so that their origin could be retraced back to the specific organ.

2.2, Intact tissue MRS and data processing

Tissue samples of 10 mg were cut and weighted on dry ice without thawing and then transferred
into a zirconia rotor of 4 mm with Kel-F 10 pL plastic inserts. For field locking, 1 pL D>O (99.8%)
was added. An in-house developed protocol was used for 'H HRMAS MRS measurements. On a
vertical Bruker (Billerica, MA) AVANCE spectrometer, metabolomic spectra were recorded at
600 MHz (14.1 T) at 4°C. The spectrometer frequency was centered on the water resonance. Data
were recorded with and without water suppression, using a repetition time of 5 s and a rotor-
synchronized Min(A,B) procedure spinning at 600 and 700 (£1.0) Hz.%%! Measurements were
performed blind to the clinical and pathological status of the samples. After scanning, tissue
samples were fixed in 10% formalin.

A MATLARB tool, which was built in our laboratory, was used for pre-processing the raw data.
After a Fourier transformation, spectra were deposed to manual correction of phase and baseline
to remove frequency artifacts.?! The intensity values between 4.5 and 0.5 ppm, a segment in which
water peaks do not overlap metabolite peaks, were fitted with the curve of Lorentzian—Gaussian
line shapes. Then, the spectra were manually aligned based on the creatine peak (3.026 ppm) and
the left peak of alanine (1.467 ppm). Normalization was accomplished using the creatine peak’s
intensity from the full integral value of the water-unsuppressed file.”> The resulting relative
intensity values were reduced by summing neighboring ppm values to obtain values with two,
instead of three, digits after the point. All values smaller than 1% of the median were considered
noise and set to zero.

Regions of interest (ROI) were defined by summing up neighboring columns of ppm values with
values that exceeded zero in > 80% of the samples. At most, three columns were combined,
reflecting a trade-off between loss of information on one hand and reducing errors from possibly

imperfect spectral alignment and multiple testing on the other hand.

2.3. Histopathological examination
The scanned samples and the remaining prostatectomy specimens that were not used for MRS
were subject to histopathological processing and assessment. The tissue was embedded in paraffin,

cut into sections of 5 pm at intervals of 100 um throughout the entire sample, put on glass slides,



and stained with hematoxylin and eosin. A genitourinary pathologist with more than 15 years of
experience, blind to the spectroscopic results, assessed the slides visually. The following
parameters were recorded: GS (most predominant and second most common patterns); percentages
of Gleason patterns and percentages of the components of tissue (cancer, glands, and stroma)
estimated to the nearest 5%; extent of cancer classified into levels less and more (a quantitative
estimation taking into account the size and scatter of the lesion); further histopathologic
characteristics (intraductal carcinoma, inflammation, hyperplasia, or high-grade prostatic
intraepithelial neoplasia) and the presence of nerves, blood vessels, seminal vesicles or lymph
vessels. From the samples used for MRS scanning, the total area of tissue on each slide was
measured using a conventional scanner and the software ImageJ.®? Volume percentage (Vo!%) of
each tissue component (cancer, glands, and stroma) was calculated for each sample. The formula
below is exemplary for an imaginary sample (s) with three histopathological slides, denoted by the
subscripts / to 3, for the type of tissue (¢). The total area (4) of the specimen and the percentage
(P) of the tissue component may vary from slide to slide. Equal height (%) is assumed for all

samples.

Py X Ath+ P, X A,h + P3; X Ash
Ah+ Ah+ Aszh

Vol%g, =

2.4. 3D organ reconstruction and grouping of samples

Based on the pictures taken during the postsurgical sectioning, each organ was virtually
reconstructed in a coordinate system with units in mm. Subsequently, the distance of scanned
samples to the closest cancer was measured in three dimensions. Based on these measurements,
histologically benign samples (HbABC) were subgrouped using a categorical system with a cut-
off point of 5 mm (HbA, <5 mm; HbB, > 5 mm, < 10 mm; HbC, > 10 mm). This threshold was
set because the samples were 5 mm?® in size, and our experimental set-up did not allow
measurements of distance within the samples. Cancer samples (Ca) were subdivided according to
GS (£ 3+4, > 4+43) and histologically benign samples (HbA, HbB, HbC) were subdivided
according to characteristics of the closest cancer. In case several cancer nodules within one
prostate had the same proximity to a histologically benign sample, the one with the highest GS or
the largest extent was chosen for grouping. The groups HbB and HbC were combined (HbBC) for

analyses on overall-organ levels due to small and unequal sample size.



2.5. Data analysis and biological interpretation

Regions were mean-centered and auto-scaled, meaning that the intensity value was divided by
each variable’s standard deviation.®® For outlier detection visual inspection of principal component
analysis (PCA) score plots and a random forest analysis with a fixed cut-off of eight were
conducted.®*

Then, the spectral regions’ relative intensities and PCs with an Eigenvalue (EV) > 1 were subject
to univariate analyses. For binary categorical variables (see Fig. 3 for grouping: Ca vs. HbABC,
Ca subgroup GS high vs. Ca subgroup GS low, HbA subgroup GS high vs. HbA subgroup GS
low, HbA subgroup extent more vs. HbA subgroup extent less, HbA vs. HbBC, HbBC subgroup
GS high vs. HbBC subgroup GS low, HbABC subgroup GS high vs. HbABC subgroup GS low,
HbABC subgroup extent more vs. HbABC subgroup extent less, HbBC vs. HbA subgroup GS
high, HbBC vs. HbA subgroup GS low, HbBC vs. HbA subgroup extent more, HbBC vs. HbA
subgroup extent less), Student's t-test (for normal distributions according to Shapiro—Wilk test,
with or without equal variance) or Mann—Whitney—Wilcoxon test (for non-normal distributions)
were used. For > ternary comparisons (HbA vs. B vs. C), analysis of variance (ANOVA, for normal
distributions) or Kruskal-Wallis—Wilcoxon test (for non-normal distributions) were used. Two-
sided testing was applied. The use of Bonferroni-corrected thresholds, for example, p < 0.000794
for 63 defined spectral regions, is indicated in the text and figures. To generate receiver operating
characteristics curves (ROC), in a first step a logistic regression based on all ROIs that were
significant in the previous univariate analysis was conducted and in a second step the curves were
drawn based on the fitted values.

Unsupervised and supervised multivariate analysis was then applied to all above-listed comparison
groups. PCA score plots were used to assess the clustering of samples visually. Loading plots of
PCs of interest helped to identify the most influential metabolites. The regions that contribute to
the loading are not always listed because the nature of PCs is that they represent metabolites
holistically. Partial least square discriminant analysis (PLS-DA) was conducted and validated by
ten-fold cross-validation to control for overfitting. Univariate and multivariate approaches have
different strengths and weaknesses for metabolomics data, as discussed elsewhere.?!:6>-66
Therefore, we combined the two criteria univariate significance and Variable Importance in the
Projection (VIP) > 1 in PLS-DA models to select variables of interest. This is a common approach
in the field.®’

Possible confounding factors were addressed. Inter-patient differences were excluded by
conducting within-organ analyses wherever sample sizes allowed it (Fig. 4B, F, G) and by

including patients as random effects in mixed models. Varying tissue composition was taken into
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account. First, as a proof of concept, a linear mixed-effects model was applied to identify
metabolomic characteristics of the tissue component stroma. Regions (ROI), log-transformed if
skewed, and PCs with EV > 1 were regressed against the Vol% of stroma (stroma Vol%). The
presence of cancer (cancer) in the sample was used as a fixed effect and the patient as a random

effect

((ROI or PC) ~ stroma Vol% + cancer + (I|patient)).

Significance was tested with the likelihood-ratio test, meaning that the model without stroma
Vol%, called null model, was compared to the model with the factor. Second, all compared groups
were tested for differences in Vol% of stroma using the above-listed univariate approaches.
Moreover, all comparisons conducted previously with samples stratified for stroma Vol% were re-
run.

The assignment of ppm values to metabolites and metabolites to pathways was conducted based
on the Human Metabolome Database (HMDB) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG), as well as existing literature.®®* We name the metabolites in Fig. 4 and, when
relevant, in the discussion. In the results section, ppm values are used. Statistical analyses were

performed using the R environment and the web-based platform MetaboAnalyst.”%"!

3. Results

3.1. Patients and samples

160 samples were collected from ten organs (size: median 92 cm?, range 33.75-141.75 cm?;
weight: median 50.5 g, range 33.8-70 g) from patients with prostatic acinar adenocarcinoma (age:
median 62 years, range 53—77 years). Pathological characteristics were recorded, including
percentage of organ affected by cancer (median 27.5%, range 10-90%), highest overall GS per
organ (GS 3 + 3 number of organsn=1,3+4n=4,4+3n=1,4+4n=1,4+5n=2,and 5 +
5n=1), and pT stages (pT2an=1, pT2c n =15, pT3an =3 and pT3b n = 1). Perineural invasion
(pN) was found in nine cases and lymph nodes were surgically removed in eight cases (pN1 n =
2, pNO n = 6). In no case metastases were found during the 12 months of follow-up after organ
collection. Sample information is presented in Fig. 3. Two samples were excluded prior to raw
data processing due to irregularities during MRS data acquisition. Two further samples were
excluded after being identified as outliers, as described in the methods section. Data processing

led to 63 ROls.

11



(A) (B)

Sample pathology Characteristics of closest cancer |
100 0
Gleason
Score (GS)
Cancer 2
low | high o Q
(Ca) <3+4 | >4+3 AS 990
s %
14| 1 & 50 04
< -
Gleason {
Score (GS) Extent Y
Distance to Cancer E._ &
low | high Shod )
<3+4 | >4+3 | less | more ELLTD) D S\
0 ) 100
Histologically HbA 124 60 60 ” 9 100 50 0
Benign 134 S Stroma Vol%
(HbABC)
HbB
>5mm, | 6 Samples O Cancer (OHbA () HPBC
<10mm HbBC
10 7 3 0 10
>5mm
HbC
4
>10mm

FIGURE 3. Sample characteristics and grouping. (A) Cancer samples (red) were grouped based on GS.
Histological benign samples (green and blue) were grouped based on distance to and characteristics of the closest
cancer. Due to group size, HbB and HbC were merged for overall-organ analyses. (B) Distribution of volume
percentage (Vol%) of the tissue components cancer, stroma and glands in cancer samples (red), HbA (green), and
HbBC (blue) is presented in a scatterplot. In the cancer samples, the median of Vol% cancer is 19.67 (range 2—-100),
of glands 7.83 (0-31.25) and of stroma 66.37 (0-83.75). In the histological benign samples, the median of Vol%
glands is 9.5 (range 0~56.27) and of stroma 90.50 (43.75-100). (A) Adapted with permission from REF?*, CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/). (B) Source: Personal collection.

3.2. Metabolomics differ in cancer and benign tissue and in cancer tissue of different GS

Ca and HbABC samples were visually separable in a PCA score plot. A PLS-DA model was built
(R2Y =0.33 and Q2Y = 0.18). In Bonferroni-corrected univariate analysis, two ROIs (4.34-4.32
and 3.22-3.20) were significantly different, both had a VIP > 1 and increased levels in Ca (Fig.
4A). From 12 PCs with an EV > 1, three were significantly different (PC3 p <0.05, PC5 p<0.001,
PC6 p <0.0001). Within-organ analysis confirmed that the findings were not caused by between-
patient differences (PLS-DA R2Y = 0.99 and Q2Ycum = 0.45) (Fig. 4B).

Ca samples of low GS (< 3 + 4) were visually separable from Ca samples of high GS (> 4+ 3) in
PCA score plots. A PLS-DA model (R2Y = 0.84 and Q2Ycum = 0.48) and Bonferroni-corrected
univariate analysis revealed two significantly different regions (3.24-3.23 and 2.31-2.30), both
with a VIP > 1 (Fig. 4C). The intensities of both regions increased with increasing GS. Of ten PCs
with an EV > 1, two were significantly different (PC2 p < 0.01, PC5 p <0.05).
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FIGURE 4. Univariate and multivariate results. For the analysis presented in column (A) to (G), the top rows
indicate included organs, included samples and comparison groups. Results of univariate (red, blue) and multivariate
PLS-DA (yellow) analyses are color-coded. For overall-organ analyses, sample sizes can be found in Fig. 3A. Within-
organ analyses, conducted when samples sizes allowed it, are presented in columns (B), (F) and (G): (B) Ca n=9,
HbABC n=7, all histologically benign samples were adjacent to a cancer lesion of extent more; (F) HbA subgroup
extent more n = 9, HbA subgroup extent less n=5, all histologically benign samples were adjacent to cancer of GS
low; (G) HbA n=8, HbB n=3, HbC n=4. Levels of significance: 4.07—4.05 between HbA, HbB, and HbC, 0.95-0.93
between HbA and HbB; 3.99-3.97 and 3.90-3.89 between HbA and HbC only. Assignment of ROIs to metabolites
was done wherever possible. choCC, choline containing compounds and choline; amino acids, mainly leucine, valine,
and isoleucine. Adapted with permission from REF?®, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

3.3. Metabolomics in histologically benign tissue close to cancer (<5 mm) vary with GS and
extent of the closest lesion

Within the group of histopathological benign samples, the two comparison groups extent of cancer
(levels less and more) and GS (levels high and low) were not correlated. Visual inspection of the
HbA samples’ PCA score plots showed trends of separation of HbA subgroup GS high vs. HbA
subgroup GS low. The same applies for HbA subgroup extent more vs. HbA subgroup extent less.
Multivariate models were built (GS high vs. low R2Y = 0.07 and Q2Y = 0.02; extent more vs. less
R2Y =0.06 and Q2Y = 0.02). In a Bonferroni-corrected univariate analysis the regions 3.30-3.28,
2.70-2.68, and 2.57-2.55 were negatively correlated with GS (Fig. 4D), while the region 4.45—
4.44 was positively correlated with the extent of cancer (Fig. 4E). All of them had a VIP > 1. From
11 PCs with an EV > 1 within the group of HbA, PC1 (p <0.05) was significantly different in both
extent more vs. less and GS high vs. GS low, while PC6 (p <0.01) was only significantly different
in extent more vs. less. A within-organ analysis confirmed metabolomic separability of HbA
subgroup extent more vs. less (Fig. 4F). The groups were visually separable in a PCA score plot.
16 ROIs differed in univariate analysis. All of them had a VIP > 1 (PLS-DA R2Y = 0.582 and
Q2Y = 0.153), but lost significance after Bonferroni correction. Nine ROIs were overlapping in
within-organ and overall-organ analyses. Of seven PCs with an EV > 1, PC1 was significantly
different (p < 0.05). Due to sample availability, no within-organ analysis could be conducted for

HbA subgroup GS high vs. low.

3.4. Metabolomics in histologically benign tissue vary with distance from closest cancer

Due to the small sample sizes, samples at distances > 5 mm and < 10 mm (HbB) and > 10 mm
(HbC) were grouped for the overall-organ analysis (HbBC). The two groups HbA vs. HbBC
showed trends of separation in a PCA score plot. Univariate analysis based on all organs showed
that the regions 0.97-0.96 (p < 0.01); 2.02-2.00, 4.29-4.27, 4.31-4.30, 4.16— 4.15 and 0.92-0.89
(p <0.05) all decreased in intensity with increasing distance from the cancer (HbA to HbBC). The
unequal group size of HbBC (n = 10) vs. HbA (n = 124) did not allow us to build a multivariate

model. In order to offer a multivariate perspective nonetheless, the loading plot of a PC that was
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significantly different in univariate analysis after Bonferroni correction is given in Fig. 5.
Metabolites that had both high loading in PCA and significance in univariate analysis are
highlighted. On the organ level, HbA (n = 8), HbB (n = 3) and HbC (n = 4) were compared. For
representative spectra from this organ, see Fig. 1. The groups were visually separable in PCA score
plots, and PC2 was significantly different (p < 0.05). In univariate analysis, three ROIs differed
(4.07-4.05, 3.99-3.97, and 3.90-3.89 ppm), all of them had a VIP > 1 (R2Y = 0.634 and Q2Y =
0.18) but lost significance after Bonferroni correction (Fig. 4G). All three ROIs showed decreasing
concentrations with increasing distance from the cancer. The comparability of within-organ and
overall-organ analysis is limited as for latter HbB and HbC were merged. Still, it is noteworthy
that although the differentiating metabolites of within organ (see Fig. 4G) and overall-organ (see
Fig. 5) vary partly, the differentiating regions that do not overlap are neighboring.

3.5. Metabolomic variation in histologically benign tissue with GS and extent of the closest
cancer is less prominent at a greater distance from the cancer (> S mm)

Contrary to HbA, the metabolomic profiles of HbBC samples did not vary with the GS of the
closest cancer. No multivariate model could be built. Only two regions were significantly different
in univariate analyses between HbBC close to GS high vs low, but barely exceeded the level of
significance (2.81-2.79, 2.17-2.16, p < 0.05; increased in the subgroup GS high) and lost
significance after Bonferroni correction. The weaker performance of HbABC to distinguish GS
high vs GS low of a nearby cancer compared to the performance of HbA is underlined by ROCs:
Within HbA subgroup GS high vs. subgroup GS low AUROC = 0.830 (95% CI, 0.76—0.91) and
within HbABC subgroup GS high vs. subgroup GS low AUROC = 0.765 (95% CI, 0.69-0.85).
Similarly, a PLS-DA model based on HbABC samples was weaker than HbA samples only
(HbABC, R2 = 0.0631and Q2 = 0.0021 vs. HbA, R2Y = 0.07 and Q2Y = 0.02).

In line with these findings, the performance of HbABC to distinguish the extent of a nearby cancer
was weaker than in analyses based on HbA only: 1.73—1.71 and 0.92-0.89 lost significance in
univariate analysis, and one newly significant region appeared at a very low level of significance
(3.67-3.66 ppm, p = 0.044; concentration higher in subgroup extent more). No PLS-DA model
could be built. Due to sample size, no analysis could be conducted in HbBC only. The AUROC
was smaller within HbABC (AUROC = 0.870 [95% CI, 0.80—0.94]) compared to HbA (AUROC
=0.918 [95% CI, 0.86-0.98]). After finding that HbBC does not, or does but only to a small extent,
vary with GS and extent, but that HbA does, we conducted analyses of HbBC vs. following
subgroups of HbA: HbA subgroup GS high, HbA subgroup GS low, HbA subgroup extent more,
and HbA subgroup extent less. PC7 was significantly different between HbBC compared to each
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of the subgroups as well as in HbBC vs. HbA. The major contributing regions of PC7 are labeled
in Fig. 5.

Interestingly, in univariate analysis no difference could be found in HbA subgroup extent less vs.
HbBC, whereas HbA subgroup extent more differed significantly from HbBC (4.31-4.30, 4.29—
4.27,4.16-4.15, 2.02-2.00, 0.97-0.96 and 0.92—0.89, p < 0.05; all increased in HbA). There were
significant differences in univariate analysis between HbBC vs. HbA subgroup GS low (4.29-4.27
p < 0.01; 0.97-0.96, 4.43—4.41, 4.31-4.30, 3.01-2.98 and 2.02-2.00 p < 0.05; all increased in
HbA) and between HbBC vs. HbA subgroup GS high (0.97-0.96 p < 0.05; decreased in HbA).
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FIGURE 5. Loading plot of PC7 of PCA based on all benign samples (HbABC). In univariate analysis, PC7 was
significantly different between HbA and HbBC (p < 0.05 after Bonferroni correction) and between HbBC vs. each of
the subgroups of HbA (GS high, GS low, extent more, extent less). The most influential regions are labeled and the
regions among them that also differed significantly in univariate analysis of HbA vs. HbBC are printed bold. Red,
positive loading value, blue, negative loading value; * p < 0.05, ** p < 0.01. Source: Personal collection.

3.6. Influence of tissue composition

A mixed model revealed metabolic differences between tissue components. The following ROIs
differed significantly based on stroma Vol% after Bonferroni-correction: 3.15-3.13 (y2(1)=26.19),
3.12-3.10  (2(1)=29.72), 2.73-2.71  (pa(1)=24.71), 2.57-2.55 (32(1)=28.62), 2.12-2.10
(x2(1)=21.14), 2.09-2.07 (%2(1)=20.00), 1.77-1.74 (x2(1)=20.15) and 1.48-1.47 (y2(1)= 16.38), (p
< 0.0001); and 4.34-4.32 (32(1)=13.47), 3.61-3.59 (32(1)=14.39), 3.22-3.20 (32(1)=14.98), 2.70-
2.68 (x2(1)=12.17), 2.53-2.50 (32(1)=10.96), 2.31-2.30 (x2(1)=14.32), 2.05-2.03 (32(1)=11.62),

1.73-1.71 (2(1)=11.11), 1.70-1.67 (32(1)=13.95), 0.97-0.96 (x2(1)= 11.40), (p < 0.001). All ROI
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decrease in intensity with increasing stroma Vol%. One PC was significantly affected by stroma
Vol% (PC1 (x2(1)=18.46), p < 0.0001). Its major contributing metabolites in the loading plot also
appear among the above listed significant metabolites, namely 2.09-2.07, 2.12-2.1, and 3.61-3.59
(loading decreasing).

Then, all compared groups reported in the results sections were univariately tested for differences

in stroma Vol%. We found no significant differences, exemplarily shown for one ROI in Fig. 6A.
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FIGURE 6. Influence of varying Vol% stroma on HbA. (B) HbA samples, colorcoded for subgroups based on the
GS of an adjacent lesion (low, < 3+4, orange; high, > 4+3, blue) are presented in a scatterplot. The subgroups (A) do
not differ in Vol% stroma, (C) but do differ significantly in relative intensity in ROI 3.15-3.13 in analysis stratified
for Vol% stroma, but only in Vol% stroma > 80%. Red and grey brackets, levels of significance in univariate analysis,
*p <0.05 **p<0.01, ¥*p < 0.0001. Source: Personal collection.

For all reported comparisons, all regions previously identified as significant were tested again in
groups stratified for stroma Vol%. This is presented exemplarily in Fig. 6C for ROI 3.15-3.13 and
the comparison HbA subgroup GS high vs. HbA subgroup GS low. For the comparisons within
histologically bening samples (HbA, HbB and HbC), all ROIs remained significant in stroma

Vol% > 80%; in stroma Vol% < 80% significance was lost in most of the ROIs.

17



4. Discussion

4.1. Biological interpretation of the findings

This study evaluated the diagnostic and prognostic utility of prostate tissue metabolite profiles
measured in histologically benign tissue with high-field (14.1 T) 'H HRMAS MRS. We reported
(1) the proof of concept that cancer vs. histologically benign tissue as well as cancer tissue of low
vs. high GS are metabolomically different; (2) that metabolomics in histologically benign samples
adjacent to cancer vary with characteristics of cancer (extent and GS), but—and this has not been
previously published—only if the distance from the cancer is small (< 5 mm); and (3) that
histologically benign samples are significantly different at different distances from the cancer (<
5 mm vs. > 5 mm and < 10 mm vs. > 10 mm). Interestingly, the differences between histologically
benign tissue close to a cancerous lesion (< 5 mm) and tissue at a greater distance (> 5 mm) were
more prominent in tissue adjacent to cancer of a larger extent. Possibly, a certain amount of
prostate cancer mass is needed to produce these effects. For the first time, metabolomic prostate
cancer field effects were reported in within-organ analyses in the work presented here. The effects
were stable in analyses matched for tissue composition of stroma and glands, but, of note, the
effects in histologically benign tissue were more prominent in samples with higher percentages of
stroma.

Although we seek to report metabolomic profiles rather than individual metabolites, key
discriminatory metabolites are summarized here: For cancer vs. histologically benign, choline,
choline containing compounds, aspartate and lipids (Fig. 7B, underlined) and for cancer tissue of
low vs. high GS, aspartate, taurine and glutamate. In histologically benign tissue, myo-inositol,
polyamines and citrate correlated with the GS, and taurine and polyamines correlated with extent
of a nearby cancer. Lipids, myo-inositol and choline and choline containing compounds varied
with the distance between the histologically benign sample and the cancerous lesion.
Physiologically, the metabolism of prostatic glandular epithelium differs from other mammalian
cells. It is characterized by enhanced aerobic glycolysis, diminished oxidative phosphorylation,
and a truncated tricarboxylic acid (TCA) cycle (Fig. 7A). Zinc impairs m-aconitase, which enables
citrate to be used as an end-product for secretion into the prostatic fluid or, to a lesser extent, an
intermediate for lipid synthesis. The TCA cycle is supplied with precursors, including oxaloacetate
from aspartate and alpha-ketoglutarate from glutamate. In malignant prostate cells, zinc is no
longer accumulated. The activity of the TCA cycle and oxidative phosphorylation increase.”?
Hence, the levels of citrate and the end-products of anaerobic glycolysis, lactate and alanine,

decrease.’” Glycolysis is downregulated, and, instead of glucose, fatty acids serve as dominant
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substrates (Fig. 7B).”® Of note, in highly advanced cancer, metabolic alterations may occur such

as the Warburg effect and a decrease of the activity of the mitochondrial creatine kinase.’>7°

(A) Cancer-free prostate epithelial cell (B) Prostate cancer cell
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FIGURE 7. Selected metabolic processes in healthy prostate epithelial cells and in low-grade prostate cancer
cells. (A) Cancer-free prostate epithelial cells are metabolomically unique with high aerobic glycolysis and low
oxidative phosphorylation. Zinc inhibits m-aconitase and impairs the TCA Cycle. Compared to other mammalian
cells: red, incrased; blue, decreased. (B) In prostate cancer cells citrate is oxidized in the TCA Cycle, glucose uptake
is decreased, and fatty acids are the main substrates for energy production. De novo lipogenesis and oxidative
phosphorylation are enhanced. Compared to (A): red, incrased; blue, decreased (according to the literature);
underlined, univariate differences between Ca and HbABC in the data presented in this study (Fig. 44). o-KG, o-
ketoglutarate; Ala, alanine; Cho, choline; Crea, Creatine; FA, fatty acids, NAA, n-acetylaspartate; PhCrea,
phosphocreatine; PhoCho, phosphatidylcholine; Succ-CoA, Succinyl-CoA; TCA, tricarboxylic acid; ZIPI, zinc
transporter 1. Source: Personal collection.

In line with the described alterations of the TCA cycle in cancer cells, decreased levels of citrate
in cancerous tissue vs. histologically benign?>-*4142 (Fig, 7B), and in cancerous tissue of higher
vs. lower GS were reported here and in other studies.?>-*4!4277 Here and in previously published
studies, levels of citrate in histologically benign tissue correlate negatively with the GS of an
adjacent cancer.’>*® Alterations of the anaplereutic metabolites for the TCA cycle were reported
here and in other publications: Aspartate was increased in cancer vs. benign (Fig. 7B)’® and in
cancer tissue of high vs. low GS. Glutamate and glutamine correlated with the extent and GS of a
nearby lesion in histologically benign tissue adjacent to cancer.

Previously described alterations of lipid metabolism in prostate cancer include upregulated de
novo lipid biosynthesis possibly for membranogenesis, a prerequisite for proliferation, and for
fatty acid B-oxidation for ATP-production.” Here and in previous studies, lipids were increased
in cancer compared to histologically benign tissue®-%-7780 (Fig. 7) and in cancerous tissue of high
GS vs. low GS.3-” In histologically benign tissue adjacent to cancer, lipids correlated positively

with the extent of cancer and negatively with the GS of and distance to cancer. Correlations
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between levels lipids in histologically benign tissue and grades of a nearby prostate cancer were
reported in previous publications.?!

The carnitine cycle regulates fatty acid mitochondrial import and export and was shown to be
upregulated in prostate cancer.8!#? In line with other publications, we found higher levels of
carnitine in cancer vs. histologically benign tissue (Fig. 7B)*>*74% and in cancer of high vs. low
GS.3®

Phospholipid metabolism with its key enzyme choline kinase, which synthesizes constituents of
cell membranes, is known to be upregulated in prostate cancer.”” Choline has even been
successfully used as an alternative tracer for positron emission tomography (PET) imaging®!' and
was suggested to serve as biomarker for in vivo prostate spectroscopy®*. In our dataset and other
studies, choline and choline-containing metabolites were increased in prostate cancer tissue

32,33,36,39,41,42,77,80,

compared to healthy controls (Fig. 7B);>> 8 they positively correlated with GS

both in cancer 2>342%77 and histologically benign tissue*$->

and negatively correlated with distance
to cancer in histologically benign tissue*®. Paracrine introduction of changes in the choline
phospholipid metabolism in adjacent histologically benign cells could be an explanation for the
alterations that we found in histologically benign tissue adjacent to cancer.* It has been suggested
that choline is more suitable as a biomarker than, for example, citrate because it varies much less
between stromal and glandular tissues.?>:48-85-86

Increased levels of n-acetylaspartate (NAA) in prostate cancer compared to histologically benign
tissue, which we and other studies reported (Fig. 7B)*, could reflect a general increase of
metabolic rates in rapidly dividing cells, or specific changes associated with the oncogenic
process.>*47 In neural tissue, NAA provides acetate for the synthesis of fatty acids, and in lung
cancer, it may regulate the utilization of nutritients including glutamine.®” In our dataset, NAA
was also major contributing metabolite to the PC that separated histologically benign samples at
different distances to cancer. Furthermore, levels of NAA in histologically benign tissue correlated
positively with GS and correlated negatively with the extent of the closest cancer.

Creatine is important in energy metabolism, as phosphocreatine supplies phosphate to ADP to gain
ATP.® In prostate cancer, mitochondrial creatine kinase was shown to have increased activity
compared to histologically benign.’® Accordingly and in line with other publications, we reported
elevated levels of creatine in cancer compared to histologically benign samples (Fig. 7B).*>80
Furthermore, levels in cancer samples correlated positively with GS*? and levels in histologically
benign tissue varied with increasing distance from the cancer.*’

The polyamines putrescine, spermidine, and spermine are involved in processes of cell growth and

survival.’® Spermine, which is secreted into the prostatic fluid, has a higher concentration in the
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prostate than in any other organ.®® Spermine has cytostatic and cytotoxic effects and was suggested
to be an endogenous inhibitor of prostate cancer growth. Concentration in tissue were previously
reported to correlate with the volume of healthy, cancer-free prostatic epithelial cells.?* In our
dataset, levels of polyamines in histologically benign tissue increased with the GS of an adjacent
cancer, a finding supported by previous publications.3?>

Myo-inositol is involved in osmo- and volume regulation and cell signaling, for example, the
oncogenic PI3K pathway.*® It may be an endogenous tumor suppressor.>> In our dataset, levels of
myo-inositol in histologically benign tissue decreased with the GS of an adjacent cancer and
increased with distance to cancer, findings supported by previous publications.*333:°1

Taurine, a non-essential amino acid effecting oxidative processes, immune surveilance and
apoptosis, was suggested to be crucial in prostate cancer regulation.?*? Here and in previous
publications, levels of taurine were significantly different in cancer compared to histologically
benign tissue.3%893 As the ROI that represents taurine also contains signals from choline and
choline containing compounds in the data presented here, the direction of fold change cannot be
interpreted clearly. Furthermore, we reported altered levels of taurine in cancerous tissue of high
vs. low GS and in histologically benign tissue close to cancer of extent more vs. extent less.

In our dataset, key metabolites that differed between the tissue compartments stroma and glands,
were polyamines and citrate, all decreasing with the Vol% of stroma. Previous studies are in line
with these findings.?>3%77:858¢ A methodological standardization for the handling of varying
percentages of stroma and glands in HRMAS MRS studies is yet to be established. Some studies
do not take this possible confounding factor into account at all, others stratified the samples for
tissue components prior to the analysis®* or, and this approach was chosen in the work presented
here, did a second round of analysis to control if the findings remain significant in groups stratified
for tissue composition.>> Other authors suggested to take only those metabolites into consideration
as biomarkers that do not vary at all between tissue components.*® Ideally, metabolomic variation
due to different tissue components could be excluded prior to statistical analysis. Of great help
would be a description of each component’s pure spectra. This could be achieved by matrix-
assisted MS combined with microscopic assessment.3%9>% These pure spectra could serve as a
baseline, similar to the idea behind the human genome project. For a given tissue sample, one
could calculate the cancer-free profile (e.g., 30% stroma and 70% glands). The aberrations would
largely reflect the variations of interest, for example, cancer vs. benign.

Furthermore, open to further research remains the question of the cancer fields’ origin. On the one
hand, other -omic levels offer evidence that field effects constitute precancerous lesions.*” On the

other hand, alterations might be the response of neighboring tissue to the cancerous lesion. It has
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also been suggested that low-weight molecules could migrate from the cancer to its surroundings.”’
Processes in the surrounding stroma were discussed under the name “reactive stroma,” possibly
induced via TGFR?®% and promoting, in turn, angiogenesis and tumorigenesis. The reactive stroma
concept is in line with the tissue organization field theory (TOFT). It states that cancer is a tissue-
based, instead of cell-based, disease, in contrast to the well-known somatic mutation theory.!%
Most probably, the phenomena that have so far been subsumed under the term “field effects” are
partly precancerous conditions and partly induced by a nearby cancerous lesion. Deeper
understanding could be gained, for example, by a simultaneous collection of data on several -omic

levels. Some studies have shown successful combinations of metabolomics and

36,99,101 102,103

transcriptomic, genomic, or immunohistochemical data.’* Another approach would be
a thorough examination of cancer-free organs, possibly from organ donors. Metabolomic fields
that precede prostate cancer could be detectable, although the time of ischemia could influence the
data. Moreover, longitudinal study designs could help. For example, in a nested case-control study,
men with the same likelihood for prostate cancer detection would undergo several biopsies at
different points along a timeline. The men that are subsequently diagnosed with prostate cancer
would make up the group “cases,” while the ones that remain cancer-free would be the “healthy

controls.”

4.2. Limitations and weaknesses

A limitation of the work presented here is that some groups were relatively small and of unequal
sizes, such as samples at a larger distance than 5 mm from prostate cancer. This is due to the
multifocality of prostate cancer. Consequently, it was not possible to divide the dataset into a
training and a testing cohort. Instead we evaluated the models by ten-fold cross-validation.
Moreover, PLSDA, being vulnerable to unequal group sizes, could not be conducted for all
comparison groups.”® To gain a multivariate perspective nevertheless, PCs were subject to
univariate analysis.

In addition, 5-mm steps for grouping the samples for distance to cancer are relatively large.
Experimental designs with smaller tissue samples could help. A software-based reconstruction of
the organs could improve accuracy further.!%

Furthermore, we did not include tissue from cancer-free organs as a control group. These could be
obtained from cystoprostatectomy in bladder cancer surgery, however, samples could be impaired
by the patients’ age, the bladder cancer or treatment, or from organ donors, but the time of ischemia

could be a limiting factor. Biopsies from healthy men are not feasible due to invasiveness.*’
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Finally, there are widely acknowledged weaknesses in the field of metabolomics in general. There
is a lack of methodological standardization. There is reason to be optimistic, however, as initiatives
like Coordination of Standards in Metabolomics (COSMOS) are developing guidelines; open-
access tools for reproducible data processing and analysis, such as MetaboAnalyst and a multitude
of R packages, are becoming more widely used; and databases for reliable metabolite and pathway
assignments are constantly growing, including KEGG and HMDB.8-71:107 Statistical approaches
to remove metabolomic variation due to biological factors including age, diet, medication, physical
activity and genetic background are being developed and discussed in the literature.!%® Due to the
structure of the dataset presented here with relatively few individuals and many samples per

individual, we rather focused on within-organ analyses.

4.3. Scientific implications and clinical applications

The presence of metabolomic field effects challenges the use of histologically benign prostate
tissue from cancerous organs as mere healthy controls. This procedure, besides the lack of
methodological standardization in metabolomic studies in general, may contribute to the
considerable variation among published metabolomic tissue biomarkers. This is underlined by our
finding that the metabolomic profile that distinguishes histologically benign tissue in proximity
vs. at greater distances to cancer and the profile that varies between histologically benign tissue
and cancerous tissue have overlapping key metabolites, for example, choline and choline
containing compounds (3.34—4.32 ppm and 3.22-3.2ppm). We call for researchers to take field
effects into account in study design and data analysis.

The findings presented here encourage validation studies. In a clinical setting, metabolomic field
effects could enlarge the target area for biopsies, reducing the number of false-negative and under-
graded biopsies. Increased diagnostic accuracy of biopsies could reduce cases of undertreatment.
At the same time, this approach could also help identify low-risk cancer and make active
surveillance a more attractive alternative to potentially harmful procedures, thereby reducing
overtreatment.* Once established, an approach like this could exclude men from potentially
unnecessary re-biopsies and may help to reduce the number of needed biopsy cores, thereby
lowering patients’ biopsy-associated risks. As the acquisition of metabolomics data is near real-
time metabolomic profiles could be measured during interventions. This approach could help to
decide immediately during biopsy whether to resample or stop sampling. An NMR-based
approach’s translatable capacity is significant, as due to its non-destructive nature it can be added
to the current clinical workflow of histopathological assessment without impairing it. It also

requires minimal sample preparation, has high throughput, and is cost-effective, automated, and
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reproducible. In contrast to histopathological assessment, where GS grading shows inter-observer
variations, the data is objective.3! At present, smaller machines are being developed that are less
expensive and suitable for a clinical setting.!% This approach is in line with the precision medicine
initiative that seeks individualized clinical decision-making to find the best strategy for each
individual patient.

The ultimate goal is the translation to in vivo MRS to gain diagnostic and prognostic information
non-invasively. 18F-fluorodeoxyglucose PET, an imaging modality often used in solid cancers of
other organ systems, is not feasible, as the Warburg effect with increased glucose uptake is not
present in prostate cancer, except for more advanced cases.”?’37>!110 In vivo MRS can, at present,
acquire metabolomic profiles per 0.5 cm?® voxels in clinically feasible measurement time.!'!'-!13 To
meaningfully interpret the spectra in vivo, studies that correlate ex vivo spectroscopic data directly
to histopathological features, as in the work presented here, are indispensable. Spectroscopic
findings in the prostate from ex vivo studies are translatable to in vivo, as shown by a study that
found a strong correlation between GS and the ratio (choline + creatine + spermine)/citrate both
in vivo and ex vivo.*?

We recommend (1) taking the next steps toward validation studies and, if successful, ultimately
toward translation into the clinical workflow as a complementary ex vivo tool for bioptic prostate
cancer detection and assessment of aggressiveness; (2) including the concept of field effects as a
possible confounding factor in metabolomic study designs and data analysis; and (3) exploring
field effects in other organ systems because there may be implications for both scientific and

clinical applications as well.
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CLINICAL NUCLEAR

19 MEDICINE 4,008 3.640 0.006470
SEMINARS IN NUCLEAR

20 MEDICINE 2,056 3.630 0.002800
AMERICAN JOURNAL OF

21 NEURORADIOLOGY 21,720 3.550 0.032180
MOLECULAR IMAGING

22 AND BIOLOGY 2,228 3.466 0.005880
ULTRASCHALL IN DER

23 MEDIZIN 1,907 3.452 0.003930

24 RADIOGRAPHICS 10,286 3.427 0.009660

25 Biomedical Optics Express 6,187 3.337 0.021610
Contrast Media & Molecular

26 Imaging 1,131 3.307 0.002810
INTERNATIONAL JOURNAL

27 OF HYPERTHERMIA 3,030 3.262 0.003810
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Journal Impact

Rank Full Journal Title Total Cites Eigenfactor Score
Factor

Journal of Cardiovascular

28 Computed Tomography 1,331 3.185 0.004220
JOURNAL OF MAGNETIC

29 RESONANCE IMAGING 15,073 3.083 0.029170
Journal of the American

30 College of Radiology 2,690 2.993 0.006840

31 NMR IN BIOMEDICINE 6,766 2.872 0.014560
JOURNAL OF VASCULAR
AND INTERVENTIONAL

32 RADIOLOGY 8,371 2.780 0.012840
AMERICAN JOURNAL OF

33 ROENTGENOLOGY 31,676 2.778 0.035740
PHYSICS IN MEDICINE

34 AND BIOLOGY 22,873 2.742 0.034390
STRAHLENTHERAPIE UND

35 ONKOLOGIE 2,687 2.735 0.004990

36 Clinical Neuroradiology 433 2.618 0.001550

37 MEDICAL PHYSICS 22,942 2.617 0.037250

38 Radiation Oncology 4,358 2.568 0.013680

39 RADIATION RESEARCH 8,394 2.539 0.007920
JOURNAL OF BIOMEDICAL

40 OPTICS 12,700 2.530 0.024520
JOURNAL OF

41 NEURORADIOLOGY 792 2.526 0.001310
ULTRASOUND IN

42| MEDICINE AND BIOLOGY 9,759 2.494 0.012640
QUARTERLY JOURNAL OF
NUCLEAR MEDICINE AND

43 MOLECULAR IMAGING 1,030 2.481 0.001800

44 CLINICAL RADIOLOGY 5,717 2.478 0.008540
EUROPEAN JOURNAL OF

45 RADIOLOGY 11,328 2.462 0.026500
NUCLEAR MEDICINE AND

46 BIOLOGY 3,918 2.426 0.006210

47 CANCER IMAGING 1,008 2.404 0.001930
RADIATION AND
ENVIRONMENTAL

48 BIOPHYSICS 1,468 2.398 0.002460

49 ULTRASONICS 5,752 2.327 0.008130
Diagnostic and Interventional

50 Imaging 957 2.277 0.002420
MAGNETIC RESONANCE

51 IMAGING 6,465 2.225 0.011370
CARDIOVASCULAR AND
INTERVENTIONAL

52 RADIOLOGY 4,859 2.191 0.008890
KOREAN JOURNAL OF

53 RADIOLOGY 1,941 2.156 0.003730

54 ACADEMIC RADIOLOGY 4,804 2.128 0.009150

55 NEURORADIOLOGY 5,191 2.093 0.007520

56 Dose-Response 671 2.088 0.001310

57 Brachytherapy 1,442 2.082 0.003540
BRITISH JOURNAL OF

58 RADIOLOGY 7,990 2.050 0.011760

59 EJNMMI Research 844 2.033 0.003380

37



Die im Folgenden genannte Publikation wird aus datenschutzrechtlichen Griinden in der elektronischen
Version meiner Arbeit nicht veroffentlicht.

Dinges, Sarah S., Vandergrift, Lindsey A., Wu, Shulin, Berker, Yannick, Habbel, Piet, Taupitz, Matthias, Wu,
Chin-Lee & Cheng, Leo L. Metabolomic prostate cancer fields in HRMAS MRS-profiled histologically
benign tissue vary with cancer status and distance from cancer. NMR Biomed. e4038 (2019).

https://doi.org/10.1002/nbm.4038

























































Lebenslauf Sarah S. Dinges

Mein Mein Lebenslauf wird aus datenschutzrechtlichen Griinden in der elektronischen Version meiner Arbeit
nicht veroffentlicht.

57



58



59



Publikationsliste Sarah S. Dinges
Stand: 06.06.2021

Dinges, Sarah S., Hohm, Annika, Vandergrift, Lindsey A., Nowak, Johannes, Habbel, Piet,
Kaltashov, Igor A. & Cheng, Leo L. Cancer metabolomic markers in urine: evidence,

techniques and recommendations. Nat. Rev. Urol. 16, 339-362 (2019).

Dinges, Sarah S., Vandergrift, Lindsey A., Wu, Shulin, Berker, Yannick, Habbel, Piet, Taupitz,
Matthias, Wu, Chin-Lee & Cheng, Leo L. Metabolomic prostate cancer fields in HRMAS
MRS-profiled histologically benign tissue vary with cancer status and distance from cancer.
NMR in biomedicine 2019;32(10):e4038.

Berker, Yannick, Vandergrift, Lindsey A., Wagner, Isabel, Su, Li, Kurth, Johannes, Schuler,
Andreas, Dinges, Sarah S., Habbel, Piet, Nowak, Johannes, Mark, Eugene, Aryee, Martin J.,
Christiani, David C. & Cheng, Leo L. Magnetic Resonance Spectroscopy-based Metabolomic
Biomarkers for Typing, Staging, and Survival Estimation of Early-Stage Human Lung
Cancer. Scientific reports 2019;9(1):10319.

60



Danksagung

Zu besonderem Dank bin ich meinem Doktorvater Herrn Prof. Dr. Matthias Taupitz fiir seinen
wertvollen akademischen Rat und die zuverldssige Verfligbarkeit verpflichtet. Grolen Dank
spreche ich der Arbeitsgruppe aus, in der die préasentierte Arbeit durchgefiihrt wurde. Ich habe dort
produktive Zusammenarbeit, inspirierende fachliche Diskussionen und aufergewdhnliche
Hilfbereitschaft erlebt habe. Insbesondere danke ich dabei Ass. Prof. Leo L. Cheng und Lindsey
A. Vandergrift, die mich herzlich in Boston aufgenommen haben und stets die Begeisterung an
dem Projekt geteilt haben. Fiir statistische Ratschlige und inhaltlichen Austausch danke ich
herzlich Yannick Berker. Ich mochte aulerdem Dr. Piet Habbel danken, ohne den das Projekt nicht
zustande gekommen wére und der mir fortwdhrend mit Rat und Tat zur Seite stand. Besonderer
Dank mochte ich der Studienstiftung des Deutschen Volkes aussprechen, in den USA vertreten
durch Dr. Lars Peters, deren finanzielle und ideelle Férderung maBBgeblich zum Gelingen dieses

Projektes beigetragen hat.
AulBlerdem mochte ich mich bei meiner Familie und Freunden bedanken. Ganz besonders danke

ich meinen Eltern und GrofBeltern fiir die fortwéhrende liebevolle Unterstiitzung wéihrend meines

gesamten Studiums und insbesondere wihrend des Promotionsvorhabens.

61





