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Abstract: Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma in young
active patients, is frequently accompanied by traumatic brain injury (TBI). Although combined
trauma results in inferior clinical outcomes and a higher mortality rate, the understanding of the
pathophysiological interaction of co-occurring TSCI and TBI remains limited. This review provides a
detailed overview of the local and systemic alterations due to TSCI and TBI, which severely affect
the autonomic and sensory nervous system, immune response, the blood–brain and spinal cord
barrier, local perfusion, endocrine homeostasis, posttraumatic metabolism, and circadian rhythm.
Because currently developed mesenchymal stem cell (MSC)-based therapeutic strategies for TSCI
provide only mild benefit, this review raises awareness of the impact of TSCI–TBI interaction on
TSCI pathophysiology and MSC treatment. Therefore, we propose that unravelling the underlying
pathophysiology of TSCI with concomitant TBI will reveal promising pharmacological targets and
therapeutic strategies for regenerative therapies, further improving MSC therapy.

Keywords: traumatic spinal cord injury; TSCI; traumatic brain injury; TBI; mesenchymal stem
cells; MSC

1. Introduction

Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma such
as traffic accidents and falls [1,2], results in temporary to permanent loss of perception of
tactile sensation, neuromuscular function, autonomous dysregulation and even death. TSCI
affects 13.1 to 52.2 million often young active patients per year, impairing predominantly
the cervical spine (41.6–75%) but also the thoracic (16–41%) and lumbar spine (9–17.6%) [3].
The consequences of TSCI vary depending on the localisation of the lesion, ranging from
locked-in syndrome with the need for continuous external ventilation (high cervical spine) to
cauda syndrome with loss of bladder and rectal control (lumbar spine) [4]. TSCI is frequently
accompanied by additional injuries [5–8], in particular traumatic brain injury (TBI) in up to 60%
of cases, which not only results in reduced clinical outcomes but also in higher mortality [5–8].
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Overall, TSCI represents a major long-term physical, psychological and socioeconomic impact
on patients and their families as well as the entire health care system [9–13].

To date, the standard of care for TSCI and TBI consists of preclinical immobilisation, a
guideline-compliant emergency diagnostic process with subsequent surgical decompres-
sion and spinal stabilisation, followed by postoperative intensive care and early physical
rehabilitation [14]. The evidence for additional pharmacological interventions in acute
settings, such as glucocorticoids, remains controversial [15,16]. Even with subsequent
long-term rehabilitation and medical and psychological care, the percentage of long-lasting
disabilities remains high, raising the essential need for new regenerative therapeutic options
such as stem cell-based therapies. Such therapies in TSCI aim to promote neural axonal
regeneration and functional restoration by limiting the secondary injury, while optimising
healing cascades through modulation of the local microenvironment and inflammatory
process through targeted differentiation of the added cells [17].

Recent preclinical and clinical phase I/II TSCI studies focusing on mesenchymal stem
cell (MSC) therapies showed an acceptable risk profile, with meta-analysis concluding
minor improvement in TSCI outcome that remains far from total recovery [18,19]. As
the complexity of the interactions of neural injury and repair with posttraumatic whole-
body pathophysiology is not yet fully elucidated [20,21], a deeper understanding of these
interactions could prove crucial to optimising the local and systemic regenerative effects of
MSC-based therapies.

The comprehension of the pathophysiological interaction between TSCI and TBI on
a molecular level and its impact on the whole organism remains limited. In this review,
we provide a detailed overview of the local and systemic alterations resulting from TSCI
and TBI which severely affect the autonomic and peripheral nervous system, inflammatory
response, local perfusion, endocrine homeostasis and circadian rhythm. Based on this
mechanistic understanding, we aim to raise awareness for the currently neglected impact
of these effects on MSC-based regenerative therapies following TSCI.

2. Methods

The MEDLINE database was searched, applying the following keywords: spinal cord
injury, SCI, Traumatic spinal cord injury, TSCI, traumatic brain injury, TBI, bone fracture,
fracture, trauma, circadian, metabolism, endocrine, hormone, autonomous nervous system,
sympathet*, parasympathet*, adrenerg*, immune, perfusion, regenerative therapies, and
mesenchymal stem cells (MSC), in different combinations. The MEDLINE database research
was carried out between 1 April and 1 August 2021. For identification of additional studies,
the bibliographies of identified papers were analysed. For the brief overview of registered
clinical trials regarding cell therapy in TBI and TSCI, we performed a systematic search on
the clinicaltrials.gov register on the 1 of October with respect to PRISMA statements [22,23].
Therefore, traumatic brain injury, respective spinal cord injuries and ((stem-cells) OR (stem
cells) OR cells OR cell) was used as a search term, and studies not using cell therapies
or not aiming for TBI or TSCI treatment were excluded. The remaining studies were
analysed. The publication of results was identified based on a search of the NCT in the
MEDLINE-Database, and on google-scholar if not successful based on the search of the
registered PI in both data bases. If neither of the two search strategies resulted in any hits
for the registered clinical study, the trial was rated as not published.

3. Interaction of TSCI and TBI
3.1. A Brief Pathophysiology of Isolated TSCI and TBI

The neurotraumatic injuries TSCI and TBI are caused by an external physical insult
which results in a force-dependent temporary to permanent functional alteration. The
highly complex pathophysiology of both TSCI and TBI is divided into primary injuries,
induced by the initial energy transfer and deformation, and secondary injuries, referring to
the subsequent biochemical and cellular cascade at the local and systemic levels in response
to the primary event; these injuries can range from acute to chronic (Figure 1) [1,24,25].

clinicaltrials.gov
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Figure 1. Pathophysiological course of events following acute damage of the central nervous system: TSCI and TBI. Once
the primary injury occured, which represents the initial mechanical insult, the secondary injury is induced within minutes as
a local response. Through the additional compromised blood–brain and blood–spinal cord barrier and further mechanisms
discussed in this review, the local response evolves into a systemic one, followed by regenerative processes. Abscissa
axis = time; ordinate axis = degree of relative alteration. Graphic adapted from [26]. Abbreviations: TBI = traumatic brain
injury, TSCI = traumatic spinal cord injury.

In TSCI, the primary injury causes the displacement of vertebral bone and disco-
ligamentous structures resulting in transient or permanent compression, contusion (closed
injury), distraction or laceration (open injury) with transection of the spinal cord and its
vasculature, thus leading to ischemia [1,27,28]. Additionally, descending sympathetic
nerve fibres are commonly compromised, further impairing autoregulatory processes. This
can result in neurogenic shock by loss of sympathetic tone with consecutively decreased
peripheral vascular resistance and reduced cardiac output, resulting in systemic hypoten-
sion and hypoperfusion [29,30]. The secondary injury is divided into acute (0–48 h),
subacute (2–14 days), intermediate (14 days–6 months) and chronic phases (>6 months).
During the acute and subacute phases, the synergistic effects of traumatic cell damage,
ischemia, oedema and inflammation lead to cellular dysfunction, pro-apoptotic signalling
and cell death [31], resulting in the breakdown of the blood–spinal cord barrier [30,32].
Regenerative mechanisms facilitate local and systemic innate immune responses, while
also antagonizing the traumatic transitory ischemia [33,34]. Therefore, angiogenesis is one
of the first regenerative response mechanisms upregulated after TSCI [33,35]. Although
new vessels often lack astrocyte- [36] or pericyte-association [37], endogenous mechanisms
target neuronal functional regeneration through axon growth stimulation, leading to col-
laterals originating from undamaged axons [38,39]. Nevertheless, even though Schwann
cells and oligodendrocytes migrate to the injury epicentre and re-myelinate structures,
the original function remains impaired, as cystic cavities and glial scarring form a barrier
surrounding severely damaged tissue [39–45].

TBI is commonly classified by injury severity into mild, moderate and severe based
on the level of consciousness [46] as well as by neuropathological features, dividing brain
damage into focal (through direct impact) and diffuse (through acceleration/deceleration)
injury [47,48]. While diffuse injury causes oedema, concussion and diffuse axonal damage,
focal brain damage results in contusion (closed injury), laceration (open injury) or intracra-
nial haemorrhage. Similar to TSCI, the primary injury represents the initial mechanical
damage of the meninges, neurons and vasculature, while subsequent secondary injury
refers to the delayed non-mechanical damage [24,49–51]. Therefore, secondary injury arises
from damaged parenchyma and vasculature causing ischemic injury, ionic imbalance with
depolarisation and excitotoxicity, free-radical generation and oxidative stress, which results
in the activation of glial cells such as astrocytes and microglia [25]. As a result, the sec-
ondary injury induces cerebral hypoxia, oedema formation and intracranial hypertension,
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disruption of the neuronal networks [52], and impairment of the blood–brain barrier [53]
with local and systemic inflammation [54]. Although the activation of microglia and astro-
cytes is crucial for regeneration through the rapid clearance of debris such as haematoma
as well as for partial restoration of the blood–brain barrier and production of neurotrophic
factors [25], they also release cytokines and chemokines that recruit circulating neutrophils
and macrophages to the injured area, thus facilitating the inflammatory response [55]; this
can prove to be a ‘double-edged sword’ [56]. In any case, neuro-inflammation represents
the foundation for posttraumatic recovery of the central nervous system (CNS) [55], leading
to gliosis, pericyte activation, glial scarring and extracellular matrix as well as angiogenesis,
limited axonal regeneration, neurite sprouting, and neuro- and oligodendrogenesis [57].
Unfortunately, TSCI and TBI often result in chronic neuro-inflammation, astrocyte hyper-
activation, pericyte persistence, extracellular matrix deposition and glial scar formation,
acting as a physical and biochemical barrier to regeneration [55,57,58].

3.2. General Interaction of TSCI and TBI

As TSCI and TBI represent major traumata with profound systemic effects, they
are followed by metabolic and immune alterations potentially resulting in energy wast-
ing, systemic inflammatory response syndrome (SIRS) and critical illness with the need
for intensive care, which poses a major challenge to regeneration and healing processes
(Sections 3.2–3.8). While isolated TSCI and TBI were reported to result in cognitive im-
pairment [8,59,60], TSCI in polytrauma patients [61] as well as TSCI with concomitant TBI
showed additive effects with further reduced cognitive and neuromotor outcomes [8,59–61].
Therefore, long-term mood disorders, polypharmacy, post-intensive care unit syndrome,
cortical reorganisation and neuro-inflammation are recognised as additional therapeutic
challenges of TSCI with concurrent TBI [8].

Polytrauma patients often present with additional high-energy musculoskeletal in-
juries that further deteriorate the clinical outcome in patients with TSCI [62]. Both TSCI and
TBI are further reported to reduce bone quality, potentially as a result of afferent signalling
from brain and spinal cord to bone and muscle [63–66]. Opposite to the afferent interaction,
concomitant fractures were reported to negatively affect cerebral oedema formation and
delay cognitive recovery following TBI [67,68]. Therefore, efferent effects of bone and
muscle on the brain and their therapeutic potential represent a contemporary issue [69,70].
While concomitant bone fractures showed a negative impact on the clinical outcome of TBI
patients, efferent effects from bone and muscle on TSCI have not been studied yet.

In contrast to the negative effect on bone quality, TSCI and TBI were both identified to
cause heterotopic ossifications (HO) [65] and improved healing of concomitant long-bone
fractures in humans [71,72]. Therefore, experimental models have been developed in order
to investigate the underlying mechanisms [64,68,73–75]. Clinical observations of spinal
cord injury report different risk factors for HO, including complete injuries, spasticity
and pneumonia [76]. To date, the early detection and management of HO after traumatic
neuronal injury remains a clinical challenge. Although HO following TSCI and TBI is
suggested to share the same pathophysiology, knowledge of the underlying mechanisms
remains limited [77,78]. A detailed understanding of the molecular processes during HO
formation provides great future potential for new therapeutic targets to improve bone
healing as well as to inhibit prevalent HO.

Surprisingly, only one preclinical model has been published to date, combining unilat-
eral cervical TSCI and unilateral (ipsi- vs. contralateral) TBI in rats [79]. In the model, TBI
contralateral to TSCI further decreased motoric function ipsilateral to TSCI in the frontal
limb, while ipsilateral TBI resulted in slightly improved function compared to isolated
TSCI at six weeks post-injury. This outcome was considered to result from a balance of
motor innervation by ipsilateral TBI or enhanced neuroplastic coping mechanisms such as
central neuroplastic adaption, which was discussed in chronic cervical myelopathy [80].
Finally, this animal model suggests that during the development of treatment plans for
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patients with multiple injuries, the balanced activity and potential inhibitory effects of
residual functional central systems must be taken into consideration.

In summary, the negative effects of TSCI on cognitive function in patients suffering
from TBI as well as the impact of TBI on the sensorimotor outcome in patients with TSCI
suggest a bidirectional interaction of both traumatic injuries. This interaction might occur
directly or indirectly via secondary organs (Figure 2). This is further supported by the
clinical observation of enhanced bone formation following TSCI and TBI, which employ
local regenerative mechanisms involving MSCs [81,82] and underline the impact on MSC-
mediated healing cascades. Furthermore, concomitant injuries, diseases and complications
can influence the course of healing [83]. However, the current understanding of TSCI-TBI
crosstalk and its effect on MSC treatment remains limited [84].

Figure 2. TSCI and TBI interaction occurs directly or indirectly via secondary organs. TBI and
TSCI can influence each other directly via neurogenic interactions or indirectly via their impact on
secondary organs, tissues and signalling cascades. MSC therapy in this context may influence TSCI
or TBI directly or by their impact on these secondary alterations. In concomitant TSCI and TBI the
role of MSC treatment is unclear, and whether the established options for one injury affect the other
also remains unclear. Abbreviations: MSC = mesenchymal stem cell, TBI = traumatic brain injury,
TSCI = traumatic spinal cord injury.

3.3. Autonomic Dysregulation after TSCI and TBI

As part of the peripheral nervous system, the autonomous nervous system (ANS)
consists of the parasympathetic nervous system (PNS), the sympathetic nervous system
(SNS) and the enteric nervous system. The PNS originates from the brain stem with the
cranial nerves and Nervus vagus, as well as from the distal spinal cord as Nn. splanchnici
pelvicii (segments S2-S4). N. vagus directly controls thoracic and abdominal organs, and is
predominantly associated with enhanced digestive function and reduced state of general
activation of the body, such as lower blood pressure and heart rate [85]. On an organ
level, PNS effects are mediated by chemical synapses via acetylcholine transmission on
muscarinergic acetylcholine receptors. While the parasympathetic role of N. vagus remains
unquestioned, a possible sympathetic origin of Nn. splanchnici pelvicii was discovered and
further discussed in recent literature [86,87]. The first neurons of the SNS originate from the
lower cervical to lumbar spinal cord (segments T1-L3) and innervate the second neurons in
the sympathetic trunk, which proceed parallel from the upper cervical to the lower sacral
spine (Figure 3a) [85,88]. The end organ effect of the SNS is mediated by norepinephrine
from sympathetic nerves and epinephrine from the adrenal glands, typically involved in
‘fight or flight’ reactions including acceleration of heart rate, blood pressure and reduction
of digestive activity [85]. The enteric nervous system is the largest part of the ANS and
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consists of independent microcircuits allowing gastrointestinal coordination without active
input from the central nervous system [89].

In TSCI, acute and chronic autonomic dysregulation represent a serious complication.
In the acute event of trauma, the loss of central control of sympathetic and parasympathetic
innervation below the injury potentially results in neurogenic shock, whereas long-term
consequences such as neurogenic bladder and bowel dysfunction, reduced gastrointestinal
motility, and sympathetic dysregulation causing pain syndromes are tremendous effects
leading to poor quality of life. Depending on the segmental localisation of TSCI, differential
effects on PNS and SNS can be expected (Figure 3b). While cervical TSCI results in general
autonomy of the SNS and lower PNS, thoracic and lumbar TSCI cause partial or no dysfunc-
tion at all of the SNS, but loss of function of the lower PNS including autonomous bladder
and bowel dysfunction [90]. Spinal fractures or surgical interventions can cause additional
direct trauma to the sympathetic trunk or the N. vagus and the Nn. splanchnici pelvicii [91].

While general trauma results in an indirect rise of SNS tone, TBI can cause a direct
rise of SNS tone [92,93]. Following TBI, enhanced autonomic activity of the PNS has been
reported [94]. The rise in PNS tone of N. vagus was linked to posttraumatic immunosuppres-
sion with enhanced risk of posttraumatic pneumonia [94–96] and insufficient cardiovascular
adaption [97,98]. Similar to TBI, posttraumatic dysregulation of the PNS following TSCI was
linked to enhanced immunosuppression [99], cardiovascular deterioration [100], and neu-
rogenic bowel disease with consequent malnutrition and dysregulation of microbiota [101].
Therefore, ANS dysregulation with additive effects on whole systems biology in TSCI patients
with concomitant TBI certainly contributes to enhanced morbidity and mortality.

Along with ANS dysregulation after trauma, SNS and PNS are further involved
in neural regeneration, and therefore in TSCI–TBI outcome and complications. Acute
activation of the SNS following TSCI and TBI has been postulated to reduce immunoactivity,
resulting in an enhanced risk for infections [92,102]. While the increased posttraumatic SNS
activity impairs TSCI regeneration and outcome through reduced local perfusion, the beta
adrenoreceptor antagonists and alpha-2 agonists positively influence the ischemic injury
and reduce tissue inflammation of neural damage in vivo and in vitro [103,104]. However,
the increased posttraumatic SNS activity further induces the browning of white adipose
tissue and the activation of brown adipose tissue [105–107], previously linked to improved
neural regeneration following TSCI [108] and TBI [109]. Further, norepinephrine has been
linked to reduced MSC apoptosis [110], and adrenergic receptors are involved in MSC
differentiation [111].

As TSCI and TBI both differentially affect the SNS, additive effects and systemic influ-
ences after combined trauma on the immune response, endocrine system, haemodynamics,
energy metabolism and stem-cell differentiation are likely and warrant further studies.
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Figure 3. Differential effects of TSCI and TBI on the autonomic nervous system (ANS) depending on the trauma level.
(a) The parasympathetic innervation of thoracic and upper abdominal organs originates from the cranial nerve N. vagus,
while the innervation of the lower abdominal and pelvic organs (Cannon’s point) originates from the spinal cord segments
S2-S4 (Nn. splanchnici pelvicii). The sympathetic innervation via the sympathetic trunk originates from the spinal cord
segments T1-L3. (b) While TBI results in general dysregulation (↑↑) of PNS and SNS, TSCI commonly spares the N. vagus
(except for high cervical trauma), while its effects on the SNS are dependent on the localisation of trauma. Graphics adapted
from [4,85]. Abbreviations: N. = Nervous, PNS = parasympathetic nervous system, SNS = sympathetic nervous system,
TBI = traumatic brain injury, TSCI = traumatic spinal cord injury.

3.4. Nociceptive Peptides

Nociceptive neuropeptides of the sensory nervous system play a crucial role in neu-
roinflammation and persistent pain syndromes secondary to spinal and peripheral nerve
injury following TSCI, as well as in TBI-induced cerebral oedema [112–114]. In response to
TBI, local and systemic alterations of substance P, calcitonin gene-related peptide (CGRP)
and neuropeptide Y (NPY) have been monitored [114–116]. In TSCI, these peptides are
involved in the development of chronic pain [113] and seem to play a role in neuroinflam-
mation and healing after TSCI [117]. However, whether TSCI regenerative processes are
altered by TBI via the sensory nervous system remains to be elucidated.

3.5. Immune Response and the Blood–Brain/Blood–Spinal Cord Barriers

The immune response after central nervous system injury follows a ubiquitous and
well-orchestrated cascade of inflammatory events [57,58]. At the time point of the primary
injury, neuronal and glial damage, meningeal contusion or laceration, and disruption of the
vasculature and descending/ascending signalling pathways occur [32,52]. These events
activate the innate immune response of the central nervous system. Therefore, resident
microglia and astrocytes start the clearance of damaged tissue, partially seal the barriers,
and produce neurotrophic factors. In parallel, regenerating cytokines, chemokines, reactive
oxygen species and excitatory neurotransmitters recruit and activate circulating neutrophils
and macrophages to the injured area [25,57,58]. The subsequent release of these mediators
triggers the secondary injury [25,118], thus resulting in direct epithelial damage, excito-
toxicity and oxidative stress, ionic and therefore osmotic imbalance, oedema, increasing
intracranial pressure with decrease of cerebral perfusion pressure, reduced cerebral blood
flow, and hypoxia [25]. All these mechanisms further contribute to the progression of
blood–brain barrier breakdown [119] following TBI and blood–spinal cord barrier break-
down [53] after TSCI. Depending on the pattern and the severity of the injury, the function
of both barriers can be compromised simultaneously, further amplifying and elongating
the progression of the secondary injury and neuroinflammation. Barrier dysfunction can be
observed for weeks to months after TSCI [32,120], or even years following TBI [121], even
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in sites distant to the injury along the spinal cord axis [120]. Barrier breakdown allows the
recruitment and pathophysiological interaction of the mediators and peripheral immune
cells, such as monocytes, that differentiate into macrophages, neutrophils and lymphocytes,
thus initiating a systemic immune response [25,54,122,123] (Figure 4).

Figure 4. Proposed local and systemic immune response following injury to the central nervous system: TSCI and TBI. The
initial primary injury causes neuronal and glial as well as meningeal and vascular damage, which activates the local innate
immunity. In response, the level of pro- and anti-inflammatory molecules increases, which triggers peripheral immune cells
to access the injury site through the disrupted blood–brain and blood–spinal cord barriers, resulting in a systemic immune
response. While the balance of pro- and anti-inflammatory mediators induces repair processes aiming for neuronal recovery,
potentially leaving glial scars and cystic cavitations, a dysfunctional response can result in systemic hyperinflammation
with damage to peripheral organs and sepsis, chronic neuroinflammation, and autoimmunity, as well as systemic immune
suppression and secondary immune deficiency syndrome. Graphic inspired by [123]. Abbreviations: IL = interleukin,
TBI = traumatic brain injury, TNF = tumour necrosis factor, TSCI = traumatic spinal cord injury.

Although the immune response after central nervous system injury follows a ubiq-
uitous molecular and cellular cascade, TSCI and TBI were observed to show distinct
neuroinflammatory reactions in terms of composition, spatiotemporal sequence and magni-
tude of response [42,124]. After TBI and TSCI, the level of glial activation and inflammatory
response differs, with increased cytokine expression of inflammatory and lesion-dependent
leukocyte exacerbation [125–128] as well as enlarged astrocytosis after TSCI compared to
TBI [57,125]. Neuroinflammation following central nervous system injury possesses a dual
role [56,129]. As the innate and the adaptive immune response represent the foundation for
central nervous system regeneration, they are also responsible for the neuroinflammation
linked to accelerated neurodegeneration and chronic traumatic encephalopathy [55,57].
Therefore, injuries such as TSCI and TBI commonly result in chronic neuroinflammation,
with astrocyte hyperactivation, pericyte persistence, extracellular matrix deposition and
glial scar formation [55,57,58].

Although polytrauma, often accompanied by TBI and TSCI, is strongly associated with
systemic inflammatory response syndrome (SIRS), despite advances in acute haemorrhage
and coagulopathy management [130,131] surprisingly few studies focus on the systemic
effects of TBI with additional extracranial injury [132].
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SIRS is characterised by early innate hyperinflammation and delayed immunosup-
pression of the adaptive immune response [133], resulting in increased susceptibility
to infection, sepsis and finally multiple organ failure [134,135]. TSCI and TBI patients
were reported to suffer from systemic immune suppression, secondary immune defi-
ciency syndrome, and hyperinflammation with chronic neuroinflammation and autoim-
munity [122,123,136–138]. Along with systemic immune response dysregulation, the
disruption of secondary lymphatic organ innervation following TSCI also results in im-
mune paralysis (so-called secondary immunodeficiency) [139], which further increases
susceptibility to infections [138,140].

The combined dysregulation of the autonomic nervous system and the systemic
immune response following TSCI and TBI can have profound systemic effects on various
peripheral organs [141,142] such as gastrointestinal dysfunction following the gut–brain
axis [143,144]. Therefore, the gut microbial content of patients suffering from TSCI was
correlated to immunological and functional outcome, proposing that gut microbiota may
be involved in the increased infection susceptibility [145]. Overall, TSCI and TBI strongly
modulate local and systemic immune responses, engaging neural, endocrine, paracrine,
and cell–cell interactions.

3.6. Local Perfusion

During primary injury of TSCI, the direct insult to the spinal cord can cause severe
haemorrhage [146], whereas the secondary injury, through the interruption of spinal cord
vascular supply as a result of excessive bleeding and trauma-related neurogenic shock with
hypovolemia and hemodynamic shock, can lead to increased spinal cord ischemia [27,147].
While larger vessels such as the anterior spinal artery commonly remain intact, rupture
of smaller intramedullary vessels and capillaries causes extravasation of immune cells at
the injury site [146] and endothelial injury-induced vasogenic oedema. These interactions
cause additional pressure to the injured spinal tissues and, in addition to the haemorrhage-
induced vasospasm, result in further disruption of the blood flow [27].

Similar to TSCI, the mechanical insult of the primary injury following TBI can result
in either macroscopic injuries through direct bleeding after vessel injuries, or microscopic
nerve tissue damage (such as diffuse axonal injury) and micro-vascular damage that causes
inflammation and oedema, thus initiating the second injury phase. The secondary injury
can result in alteration of the blood flow, ischemia, hypoxia, cerebral oedema and raised
intracranial pressure [121,148]. The hypoperfusion from mass lesions or oedema is due
to locally raised parenchymal pressures that decrease the local blood flow to levels below
the normal cerebral perfusion pressure of ~55 mmHg. Furthermore, the local injury leads
to a disruption of the normal vascular autoregulatory mechanisms, so the brain cannot
compensate for the decreased perfusion.

In patients with TBI, modulations of systemic arterial pressure can cause alterations
in cerebral blood flow leading to severe and potentially irreversible conditions such as
hypoperfusion (brain ischemia) or hyperperfusion-induced oedema. Due to autoregulatory
mechanisms, changes in cerebral blood volume or systemic arterial pressure can cause
vasodilation or constriction of brain vessels. In spinal cord perfusion, similar autoregulatory
mechanisms have been observed [149]. Therefore, low systemic arterial pressure caused by
blood loss in severely injured patients is often associated with a drop in cerebral perfusion
pressure. This triggers vasodilation of the cerebral blood vessels and subsequent increase
in the cerebral blood volume. If the systemic arterial pressure drops below the lowest
limit of the autoregulatory response, the cerebral perfusion pressure potentially reduces,
resulting in brain ischemia. However, TBI studies show that affected patients particularly
suffer from loss of autoregulatory capacity [150], decreased cerebrovascular reactivity [98],
and blood–brain barrier leakage [151].

The understanding of TBI-TSCI interaction with regards to the local perfusion is
limited. TBI activates the sympathetic nervous system with the release of endogenous
catecholamines such as the vasopressor norepinephrine [152], which leads to reactive vaso-
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constriction of peripheral vessels in order to maintain an elevated mean of the systemic
arterial pressure (neurogenic hypertension). This could positively affect the perfusion
of the spinal cord in patients with additional TSCI. Exogenous norepinephrine was ad-
ministered in acute TSCI patients in order to avoid hypotension and optimise spinal cord
perfusion [153,154]. Elevated mean arterial blood pressure during the acute phase of TSCI
was correlated with better long-term neurological recovery [149,155]. Therefore, post-TSCI
blood pressure management with the goal of a mean arterial pressure over 85 mmHg has
become the clinical standard [156,157]. Nevertheless, the reperfusion of ischemic tissue,
which contains, e.g., cytokines, chemokines, reactive oxygen species and excitatory neuro-
transmitters, can promote the ongoing inflammatory response during the secondary injury
phase of TSCI, potentially resulting in hyperinflammation and tissue damage [155].

To date, detailed analysis of the spatiotemporal aspects of TSCI and TBI interaction
regarding re-perfusion damage and maintenance of sufficient perfusion is missing; however,
based on the available studies on isolated injuries interaction is likely, and warrants
further analysis.

3.7. Endocrine Dysregulation

The endocrine system plays a pivotal role in the maintenance of whole-body home-
ostasis, especially after trauma and critical illness [158,159].

Following TBI, dysregulation of endocrine signalling cascades have been reported
for various axes including insulin [160], pituitary dysfunction [161] with disruptions in
the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis [162], antidiuretic hor-
mone (ADH, vasopressin) [163], the hypothalamic-pituitary-adrenal (HPA) axis [164], sexual
hormones [164,165], thyroid-stimulating hormone (TSH) [166,167], alterations in leptin sig-
nalling [75,168], osteocalcin (OCN) [168] and lipocalin 2 [169,170]. Further analysis depicted
a bidirectional interaction between the brain and the endocrine system in TBI [171,172].

Regarding acute TSCI, posttraumatic endocrine alterations are not that well char-
acterised [173,174]. Following acute TSCI, dysregulation of the SNS and HPA axis oc-
cur, and are linked to post-TSCI immunosuppression [102,175,176]. The level of ACTH,
cortisol and prolactin dysregulation may be affected by the level of injury [177]. Fur-
ther, in acute and chronic TSCI, low levels of vitamin-D3 (Vit-D3) are observed [178]. In
chronic TSCI, a disruption of the endocrine pathway regulation metabolism and skeletal
health involving several adipokines, including Leptin, the SNS and Vitamin D3, has been
described [173,177,179].

Other additional TBI injuries such as bone fractures also have a major impact on endocrine
mechanisms. Following bone fracture and heterotopic ossification, alterations have been
observed for OCN, insulin, [168], calcitriol (1-,25-Vit-D3) and calcidiol (25-VitD3) [180,181].
Consequent haemorrhage and anaemia can trigger elevated systemic erythropoietin (EPO)
levels [182,183].

Endocrine signalling was also reported to influence TSCI healing [184]. Insulin [160],
thyroid hormone T3 [185,186], GH/IGF-1 [187,188], Vit-D3, EPO [16,189] and gonadotropin-
releasing hormone (GnRH) [190] were reported to positively effect TSCI regeneration and
outcome. Disruption in ADH secretion inducing Syndrome of inappropriate antidiuretic
hormone secretion (SIADH) was observed for TSCI and TBI [163], while HPA axis dysregula-
tion [102,164] showed negative effects on TSCI healing, resulting in persistent complications.

Despite the lack of direct studies on endocrine interaction with TSCI–TBI, the available
data shows that TSCI and TBI both have profound effects on the endocrine system and are
likely to interact with each other through it. As a detailed understanding of the underlying
mechanisms and their impact on TSCI regeneration still remains to be elucidated, further
preclinical and observational studies are needed.

3.8. Post-Traumatic Metabolism

The key function of metabolism is storage for a demand-adjusted supply of energy
in order to provide resources for anabolic processes and eliminate the waste products of
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catabolism. Trauma causes severity-dependent changes in the tightly regulated process
of metabolism, which can be divided into three phases, the early shock, catabolic, and
anabolic phases. The initial shock phase is characterised by reduced systemic energy
expenditure and systemic adaptions to maintain tissue perfusion and homeostasis within
the first hours after trauma. An increase of pro-inflammatory mediators and catecholamine
such as epinephrine initiate the catabolic phase, which is dedicated to the ‘fight for energy’
of the injured tissue. Here, the metabolic rate can increase up to ~20–25% or more [191,192].
This hypermetabolism is distinguished by an elevated body temperature and heart rate,
high energy expenditure, peripheral stress-induced insulin resistance, and hyperglycaemia
(plasma glucose levels >200 mg/dL) with extensive turnover in free fatty acids, followed
by activation of gluconeogenesis, proteolysis and lipolysis [193,194]. If this metabolic stage
stretches on too long due to the severity of the injury, adipose tissue, skin, muscle and
other tissues can be destroyed. These alterations are further accompanied by additional
structural and functional transformation, such as browning of the white adipose tissue
(WAT) induced by prolonged adrenergic stress response [106]. Furthermore, brown adipose
tissue (BAT) is activated upon trauma [105], resulting in elevated energy expenditure
with increased glucose and fatty acid oxidation as well as insulin sensitivity [106]. With
BAT activation, the final stage of posttraumatic metabolism begins, characterised by the
accession of anabolic processes to recover the former systemic loss [193]. These stages
of posttraumatic metabolism are commonly observed in patients suffering from TBI and
TSCI [27,195–198]. Following TBI, the disruption of normal cellular and mitochondrial
function [195–199] as well as, the increase of free radical production [196,198] have been
described. The changes in glucose metabolism, especially hyperglycaemia, occur partially
due to posttraumatic disturbed glucose transporter function (GLUT 1 and 3) as well as to the
increased demand for energy, which is needed to restore the ionic balance and membrane
potential [195–198,200], disrupted very early in the acute phase of TBI injury [201]. In the
acute phase, the cell membrane is corrupted through the injury, which causes redistribution
of ions and neurotransmitters, consequently altering the membrane potential. This in turn
impairs mitochondrial function, initiates oxidative stress, increases free radical production
and contributes to the changes in glucose metabolism [196–198,200] which have been
linked to disturbed neural regeneration after TBI [199,201].

Along with the common posttraumatic metabolic events and alterations described
for TBI, patients suffering from TSCI show aberrant occurrence of neurotransmitters,
especially glutamate disruption due to vascular and tissue destruction [27]. Furthermore,
injured muscular and skeletal tissue is rich in Ca2+ ions, and therefore affected by the
ionic imbalance [202–204]. In detail, TSCI causes immediate and permanent unloading
of the involved skeletal regions, with structural and metabolic effects triggering calciuria
and hypercalcemia within 10 days and up to 1–6 months after injury [202]. Osteoblastic
activity is further diminished, resulting in osteoporosis in the pelvis and the extremities
affected by the spinal injury [202]. In addition to the profound metabolic changes which
generally occur after trauma, a dominant effect of neuronal injury is the alteration of
body composition and its long lasting metabolic consequences [204,205]. Hence, shortly
after injury rapid and significant muscle atrophy, mainly below the level of injury, can
be observed. The atrophy is partly trigged trough the reduction of hormones such as
testosterone within a few weeks, and continues beyond the end of the first year [202–205].
The loss of metabolic active muscle mass results in the reduction of the basal metabolic
rate and resting energy expenditure. This altered metabolism is reflected in the frequently
observed obesity state of TSCI victims, resulting in further severe health consequences
such as glucose intolerance, insulin resistance, hyperlipidemia, and diabetes [202,205]. The
survival rate of TSCI is estimated to be 69–96%, further emphasising the importance of
treating the affected metabolism [206].

Especially in patients with severe trauma, such as polytrauma with involvement of
the central nervous system, the maintenance of metabolism represents a pivotal aspect
of therapy [192]. Following TBI, insulin resistance, hyperglycaemia, ketones and distinct
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alterations in lipid profiles were commonly observed [160,196,207–209], while disturbed
metabolic parameters were associated with a decreased neurological outcome in TBI [210].
As hyperglycaemia was shown in particular to negatively affect regeneration following
TSCI and TBI in humans and in vivo [211–214], clinical trials were run to investigate
the application of insulin to reduce the vital state of hyperglycaemia. Surprisingly the
therapeutic approach with insulin resulted in controversial outcomes [160]. However,
differential monitoring of glucose was shown to be effective for the limitation of secondary
neuronal damage and the improvement of TBI outcomes [215,216]. Concomitant injuries in
TSCI are therefore likely to contribute to inferior clinical outcomes through their disturbed
metabolism. Although specific studies on the effects of co-occurring TSCI and TBI on
posttraumatic metabolism remain limited, a more detailed understanding of this aspect
will contribute to new nutritive and endocrine therapeutic strategies in the acutely injured,
potentially overcoming negative interaction.

3.9. Circadian Rhythm

One essential mechanism that mediates the interaction of TBI, TSCI and peripheral or-
gans is the circadian rhythm. It is controlled by a central pacemaker in the suprachiasmatic
nucleus (SCN) of the hypothalamus that is synchronised with the light–dark cycle and
regulates the intrinsic clocks in the peripheral organs [217]. Through its connection with
other hypothalamic nuclei, the SCN controls the sympathetic nervous system as well as
the hypothalamic-pituitary-adrenal axis in order to transmit the rhythm to different tissues
throughout the body [218,219].

Disrupted circadian rhythm is a common symptom following TBI, and is reflected
by the fact that up to 50% of these patients suffer from sleep disorders that are addition-
ally characterised by aberrant expression patterns of clock genes in mononuclear blood
cells [220–222]. Similar to TBI patients, those with cervical spinal cord injury commonly
develop sleep disorders that are accompanied by circadian disruptions like dysregulated cir-
cadian rhythm and course of melatonin production [223,224], core body temperature [225],
and aberrant expression patterns of clock genes in peripheral blood mononuclear cells [226].
Sleep abnormalities have been shown to negatively affect the outcome of TBI [227], and
a recent study in mice shows involvement of circadian regulation in the neuroinflamma-
tion and blood–spinal cord barrier disruption following TSCI [228]; therefore, different
kinds of chronotherapeutics have already been clinically tested. Blue-wavelength light
therapy seemed to be helpful for patients with mild TBI or long-term fatigue following
TBI [229,230]. The reduction of evening melatonin, often referred to as the ‘sleep hormone’,
could lead to insomnia and was observed in patients suffering from spinal cord injury and
TBI [224,231–233]. As melatonin acts as a neuroprotector and reduces oxidative stress as
well as neuroinflammation, it might be a promising drug to treat sleep disorders following
TSCI and TBI [226,234,235].

4. TBI, TSCI and MSCs
4.1. MSC Therapy in Post-Traumatic Neurological Disorders

Stem cells are multipotent cells with the ability to differentiate into various cell types,
as well as, to renew themselves [236]. Mesenchymal stem cells (MSCs), hematopoietic
stem cells (HSCs), brain-derived neural stem cells (NSCs), embryonic stem cells (ESCs),
and induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells,
represent major stem cell sources previously investigated for traumatic brain injury, spinal
cord injury, neurodegenerative disease and stroke therapy [84,237–249] (Table 1).

The distinct properties of MSCs places them among the most looked-for cell sources.
Therapy development based on these cell types is currently rapidly evolving in regenerative
medicine. The simplicity with which MSCs can be obtained from various sources as well
as their low immunogenicity and immunomodulatory abilities makes them available for
transplantation in both auto- and allogeneic systems. There have been 125 clinical trials
using MSCs to treat neurological diseases registered to date [247], and they are the most
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studied cell population in registered trials for TSCI (Table 1). These cells also proliferate
quickly and have a high level of multilineage differentiation. Furthermore, MSCs retain
their regenerative potential even after cryopreservation and have “homing properties”,
allowing them to migrate toward the lesion site [250]. MSCs are principally found in bone
marrow (BM-MSC), adipose tissue (AD-MSC), and peripheral blood. They can be obtained
from the umbilical cord (UC-MSC), the umbilical cord blood (CB-MSC), the urine, the
amnion, and the placenta, [251,252]; however, BM-MSCs were the first to be discovered
and are thus the most studied type of MSC. They frequently serve as the gold standard
and were initially used in the majority of clinical trials [76,253].

BM-MSCs show the capacity for self-renewal and differentiate into muscle, bone,
fat, cartilage and connective tissue in vivo [84]. Beyond that, their additional proposed
ability to differentiate into diverse neural cell types led to their intensive application in
clinical and preclinical trials of neurodegenerative diseases and trauma of the central nervous
system [238–241,247,254–259]. Their primary function, however, is a modulating one in the
case of TBI/TSCI. Therefore, BM-MSC treatment allows cell-specific differentiation [260] as
well as the positive paracrine effect through cytokine release [254], resulting in the limitation
of inflammatory secondary injury, promotion of neurogenesis and stimulation of neuronal
progenitor cells maturing into neurons [261], all relevant for TSCI and TBI treatment.

Experimental results suggest a promising approach for clinical application of MSCs
in TBI patients [245]. There have been a small number of clinical trials with MSC therapy
for TBI to date. In TBI disorders, autologous BM-MSCs transplanted into the injured brain
during cranial surgery had no negative effects [248]. The administration of autologous
BM-MSCs via lumbar puncture to 97 patients with TBI in the subacute stage was also
shown to be safe. Following MSC transplantation, approximately 40% of patients showed
improved neurological function, in a non-controlled trial in patients with vegetative state
after TBI [262]. Autologous BM-mononuclear cell delivery (containing BM-MSCs along
with cells of hematopoietic and lymphocytic lineage) was observed to reduce neural cell
loss, reduce neuroinflammation and improve clinical outcomes after TBI in adults and
children in Phase I trials [263,264], while a phase I/IIa trial in adult TBI patients showed
safety, however with only limited data on possible enhanced outcomes [265]. These studies
may be limited by their design, as they used BM-mononuclear cells, which in addition to
BM-MSCs also contain cells of hematopoietic and lymphocytic lineage [245,264,265]. For a
brief summary of ongoing and completed clinical trials of stem-cell based therapies in TBI,
we refer to a recent review [245] and Table 1.

In TSCI, BM-MSC treatment aims for optimal neuronal regeneration by limitation of
the secondary injury and modulation of the local microenvironment in order to optimise
healing cascades and axonal regeneration as well as by targeting differentiation of cells to
restore spinal cord function [17,19,266]. MSC transplantation after TSCI has shown promis-
ing results in some preclinical studies [258,267–269]. These results were translatable to the
chronic phase of the injury in mice [259,270]. Single MSC application was demonstrated to
be safe but had little therapeutic outcome in a phase three clinical trial [271], which was
supported by former and recent systematic reviews summarising clinical and preclinical
evidence [19,272,273]. There are currently several trials in progress and their completion
will deliver the required data on the efficacy of MSC therapies after TSCI [84,274]. For a
brief summary of stem-cell based therapies in TSCI, we refer to Table 1 and other recent
reviews [19,246,272,275]. Overall, MSC therapy improves the microenvironment of the
injury site, improves nutritional support, modulates the inflammatory response, and reduces
blood–brain and blood–spinal cord barrier leakage, all of which help with TSCI healing [274].
Single cell types, on the other hand, have limited proliferation, therapeutic efficacy, homing
ability, and survival [84]. To improve TSCI regeneration, cell-based therapies may be crucial;
however, they require further detailed investigation and clinical trials.
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4.2. The Potential Effect of TBI on MSC-Based TSCI Treatment

Preclinically observed BM-MSC-induced improvements in TSCI outcome remain far
from a restitutio ad integrum [272,276]. Therefore, this review seeks to raise awareness about
the impact of additional trauma, such as frequently concomitant TBI, on MSC treatment.

TSCI and TBI are proposed to interact in a bidirectional manner, suggested by the
negative effect of TSCI on cognitive function in patients suffering from TBI, the impact
of TBI on sensorimotor outcome in patients with TSCI, and the clinical observation of
enhanced ossification following TSCI and TBI, underlining the impact on MSC mediated
healing cascades. Therefore, TSCI-TBI interactions on the local and systemic levels still
have to be characterised and considered upon the application of MSC therapy. These
environmental changes are caused by the alterations of the autonomic and peripheral
nervous system, the inflammatory response, local perfusion, endocrine homeostasis and
circadian rhythm (Figure 5), potentially causing crucial effects on MSC biology.

Figure 5. Interactive response of TSCI and TBI potentially effecting MSC treatment. Although TSCI and TBI feature common
local and systemic effects (grey), several responses to spinal cord and brain injury are unique (black). Therefore, different
pathways of interaction can be identified and should be considered in order to optimise mesenchymal stem cell (MSC)
treatment in patients suffering from TSCI with concomitant TBI. Abbreviations: ANS = autonomous nervous system,
TBI = traumatic brain injury, TSCI = traumatic spinal cord injury.

Successful MSC-based therapy in TSCI therefore depends on: (I) stem cell survival,
viability and secretomic capacity; (II) cell roaming to the injury side and subsequent
differentiation; (III) limitation of secondary injury; and (IV) optimised neural regenera-
tion [19,277,278].

(I) Stem cell survival: Following severe TSCI and implantation of stem cells in the acute
phase, survival of these cells in TSCI was markedly reduced [84,279]. Regarding
concomitant injuries there are currently no data, but further reduced cell survival
due to compromised local perfusion and dysregulated systemic and local energy
metabolism such as hyperglycaemia is very likely. Concerning secrotomic capacity, it
has been shown that inflammatory cytokines inhibit the proangiogenic capacity of
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the soluble component of the MSC secretome [280], and that the secretomic capacity
of BM-MSCs is crucial for the promotion of neuronal survival after TSCI [281].

(II) Cell roaming and differentiation: Interestingly, TSCI and TBI exert differential stim-
ulatory effects on neuronal stem cell niches in the brain, with potential effects
on cell recruitment [282]. Regarding MSC chemotaxis to the injured spinal cord,
CGRP—which is strongly regulated after TBI—showed a key role in vitro and ex
vivo [283]. Antibody blockading of interleukin 6, which is strongly upregulated after
concomitant injuries and severe infection in mice with TSCI and MSC treatment,
improved MSC survival and locomotor function. The GH/IGF-1 axis, including the
parathyroid hormone (PTH) and VitD3, are crucially involved in chondrogenic and
osteogenic MSC differentiation as well as MSC-mediated angiogenesis [284–286],
while local hypoxia enhances MSC proliferation in vitro [287]. As both TSCI and TBI
cause heterotopic ossification, positive effects on MSC proliferation as well as negative
osteogenic effects on MSC differentiation after severe trauma could be limiting aspects
that require further research.

(III) Limiting secondary injury: As severe autonomic dysregulation affects whole-system
energy metabolism via distinct effects on gastrointestinal function, glucose and lipid
distribution, metabolism, and browning of adipose tissue, direct and indirect effects
on MSC treatment in TSCI are very likely. Regarding limiting secondary injury with
transplanted MSC, they are directly affected by adrenergic signalling; stimulatory and
inhibitory proliferative effects have been described [288–290], while increased survival
under challenging conditions such as hyperglycaemia and oxidative stress [110,291]
were also observed. Overall, the data on SNS impact on MSCs in trauma is limited,
while PNS effects on MSCs are little understood at present. Regarding circadian
rhythm, melatonin has been shown to be a relevant factor in MSC treatment of TSCI
in vivo [292,293]. In MSCs, and derived cell types a significant number of genes show
circadian expression, regulating their differentiation and activity [294–297]. Melatonin
preconditioning of these cells could improve their regenerative potential [298–300].
As TSCI and TBI both negatively affect circadian rhythm as well as circadian-mediated
inflammatory and healing cascades [227,233,301,302], chronotherapeutic aspects in
MSC therapy for TSCI should be considered.

(IV) Optimised neural healing: MSC-based therapy was reported to positively affect
neural healing in TSCI, specifically through enhanced axonal regeneration and re-
duced glial scarring via the paracrine effects of secreted cytokines, exosomes, and
local mediation of inflammatory response [274]. Specifically, modulation of the local
inflammatory micromilieu by an MSC-mediated shift in macrophage polarisation
towards M2 [303], as well as an exosome-induced reduction in astrocyte-mediated
posttraumatic neurodegradation [304] was observed. As previously stated, TBI in-
duces relevant inflammatory peripheral modulation [94], systemic and peripheral
inflammation [305] and disturbed microbiota [89], and has been linked to enhanced
bone healing by M2 polarisation in clavicle fractures [306]. In association with TSCI,
these effects have not been addressed, although some impact of TBI on MSC-mediated
regeneration following TSCI can be expected.

Overall, MSCs have a regulatory phenotype; they respond quickly to environmental
signals that control their biological and secretorial activity [84,280]. The varied impacts
of concurrent TBI and TSCI on MSCs are not fully explored; however, the available data
suggest that there is an easily discernible association between the existence of additional
trauma such as TBI and the efficacy of MSC-based therapy in TSCI, warranting further
research attention.

5. Outlook: Brain as Saviour?

TSCI and TBI both show distinct effects on posttraumatic pathophysiology, with
trauma-dependent differences. Although isolated TSCI and TBI have been intensively
studied in basic translational and clinical research, understanding of the pathophysiological
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mechanisms of the frequently co-occurring injuries remains limited. Stem cell-based
therapies, especially MSC treatment for patients suffering from TSCI or TBI remain a
promising regenerative therapy towards restitutio ad integrum, even if it has until now
provided only mild benefits [19]. One central limitation is the complex process of neural
regeneration with crucial spatiotemporal aspects, which is not yet fully understood [307].
A second limitation is the expected complex interaction of TSCI and TBI pathophysiology.

As TSCI and TBI negatively affect each other, their underlying pathophysiology might
reveal crucial insights on systemic posttraumatic interactions and local spatiotemporal
aspects of neural regeneration. Therefore, we reviewed the current literature on systemic
effects and possible interactions of both injuries. In the clinical setting, the additive trauma
of TSCI and TBI causes reduced neurologic recovery as well as rising morbidity and mor-
tality. Both injuries represent primary local neurotrauma with subsequent somatotopic
effects on neurological function (Section 3.1), also resulting in reduced neurological func-
tion in areas that were not primarily injured [308–311] (Section 3.2). In summary, TSCI
and TBI show profound systemic pathophysiological effects, particularly regarding im-
mune response, autonomous regulation, perfusion, circadian rhythm and posttraumatic
metabolism (Section 3).

Especially in the early posttraumatic phase of TSCI and TBI, autonomic dysregulation
with aberrant SNS activity (Section 3.3) contributes to altered cerebral and spinal-cord
perfusion (Section 3.6), immune modulation (Sections 3.2 and 3.5), disrupted endocrine
signalling, metabolism and energy-wasting (Sections 3.7 and 3.8) as well as dysregulation
of the circadian rhythm (Section 3.9). Regarding cell-based therapies (Section 4.1), the
effects of these alterations and the SNS itself have to be considered as, e.g., adrenergic
signalling strongly influences MSC differentiation [111] (Section 4.2). The role of SNS
pathophysiology in TSCI and TBI has been researched for decades [29,312–317]; however,
in recent years the role of SNS disruption in posttraumatic pathophysiology has come
into focus [83,102,318], and the SNS is the target of new therapeutic interventions in TSCI
and TBI [83,319,320]. However, comparative studies on the interaction of SNS in TBI and
co-occurring TSCI are still missing.

Questions concerning TSCI–TBI interaction continue to evolve. What happens after
disruption of the blood–spinal cord barrier following TSCI, subsequent loss of cerebrospinal
fluid (CSF) to the surrounding tissue, and consequent local inflammatory and systemic
effects, particularly in the context of TBI? What are the distant effects after sensitization of
the adaptive immune system to the central nervous system and the loss of its immunolog-
ical privilege? How do TSCI and TBI together impact posttraumatic immunodeficiency,
metabolic disturbance, energy-flux and thermogenesis? Is there a race for glucose between
TSCI and TBI? How do they interact with further injuries, especially with respect to perfu-
sion and blood pressure? Are the systemic effects of concomitant injuries underestimated
in MSC therapies to date? Can successive experiments on TBI–TSCI interaction unravel
hitherto unknown pathophysiological pathways, suitable for new targeted therapies? As
assumptions concerning possible interactions are speculative, systemic approaches with
respect to the systemic pathophysiology of these traumata are urgently needed in order to
understand TSCI–TBI interaction on the local as well as the systemic level. Advancements
in ‘-omics’ aim for spatial and temporal resolution, leading to new perspectives on local
healing cascades [321,322].

For future attempts in spinal cord regeneration, trauma-dependent systemic patho-
physiology has to be considered for optimised survival of regenerative constructs and
targeted protection against secondary injuries. As the temporal and spatial aspects of
neural regeneration are crucial and potentially disturbed by systemic influences, targeted
environmentally-triggered modulation of healing (e.g., by complex, logic based, scaffold
cytokine release systems, combined cell therapies [243,323–325]) represents an evolving
concept that in synergy with optimised surgical, intensive and rehabilitative care might
overcome today’s therapeutic limitations. Therefore, exploring the complex interaction of
TSCI and TBI and their impact on stem cell therapies will provide a better understanding
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of ‘the brain’s’ impact on TSCI pathophysiology and regenerative therapies, potentially
rescuing spinal cord function in the future.

Table 1. Overview of different cell types used in TSCI and TBI treatment studies and recent reviews regarding those cell
therapy strategies in TSCI and TBI. Different cell types display specific favourable and disadvantageous characteristics for
therapy in TBI and TSCI, as summarized in the second and third column. For TSCI, numerous registered clinical trials were
identified, of which nearly 1

2 were completed and 1/3 have published results. For TBI there were fewer trials identified,
with only three published results. While some trials have led to more than one paper publishing results, other papers
include results from more than one registered trial. Compared to some published reviews also including non-registered
trials [326], our numbers of trials and publications are clearly lower. Under registration of clinical trials may be a relevant
aspect, beyond this issue [327]. Nevertheless, considerable data on MSC therapy in TSCI is available, displaying safety
[275], while optimal application and demonstration of relevant treatment effects warrant further studies.

Proposed Advantages Proposed Limitations

Clinical
Trials
TSCI
(Total/

Completed/
Published)

Clinical
Trials TBI

(Total/
Completed/
Published)

Recent
Reviews

Cell
Therapy

And TSCI

Recent
Reviews

Cell
Therapy
and TBI

Cell Therapies

Omnipotent Cells

Embryonal
stem cells

(ESCs)

- omnipotency, possibility of
in vitro pre-differentiation
to desired cell subset (e.g.,
neuronal or oligodendral
precursor cells)

- direct neuronal
replacement

- direct glial replacement
- replacement of endothelial

cells
- secretomic activity

- ethical concerns
- immunogenity
- tumourigenesis

Systematic:
[275,328,

329]
Narrative:
[84,330–

334]

Narrative:
[245,264]

Induced
pluripotent
stem-cells

(iPSCs)

- autologous transplantation
possible with reduced
immunogenity

- lack the ethical concerns of
ESCs

- omnipotency, possibility of
in vitro pre-differentiation
to desired cell subset (e.g.,
neuronal or oligodendral
precursor cells)

- direct neuronal
replacement

- direct glial replacement
- replacement of endothelial

cells
- secretomic activity

- tumourigenesis
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Table 1. Cont.

Proposed Advantages Proposed Limitations

Clinical
Trials
TSCI
(Total/

Completed/
Published)

Clinical
Trials TBI

(Total/
Completed/
Published)

Recent
Reviews

Cell
Therapy

And TSCI

Recent
Reviews

Cell
Therapy
and TBI

Multipotent cells & differentiated cells 73/36/25 14/6/3

Cells of (Neuro-) Ectodermal Lineage 13/9/7 0/0/0

Neural stem
cells

(NSCs)

- direct neuronal
replacement

- neuronal, oligodendral
and astrocytic
differentiation possible

- potential of remyelination
- modulation of

microenvironment
- promotion of

oligodendrocyte survival

- ESC or iPSC as
source mostly
needed (one MSC
based therapy
reported
(NCT02326662))

- immuno-
suppression
regiments in
allogenous
strategies

6/5/5
[335–338] [339]

Neural
precursor

cells (NPCs)

- direct neuronal
replacement

- secretomic activity (e.g.,
trophic factors)

- modulation of
microenvironment

1/0/0

Schwann
cells (SCs)

- harvestable from periph-
eral nerves

- promotion of local sub-
strate to faciliate axonal
growth

- remyelinisation (direct and
indirect)

- no neuronal differ-
entiation

2/2/2
[340,341]

Olfactory
ensheathing
cells (OECs)

- minimal inasive harvesting
from the nasal mucosa or
olfactory bulb

- promotion of local cellular
substrate to faciliate axonal
growth

- remyelinisation
- local immunomodulation
- guidance of axonal regener-

ation
- roaming to the injury side

- no neuronal differ-
entiation

- some (not NCT
registered) studies
with embryonal
cells

- limited cell survival
and function

2/0/0 [326]

oligodend-
rocyte

precursor
cell

(OPC)

- secretomic activity (e.g.,
trophic factors)-
remyelinisation- local
immunomodulation-
stimulation of
angiogenesis

- ESC or iPSC as
source mostly
needed- immuno-
suppression
regiments in
allogenous
strategies

2/2/0



Cells 2021, 10, 2955 19 of 35

Table 1. Cont.

Proposed Advantages Proposed Limitations

Clinical
Trials
TSCI
(Total/

Completed/
Published)

Clinical
Trials TBI

(Total/
Completed/
Published)

Recent
Reviews

Cell
Therapy

And TSCI

Recent
Reviews

Cell
Therapy
and TBI

Cells of Mesodermal Lineage 60/27/18 14/6/3

Bone
marrow
derived

cells/
aspirate
(BMCs)

- minimal invasive
autologous harvesting
possible

- direct intraoperative
processing and application

- containing haematopoietic
and mesenchymal stem
cells and endothelial
progenitor cells

- immunomodulation
- guidance of axonal

regeneration

1/1/1
[342]

Bone
marrow
derived

stem cells
(BM-SCs)

- long experience in
harvesting and safe
systemic application due
to leukaemia treatment

- minimal invasive
autologous harvesting
possible

- containing haematopoietic
and mesenchymal stem
cells

- immunomodulation
- low immunogenicity

- low survival rate in
CNS

- donor variability in
allogenic products

- heterogenic cell
populations

- ectopic migration

6/3/1
[343] 2/0/0 [344]

Bone
marrow
derived
mononu-
clear cells

(BM-
MNCs)

- minimal invasive
autologous harvesting
possible

- containing haematopoietic
and mesenchymal stem
cells

- immunomodulation
- preservation of

blood–brain barrier

7/0/0
2 × with-

drawn

5/4/3
[265,345–

347]
[348] [264]

Bone
marrow
derived

mesenchy-
mal

stem-cells
(BM-MSCs)

- minimal invasive
autologous harvesting
possible

- low immunogenicity
- migration to damaged

tissue
- no ethical concerns
- neuronal

trans-differentiation
- favourable secretome,

production of favourable
microvesicles

- neurotrophic signalling
- promotion of angiogenesis
- immunomodulation
- mitrochondrial transfer
- inhibition of gliosis
- prevention of apoptosis

- role of in vivo
neuronal trans-
differentiation
unclear

- low survival rate in
CNS

- donor variability in
allogenic products

- ectopic migation
- tumourigenicity

still discussed

17/10/9
1 × sus-
pended

[271,349–
356]

1/1/0
1 ×

interim
data

published
[357]

[19,268,
272,273,

358]
[359–362]
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Table 1. Cont.

Proposed Advantages Proposed Limitations

Clinical
Trials
TSCI
(Total/

Completed/
Published)

Clinical
Trials TBI

(Total/
Completed/
Published)

Recent
Reviews

Cell
Therapy

And TSCI

Recent
Reviews

Cell
Therapy
and TBI

Adipose
tissue

derived
mesenchy-
mal stem

cells
(AD-MSCs)

- autologous harvesting
possible, ubiquitous
availability

- faster proliferation than
BM-MSC

- migration to damaged
tissue

- no ethical concerns
- see BM-MSCs

14/4/2
[363,364]
1× publi-
cation of
interim

data [365]
4x indivi-

dual
patient
expand
access

3/0/0
1 × with-

drawn

Umbilical
cord-

derived
mesenchy-
mal stem

cells
(UC-MSCs)

- non-invasive harvesting
- higher proliferation and

differentiation capacities
than other MSC sources

- migration to damaged
tissue

- see BM-MSCs

- role of in vivo
neuronal trans-
differentiation
unclear

- low survival rate in
CNS

- ectopic migration
- autologous

approach
logistically difficult

11/5/2
1×with-
drawn

[366,367]

2/0/0
1× with-
drawn

Umbilical
cord

derived
cells

(UC-MNCs
&

UC-MSCs)

3/2/2
[368]

further and
undefined

MSCs
3/2/1
[369] 1/1/0

Macro-
phages

- autologous therapy
possible

- favourable local
immunomodulation

- pulmonary
embolism

1/0/1
[370] (sus-
pended)

Sum 73/36/25 14/6/3
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