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At sites of inflammation, monocytes carry out specific immune functions while facing
challenging metabolic restrictions. Here, we investigated the potential of human
monocytes to adapt to conditions of gradually inhibited oxidative phosphorylation
(OXPHOS) under glucose free conditions. We used myxothiazol, an inhibitor of
mitochondrial respiration, to adjust two different levels of decreased mitochondrial ATP
production. At these levels, and compared to uninhibited OXPHOS, we assessed
phagocytosis, production of reactive oxygen species (ROS) through NADPH oxidase
(NOX), expression of surface activation markers CD16, CD80, CD11b, HLA-DR, and
production of the inflammatory cytokines IL-1b, IL-6 and TNF-a in human monocytes. We
found phagocytosis and the production of IL-6 to be least sensitive to metabolic
restrictions while surface expression of CD11b, HLA-DR, production of TNF-a, IL-1b
and production of ROS through NOX were most compromised by inhibition of OXPHOS in
the absence of glucose. Our data demonstrate a short-term hierarchy of immune
functions in human monocytes, which represents novel knowledge potentially leading
to the development of new therapeutics in monocyte-mediated inflammatory diseases.

Keywords: immunometabolism, bioenergetics, IL-6, phagocytosis, human monocytes, energy, ATP, lack of
glucose availability
INTRODUCTION

Human monocytes use energy, mostly in the form of ATP, for housekeeping functions such as
cation transport and the generation of macromolecules as well as for a variety of specific tasks. These
tasks include transendothelial migration, phagocytosis (1, 2), presentation of antigens (3),
differentiation into macrophages, dendritic cells (4) and osteoclasts (5), synthesis and secretion of
cytokines such as interleukin-1b (IL-1b), IL-6 and tumor necrosis factor (TNF-alpha) (2), and the
production of reactive oxygen species (ROS) (6). The correct execution of these tasks necessitates
org October 2021 | Volume 12 | Article 7306721
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sufficient supply of energy and intermediates. Without energy,
the function of these important immune cells would certainly fail
(7). In addition, low availability or even the absence of glucose
carbon will compromise a series of metabolic pathways (such as
the pentose phosphate pathway, the serine synthesis pathway,
and the glycerol phosphate shuttle), which results in a reduced
synthesis of intermediates leading to a potentially negative
influence on cellular activation (8–12). Against this
background, it should be noted that monocytes face variable
and demanding microenvironmental conditions (13) when
migrating from the blood into multiple tissues. Because of high
metabolic activity, the “battlefields” of monocytes (e.g., sites of
acute and chronic tissue inflammation such as wound healing,
inflamed joints, sites of ischemia and in growing tumors) are
usually characterized by diverse and often extremely
compromised conditions. These include very low supply of
oxygen, glucose and other nutrients, low pH, and increased
lactate levels – which collectively lead to less effective synthesis
of ATP and intermediates both being critical for cellular
activation, ultimately causing limited availability of energy and
building blocks (12, 14, 15). Therefore, immune cells such as
human monocytes use different metabolic programs to meet
their cellular energy needs and for the generation of biomolecules,
which enable them to cope with these challenging, metabolically
restricted conditions (8–12). This also means that they must be
metabolically highly dynamic, and that they need to prioritize their
functions when energy and substrate supply is limited. In detail,
cellular adaptations in energy and intermediate metabolism affect
the immune response both qualitatively and quantitatively (7, 8,
13, 16–18). However, the exact quantitative consequences of such
compromised conditions on the functions of monocytes are
still elusive.

In this study, we therefore hypothesized metabolically
compromised conditions to affect the functions of monocytes in
a differential (hierarchical) manner. Thus, monocytes will reweigh
or switch off their specific tasks such as ROS production,
expression of surface markers, cytokine synthesis and
phagocytosis one after another (depending on its importance)
when subjected to compromised conditions. To test this
hypothesis, we modeled metabolic restrictions by gradually
reducing the mitochondrial ATP production of human
monocytes under conditions of glucose deprivation in order to
assess crucial immune functions at pathophysiological conditions.
Frontiers in Immunology | www.frontiersin.org 2
MATERIAL AND METHODS

Antibodies and Reagents
For cell stimulation and Golgi transport block, lipopolysaccharide
(LPS) and Brefeldin A (BFA) were purchased from Sigma-Aldrich
(St. Louis, USA). For the analysis of oxygen consumption,
Myxothiazol (MYX), Oligomycin A, and the pan- NADPH
oxidase (NOX) inhibitor VAS-2870 were purchased from Sigma-
Aldrich (St. Louis, USA). Flebogamma (highly purified, unmodified,
human IgG: IgG1 66.6%, IgG2 28.5%, IgG3 2.7%, IgG4 2.2%) was
purchased from Grifols (Frankfurt, Germany). For intracellular
ROS (iROS) detection, 5-(and 6-) chloromethyl-2’,7’-
dichlorodihydrofluorescein diacetate, acetyl ester (CM-
H2DCFDA) was purchased from Invitrogen GmbH (Karlsruhe,
Germany). For assessments of phagocytosis, FITC labeled E. coli
were applied using the Phagotest™ (Glycotope, Berlin, Germany).
For flow cytometry, Fc receptor block was achieved by adding
Flebogamma (highly purified, unmodified, human IgG: IgG1 66.6%,
IgG2 28.5%, IgG3 2.7%, IgG4 2.2%) purchased from Grifols
(Frankfurt, Germany). All antibodies used are listed in Table 1.
Following the European guidelines for flow cytometry, isotype
controls were exclusively used in the establishment phase of
staining protocol to verify effectiveness of Fc blocking by
Flebogamma, since isotype controls do not control staining
specificity (19).

Preparation of PBMC Isolation of CD14+
Monocytes, and Cell Culture
Monocytes were isolated from heparinized peripheral blood of
healthy volunteers after giving written informed consent (ethical
approval EA1/207/17 Charité - Universitätsmedizin Berlin). In
brief, peripheral blood mononuclear cells (PBMC) from
heparinized peripheral blood were isolated by density gradient
centrifugation using Ficoll-Paque™ Plus (GE Healthcare,
Chicago, USA). CD14+ monocytes were enriched from PBMC
with >95% purity and >95% viability (data not shown, gating
strategy provided in Figure S1) by using anti-human CD14
conjugated magnetic beads (Miltenyi Biotec, Bergisch Gladbach,
Germany) and then immediately used for the experiments.
Monocytes were cultured at 37°C in a humidified and
atmosphere with 5% CO2 (Binder, Tuttlingen, Germany) in
aliquots of 300 µL at a density of 1x107 cells/ml in 13 mL
round bottom polypropylene tubes (Sarstedt, Nümbrecht,
TABLE 1 | Antibodies used for flow cytometry.

Antibody Conjugate Manufacturer Catalog Number Species of origin Dilution

anti-CD14 APC-Cy7 Biolegend 301820 mouse IgG2a, k 1:25
anti-CD14 PE-Vio770 Miltenyi 130-110-521 REA599, recombinant 1:50
anti-CD16 PE-Vio770 Miltenyi 130-113-394 REA423, recombinant 1:50
anti-CD16 VioBlue Miltenyi 130-099-080 mouse IgMk 1:11
anti-CD80 APC Miltenyi 130-097-204 mouse IgG1k 1:11
anti-CD11b PE DRFZ n/a mouse IgG2b 1:100
anti-HLA-DR VioBlue Miltenyi 130-113-406 mouse IgG2ak 1:11
anti-hTNF-a APC-Vio770 Miltenyi 130-120-491 human IgG1 1:50
anti-hIL-1b PE Thermofisher MA5-23546 mouse/IgG1 1:10
anti-hIL-6 APC Miltenyi 130-096-088 rat IgG1k 1:11
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Germany) under orbital shaking at 120 min-1 (KS250basic, IKA-
Labortechnik, Staufen, Germany) in glucose free RPMI 1640
(Thermofisher, Waltham, USA) supplemented with 10% (v/v)
dialyzed (glucose-free) human AB serum (Sigma-Aldrich, St.
Louis, USA).

Quantification of Oxygen Consumption
For the measurement of the oxygen consumption rate (OCR)
following treatment with MYX, VAS2870, and oligomycin A (all
from Sigma-Aldrich, St-Louis, USA), CD14+ monocytes were
resuspended in glucose free RPMI-1640 [permits oxidative
phosphorylation (OXPHOS), but not glycolysis] supplemented
with 10% (v/v) dialyzed (glucose-free) human AB serum (Sigma-
Aldrich, St. Louis, USA). The cells were pre-treated 2 hours with
100 ng/mL LPS derived from E. coli (Sigma-Aldrich, St. Louis,
USA) or left untreated in the absence (vehicle control: 1%
Dimethylsulfoxide, DMSO) or presence of 2 pmol MYX/106

cells (MYX1) or 4 pmol MYX/106 cells (MYX2), 50 µM
VAS2870, 1 µM oligomycin A and 20 µM Carbonylcyanid-p-
trifluoromethoxyphenylhydrazon (FCCP) (Sigma-Aldrich, St.
Louis, USA), respectively. MYX irreversibly inhibits complex III
of the mitochondrial respiratory chain, reducing mitochondrial
biosynthesis of ATP (20). OCR was measured amperometrically in
100 µl of cell suspension (3 – 9.0 x 106 cells/ml) with a SI130
microcathode Clark-type oxygen electrode and Mitocell MT200
respirometry system (Strathkelvin, Scotland, UK). After an
incubation of 2 and 6 hours, basal OCR of MYX-treated cells
was assessed, followed by treatment with VAS2870 and
oligomycin A. OCR committed to the NADPH-Oxidase
(DOCRV), OCR committed to the mitochondrial ATP
production (DOCRO), VAS2870/oligomycin A insensitive OCR
and mitochondrial reserve capacity were obtained by following a
strictly timed protocol (shown in Figure S2)

Assessment of Cell Viability
Apoptosis and necrosis of monocytes were quantified by
Annexin V (Biolegend) and 7-AAD staining (BD Biosciences,
San Jose, USA) (gating strategy provided in Figure S1, reagent
concentration provided in Table 2) according to the
manufacturer’s instructions. Data were acquired using a BD
FACSCanto™ II (BD Biosciences, San Jose, USA) and
processed by FlowJo v7.6.5 (BD Biosciences, San Jose, USA).

Assessment of Fuel Oxidation
Seahorse XF Mito Fuel Flex Test was performed on XFe96
Bioanalyzer (Agilent Technology). All assays were performed
following manufacture’s protocols. In brief, monocytes were
Frontiers in Immunology | www.frontiersin.org 3
cultured in a 96-well assay plate in RPMI supplemented with
10% (v/v) dialyzed, human AB serum at 105 cells per well under
glucose-free conditions. Cells were stimulated for 4 h with both
100 ng/mL LPS and 2 pmol MYX/106 cells (MYX1) or 4 pmol
MYX/106 cells (MYX2) or LPS alone. The Mito Fuel Flex Test
inhibits the import of three metabolic substrates (pyruvate, fatty
acids and glutamine) with mitochondrial pyruvate carrier
inhibitor UK5099 (2 µM), carnitine palmitoyltransferase 1A
inhibitor etomoxir (4 µM), or glutaminase inhibitor BPTES
(3 µM). Mitochondrial stress and glycolytic parameters were
measured via OCR in pmol/min/1x105 cells. Metabolic
parameters were calculated according to the manufacturer’s
instructions (Agilent Technology). Thus, cellular dependence
on each of metabolite to fuel mitochondrial metabolism can
be analyzed.

Quantification of ROS Production
by Flow Cytometry
To measure cellular oxidative stress, iROS were detected using 5
(and 6) - chloromethyl-2’,7’-dichlorodihydrofluorescein
diacetate, acetyl ester (CM-H2DCFDA; Invitrogen GmbH,
Karlsruhe, Germany). Cells were incubated 30 min in PBS
(DRFZ, Berlin, Germany) with 5 µM CM-H2DCFDA, washed
with glucose-free RPMI-1640 and incubated 2 hours in glucose-
free RPMI-1640 and 10% (v/v) dialyzed human AB serum, with
or without 100 ng/mL LPS and with 1% DMSO, MYX1 or
MYX2. After incubation, cells were washed with PBS and
subsequently stained with anti-human CD14-APC-Cy7
(Biolegend, San Diego, USA). To exclude dead and apoptotic
cells, cells were stained with Annexin V-PE (Biolegend, San
Diego, USA) and 7-AAD (BD Biosciences, San Jose, USA)
(gating strategy provided in Figure S3, reagent concentration
provided in Tables 1, 2). Data were acquired using a BD
FACSCanto™ II (BD Biosciences, San Jose, USA) and
processed by FlowJo v7.6.5 (BD Biosciences, San Jose, USA).

Quantification of Phagocytosis
Phagocytosis was quantified using the Phagotest™ (Glycotope,
Berlin, Germany) according to the manufacturer’s instructions.
Data were acquired using a BD FACSCanto™ II (BD
Biosciences, San Jose, USA) and processed by FlowJo v7.6.5
(BD Biosciences, San Jose, USA).

Quantification of Cellular ATP
ATP content of monocytes was assessed with the CLS II KIT
(Roche, Mannheim, Germany) according to the manufacturer’s
TABLE 2 | Staining compounds used for flow cytometry.

Staining compound Manufacturer Catalog Number Dilution

7AAD BD Pharmingen 559925 1:20
Annexin-V-PE Biolegend 640908 1:200
Annexin-V-FITC Biolegend 640906 1:400
Zombie Green Biolegend 423111 1:400
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instructions. Luminescence of all samples was quantified using the
SynergyHT plate-reader (BioTek, Bad Friedrichshall, Germany).

Quantification of Cytokine Production
For the intracellular measurement of TNF-a, IL-1b, and IL-6,
humanmonocytes were pre-stimulated for 1 hour with 100 ng/mL
LPS in glucose-free RPMI with 10% (v/v) dialyzed human AB
serum, with or without 100 ng/mL LPS and with 1% DMSO,
MYX1 or MYX2. Protein transport was blocked by adding
Brefeldin A (Sigma-Aldrich, St-Louis, USA) at a concentration
of 10 µg/mL for another 1 or 3 hours to achieve intracellular
cytokine accumulation. Cells were stained using Zombie Green
(Biolegend, San Diego, USA) according to the manufacturer’s
instructions. Subsequently, cells were stained protected from
light using the IC staining Kit (Miltenyi Biotech, Bergisch
Gladbach, Germany) according to manufacturer´s instructions.
Intracellular cytokines were stained by using antibodies against
hTNF-a, hIL-1b, hIL-6 and as described above (Table 1). Data
were acquired using a BD FACSCanto™ II (BD Biosciences,
San Jose, USA) and processed by FlowJo v7.6.5 (BD Biosciences,
San Jose, USA).

Quantification of Cytokine Secretion
Monocytes were cultured in a 96-well plate in glucose-free RPMI
supplemented with 10% (v/v) dialyzed, human AB serum at 105

cells per well. Cells were stimulated for 6 h with both 100 ng/mL
LPS and 2 pmol MYX/106 cells (MYX1) or 4 pmol MYX/106 cells
(MYX2) or LPS alone. Subsequently, supernatants were collected
and TNF-a, IL-1b, IL-6 and IL-6/IL-6 Ra complex release was
measured by ELISA (R&D Systems, Minneapolis, USA)
following the manufacturer’s instructions.

Quantification of Surface Marker
Expression
After blocking the unspecific binding of Fc-receptor for 10 min
on ice in 10 µL of a solution containing 5 mg/ml human IgG
(IgG1 66.6%, IgG2 28.5%, IgG3 2.7%, IgG4 2.2%; Flebogamma,
Grifols, Frankfurt, Germany), cells were washed in PBS/BSA
(DRFZ, Berlin, Germany). Antibody staining was performed for
10 min at 4°C for the detection of surface marker expression
using anti-CD14-FITC and anti-CD11b-PE (both from DRFZ,
Berlin, Germany), anti-CD16-PE-Vio770, anti-CD80-APC and
anti-HLA-DR-VioBlue (all from Miltenyi Biotech, Bergisch
Gladbach, Germany; see also Table 1). Apoptosis and necrosis
of monocytes were quantified by Annexin V (Biolegend, San
Diego, USA) and 7-AAD staining (BD Biosciences, San Jose,
USA) (gating strategy provided in Figure S1, reagent
concentration provided in Tables 1, 2) according to the
manufacturer’s instructions. Data were acquired using a BD
FACSCanto™ II (BD Biosciences, San Jose, USA) and
processed by FlowJo v7.6.5 (BD Biosciences, San Jose, USA).

Quantification of Gene Expression
Monocytes were cultured in a 96-well plate in glucose-free RPMI
supplemented with 10% (v/v) dialyzed, human AB serum at 105

cells per well. Cells were stimulated for 6 h with both 100 ng/mL
LPS and 2 pmol MYX/106 cells (MYX1) or 4 pmol MYX/106 cells
Frontiers in Immunology | www.frontiersin.org 4
(MYX2) or LPS alone. Subsequently, cell pellets were collected
and total RNAwas extracted using the RNA Isolation Kit: RNeasy
Mini Kit (QIAGEN, Hilden, Germany) according to the
manufacturer’s instructions. cDNAs were synthesized by reverse
transcription using the TaqMan™ Reverse Transcription Kit
(ThermoScientific, Waltham, USA) according to the
manufacturer’s instructions. After transcription, cDNAs were
stored at -20°C until further processing. Quantification of gene
expression was performed by qPCR using the DyNAmo Flash
SYBR Green qPCR Kit (Thermo Fisher, Waltham, USA)
according to the manufacturer’s instructions and assessed in a
Stratagene Mx3000P (Agilent Technologies, California, USA)
using the following program: initial denaturation, 7 min at 95°
C; amplification, 60 cycles with 10 s at 95°C, 7 s at 60°C and 9 s at
72°C. Melting curve analysis was assessed by a stepwise
temperature increase from 50°C to 95°C every 30 s. Data were
normalized to the expression of elongation-factor 1-a (EF1A) and
to the respective control using the DDCt-method. All primers
were purchased from TIB Molbiol (Berlin, Germany) and are
listed in Table 3.

Statistical Analysis
Data are depicted as mean ± SEM. Differences between
independent groups were verified using the non-parametric
Mann-Whitney U test. Differences between dependent samples
were verified using the non-parametric Wilcoxon signed rank
test. The probability values of p<0.05 were considered
statistically significant.
RESULTS

Human Monocytes Survive Strong
Inhibition of Mitochondrial Respiration in
the Absence of Glucose
The basal OCR of quiescent human monocytes after 2 hours of
preincubation under glucose free conditions was 566 ± 11.63
pmol/min/106 cells. Treatment with increasing quantities of
MYX significantly reduced the basal OCR to 419.7 ± 47.71
(2 pmol MYX/106 cells), 293.0 ± 19.81 (3 pmol/106 cells) and
189.3 ± 54.52 pmol/min/106 cells (4 pmol MYX/106 cells), which
corresponded to an inhibition of roughly 25, 50 and 66% of the
basal oxygen consumption rate (Figure 1A). After 6 hours of
incubation under glucose free conditions, with or without LPS
and/or MYX, we observed minor differences in the rates of viable
cells: compared to the untreated control, 2 pmol MYX/106 cells
reduced the viability rate of quiescent monocytes from 86.38 ±
5.79 to 82.12 ± 5.82 (p=0.0313), and treatment with LPS
significantly reduced the viability rate of the monocytes to
75.02 ± 5.74 (p=0.0156), respectively. The combination of
both, treatment with 2 and 4 pmol MYX/106 cells and
stimulation with LPS, did not affect the viability of human
monocytes (Figure 1B). We therefore used the MYX doses of
2 and 4 pmol/106 cells (named MYX1 and MYX2 respectively)
for a maximum incubation duration of 6 hours in the
subsequent experiments.
October 2021 | Volume 12 | Article 730672
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Metabolic Restriction Alters ROS and ATP
Production in Human Monocytes
Next, we investigated the OCR of human monocytes following
treatment with LPS and/or MYX1 and MYX2. Since the cells
showed high viability within the period of 6 hours, we chose to
assess the basal OCR and the partial OCR contributing to the
production of ROS through the NADPH oxidase (DOCRV,
Figure S1) and mitochondrial production of ATP (DOCRO,
Figure S1) after 2 and 6 hours of incubation under glucose free
conditions. After 2 hours, stimulation with LPS alone
significantly increased the mean basal OCR by 81.55%
(p=0.001) (Figure 2A). MYX1 diminished this effect to an
Frontiers in Immunology | www.frontiersin.org 5
increase of 29.50% (p=0.0098). MYX2 abrogated the
stimulating effect of LPS on the basal OCR. OCR of LPS-
stimulated monocytes differed from each other (p=0.002 and
p=0.001): with an increasing dose of MYX, we observed a
stronger decrease in the basal OCR, indicating a dose response
relationship (Figure 2A). We observed a similar dose response
relationship in the DOCRV: the DOCRV of monocytes
stimulated with LPS decreased with higher quantities of MYX
(p=0.0195 and p=0.0186). Stimulation with LPS alone increased
the mean DOCRV by 178.1% (p=0.0029). Upon MYX1
treatment, stimulation with LPS increased the mean DOCRV
by 85.22%(p=0.0029). However, MYX2-treatment reduced this
TABLE 3 | Primer used for quantitative PCR.

Gene symbol Gene name Forward primer Reverse primer

EF1A Elongation Factor 1-alpha GTTGATATGGTTCCTGGCAAGC TTGCCAGCTCCAGCAGCCT
IL1B Interleukin 1-b AGCTACGAATCTCCGACCAC CGTTATCCCATGTGTCGAAGAA
TNFA Tumor Necrosis Factor-a GTCTCCTACCAGACCAAG CAAAGTAGACCCTGCCCAGACTC
IL6 Interleukin 6 TACCCCCAGGAGAAGATTCC TTTTCTGCCAGTGCCTCTTT
IL6RA Interleukin 6 Receptor CCCCTCAGCAATGTTGTTTGT CTCCGGGACTGCTAACTGG
HK1 Hexokinase 1 CACATGGAGTCCGAGGTTTATG CGTGAATCCCACAGGTAACTTC
CPT1 Carnitine palmitoyl transferase I ATCAATCGGACTCTGGAAACGG TCAGGGAGTAGCGCATGGT
SDHA Succinate Dehydrogenase Complex Flavoprotein Subunit A CAGCATGTGTTACCAAGCTGT GGTGTCGTAGAAATGCCACCT
PDHA1 Pyruvate dehydrogenase E1 component subunit alpha ATGGAATGGGAACGTCTGTTG CCTCTCGGACGCACAGGATA
October
A B

FIGURE 1 | Human monocytes survive strong metabolic restriction. (A) Titration of Myxothiazol (MYX) in medium without glucose in the presence of MYX (pmol/106

cells) or 1% (v/v) DMSO (vehicle control) under glucose free conditions (n = 3-6). Values are expressed as mean ± SEM (*p < 0.05 Wilcoxon signed rank test, #p < 0.05
Mann-Whitney U Test). (B) Viability of quiescent and stimulated (100 ng/mL LPS) human monocytes after 6 h of incubation in the presence or absence of MYX
(pmol/106 cells) or vehicle control (1% (v/v) DMSO) under glucose free conditions (n = 6). Values are expressed as mean ± SEM (*p < 0.05 Wilcoxon signed rank test).
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A1

B1

C1

A2

B2

C2

D

E

FIGURE 2 | Metabolic restriction with MYX alters ROS and ATP production in human monocytes in the absence of glucose. (A–C) Oxygen consumption rate (OCR)
and inhibitor sensitive oxygen consumption rate (DOCR) of quiescent and stimulated (100 ng/mL LPS) human monocytes after 2 h (A1-C1) 6 h (A2-C2) of incubation
in the presence or absence of Myxothiazol (MYX) (pmol/106 cells) or 1% (v/v) DMSO (vehicle control) under glucose free conditions. After preincubation, (A) basal
OCR, (B) VAS2870 sensitive OCR (DOCRV) and (C) oligomycin sensitive OCR (DOCRO) were assessed (mean ± SEM; n = 9 – 10). (D) Intracellular ATP content of
quiescent and stimulated (100 ng/mL LPS) human monocytes after 3 h of incubation in the presence or absence of MYX (pmol/106 cells) or 1% (v/v) DMSO (vehicle
control) under glucose free conditions was measured by bioluminescence (mean ± SEM; n = 6). (E) Median fluorescence intensity of quiescent and stimulated
(100 ng/mL LPS) human monocytes after 2 h of incubation in the presence or absence of MYX (pmol/106 cells) or 1% (v/v) DMSO (vehicle control) and/or 50 µM
VAS2870, or 100ng/ml PMA or H2O2 under glucose free conditions, stained with CM-H2DCFDA (mean ± SEM; n = 3 – 5); *p < 0.05, **p < 0.01, ***p < 0.001.
Wilcoxon signed rank test. #p < 0.05; Mann-Whitney U Test.
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to 60.61% (p=0.0186) (Figure 2B). In the case of mean DOCRO,
LPS-stimulated consumption rates were also differed from each
other (p=0.002 and p=0.0322), and stimulation with LPS alone
induced an increase by 51.47% (p=0.001). However, LPS did not
induce any additional DOCRO upon MYX1 or MYX2 treatment.
(Figure 2C). After 6 hours of incubation under the same
conditions, stimulation with LPS alone induced an increase
only in mean basal OCR (by 55.40%, p=0.0078) and in
DOCRV (by 154.5%, p=0.0195). DOCRO of stimulated
monocytes showed a dose dependent decrease, but the
stimulation itself did not induce any additional DOCRO
(Figures 2A–C). Additionally, stimulation with LPS decreased
the mitochondrial reserve capacity of the monocytes at all
metabolic levels investigated, with no difference between
control, MYX1 and MYX2 (data not shown). However,
unstimulated cells showed a decrease of mitochondrial reserve
capacity compared to the control only upon MYX2-treatment.
Treatment with LPS or MYX had no significant impact on NOX
or ATPase independent OCR (data not shown).

In addition to DOCRO and DOCRV, we analyzed cellular ATP
and iROS levels of primary human monocytes (Figures 2D, E).
The cellular ATP content of the monocytes decreased following
stimulation with LPS (p=0.0156). However, LPS combined with
MYX treatment reduced the ATP content compared to
unstimulated controls (both p=0.0156), and there was also a
difference between MYX1 and MYX2 in the stimulated
group (p=0.0313) ATP concentration of LPS stimulated cells
upon MYX2 treatment was roughly 8% compared to the
unstimulated control (Figure 2D). LPS stimulation did not
increase the overall ROS content in monocytes as demonstrated
by flow cytometry using monocytes stained with CM-H2DCFDA
(Figure 2E). Additionally, MYX1 did not have any effect on
overall ROS content, in both unstimulated and stimulated cells.
However, MYX2 treatment raised the ROS content irrespective of
LPS stimulation (p=0.0313 and p=0.0269). Since MYX reduced
DOCRV as measured by the Clark-type electrode (Figure 2B), we
expected an overall decrease in ROS content rather than an
increase. We therefore treated the monocytes with VAS2870.
Inhibition of monocyte NOX with VAS2870 further raised ROS
content upon MYX2 treatment (p=0.0357). In order to evaluate
the impact of metabolic restriction on common activation
markers, we analyzed the expression of CD14, CD16, CD80,
HLA-DR, and CD11b on human monocytes after treatment with
MYX. (Figure 3). At all levels of mitochondrial inhibition
investigated, CD14 expression was reduced following treatment
with LPS (data not shown). In the stimulated populations, MYX2
increased the proportion of CD16 positive cells (p=0.0469).
Stimulation with LPS in the DMSO group reduced the CD16
positive population (p=0.0469). MYX mostly affected the
expression of HLA-DR and CD11b. Following stimulation with
LPS, there was an induction of HLA-DR in the group without
MYX treatment (statistical trend, p=0.0781). However, in the
stimulated group, MYX1 reduced the HLA-DR positive
population as well as the median fluorescence intensity (MFI)
(both p=0.0156), while MYX2 had no further effect compared to
MYX1 treatment. The expression of CD11b was upregulated
following the stimulation with LPS in the control cells
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(p=0.0156) and upon MYX1-treatment (p=0.0313). However,
there was no increase following MYX2 treatment, and MYX1
reduced the expression in the stimulated group (p=0.0156).

Metabolic Restriction Modifies Kinetics of
Inflammatory Cytokines, But Has No Effect
on Phagocytosis
Next, we assessed the capacity of human monocytes to produce
inflammatory cytokines under metabolically restricted conditions.
To this end, cells were stained for TNF-a, IL-1b and IL-6 after 1
hour of pre-stimulation with LPS and subsequent 1 or 3 hours of
blocking with BFA (Figures 4A–C). After 1 hour, cells stimulated
with LPS had higher proportions of cells positive for all three
cytokines compared to unstimulated cells and this was still true
after 3 hours of incubation (data not shown). At the first time
point of 2 hours, both the proportion and the MFI of positive
cells for staining with IL-6 and IL-1b (both p= 0.0156 and
p=0.0313 for % of positive and MFI respectively) was reduced
upon MYX2-treatment. For IL-6, after 4 hours, there was no
difference between stimulated groups for % of positive cells.
Following MYX2-treatment, monocytes reached the same levels
as stimulated control (Figure 4C). For IL-1b, after 4 hours, the
difference between MYX1- and MYX2-treatment vanished:
instead, the reduction of both proportion and MFI of positive
cells now occurred between control and MYX1-treatment (both
p=0.0156) (Figure 4B). Regarding TNF-a, the increase of positive
cells from 2 to 4 hours of incubation was abrogated for MYX1-
and MYX2-treatment. The increase of the MFI, however, was
significant for DMSO and following MYX-treatment, even though
the maximum reached upon MYX-treatment was lower than the
control (p=0.0313) (Figure 4A). Analyzing secreted amounts of
TNF-a, IL-1b and IL-6 after 6 hours of incubation, we observed
(i) a significantly gradual decline in secreted amounts of TNF-a,
(ii) a numerical (not significant) decline in secreted amounts of
IL-1b and (iii) a significantly gradual increase in secreted amounts
of IL-6 (Figure 4D). Interestingly, the observed changes in
cytokine production and secretion were not accompanied by a
significant increase/decrease of TNF-a, IL-1b and IL-6 gene
expression indicating a rapid translational instead of a sustained
transcriptional adaption process (Figure 4E).

Since phagocytosis is a key function of human monocytes, we
analyzed the effect of MYX-treatment on the phagocytosis of E.
coli with or without LPS as a co-stimulation. MYX had no
significant effect on the phagocytosis function of human
monocytes (Figure 4F).

Metabolic Restriction Increased the
Capacity and Dependency of Monocytes
for the Use of Fatty Acids But Reduced
the Use of Glycolysis
Next, we analyzed if metabolic restriction of LPS stimulated
human monocytes impacts their capacity, dependency and
flexibility to use certain cellular fuels namely glucose, glutamine
and fatty acids in order to adapt and maintain cellular functions
such as IL-6 production and phagocytosis (Figure 5). After initial
LPS stimulation (100 ng/ml for 1 hour) and 4 hours of incubation,
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we analyzed if the cells’mitochondria were able to compensate for
the metabolic restriction by oxidizing other fuels (Figure 5A).
Therefore, we added UK5009, BPTES, and etomoxir to block
glucose oxidation, glutamine oxidation, and fatty acid oxidation
(FAO), respectively. As expected, when gradually increasing the
OXPHOS inhibition in the absence of glucose monocyte
mitochondria reduced their capacity and flexibility to use
glucose but also the use of glutamine. Interestingly, we observed
that monocyte mitochondria were capable of compensating for the
inhibition of glycolysis by increasing their capacity and
dependency on FAO but not on glutaminolysis. To analyze if
monocytes adapt to metabolic restrictions by transcriptional
induction of key enzymes for the (i) first step of glycolysis
(hexokinase 1; HK1), (ii) link of the glycolytic pathway and the
tricarboxylic cycle (TCA) (pyruvate dehydrogenase complex E1
subunit a; PDHA1), (iii) connection of TCA and OXPHOS
(Succinate dehydrogenase complex, subunit A of complex II of
the electron transport chain; SDHA) and (iv) link of fatty acid
oxidation to TCA and the generation of acetyl-CoA (carnitine
palmitoyltransferase I; CPT1). As a result, we observed a
significant increase of gene expression for SDHA and the
mitochondrial long chain fatty acid transporter CPT1 at MYX2
Frontiers in Immunology | www.frontiersin.org 8
while HK1 and PDHA1 remained unaffected by metabolic
restriction (Figure 5B).
DISCUSSION

In this study, we established a model of metabolically restricted
conditions to mimic “battlefields” of human monocytes such as at
sites of inflammation. A hallmark of these “battlefields” is the low
availability of substrates such as oxygen and glucose (13).
Additionally, low pH and increased levels of metabolites such as
lactate render less effective synthesis of ATP and biosynthetic
substrates, which are essential for cell activation (12, 14, 15). To
reproduce those pathophysiological conditions in vitro, we
cultivated the cells in medium without glucose and gradually
reduced mitochondrial ATP production by inhibiting OXPHOS
using myxothiazol (21). Myxothiazol is a specific inhibitor of
respiratory chain complex III (CIII) that binds to the ubiquinol
oxidation site Qo of CIII and blocks electron transfer from
ubiquinol to cytochrome b, inhibiting CIII activity (21–24).
Due to the competitive nature of this molecule, dimming the
effect of OXPHOS inhibition without altering survival or
A B

C D

FIGURE 3 | Metabolic restriction with MYX modifies expression of surface markers of activation. (A-D) Percentage and median fluorescence intensity of quiescent
and stimulated (100 ng/mL LPS) human monocytes positive for staining of surface (A) CD80, (B) CD16, (C) HLA-DR and (D) CD11b in the presence or absence of
MYX (pmol/106 cells) or vehicle control (1% (v/v) DMSO) under glucose free conditions. Cells were incubated for 4 hours. (mean ± SEM; n = 6; *p < 0.05; **p < 0.01;
Wilcoxon signed rank test). ns, not significant.
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A B

C D

E F

FIGURE 4 | Metabolic restriction with MYX modifies the kinetics of the production of inflammatory cytokines but has no effect on phagocytosis. (A–C) Percentage
and median fluorescence intensity of quiescent and stimulated (100 ng/mL LPS) human monocytes positive for intracellular staining of (A) TNF-a, (B) IL-1b and (C)
IL-6 in the presence or absence of MYX (pmol/106 cells) or vehicle control (1% (v/v) DMSO) under glucose free conditions. After 1 h of pre-stimulation with or without
LPS, cells were treated with Brefeldin A (10 µg/mL) and stained following further 1 or 3 h of incubation (mean ± SEM; n = 6; *p < 0.05; **p < 0.01; Wilcoxon signed
rank test and Mann Whitney U test). (D, E) Monocytes were cultured in glucose-free conditions stimulated for 6 h with both 100 ng/mL LPS and 2 pmol MYX/106

cells (MYX1) or 4 pmol MYX/106 cells (MYX2) or LPS alone. (D) Secreted amounts of TNF-a, IL-1b, and IL-6 were determined using ELISA (mean ± SEM; n = 8;
*p < 0.05; **p < 0.01; Wilcoxon signed rank test). (E) Gene expression of TNFA, IL1B and IL6 was normalized to the expression of EF1A and to the respective
control (mean ± SEM; n = 6; *p < 0.05; **p < 0.01; Wilcoxon signed rank test). (F) Percentage and median fluorescence intensity (MFI) of monocytes positive for
FITC-labeled E. coli bacteria after 1 h incubation in the presence or absence of LPS (100 ng/mL) and MYX (pmol/106 cells) or 1% (v/v) DMSO (vehicle control) under
glucose free conditions (mean ± SEM; n = 6; Wilcoxon signed rank test). ns, not significant.
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mitochondrial ROS production provides the experimental
prerequisite to analyze the metabolic effects after gradual
inhibition of OXPHOS. Under these conditions, the pentose
phosphate pathway, the serine synthesis pathway and the
glycerol phosphate shuttle are heavily compromised since they
critically depend on glucose carbon. This represents an important
and pathophysiologically relevant restriction, since these pathways
are known to be most important for metabolically active cells (13).

We first provide evidence that under such conditions the
viability of the cells is not critically reduced. Next, we
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demonstrate MYX to effectively reduce the basal OCR of
monocytes in the absence of glucose (Figures 1, 2). The
inhibitory effect of MYX on DOCRO was significant, even after a
period of 6 hours. This indicates that the cells were on different and
stable metabolic restriction levels in all functional experiments
carried out during this period. It is known that monocytes can
compensate for loss of glycolysis as a source of ATP production
under conditions of glucose deprivation by an increase of the
AMP/ATP ratio and enhanced FAO (25). Therefore, we measured
the steady-state ATP content of cells, in order to confirm the
A

B

FIGURE 5 | Metabolic restriction increased the capacity and dependency of monocytes for the use of fatty acids but reduced the use of glycolysis. (A) Seahorse XF
Mito Fuel Flex Test was performed using 2 µM UK5099, 3 µM BPTES, and 4 µM etomoxir to block glucose oxidation, glutamine oxidation, and fatty acid oxidation,
respectively (n = 3). Mitochondrial stress and glycolytic parameters were measured via OCR in pmol/min/1x105 cells and are shown as percentage of max values
and depicted as bars (mean ± SEM). (B) Gene expression of HK1, PDHA1, SDHA, and CPT1 was normalized to the expression of EF1A and to the respective
Control (mean ± SEM; n = 6; *p < 0.05; Wilcoxon signed rank test).
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different energy levels of the cells. Cells stimulated with LPS
displayed lower ATP content than the unstimulated control,
while the DOCRO was significantly higher in stimulated cells
(Figure 2). This is likely because stimulation with LPS causes
either higher ATP consumption by the cells or higher flux of
carbon bodies into metabolic pathways to synthesize intermediates
critical for cell activation or both, without a corresponding higher
energy generation (25). Obviously, the decrease of ATP available
could not be compensated by increased mitochondrial ATP
production or by an increase in the AMP/ATP ratio resulting in
an increased glycolytic energy supply mediated by AMP-activated
protein kinase (AMPK) (26). The latter is explained by the fact that
our model did not permit glycolysis. Instead, we demonstrate that
monocytes were capable of compensating for the inhibition of
glycolysis and gradual inhibition of OXPHOS by increasing their
capacity and dependency on FAO but not on glutaminolysis
confirming previous reports (25) (Figure 5). However, our study
demonstrates the ability of monocytes to maintain the investigated
immune functions to varying degrees even in the complete absence
of glucose. Although glucose carbon is critical for metabolic
pathways, which are involved in cell activation by providing
intermediates, human LPS-stimulated monocytes (without MYX
treatment) remain functional under conditions of glucose
deprivation. The basal OCR and basal OCR for LPS-stimulated
monocytes measured in our study is comparable to values found in
the literature (25, 27). Additionally, NOX dependent OCR of the
monocytes in our study was similar to that of Raulien and
colleagues, corresponding to approximately one third of total
OCR following LPS stimulation (25). This indicates that the
relative production of ROS through NOX was probably similar
in both studies. Regardless of NOX, there are two possible
explanations for the comparable iROS levels in control and upon
MYX1-treatment: First, either mechanisms protecting against ROS
such as the glutathione peroxidase system were no longer
sufficiently effective [biosynthesis of glutathione requiring ATP
(28)], and/or NOX independent iROS were produced following
MYX1 treatment (29). Indeed, MYX2 raised iROS higher than both
MYX1 and untreated control cells regardless of LPS treatment,
while blocking NOX by using VAS-2870 increased this effect
significantly (Figure 2) indicating a NOX-independent
mitochondrial ROS production (29, 30). Increased iROS, as
observed in our study, has been demonstrated to interfere with
theMAPK-p38 activation following LPS stimulation (31); a process
which has recently been attributed to non-mitochondrial iROS
(32). Second, the loss of effectiveness of protection mechanisms
against iROS as induced by the metabolically compromised
conditions increased NOX independent iROS. We see a possible
explanation for this in the glutathione peroxidase system, whose
biosynthesis is dependent on ATP and intermediates of the
glycolysis feeding the pentose phosphate pathway (28).
Furthermore, glutathione is a known off-target for the pan-NOX
inhibitor VAS-2870 used in our study (33, 34), which also may
explain the significant increase in iROS (Figure 2) following VAS-
2870 treatment, even with blocked NOX as source of ROS.

Further, we demonstrate that phagocytosis and the LPS-
induced production of IL-6 to remain functional even under
extremely comprised metabolic conditions. Thus, IL-6 signaling
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and phagocytosis emerge to be of central importance to human
monocytes where glycolysis, metabolic pathways that diverge from
glycolysis, and OXPHOS are very much restricted or – in complete
absence of glucose – even absent. In contrast, we show that the
production of iROS and the expression of surface markers are
dispensable at very restricted metabolic conditions as those were
the first to become negatively affected. To the best of our
knowledge, this is the first report emphasizing such hierarchy of
monocyte functions under gradually metabolically restricted
conditions mimicking “real-world” pathophysiological scenarios.

We found phagocytosis to be metabolically seen the most
important immune process of human monocytes. Monocytes
belong to the professional phagocytes, the group of cells with a
broad range of particles that can be taken up (35). Our results
concerning metabolic restriction and phagocytosis matches
previous work by our lab, confirming the validity of our model
(36). Previously, we revealed that phagocytosis by human
monocytes under glucose-free conditions could only be
influenced, by MYX quantities reducing the basal OCR to 20%
compared to the untreated control (36). Therefore, it is not
surprising that phagocytosis remained fully functional, since in
this study the lowest basal OCR was 33% compared to the control
(Figure 4). The expression of CD11b and HLA-DR markers are
commonly used in the assessment of antigen presentation and
transendothelial migration capacity of human monocytes (2, 37,
38) (Figure 3). MYX treatment reduced the expression of CD11b
and HLA-DR in human monocytes. Both the low availability of
ATP and the reduction of intermediates are likely to compromise
the cell adhesion, signaling, migration and presentation of antigens,
while phagocytosis remains fully functional (37, 38) (Figure 3).

A general feature of monocytes is the production of cytokines in
response to a variety of stimuli, such as found in the inflamed joint
of RA patients (39). Furthermore, it is well established that
monocytes contribute to the pathogenesis of sepsis by secreting
inflammatory cytokines such as TNF-a, which peaks in the first
two hours and falls to undetectable levels after 6 hours. The
resulting “cytokine storm” is thought to be of central importance
in the pathogenesis of sepsis and seen as a potential therapeutic
target (40). Upon stimulation with LPS, human monocytes show a
near linear increase for cellular IL-1b, IL-6 and TNF- a during the
first 6 hours of incubation, as shown by others (41). Therefore,
mainly ATP and carbon body availability should determine
differential production kinetics for these cytokines in our study.
IL-1b production was themost affected by reduced ATP availability
and lack of glucose supply although the amount secreted remained
unchanged (Figure 4). In the case of TNF-a, shortage of ATP and
lack of glucose had a similar effect on the percentage of TNF-a-
positive cells over time. However, monocytes at all metabolic levels
investigated could still increase cellular TNF-a levels over time, but
to a lesser extent under high metabolic stress finally leading to a
gradual decline of secreted amounts of TNF-a. Interestingly, the
induction of IL-6 showed a strong compensatory reaction over
time in response to shortage of ATP and glucose and increased in
the levels secreted after 6 hours. Our data for IL-6 demonstrate that
after 4 hours, monocytes can still produce the same amount of IL-6,
regardless of ATP and glucose availability. Of note, secretion of
TNFa and IL-1b rely on prior proteolytic steps whereas secretion
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of IL-6 does not, which might contribute to differences in the
secretion profile of these cytokines (42, 43). Although these data are
consistent with our observations using flow cytometry and are
therefore likely to be directly related to the amounts of cytokines
produced, we cannot completely exclude proteolytic steps of TNFa
and IL-1b that were influenced by the applied metabolic stress. On
the other hand, proinflammatory properties of IL-6 are mainly
based on the IL-6 trans-signaling mechanism, in which IL-6 bound
to the soluble IL-6R that can stimulate virtually all cells in the
human body, whereas only a few cells also respond to IL-6 alone
(44). Interestingly, secreted amounts of the IL-6/IL-6Ra complex
in the medium of isolated monocytes cultured under glucose-free
conditions for up to 6 hours were almost undetectable and not
inducible by LPS or affected by metabolic stress (data not shown).
Thus, we suggest that either another signal is necessary of or IL-6/
IL-6Ra complex is in general induced when glycolysis is available.
Finally, IL-6/IL-6Ra complex has facilitates a long-lasting IL-6
availability and activation of target cells which follows a different
kinetic (44). Nevertheless, our results underline the importance of
TNF-a and IL-6 in human monocytes. Since TNF-a is known to
mediate the IL-6 production by human monocytes in the arthritic
joint, both, anti-IL-6 receptor and anti-TNF-a targeted antibodies
proved to be very effective in the treatment of RA (45, 46).

Our model sought to heavily interfere with the energy and
intermediate household of human monocytes in order to test
their compensation limits and to assess the metabolic-dependent
effects on their functionality. Modeling restricted energy and
intermediate supply and decreased mitochondrial reserve
capacity in human monocytes with mitochondria as primary
ATP source such as established in our study could provide useful
information in pathophysiology of human monocyte mediated
inflammatory diseases such as rheumatoid arthritis (RA) (47)
and atherosclerosis (48). It should be noted that the prevalence of
both diseases increases with age (49, 50), while ageing impairs
mitochondrial reserve capacity of monocytes (51).

It should be noted finally, that we intentionally chose not to use
differential rates of glycolysis in our model. Establishing a model
with a similar goal to ours, but including gradual inhibition of
glycolysis, would have interfered with the transcription process of
TNF-a mRNA (52) and CD11b expression (32). The informative
value of those outcomes would have been reduced. Moreover, the
role of the glycolytic pathway in human monocytes/macrophages
remains a subject of debate. Several recent studies using different
metabolic assessment methods depict monocytes/macrophages as
rather glycolytic cells. However, other recent studies contradict
these results by using different methods and/or studying human
instead of murine cells (11, 53–57). The limitative value of an
absent glycolysis might therefore remain of minor extent for the
scope of our study.
CONCLUSION

Our results demonstrate a clear hierarchy of the LPS-induced
immune processes in human monocytes as induced by
metabolically restricted conditions mimicking pathophysiological
Frontiers in Immunology | www.frontiersin.org 12
conditions. Of the assessed processes, phagocytosis and the
production of IL-6 were the highest in the hierarchy, followed
by ROS production through NOX, expression of surface markers
and the production of TNF-a and IL-1b. By applying our method
to cells of patients with diseases under conditions of metabolic
restrictions, future projects could identify most critical and,
therefore, most promising therapeutic targets, and could obtain
a better and more translational understanding of monocyte-
mediated diseases.
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