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1 Summary

In this cumulative habilitation, my most relevant publications with focus
on robotic perception, self-localization, tracking, navigation, and human-
machine interfaces have been selected. These publications have been created
during my post-doctoral research and during my time as a Juniorprofessor.

The author wants to clarify that the term “Mobile Robots” in the title of
this work refers to a wide research area. Any robot which has the ability to
change its own position can be considered to be mobile. Legged robots, aerial
robots, and water robots, e.g., are mobile robots but have to solve different
problems than wheeled robots do, e.g., planning a stable walk, maneuvering
in the air, or localizing themselves and objects under water. Even though the
modular arrangement of perception, world modeling, planning, and control
is shared by many robots, the modules themselves can differ considerably
for each domain. Thus, the presented robots in this work and the related
publications provide a representative - even though not complete - overview
about the the problems which need to be solved for wheeled mobile robots.

2 Robotics Hardware

I have been working in two different domains and mainly with two different
hardware platforms. During my postdoctoral stay at ICSI and the EECS
department of University of California at Berkeley, I have been working with
a PR2 household robot in the Robotics Learning Lab of Professor Pieter
Abbeel on vision and machine learning tasks, see Fig. 1.

Before and after my two-year stay in the United States of America, I was
working at the AutoNOMOS-Labs at Freie Universität Berlin under the su-
pervision of Professor Raúl Rojas, where I have been focusing on control,
planning and object tracking aspects of the autonomous vehicles ”MadeInGer-
many” and ”e-Instein”, which have become the first autonomous vehicles in
the city of Berlin, see Fig. 2.
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Figure 1: The PR2 robot from Willow Garage.

Figure 2: The autonomous vehicles e-Instein (left) and MadeInGermany
(right) on the former Berlin Tempelhof airport testing ground.
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3 Arrangements of the Publications in the

Robotic Context

For a better understanding how the different publications relate to each other
and to particular robotics modules and solutions, the following paragraph will
give a short summary.

Figure 3: Module Configuration in the autonomous vehicle MadeInGermany.

3.1 Categorization of Publications

The author defines four categories of robotic modules within the robotic data
processing chain: perception, world modeling, planning, and control. Even
though other categorizations are possible and other researchers might want to
add other problem classes or group existing ones together, this categorization
is widely accepted.

The following paragraphs will explain, which type of modules belong to
each of the four categories.
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Perception: Perception modules, in the context of this work, handle sen-
sory data. They compute object classes and object locations, e.g., within an
image, or they cluster 3D points, which are provided by a LiDAR sensor to
an object. Most applications of Deep Neural Networks to images can be con-
sidered to be a perception task. Also the generation of a depth image from
two camera images and the detection of objects within the depth image is
part of the perception layer. The perception layer ends (in this work) before
sensory data is integrated over time.

Tracking, Localization, World Modeling: Tracking and localization
are part of the world modeling layer. Here, recognized objects from the
perception layer, from one or multiple sensors, are integrated over time in
order to create a world model. As a result of this integration, the world model
tells a robot what the positions and velocities of surrounding objects are. Also
the prediction of the current scene into the future can be part of the world
modeling layer. An important aspect of the world model is the representation
of position uncertainty, velocity uncertainty, and other uncertainties as well
as their inter-dependencies. As a form of representation, covariance matrices
and entropy measures are chosen very often.

Planning, Navigation: In the planning layer, a robot needs to plan its
actions under the given world model in order to achieve one or multiple goals.
For a household robot, e.g., an important task is to grasp a specific object.
Especially for autonomous vehicles but also for mobile robots in general, it
is important to plan a path through a static or dynamic environment. In
many cases, a robot has a map. But sometimes a map has to be created
first or is not available at all. The planning layer can contain different sub-
layers: One part is usually responsible for an abstract plan, e.g., for an
autonomous vehicle to create a plan from one city to another, but without
knowledge about the traffic situation. Another layer is necessary to create
a more detailed plan, e.g., for an autonomous vehicle to plan in what lane
to drive and with what velocity - all that with a limited horizon of at most
some hundred meters, which corresponds to the sensor range. The result is
usually a 2D or 3D spline, defined over a time parameter or over a distance
parameter. Desired spline properties are often that the spline function and
its first and second derivatives are continuous.

Control: The control layer usually consists of modules which execute a
given plan as precisely as possible. In an autonomous vehicle, the controller
will process the amount of the throttle, brake, and steer commands. All the
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Paper Perception World Modeling Planning Control
[1] Lidar / Radar X
[2] iDriver X X
[3] BCI X X X
[4] Controller X X
[5] Grounding X X
[6] Object Det. X
[7] Grasp Aff. X X
[8] Acoustic X
[9] DNN / Lidar X
[10] Awareness X X
[11] Pole SL X X
[12] Path Graphs X
[13] LBP / HOG X
[14] TEB X
[15] A-Star X
[16] Mapping X
[17] Vector X
[18] TEB X
[19] Industry X X
[20] Collision X
[21] Head Pose X

Table 1: This table shows, which papers cover which of the four research
categories (perception, world modeling, planning, control).

calculations need to be processed periodically with a frequency of usually 100
- 1000 Hz. Another aspect of a controller is to make sure that a given plan
will be executable while keeping a robot within safe dynamic state. E.g., a
vehicle shall not apply a bigger steer angle than its tire friction, center of
gravity, or other stability constraints allow.

3.2 Clusters of Own Research

To get a better understanding how the research papers of this work relate,
they will be grouped together and their relation to each other will be ex-
plained briefly.

Object Detection for Indoor Robots with Grippers: The PR2 robot
of publications [5,6,7] and the BMW robot [19] operate indoors and within a
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defined environment. The presented publications which use these two robots
focus on perception layer tasks. Objects need to be recognized in order to
be grasped later. The PR2 robot needs to recognize different object classes
within 2D images, their poses (position and orientation) using histograms
of oriented gradients as features and support-vector machines as classifiers
(abbreviated as HOG/SVMs). On the other hand, the BMW robot needs to
detect boxes which contain car assembly parts and their poses using convo-
lutional neural networks (CNNs) on 2D images.

Human-Machine Interfaces for Autonomous Vehicles: In [2] and
[3], an iPad and a BCI were tested for their applicability to control an au-
tonomous vehicle, or how the BCI can be used to influence the planner of an
autonomous vehicle. In [10], an assistance system was tested, which checks
the gaze direction of a driver with the help of an eye-tracker and warns the
driver, if he or she missed to look at a traffic light or to check another vehicle.

Sensor Fusion and Object Tracking In [1] was analyzed how radar
and lidar sensory data of an autonomous vehicle can be combined. In [8],
two Kinect cameras were combined in order to localize other traffic vehicles
by sound, and the approach was evaluated using lidar data. In [9], lidar
data was used to support an image based object classification and detection
method using CNNs for traffic scenarios. In [13], the data of two cameras
were applied to create a stereo image which was used to detect other vehicles.
For better precision, LBP and SVM based approaches were combined with
depth information of the stereo image.

Map Creation by Observation In this research area, other traffic parti-
cipants were observed by an autonomous vehicle to generate a map containing
street lanes. In [12], this could be achieved using LiDAR sensory data to cre-
ate path graphs, whereas in [16] the representation of the map was achieved
through an orientation-based 2D grid.

Path Planning Approaches Different methods to create drive plans for
autonomous vehicles were tested: In [14] and [18] a TEB-planner was tested
which is able to create plans in space over time without a given map but
by observing other traffic participants alone. [15] introduces an A* plan-
ner which uses a map and which also creates a plan in space over time. In
[17] a vector field, provided by a map, is used to execute an action for an
autonomous model car. Here, no plan is generated but the action is calcu-
lated immediately from the vector field. A simple planner (street follower),
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together with the controller of the autonomous vehicle, is explained in [4].

Further World Modeling and Situation Prediction Approaches In
[11], a stereo image is used to detect trees and other pole-like structures.
The detected poles are matched against a map and the localization process,
implemented as a Monte-Carlo particle filter in combination with a Kalman
filter, is supported by the vehicle’s odometry data. In [20], a collision risk
is calculated for autonomous vehicles. In [21], a method to estimate body
poses in a traffic scenario is presented using a monocular camera.

4 Selected Publications and Own Contribu-

tions

The following publications have been selected with respect to the research fo-
cus of this habilitation. Under each publication, my contributions are briefly
described.

[1] Daniel Göhring, Miao Wang, Michael Schnürmacher, Tinosch Ganjineh,
“Radar/Lidar Sensor Fusion for Car-Following on Highways.”, In: 5th In-
ternational Conference on Automation, Robotics and Applications, ICARA
2011, Wellington, New Zealand, December 6-8, 2011, pp. 407–412, IEEE,
2011. DOI: 10.1109/ICARA.2011.6144918
URL: https://doi.org/10.1109/ICARA.2011.6144918

The idea of this work is to improve the accuracy of the velocity estima-
tion of vehicle objects in front of an autonomous car with focus on highway
scenarios. This problem is non-trivial, because of the relatively high longitu-
dinal distances between vehicles on a highway, compared to distances in city
scenarios. Higher distances result in fewer measurement points from the lidar
which again results in more inaccurate distance and velocity measurements
from the lidar. The radar sensor has a very limited field of view and as a
result cannot perceive cars ahead in tight curves. In this work, a method for
sensor fusion of lidar and radar data is presented, combining the high dis-
tance precision of lidar with velocity estimations from radar data. Another
important aspect of this work is how the different frequencies of the lidar
and the radar sensor can be handled by a Kalman filter, which also needs to
deal with delayed or missing sensor information, see Fig. 4.

I contributed the conceptual idea, a substantial amount to the design of
the Kalman filter, and to the evaluation. I was also the main test driver for
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Figure 4: The Kalman filter concept for data fusion, with the ability to
integrate delayed sensor data.

this work and wrote major parts of the paper.
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Figure 5: Data flow chart between the iPad and the vehicle’s main computer.

[2] Arturo Reuschenbach, Miao Wang, Tinosch Ganjineh, Daniel Göhring,
“iDriver - A Human Machine Interface for Autonomous Cars.”, In: Eighth In-
ternational Conference on Information Technology: New Generations, ITNG
2011, Las Vegas, Nevada, USA, 11-13 April 2011 , pp. 435–440, IEEE Com-
puter Society, 2011. DOI: 10.1109/ITNG.2011.83
URL: https://doi.org/10.1109/ITNG.2011.83

A remote control and data debugging app for the newly introduced iPad is
presented. The remote control allows the user of the iPad to remotely control
the automated vehicle, i.e., to control throttle, brake, and steering. Further-
more, lidar data and other information from the vehicle can be displayed on
the iPad.

I contributed to the interface between iPad and main computer of the ve-
hicle, see Fig. 5. I also implemented the CAN-communication in the vehicle
and took care of the implementation of an emergency stop. I took precau-
tions in terms of limiting the maximum steer angles as well as the maximum
throttle and brake commands, in order to prevent the vehicle from entering
(a subset of) unsafe driving states. I also helped evaluate the approach.
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Figure 6: Steer Angle Smoother, the black dotted curve shows the raw angle
values at 5 Hz as red from the BCI computer; the red curves shows the
linearly interpolated steering angle with a control frequency of 100 Hz.

[3] Daniel Göhring, David Latotzky, Miao Wang, Raúl Rojas, “Semi-
Autonomous Car Control Using Brain Computer Interfaces.”, In: Intelligent
Autonomous Systems 12 - Volume 2 Proceedings of the 12th International
Conference IAS-12, held June 26-29, 2012, Jeju Island, Korea, Advances in
Intelligent Systems and Computing, vol. 194, pp. 393–408, Springer, 2012.
DOI: 10.1007/978-3-642-33932-5 37
URL: https://doi.org/10.1007/978-3-642-33932-5_37

This paper complements our research on human-machine interfaces for au-
tonomous cars. After in [2] an iPad was used to control an automated vehicle,
in this work a brain computer interface (BCI)-based control method for an
autonomous vehicle is presented. A test person can generate up to four
commands using a motor imagery based BCI from the Emotiv company. I
implemented a controller which super-samples and smooths the input data
for this work and simplifies the control of the car with the BCI, as shown
in Fig. 6. A considerable amount of research included questions about how
to avoid control oscillations by the human in order to drive straight after a
curve, how fast the steering needs to be, if the steering wheel shall return by
itself, how the throttle and brake commands shall be mapped to velocities or
accelerations - just to name a few challenges. I also designed and conducted
most parts of the experiments as the safety driver in collaboration with the
test person and wrote major parts of the paper.
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Figure 7: Approximated velocity function over time and over relative throttle
values.

[4] Daniel Göhring, “Controller architecture for the autonomous cars: Made-
InGermany and e-Instein.”, Technical Report, Freie Universität Berlin, Fach-
bereich Mathematik und Informatik, 2012.
URL: http://dx.doi.org/10.17169/refubium-21789

In this work, the controller architecture and parts of the high level plan-
ner for the two autonomous vehicles at FU Berlin are described. I designed,
implemented, and tested all aspects of the controller and most of the plan-
ning parts described in this technical report. I recorded and evaluated the
experimental data, generated the dynamic vehicle models, and wrote the
whole report. From the recorded vehicle data I created a prediction model,
which tells the controller module, how much throttle or brake needs to be
applied in order to achieve a certain acceleration under the condition of a
given velocity. The model creation part and the inversion of the function
were non-trivial, because of the non-linear character of the underlying func-
tion, see Fig. 7.
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[5] Sergio Guadarrama, Lorenzo Riano, Dave Golland, Daniel Göhring,
Yangqing Jia, Dan Klein, Pieter Abbeel, Trevor Darrell, “Grounding Spatial
Relations for Human-Robot Interaction.”, In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, Japan, November 3-7,
2013, pp. 1640–1647, IEEE, 2013. DOI: 10.1109/IROS.2013.6696569
URL: https://doi.org/10.1109/IROS.2013.6696569

This research work was created during my work at ICSI and UC Berkeley as
a researcher in the DARPA funded BOLT project. The main question was
how humans can communicate commands to a robot via human language.
In this work, written sentences with focus on spatial prepositions were fed
to a PR2 robot. The robot had to detect household objects, and to pick and
place those objects accordingly to the content of the sentence received. A
language parser was used. The meaning of spatial prepositions, e.g., in front
of, behind, to the left of, inside, etc. were trained using annotated data in
example scenarios. One of my parts in this systems paper was the implemen-

Figure 8: View from the mounted Kinect camera on the PR2 robot. Seg-
mented objects are enframed, corresponding point cloud points are depicted,
and object labels are shown.

tation of the data collection module under ROS with which I collected and
automatically annotated the image data for training. Further, for the object
detection with a trained image classifier, I designed and implemented the
part of the object detection which needed to find the region of interest in the
image using RGB-D data from a Kinect-like sensor, see Fig. 8. Those image
patches were processed and sent to a linear SVM classifier, which was not
trained by me. I evaluated the vision module and wrote the corresponding
vision parts in the paper.
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[6] Daniel Goehring, Judy Hoffman, Erik Rodner, Kate Saenko, Trevor
Darrell, “Interactive Adaptation of Real-Time Object Detectors.”, In: 2014
IEEE International Conference on Robotics and Automation, ICRA 2014,
Hong Kong, China, May 31 - June 7, 2014 , pp. 1282–1289, IEEE, 2014.
DOI: 10.1109/ICRA.2014.6907018
URL: https://doi.org/10.1109/ICRA.2014.6907018

This work uses a simple webcam and an online-trained HOG/SVM classifier
to detect household objects. The method can be used by robotics practi-
tioners to quickly (under 30 seconds per object) build a large-scale real-time
perception system. In particular, it is shown how to create new detectors on
the fly using large-scale internet image databases (Image-net), thus allowing
a user to choose among thousands of available categories to build a detec-
tion system suitable for the particular robotic application. Furthermore, it
is shown how to adapt these models to the current environment with just
a few in-situ images. Experiments on existing 2D benchmarks evaluate the
speed, accuracy, and flexibility of the system.

Figure 9: Top: Demo setup with PR2 and objects to detect in front of it;
Bottom left: Training user interface, object to learn in region of interest (red
square); Bottom right: Detected objects in bounding boxes.
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For this paper, I designed and implemented the vision part, e.g., the image
extraction software which allows the user to capture in-situation images, see
Fig. 9. Furthermore I implemented the in-situation image training part, and
designed the modular system, i.e., the interaction of the different ROS-nodes
under ROS. I wrote the corresponding sections of the paper. I also created
the demo video for the paper. The video and the paper were submitted to
ICRA and published. I presented the paper at ICRA 2014 in Hong Kong,
China.

[7] Hyun-Oh Song, Mario Fritz, Daniel Goehring, Trevor Darrell, “Learn-
ing to Detect Visual Grasp Affordance.”, In: IEEE Transaction on Automa-
tion Science and Engineering, vol. 13, no. 2, pp. 798–809, 2016.
DOI: 10.1109/TASE.2015.2396014
URL: https://doi.org/10.1109/TASE.2015.2396014

In this journal paper, a PR2 robot had to detect grasp points of house-
hold objects, e.g., pan handles using 2D image and 3D point cloud data as
well as a trained image based HOG/SVM classifier. I wrote the image/point
cloud fusion part, i.e., the selection of image regions (not the detection of
grasp points) by taking advantage of 3D point clouds from an RGB-D cam-
era sensor. I contributed to the system design under ROS and conducted the
experiments on the PR2 together with another co-author.

Figure 10: Local grasp region detection for a cup object. Left and center:
SIFT descriptors on a key point were used to find suitable gripping points
for the PR2 robot. Right: The point region is smoothed.
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[8] Hamma Tadjine, Daniel Goehring, “Acoustic/Lidar Sensor Fusion for
Car Tracking in City Traffic Scenarios.” In: 3rd International Symposium on
Future Active Safety Technology Towards zero traffic accidents (FAST-zero)
’15, Gothenburg, Sweden, September 9-11, 2015, pp. 67–72, 2015.
URL: https://research.chalmers.se/en/publication/222422

In the presented publication, a vehicle detects directions of moving objects
based on the incoming acoustic data. Therefore, the microphones of two
Kinect cameras (two microphones from each Kinect) were used in a way to
make sure, that no ambiguities remain, no matter which direction the sound
was emitted from. I wrote the nodes that process the acoustic data and
generate an angular distribution, based on the time difference at which the
acoustic signal reaches two microphones of each Kinect sensor. I also wrote
the module which combines data of two Kinect sensors to disambiguate the
calculated directions, conducted experiments, and wrote the paper.

Figure 11: Left and center: Symmetries of angular distribution for front
facing Kinect and sideways facing Kinect, respectively. Right: Data fusion
scheme.
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[9] Stefan Lange, Fritz Ulbrich, Daniel Goehring, “Online Vehicle De-
tection using Deep Neural Networks and Lidar based Preselected Image
Patches.” In: 2016 IEEE Intelligent Vehicles Symposium, IV 2016, Gothen-
burg, Sweden, June 19-22, 2016, pp. 954–959, IEEE, 2016.
DOI: 10.1109/IVS.2016.7535503
URL: https://doi.org/10.1109/IVS.2016.7535503

This work describes one of my first approaches to combine 3D lidar data
with CNN-based image classifiers for an autonomous vehicle. To improve
the detection accuracy and to reduce the required processing power, lidar
data was used to select regions in a 2D image, see Fig. 12. Only the regions,
not the complete images were classified by a CNN. The CNN was trained
and executed within the Caffe framework, without the need of a GPU. I con-
tributed the paper idea, helped conduct experiments on a content level and
as a safety driver. I also wrote considerable amounts of the paper. Much of
the work had to be put into the integration of the Caffe software chain into
our modular robotics framework (OROCOS).

Figure 12: Examples with a good classification precision on the Berlin Auto-
bahn A100. Green boxes in the b/w images are correctly classified vehicles.
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Figure 13: Left: The driver is wearing eye-tracking glasses from SMI, a
camera in the glasses is perceiving the fiducial markers and localizes the
head relative to the car. Right: The depth and image information of the
stereo camera is projected as a colored point cloud into the 3D space with
respect to the car.

[10] Tobias Langner, Daniel Seifert, Bennet Fischer, Daniel Goehring,
Tinosch Ganjineh, Raul Rojas, “Traffic Awareness Driver Assistance based
on Stereovision, Eye-tracking, and Head-Up Display.” In: 2016 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2016, Stockholm,
Sweden, May 16-21, 2016, pp. 3167–3173, IEEE, 2016.
DOI: 10.1109/ICRA.2016.7487485
URL: https://doi.org/10.1109/ICRA.2016.7487485

This paper combines an eye-tracking device, camera data of an autonomous
vehicle, and an onboard display to warn distracted drivers whenever they
have missed features of their environment, e.g., looking at a traffic light. I
contributed ideas to the design of the system, conducted experiments with
the eye-tracking device, and helped test the overall system in the autonomous
vehicle and in real traffic, see Fig. 13. In addition, I helped to structure the
paper and wrote considerable parts of it.

[11] Robert Spangenberg, Daniel Goehring, Raul Rojas, “Pole-Based Lo-
calization for Autonomous Vehicles in Urban Scenarios.” In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2016,
Daejeon, South Korea, October 9-14, 2016, pp. 2161–2166, IEEE, 2016.
DOI: 10.1109/IROS.2016.7759339
URL: https://doi.org/10.1109/IROS.2016.7759339

This paper presents a self-localization method for a self-driving vehicle us-
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Figure 14: Upper left: Rectified image from the FU campus; Upper right:
Depth image with recognized trees; Lower left: Tree map from FU campus,
Takustraße; Lower right: Tree map of Straße des 17. Juni.

ing two stereo cameras, odometry data, and a map of pole-like structures. I
contributed ideas to the design of the odometry data as well as to the data
assignment of detected poles to poles in a map, see Fig. 14. Instead of a
greedy matching approach for the sensor data to map data, a more global
solution was implemented. I supported the experiments on many occasions
as a safety driver, discussed options for the underlying Kalman filter, and
wrote parts of the paper. In addition, I created the demo video for the paper
which was submitted to the IROS conference.

[12] Fritz Ulbrich, Simon Rotter, Daniel Goehring, Raul Rojas, “Extract-
ing Path Graphs from Vehicle Trajectories.” In: 2016 IEEE Intelligent Vehi-
cles Symposium, IV 2016, Gothenburg, Sweden, June 19-22, 2016, pp. 1260–
1264, IEEE, 2016. DOI: 10.1109/IVS.2016.7535552
URL: https://doi.org/10.1109/IVS.2016.7535552

In this paper, a lane map is created while observing trajectories of other
vehicles. Other traffic participants are tracked via lidar data. The idea of
this paper was born after observing people driving on snowy roads, i.e., with
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Figure 15: Generated lane trajectories after observing other vehicles.

imperceptible lane markings, as well as in Mexico City on roads without lane
markings. It appeared to the authors of this publication that people cluster
themselves into instantaneous lanes, depending on the vehicles in front and
to the side of them. I contributed to the data recording of real traffic data
and with ideas to the mapping process, i.e., how different interrupted traces
of observed vehicles can be combined to continuous paths, see Fig. 15.

[13] Daniel Neumann, Tobias Langner, Fritz Ulbrich, Dorothee Spitta, Daniel
Goehring, “Online Vehicle Detection using Haar-like, LBP and HOG Fea-
ture based Image Classifiers with Stereo Vision Preselection.” In: IEEE
Intelligent Vehicles Symposium, IV 2017, Los Angeles, CA, USA, June 11-
14, 2017, pp. 773–778, IEEE, 2017. DOI: 10.1109/IVS.2017.7995810
URL: https://doi.org/10.1109/IVS.2017.7995810

Stereo image data are used to detect object regions, which are then clas-
sified using different classification methods. I contributed the paper idea and
helped design the system architecture. I also helped record traffic data, gave
input on how to evaluate the data, and on how to calculate and to visualize
the results.
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Figure 16: Different planned paths in space over time using the presented
timed elastic bands variant.

[14] Fritz Ulbrich, Daniel Goehring, Tobias Langner, Zahra Boroujeni,
Raul Rojas, “Stable Timed Elastic Bands with Loose Ends.” In: IEEE In-
telligent Vehicles Symposium, IV 2017, Los Angeles, CA, USA, June 11-14,
2017, pp. 186–192, IEEE, 2017. DOI: 10.1109/IVS.2017.7995718
URL: https://doi.org/10.1109/IVS.2017.7995718

This paper presents a planning method for autonomous vehicles using timed
elastic bands (TEB). A challenge that autonomous vehicles need to cope with
is planning in space with moving obstacles. Generating a plan for a static
scenario is not enough since the environment changes over time. Therefore,
a path planning algorithm needs to generate a trajectory with respect to a
time parameter. Constraints, which represent how fast other vehicles can
accelerate or turn have to be included into the TEB-solving algorithm. This
work focuses on how the limited perception aspect, i.e., where the free space
configuration in a few hundred meters is unclear, can be considered by a TEB-
planner, see Fig. 16. I contributed ideas to the different constraints in the
TEB-framework, especially with my knowledge about the dynamic and kine-
matic constraints of our test vehicle MiG, helped refine the approach during
real-world tests, discussed the experimental design, and executed self-driving
experiments as a safety driver.

[15] Zahra Boroujeni, Daniel Goehring, Fritz Ulbrich, Daniel Neumann,
Raul Rojas, “Flexible Unit A-star Trajectory Planning for Autonomous Ve-
hicles on Structured Road Maps.” In: 2017 IEEE International Conference
on Vehicular Electronics and Safety, ICVES 2017, Vienna, Austria, June
27-28, 2017, pp. 7–12, IEEE, 2017. DOI: 10.1109/ICVES.2017.7991893
URL: https://doi.org/10.1109/ICVES.2017.7991893

An A*-planner is presented in order to generate plans in dynamic traffic
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Figure 17: Generated plans, different colors depict different points in time
and the corresponding position in space over time.

environments to be able to execute lane changing and overtaking maneuvers.
Compared to TEB-planners, the resulting trajectories of the introduced A*-
planners are more predictable and stable over time and can be adjusted to
the street boundaries more easily. I sketched the main idea of the approach,
i.e., how to plan over time, see Fig. 17., how to branch the search tree into
combinations of acceleration and lane changing maneuvers, and what metric
to use for the cost and heuristic function of the A*-algorithm. In addition, I
provided most of the input on how to create the experiments in a simulation
and how to visualize the experimental results, which consisted of tracked ob-
jects over time and space and the planned trajectories. The kinematic and
dynamic model of the simulated vehicles were provided by me, but not the
simulation framework. Finally, I contributed to the writing process on the
content and language side.
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Figure 18: From observed vehicles a 2D orientation histogram (which cor-
responds to a drive direction histogram) is created. The experiments were
executed in a simulation.

[16] Nicolai Steinke, Fritz Ulbrich, Daniel Goehring, Raul Rojas, “Traffic
Mapping for Autonomous Cars.” In: 2018 IEEE Intelligent Vehicles Sympo-
sium, IV 2018, Changshu, Suzhou, China, June 26-30, 2018, pp. 689–694,
IEEE, 2018. DOI: 10.1109/IVS.2018.8500601
URL: https://doi.org/10.1109/IVS.2018.8500601

In this work, a grid map is created by observing other vehicles in a sim-
ulation, see Fig. 18. This work extends the map creation idea from [12] but
uses a 2D grid to represent the drive direction distribution of vehicles w.r.t.
a plane. I contributed to the evaluation process, i.e., which experiments to
execute and how to to visualize the results.

[17] Zahra Boroujeni, Mostafa Mohammadi, Daniel Neumann, Daniel Goeh-
ring, Raul Rojas, “Autonomous Car Navigation using Vector Fields.” In:
2018 IEEE Intelligent Vehicles Symposium, IV 2018, Changshu, Suzhou,
China, June 26-30, 2018, pp. 794–799, IEEE, 2018.
DOI: 10.1109/IVS.2018.8500446
URL: https://doi.org/10.1109/IVS.2018.8500446

This work describes how vector fields, as shown in Fig. 19, can be used to
guide a simulated vehicle or a model car on a track. The motivation for this
work came from the question in how far planning and control tasks can be
stored in a map, instead of being calculated in each time frame. Therefore,
the map has been discretized into a look-up table, where for each position
and velocity a force vector is computed, pulling the vehicle into a certain di-
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Figure 19: A vector field obtained for a constant velocity of 2 m/s.

rection. I contributed ideas to the experimental evaluation and gave support
during the writing process.

[18] Fritz Ulbrich, Tobias Langner, Stephan Sundermann, Daniel Goehring,
Raul Rojas, “Following Cars With Elastic Bands.” In: 2018 IEEE Intelligent
Vehicles Symposium, IV 2018, Changshu, Suzhou, China, June 26-30, 2018,
pp. 1529–1536, IEEE, 2018. DOI: 10.1109/IVS.2018.8500481
URL: https://doi.org/10.1109/IVS.2018.8500481

This work continues the research on how TEB-planners can be used to guide
a real autonomous vehicle in dynamic traffic scenarios. I supported the design
of the different contraints and metrics, e.g., the cost to switch to a virtual
lane (virtual, because this approach does not require maps), a suitable fol-
lowing velocity and distance, and how to suppress oscillations. I contributed
to conducting the experiments in real world traffic, even though most exper-
iments presented in the paper were performed in a simulator, which I helped
design.
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Figure 20: Different boxes in a facility which need to be recognized and
gripped by a robot.

[19] Christian Poss, Olimjon Ibraginov, Anoshan Indreswaran, Nils Gutsche,
Thomas Irrenhauser, Marco Prueglmeier, Daniel Goehring, “Application
of Open-Source Deep Neural Networks for Object Detection in Industrial En-
vironments.” In: 17th IEEE International Conference on Machine Learning
and Applications, ICMLA 2018, Orlando, FL, USA, December 17-20, 2018,
pp. 231–236, IEEE, 2018. DOI: 10.1109/ICMLA.2018.00041
URL: https://doi.org/10.1109/ICMLA.2018.00041

A robot within a facility of BMW needs to recognize boxes containing car
parts or tools in a cluttered environment using Deep Neural Networks. I
supervised the lead author during his external PhD-thesis at BMW AG and
discussed his ideas on a number of occasions. This included the analysis of
different method candidates, which data to use, and how to evaluate and to
present the data gained from experimental results.

There are many similarities between the research field of this work to the
research area of [5] and [7] using a PR2 robot. In both research domains,
a robot needs to detect objects using 2D and 3D data in order to grasp
them. One difference for the industrial robot is that it does not need to
distinguish different box categories as long as it is able to grasp each box.
On the algorithmic side, the facility robot uses CNNs, as, e.g., from the
YOLO-framework, whereas the PR2 is mainly using HOG/SVMs. In order
to grasp objects, the PR2 robot is using two mechanical grippers. The in-
dustrial robot facilitates a suction device. For both robot types, a suitable
placement of the gripping or suction device is essential in order to succeed in
the gripping and lifting task.
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Figure 21: Overlap uncertainty of two oriented rectangles at a point in time.

[20] Andreas Phillipp, Daniel Goehring, “Analytic Collision Risk Calcula-
tion for Autonomous Vehicle Navigation.” In: International Conference on
Robotics and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24,
2019, pp. 1744–1750, IEEE, 2019. DOI: 10.1109/ICRA.2019.8793264
URL: https://doi.org/10.1109/ICRA.2019.8793264

This work presents an approach to evaluate the collision risks of a vehicle
in traffic scenarios. Since collision checking and avoidance is an import part
of the perception and planning system for autonomous driving, this work
presents an analytic approach to calculate the probability of a future colli-
sion, e.g., as shown in Fig. 21, and extends another already known solution.
I have been supervising the lead author during his PhD-thesis and how to
make his approach applicable under real-time constraints, how to design the
state space of different vehicles, which experiments to conduct, and how to
prepare the results for the paper.
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Figure 22: Samples of unlabeled data, the first row shows unsorted, the
second row clustered samples.

[21] Michaela Steinhoff, Daniel Göhring “Pedestrian Head and Body Pose
Estimation with CNN in the Context of Automated Driving.” In: Proceed-
ings of the 6th International Conference on Vehicle Technology and Intelli-
gent Transport Systems, VEHITS 2020, Prague, Czech Republic, May 2-4,
2020, pp. 353–360, SCITEPRESS, 2020. DOI: 10.5220/0009410903530360
URL: https://doi.org/10.5220/0009410903530360

In this work, which can be considered as an experimental approach towards
a driver assistant system for an automated vehicle, a camera based head po-
sition estimation is described. The motivation of this work is to get a better
prediction accuracy of what a pedestrian who stands next to the street is
planning to do, which is part of the research area of intention recognition.
In this work, training data from pedestrians, as shown in Fig. 22, has been
annotated and used to train a CNN. The lead author is an external PhD-
student of mine, working at IAV GmbH. I gave support on the system design,
provided feedback with respect to the applicability of the approach as well
as on the visualization of experimental data.
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Abstract. In this paper a realtime controller architecture for our au-
tonomous cars, a highly equipped conventional car and an electric ve-
hicle is presented. The key aspects for controlling a car are stability,
accuracy and smoothness, which constrain design critereas of all kinds
on controller components. This report presents solutions for a variety of
controller components, and aspects of a controller implementation of an
autonomous car. The algorithms described proved their applicability in
dense urban Berlin traffic as well as on the Berlin Autobahn.

1 Car Introduction

In our project AutoNOMOS we use three different platforms. The Spirit Of
Berlin, a Dodge Caravan marks the first autonomous car which was programmed
at the Artificial Intelligence Group of Prof. Raúl Rojas at the Freie Universität
Berlin since 2006. This car successfully participated in the Darpa Urban Chal-
lenge and qualified for the semi finals. Since 2010 we are working on a Volkswagen
Passat, called “MadeInGermany” (MiG). MiG is a very modern car with mod-
ern sensors and a drive by wire architecture where we have access to throttle
and brake actorics via CAN bus. Since 2011 we are also working on an electric
vehicle, a Mitsubishi iMiev, called “e-Instein”.

Fig. 1. Autonomous Cars (f.l.t.r.): Spirit of Berlin, e-Instein, MadeInGermany

2 Controller Specification

At the beginning of the development of a controller, one has to think about
the environment the controller should work in and about the constraints the
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controller has to satisfy. For our autonomous cars, the following specification
aspects were defined:

– Safety: The controller must be fail safe on a high level with regards to soft-
ware or hardware failures. Further, the controller must never perform ma-
neuvers, which are not safe with respect to the physical limitations of the
car or the environment. It must never operate beyond the mechanical lim-
itations of the actoric. To give an example, a controller which operates on
a flat street can to make other assumptions about grip in comparison to a
controller which has to operate in off-road scenarios. Regarding actoric, a
quickly responding and precisely adjustable actoric allows more aggressive
maneuvers than the one reacting with huge time delays. As a rule of thumb
translational and centrifugal forces are limited to 40 percent of physically
possible values.

– Accuracy: Reaching desired control values quickly is most important for a
safe driving of the car. Imprecise or slow controllers usually lead to oscilla-
tions within the upper controller level or behavior layer. Oscillations are one
reason for an uncomfortable driving experience. For MadeInGermany, the
goal was to have a lateral error to the planned trajectory of less than 10 cm
at 100 km/h and a velocity error of less than 0.5 km/h.

– Comfort: Besides limiting the amount of lateral and longitudinal forces to a
level which feels comfortable to a modest driver, another important aspect
is to limit acceleration changes, i.e., the function of the acceleration vector
over time must be continuous. Changes within the acceleration vector must
remain small for a comfortable feeling of drive.

Some of these aspects contradict each other, e.g., safety and comfort. A safe
controller might try to apply appropriate maneuvers as fast as possible but
this can be uncomfortable, because humans prefer slow changes of accelerations.
Further, comfortable maneuvers, e.g., braking late, can sometimes result in dan-
gerous situations. The same holds for accuracy. A controller which tries to be
too precise can result in an uncomfortable feeling of drive.

3 Controller and Planning Modules Overview

This section introduces the module chain and the corresponding module function
description. Modules will be distinguished by their level of abstraction in terms
of the platform on which they run. An overview of the given modules, their input
parameters and their implementation name within the OROCOS-Framework are
given in Fig. 2. The code within the AutoNOMOS project was designed to serve
as a middle ware for a variety of autonomous platforms. Therefore, reusability of
code was a very important aspect. Only the low controller modules are platform
specific, high level behavior modules are independent of the platform they are
executed on.
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a)

b)

c)

Fig. 2. Controller and behavior models. a) For these models, code and data are vehi-
cle independent. b) Code is vehicle independent but not data independent. c) These
modules are designed for a certain vehicle (VW Passat (MiG)).

4 Steer Control Chain (MiG)

The complete steer control chain includes the module for the behavior, which
generates a planned trajectory. The behavior uses a road network definition file
which includes the streets, and a mission file which defines the checkpoints to
be visited while traveling to a certain destination. Just to mention, the behavior
generates in each time frame a new, updated plan, mainly it does not remember
old trajectories. Now, the generated planned trajectory is fed into a lateral con-
troller. The task of the lateral controller is to compare the current position of the
car with the alignment of the planned trajectory. Depending on other aspects as
comfort and the current velocity, the lateral controller generates a wanted (de-
sired) steering wheel angle. It was assumed there is a linear dependency between
steering wheel angle and the angle of the front wheel, even though it is known
that this assumption is just a rough approximation. However, for small angles
this assumption provides a good estimate and bigger steering angles are exe-
cuted at low velocities only, where the exact execution of the generated wanted
steering angle is not as important as it is for high velocities. Future work re-
mains to approximate the real function between the steering wheel angle and
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front wheel angle, and also the function between velocity, steering wheel angle
and wheel slip. Bringing back the focus to the control loop, the desired steering
wheel angle is fed into the steer controller, who generates a desired momentum
for the steer motor. The control loop is depicted in Fig. 3. In the next sections
the steer angle controller and later the lateral controller are described “bottom
up”.

Fig. 3. Steer controller chain for MadeInGermany. The lateral controller generates a
desired steer angle, feeds it to the steering wheel controller, which generates a desired
momentum, encoded within a voltage.

4.1 Steer Angle Controller (MiG)

The steer angle controller gets a desired steering wheel angle as an input and
generates a torque value. To avoid oscillations on the lateral controller, which is
executed right before the steer angle controller within the control loop, the steer
angle controller shall generate torque values to minimize the difference between
desired steering wheel angle and current steering wheel angle as quick as possible.
The steer motor, manufactured from Maccon, has no built in angle sensor. Thus,
for feedback, we use an external angle sensor, which is built in stock in the MiG-
Passat and sends its data via CAN bus with an update frequency of 100 Hz to
the controller gateways. 100 Hz is also our control frequency. The sensory data
are accumulated in the car state. This architecture is not optimal with regards
to system feedback. Further, every system has a certain reaction time. To handle
these imminent delays, a predictive controller was the solution of choice.
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Fig. 4. Impulse response test for the steer motor.

Predictive control. To get a rough estimate about the delay within the control
loop, we sent a torque impulse to the steer motor and measured the resulting
angle change over time. The response curve was plotted in Fig. 4. The measured
response time was about 150 ms. One can see the steering wheel accelerating,
the maximum steer angle velocity was measured at 600o/s.

To overcome the system delay, a predictive PID-controller was used. The con-
troller does not use the current steering wheel angle θsw as feedback, but a
prediction value of what the steering wheel angle will be θ

′
sw, assuming a con-

stant change of the steering wheel angle within the next t = 0.12s - which is the
estimated system delay - while moving constantly with the currently measured
steering wheel angular velocity ωsw. We get:

θ
′
sw = θsw + t · ωsw (1)

Now, where we calculated the values for the control loop, we feed them into the
PID-rule. We use a classic PID-controller with a limited maximum integral for
the integral term. This is important to avoid big overshoots.

Velocity dependent momentum adaptation. To accommodate fact that
the necessary steer momentum varies with the car’s velocity, a scale factor was
introduced, which is multiplied with the controller output, c.f., Fig. 5. When the
car is standing, one has to use a higher force to turn the front wheels, because the
tire has a high friction with the concrete. When moving slow, the steering wheel
can be turned quite easily. The higher the velocities are, the harder it gets to turn
the steering wheel in. There are several causes for this: At first, the centrifugal
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force gets bigger, pushing the front wheels back to their neutral position. Second,
the rotational impulse gets bigger, to change the impulse vector, a higher torque
is necessary. Third, car manufacturers limit the support of the steering servo
motor to get the car more stable at higher velocities - our steer motor relies on
the support of the steering servo motor. Experiments showed that the controller,
in its precise mode, i.e., with maximum scale factors reaches a desired angle
within one second with a precision of less than 0.5 degrees, after 1.5 seconds the
accuracy is better than 0.15 degrees.

Fig. 5. Steer momentum scale factor function, modeled as a piecewise linear function.
Medium momentum is necessary for a standing car, small momentum for low velocities
and higher momentum for higher velocities - especially while steering away from the
zero angle.

Steer Angle Limiter. To avoid the execution of wanted steering wheel angles,
which might pose a threat to the car’s safety and stability, a steer angle limiter
was implemented, which calculates the maximum allowed steering angle for a
given velocity under the assumption of a maximum allowed centrifugal force, see
steer angle limiter code example. The steering wheel controller, together with
the steer angle limiter runs on the safe box hardware, that’s why it cannot be
negatively affected by the other modules, running on the main computer.
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/∗∗∗∗∗∗∗ Steer Angle Limiter ∗∗∗∗∗∗∗/
f loat getMaxSteeringWheelAngle ( t o l e r a n c e ) {
mSinMaxFWAngle = fabs (WHEELBASE ∗ MAXLATERALACCELERATION /
( mAvgFrontWheelSpeeds ∗ mAvgFrontWheelSpeeds ) ) ;
i f ( ( mAvgFrontWheelSpeeds != 0 . 0 ) && (mSinMaxFWAngle < 1) ) {

maxWheelAngleAtGivenSpeed = as in (mSinMaxFWAngle) ∗ 180 / Pi ;
return f abs ( ( maxWheelAngleAtGivenSpeed /
MAXWHEELANGLE ∗ MAXSTEERINGWHEELANGLE) + t o l e r a n c e ) ;

}
return MAXSTEERINGWHEELANGLE; // in degrees
}

5 Steer Controller Chain (e-Instein)

The main difference of the e-Instein steer controller chain to the MiG controller
chain is that the output voltage of the safe box encodes a steer angle for the
Paravan module. The lateral controller generates a desired steer angle, feeds it
to the steering wheel controller, which generates a calibrated angle value for the
safe box. The safe box generates a voltage, encoding the steering wheel angle
non-linear and feeds it to the Paravan system, see Fig. 7. The different modules
are described in detail in the following sections.

Fig. 6. Steer controller chain for e-Instein.
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Fig. 7. An input angle is mapped to an output angle. The voltage at the paravan is not
linearly dependend on the resulting steer angle. The function, of the form: a·(x−b)c+d
does not pass the origin of the coordinate system.

5.1 Steer Angle Controller (e-Instein)

Originally the steer controller for the e-Instein was assumed to be unnecessary,
because the lateral controller generates a desired steering wheel angle and the
Paravan module takes a voltage, encoding a steering wheel angle as an input.
Unfortunately the mapping between both is not linear and we were missing
a specification. Therefore, the steering wheel angle implements a linearization
function, c.f., Fig. 7, to map the desired angle to a linearized angle, which feeds
the Paravan system, c.f., Equation 2. Parameters a, b, c, d had to be chosen wisely
to approximate the experimentally derived function.

linearizedAngle = sgn(desiredAngle− b) · a · (|desiredAngle− b|)c + d (2)

This function, unfortunately, gives only a rough estimate for the control voltage
to reach a certain wanted angle. The Paravan system implements a dead zone,
thus, it depends from which direction (left or right) the steering angle turns into
a desired angle. This prediction function pred is sufficient to reach the steering
wheel angle with an accuracy of +/- 5 degrees. To reduce the remaining differ-
ence between desired and current steering wheel angle below 5 degrees, a PID
controller, somewhat similar to the one in MiG is used. The PID-controller can
only compensate differences smaller than 10 degrees to avoid oscillations. The
steering motor in the e-Instein is very slow (approx. 360 degrees per second),
a non limited integral in the PID controller could result in harsh overshoots.
Combining the prediction function and the PID-controller, we get the summa-
rized control Equation 3, resulting in a linearized Angle, which can be linearly
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encoded to a voltage, which again feeds the Paravan box.

linearizedAngle = pred(desiredAngle) + pid(desiredAngle, currentAngle)
(3)

The combined control form allow to reach a desired steering wheel angle with
an accuracy below 1 degree, within one second - assumed the desired steering
wheel angle is not too far away from the current one.

5.2 Lateral Controller (MiG and e-Instein)

The task of the lateral controller is to generate a desired steer angle to stabilize
the car on the planned trajectory. Thereby the car must not swing left and right
of the trajectory. To fulfill the control task a velocity adaptive PD controller was
implemented.

vehicle

trajectory

correction angle to return
 to trajectory

return point
preview distanceclosest pt.

on traject.

Fig. 8. Lateral controller sketch, showing closest point on trajectory, return point and
correction angle.

Velocity adaptive PD-Controller (MiG and e-Instein) The velocity adap-
tive PD controller uses two weight sets, one weight set for low velocities and one
set for high velocities. For medium velocities in between, the two weight sets are
linearly interpolated. The resulting function is somewhat similar to the output
scale function of the steering wheel controller of MadeInGermany, see Fig. 5.
The control task is visualized in Fig. 8. Control input values are the current
car orientation and the angle between the car’s forward looking direction and
the direction from the car’s front axis’ middle point to the return point of the
trajectory, c.f., Fig. 8. The return point on the plan is calculated velocity de-
pendent. The faster the car goes, the more distant the point is. This is useful to
stabilize the car for higher velocities and to be able to perform sharp turns while
going slow. Still, this approach tends to short cut curves by a small amount. The
distance of the return point to the closest point on the trajectory (returnDist)
is calculated as shown in Equation 4.

returnDist = max(staticDist, velocity · velocityScale) (4)
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The static distance value makes sure that the distance to the return point never
gets smaller than a certain value, also when the car is standing. It was set to 2
meters in praxis, the scale factor was set to 1 s, which means that the return
point is usually reached within one second, if the plan would be kept. In praxis,
the car converges to the plan, only, because the desired angle is calculated each
time again, converging to zero but never reaching zero.
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o
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 y

interpolation{

Fig. 9. Ego state over time from bottom left to top right. Suddenly an ego state jump
occurred, was recognized by the controller. The jump in interpolated within a certain
time, a useful value was t = 2s.

EgoState jump filtering (MiG). A second feature of the controller is to
memorize the last egostate. Using a prediction, it can detect differences between
the expected egostate in the next time step and the current egostate. If the
projected difference to the lateral direction of the car is bigger than a certain
amount, e.g., 0.1 meters, it is considered to be a critical ego state jump. The
two dimensional egostate difference is substracted from the current egostate and
interpolated to zero within two seconds. If within these two seconds another jump
is detected, an accumulated difference is calculated and interpolation starts from
new.

The ego state jumps are supposed to have different causes. Loss of UMTS
connection result in loss of correction data and in ego state jumps. Multi path
connections to localization satellites could also be a reason.

Car angle to IMU angle online calibration. A further feature is the online
calibration of the supposed car orientation angle to the Inertial Measurement
Unit (IMU) angle of the Applanix GPS. The Applanix calibrates its IMU at
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every restart. Thus, the difference angle between IMU and car forward direction
changes every time about 0.05 degrees, in worst case scenarios, whenever the
calibration routine was ignored up to 0.5 degrees. At velocities of 100 km/h, 0.5
degrees wrongly calibrated IMU can result in a trajectory offset of 0.5 - 1 meter.
Therefore a second calibration routine was implemented in the controller. When
going almost straight and going faster than 60 km/h, the controller integrates
the error to the trajectory over a certain time span, a useful value was t = 4s. If
the integral was significantly below or beyond zero, an small positive or negative
offset value is added to the car orientation angle. Thus, after ten iterations, i.e.,
within a minute, the IMU offset could be successfully neutralized.

   Engaged,
Gear Neutral

 velocity < 3 m/s

   Brake

 velocity = 0 m/s

   Shift into
    R, D or S

 velocity >= 3 m/s

 driver intervention

 driver intervention

   Disengaged

Fig. 10. Finite state machine of the gear shifting routine, enabling the driver to give
the control back when going fast enough, or braking and shifting whenever going slow
or standing. The disengage state can be reached from all states (left out in the figure).

6 Gear Selection (MiG and e-Instein)

The gear selection routine has to access the gear over CAN bus, and, if necessary
send brake commands. The gear selection routine must fulfill at least two tasks:
shift into drive whenever the car is engaged, i.e., made ready for autonomous
drive. Initially in N, the brake must be pressed with 10 bar, then the gear can be
set to drive, reverse or sport. Another task is to give back the control to the car,
whenever a driver intervention occurred, which means, that the driver intervened
by pressing throttle or brake (MiG only). After releasing brake or throttle, the
computer should regain control over the car without stopping. Luckily, the gear
allows shifts from neutral to drive, whenever the car is faster than 10 km/h or
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approx. 3 meters per second. The finite state machine, depicted in Fig. 10 gives
an idea about the functionality of the gear setting routine.

Fig. 11. Velocity control chain: Given a plan, a desired velocity is calculated by the
velocity calculation module and fed into the velocity controller. Feedback is given by
the ego state and the wheel speeds.

7 Velocity Control Chain (MiG)

The velocity control chain starts again with a planned trajectory from the be-
havior module. The velocity planner calculates a wanted/desired velocity on
this trajectory. This wanted velocity is handed to the velocity controller, which
generates throttle and brake commands, which are fed through the cargate and
watchdog to the CAN bus of the MiG-Passat. The different modules are de-
scribed in detail within the next sections.

7.1 Velocity Control (MiG and e-Instein)

Velocity control is executed by a PI-controller, running with a 100 Hz. Input
values are a wanted velocity from the velocity calculator and a current velocity,
coming via CAN bus and stored in the car state.

Brake and throttle controller. (MiG) The PI-controller compares the wanted
velocity to the current velocity. Also here the integral is limited to a certain value.
The output of the controller is mapped to throttle or brake. Negative outputs are
mapped to brake commands and positive outputs are mapped to throttle. The

45



most important aspect here lies in the fact, that throttle and brake commands
have different effects, i.e., 50 percent of brake results in much higher accelera-
tion amounts than 50 percent of throttle. That is why positive outputs of the
controller were weighted with a throttleConstant, which was set to 4.

Throttle and brake limitations. (MiG) For a comfortable ride, the brake
commands were limited to 32 percent of their maximum value, which can result in
up to 6ms−2 deceleration. This was especially important for testing the obstacle
tracker. To give an example, wrongly classified obstacles could have a devastating
effect when going with a 100 km/h on the highway, if they resulted in a full
brake, endangering especially the following cars. Also the throttle commands
were limited to 50 percent of their maximum during normal velocities. When
starting to move, this value was limited to 35 percent and linearly interpolated
to 50 percent at a velocity of 5 meters per second.

For a racetrack scenario, much higher thresholds were applied and can be
activated through a flag. In this case, the steering angle limiter from Section 4.1
must be deactivated on the safe box as well.

Dynamic Handbrake. (MiG and e-Instein) Stopping a car needs special
treatment. A car with an automatic gear tends to start rolling, even without
any throttle or brake commands. The integral part of the PI-controller must
have an integral weight together with a maximum integral value, big enough to
stop the car. This alone is no difference to any other velocity to control. But
if the desired velocity is set to zero, the controller tends to convergence to the
wanted velocity or it swings around the wanted velocity, resulting in a stop and
go. Thus, without special treatment, it can take several seconds to reach a full
stop with the car. Further, if pressing the brake not hard enough, the Passat car
(MiG) will not fully open the clutch of its direct shift gear, resulting in a semi
closed clutch, which again causes severe damage to the clutch over time. A nice
solution is to add an increasing amount of brake pressure over time, whenever
the wanted velocity is set to zero, combined with the fact that the car is already
slower than 4 meters per second. If the car is actually standing, a further fixed
amount of brake pressure is added to the brake, to make sure, the clutch is
fully open. This “dynamic handbrake” is also useful when stopping at a steep
mountain to make sure the car will stop. In experiments the controller proved
to be able to keep all velocities up to 100 km/h with an accuracy of 0.5 km/h.

7.2 Velocity Calculation (MiG and e-Instein)

The velocity calculation module is independent of the car it is running on. Im-
portant parameters for the velocity calculation are maximum allowed centrifugal
accelerations and brake accelerations. These values are referred to as “comfort
settings”. The velocity calculation is generated instantly and recalculated each
time step again. There are different aspects which have an effect on the currently
desired velocity: static obstacles or traffic signs/lights on the planned trajectory,
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dynamic obstacles on the trajectory, curves in front with a certain curvature and
at a certain distance, , and of course the officially allowed velocity. All aspects
on the trajectory result in a maximum velocity at which they can be approached
currently, e.g., a curve in a distance of 5 meters results in a lower currently de-
sired velocity than the same curve in 50 meters distance. For reasons of safety,
from all desired velocities the smallest one is returned to the velocity controller.

The following sections will give a glimpse about the different calculations,
which all use the same core function.

Velocity calculation for static obstacles. A first assumption when braking
towards a static obstacle was, that the braking acceleration a shall be constant
over the whole time. Let us assume, a static obstacle was detected in a certain
distance ∆s. To brake down with a constant acceleration a (brake accelerations
are negative) and to stop right in front of the obstacle, the current desired
velocity vd is calculated as follows:

vd =
√
−2a∆s (5)

vd = (−2a · (obstaclePosition− carPosition))0.5 (6)

vd = (−2a · (obstaclePosition− carPosition))b (7)

In Fig. 12 a desired velocity over distance to obstacle function is shown for
a constant example brake acceleration. For a generalization, parameter b was
introduced and is, for the case of constant accelerations, set to 0.5. Acceleration
parameter a was set to -1.5.

In practice it showed that static accelerations do not fit the human perception
of comfort. Humans tend to accept higher accelerations at high velocities, at low
velocities the same accelerations feel uncomfortable. Therefore Equation 5 was
changed to allow higher accelerations at higher velocities. This can be achieved
through changing the values of parameter a and b, parameter b defines, how con-
stant the acceleration is over time, b = 0.5 means constant acceleration. Through
experiments was found, that the current function with a = −0.65; b = 0.57 leads
to much better results regarding a higher acceleration at higher velocities and
smaller accelerations while stopping:

vd = (−2 · (−0.65) · (obstaclePosition− carPosition︸ ︷︷ ︸
∆s

))0.57 (8)

The function is plotted in Fig. 12. Both functions result in the same desired
velocity of approx. 100 km/h for a distance of 300 meters, or, with other words,
the planned braking distance for a velocity of 100 km/h is the same, when ap-
proaching a stop sign. Not to increase the stopping distance for higher velocities
was an important aspect within the design process, because the sensors in the
car have a limited distance at which they can detect obstacles. In case of an
unexpected obstacle, the planned velocity will instantaneously jump to a small
value, resulting in a high braking pressure.
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Fig. 12. Desired velocity function over distances to a static object. Blue curve depicts
the function with a constant brake acceleration, red curve for a variable brake function.

Stopping for traffic lights. One exception of static obstacle are traffic lights.
If turned red, they are treated as stop signs, when green, they can be just ignored.
If a traffic light turns from green to yellow, it depends on the proximity of the car
to the traffic light, if a braking maneuver is executed or not. If the car is closer
than 42 percent of the necessary distance to brake down comfortably, which can
be calculated by another form of Equation 8, where ∆s is isolated, the car just
passes the traffic light. This 42 percent point is called the “point of no return”.

Velocity calculation for dynamic obstacles. The introduced function can
be extended to braking down to dynamic obstacles easily. Therefore, an accurate
estimate of the obstacle’s velocity is necessary. Positive velocities mark an object
which is moving away from the car. Lateral velocities are not taken into account.
The desired velocity Equation 8 can be extended as follows, when vo marks the
velocity of the obstacle, sc and so stand for the position of the car and of the
obstacle, respectively:

vd = (−2 · a · (so − sc + (vo
(1/b))))b (9)

vd = (−2 · a · (so − sc︸ ︷︷ ︸
∆s

−vo + (vo
(1/b))))b (10)

The first equation assumes that the car will accelerate/decelerate to the obstacles
velocity and approach the obstacle with zero distance. The velocity over distance
to the obstacle function is depicted in Fig. 13. The second Equation keeps a safety
distance depending on the obstacle’s velocity. With the second equation, a very
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comfortable car following behavior could be implemented, which worked both at
high autobahn velocities as on inner city traffic.
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Fig. 13. The velocity over distance to an obstacle function, as shown in Eq. 9.

Velocity calculation in curves. Velocity calculation in front of curves is
somewhat similar to braking in front of multiple moving obstacles. At first the
planned trajectory is sampled in different distance steps, as Fig. 14 shows. For
each point of the sample set and on the trajectory, the curvature c is calculated.
For each given curvature c 6= 0, which is the reciprocal of the curve radius
c = 1/r, given a maximum allowed centrifugal force Fz, we get a maximum
allowed velocity v:

Fz = v2/r (11)

Fz = v2 · c (12)

v =
√
Fz/c (13)

Fig. 14. Above the trajectory the maximum allowed velocity are shown; below, the
distance of the car to that point is shown.

Now, with a maximum velocity vp and a distance sp for each of the sampled
points on the trajectory, the first variant of Equation 9 can be applied, assuming
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that vp is the velocity of the obstacle (so) and sp the distance of of the obstacle
(∆s). After doing this for all points on the sampled trajectory, we take the
smallest velocity as the wanted velocity for curvatures.

7.3 Combination of forces using Kamm’s circle (MiG and e-Instein)

To avoid that the maximum lateral and longitudinal forces occur together, a sec-
ond variant for the velocity calculation in front of curves can be applied. Here we
take advantage of the shape of the “Kamm’s Circle”. In our case, both maximum
forces are modeled as an ellipse, different shapes are also possible. For the most
distant sample point on the trajectory the curvature and the maximum allowed
velocity are calculated. Now, this velocity is propagated stepwise back to the car,
but a new constraint here is, that in case of maximum lateral acceleration, no
longitudinal acceleration must occur in the time step before. While going step
by step back to the car, the propagated velocity it compared to the maximum al-
lowed velocity in the next sample point and the minimum of the current and the
propagated velocity is taken. The advantage of this method is, that both forces,
lateral and longitudinal must not occur in arbitrary combinations, making the
driving experience more comfortable.

Fig. 15. Example form of a Kamm’s Circle.

8 Derivation of a Car Model (MiG)

A precise car model is important for a predictive control and for a good controller
simulation. In this section, a short overview of the steps taken to acquire an
accurate model for MadeInGermany are presented.
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8.1 Derivation of a Car Model

A car model is crucial for a strong simulation of the car’s dynamics and to estab-
lish an accurate controller. As a model for position and orientation prediction
over time an Ackermann drive was assumed for our car as long as centrifugal
forces and accelerations were below 5ms−2. As a further abstraction a bicycle
model for the car’s dynamic was used, which consists of only one front and one
left wheel in the middle of each axis. Given an shaft distance L, a velocity v at
the front middle axis point and a steering angle α of the front wheel, the change
of the car’s orientation angle ω can be easily calculated:

ω =
v(t) sin(α)

L
(14)
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Fig. 16. Velocity of MiG over time for different throttle values.

8.2 Modeling Acceleration and Braking

For an accurate control of a wanted speed it is useful to have a model of the
acceleration and braking behavior of the car, given the gear is set automatically
from the gearbox. The desired function has as arguments a current velocity vt−1,
a time duration t, a current throttle or brake command u0 and returns a new
velocity vt.
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vt = f(vt−1, u, t) (15)

For reasons of simplicity, the acceleration, including braking experiments
were started with a standing car, then the car accelerated for various seconds,
but not faster than 80 km/h. The braking experiments were performed at 30
and 50 km/h.

The velocity was provided by the four velocity sensors in the wheel.

Throttle model First, we were interested in the car’s acceleration properties
when using the throttle command. We recorded different velocity over time func-
tions for different, but constant throttle commands. From the velocity over time
functions we can derive the acceleration over time functions, as well.

Now a velocity over time function was be approximated. The velocity over
time functions can be approximated with good accuracy by a polynomial func-
tion of the form:

vt = atb (16)

The following parameters were derived through gradient descent, where b
is constant 0.8, and where a depends on the chosen throttle strength u. Now
a function for a, depending on the given throttle command u can be derived.
Therefore a sigmoidal function of the form showed to be useful:

a =
4.1

1 + e15(0.55−u)
+ 0.4 (17)

52



0
 1.0

2

 0.9

4

 0.8

6

 0.7
 0.6

8

v 
in

 m
/s

 0.5

relative throttle

10

 0.4
6

12

5 0.3
4

14

 0.2
3

16

2

time in s
 0.1

1

18

 0.0 0

20

Fig. 18. Approximated velocity function over time and over relative throttle values.

The complete function for the car velocity v over time t, given throttle com-
mand u was assumed as:

vt = f(u, t) = (
4.1

1 + e15(0.55−u)
+ 0.4)t0.8 (18)

A plot of the function is given in 18. Therefrom, the acceleration over time
function can be derived easily:

at = f ′(u, t) = 0.8(
4.1

1 + e15(0.55−u)
+ 0.4)t−0.2 (19)

Brake model Second, we wanted to analyze the car’s braking behavior. There-
fore we drove the car with 30 km/h and 50 km/h and executed constant brake
commands, the resulting brake acceleration over time function is depicted in
Fig. 19 (b). We measured the velocity over time until the car stopped.

As before we derived the acceleration over time functions for the different
brake commands, the function for braking the car, e.g., from a speed of v0 = 8.3ms
was approximated by:

vt = max(0, f−1(u, t) = v0 − (13u0.8 + 0.2)t) (20)

The two-dimensional function plot for a braking car is shown in Fig. 19 (c). The
control delay of the throttle and of the brake was about 0.1 s each.

8.3 Car Model Conclusion

The acceleration and brake functions for a given current velocity and given
throttle/brake command were successfully applied to our simulator. The lower
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level controllers still had to be tuned in the real car because of the complex
car dynamics, especially tire slip, mass distribution, system delays and slippage
within all kinds of gears. However, this simple car model helped significantly to
design the behavior and the higher level controllers within the simulator.

9 Summary

This technical report focussed on the main components of the autonomous cars
“MadeInGermany” and “e-Instein”. The specification described at the beginning
was successfully met. MiG was able to safely drive through inner city traffic and
drove also on the Berlin Autobahn with up to 100 km/h, where its mean lateral
error to the trajectory was less than 10 cm. The velocity error was about 0.5
km/h. For e-Instein these values are still higher, but work is in progress. Future
work will focus on energy efficient control routines to increase energy efficient
control.
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Abstract: In this paper we describe a sound source localization approach which, in combination
with data from lidar sensors, can be used for an improved object tracking in the setting of an
autonomous car. After explaining the chosen sensor setup we will show how acoustic data from
two Kinect cameras, i.e., multiple microphones, which were mounted on top of a car, can be
combined to derive an object’s direction and distance. Part of this work will focus on a method
to handle non-synchronized sensory data between the multiple acoustic sensors. We will describe
how the sound localization approach was evaluated using data from lidar sensors.

Keywords: Sound source localization, Autonomous driving, Sensor data fusion.

1. INTRODUCTION

The ability to quickly detect and classify objects, espe-
cially other vehicles within the surrounding is crucial for an
autonomous car. However, cluttered environments, occlu-
sions and real-time constraints under which autonomous
vehicles have to operate let this task remain a key-
challenge problem. In recent years, tremendous progress
has been made in the field of self-localization, world mod-
eling and object tracking, mainly thanks to lidar, radar,
and camera based sensors but also because of algorithmic
advances, e.g., how to model uncertainties [Thrun (2005)]
and how to apply these methods to sensor fusion [Schnuer-
macher (2013)], or how to train object classifiers using
machine learning techniques [Mitchell (1997)]. In the past,
acoustic sensors have played a minor part in robotics,
especially in autonomous driving or for outdoor robotics in
general only. One reason for this might be the omnipresent
noise in most city road traffic and outdoor scenarios and
the domination of other sensors like lidar, camera, or radar.
In this paper we want to present how an autonomous ve-
hicle can localize other vehicles in a real-world road-traffic
environment. For this task we wanted to use low-cost off-
the-shelve microphone arrays like the ones provided in a
Microsoft Kinect camera. Since it is usually hard to deter-
mine the euclidic distance to an object with acoustic data,
we will to focus on angular direction approximation. This
data can still be very helpful, especially when combined
with data from other sensors, e.g., lidar data from laser
scanners. One possible scenario, even though not pursued
in this work, would be to localize the direction at which
an emergency vehicle was detected and then to assign this
direction to a tracked object using lidar data. Another
challenge in our scenario are the moving sound sources

? Part of this work has been funded by DAAD and DFG; in addition
the authors would like to thank Prof. Dr. Raúl Rojas (Freie Uni-
versität Berlin, Germany) and Dr. Gerald Friedland (International
Computer Science Institute, Berkeley, CA, USA) for their support.

and comparably high velocities of other vehicles, in addi-
tion to temporarily occluded, emerging and disappearing
vehicles. The presented solution was implementated on a
real autonomous car using the OROCOS realtime robotics
framework. For evaluation of the algorithm the acoustic
data were synchronized and evaluated with lidar objects
from Ibeo Lux sensors.

2. RELATED WORK

A lot of progress for sound source localization has been
achieved in the speech and language processing commu-
nity, as in [Benesty (2007)] on beam-forming methods, or
for dialog management [Frechette (2012)].

In the robotics community and especially for indoor robots
there are a variety of publications on sound source local-

Fig. 1. Test Car MadeInGermany from Freie Universität
Berlin, the Kinect devices were placed on top of the
roof, in front of the Velodyne HDL 64 lidar sensor.
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Fig. 2. The six fields of view for the six lidar sensors Lux
from Ibeo and one of the radar sensors are shown,
facing to the front.

ization available. The interaural time difference method
(IDT) has been widely applied, as in [Liua (2010)]. In [Liu
(2010)] and in [Li (2012)] the generalized cross-correlation
function (GCC) is extended to localize different sound
sources using an array of four different microphones. A fur-
ther approach unsing a four-microphone-array in a room
and time-delay estimates is provided by [Pineda (2010)],
with focus on a geometric analysis and under optimization
criteria. In [Valin (2003)] and in [Valin (2004)], a robot
with 8 microphones was used to localize moving sound
sources. The work of [Markowitz (2014)] gives a broader
perspective on how people can interact with robots by
using speech.

This paper is structured as follows: Section 3 will introduce
the accoustic sensor setup and setup of lidar sensors, which
will be used to evaluate the presented approach. Section 4
will describe the applied and implemented algorithms with
an emphasis towards the sensor fusion method in this
approach. In Section 5 we will perform experiments and
present the results. Section 6 will summarize the approach
and will give an outlook for future work.

3. SENSOR SETUP

As a test platform, we used the autonomous car named
“MadeInGermany” from Freie Universität Berlin, cf.
Fig. 1. The car is fully equipped with a combined lidar
system from Ibeo, including 6 laser scanners, as shown
in Fig. 2, a second 64 ray lidar sensor from Velodyne, in
addition 7 radar sensors for long and short distance per-
ception, at least 5 different cameras for lane marking and
traffic light detection, including a stereo camera system
for visual 3D algorithms, and a highly precise GPS unit.
The car can be operated via a CAN-bus interface, thus,
no further actuators are necessary to operate the throttle
or brake pedals.

Different configurations were tried for the Kinect camera
devices. To be independent from rain or snow and also to
avoid wind noise while driving, we would have preferred
to put the acoustic sensors inside the car. Unfortunately,
the disadvantage of this configuration would have been the
weaker signal strengths as well as signal reflections inside

the vehicle. Therefore, we decided to mount both Kinect
devices outside on the roof of the test platform, see Fig. 3.

(a)

1
2 front

(b)

Fig. 3. Kinect sensor setup. (a) the device in the lower left
corner is facing to the front of the car, the other one
to the left. (b) View from above.

3.1 Kinect Sensor

Each Kinect sensor is equipped with four different, non-
equally spaced microphones which are aligned in line,
cf. Fig. 4. As a result of this configuration, only pairs
of microphones are linearly independent. To achive the
highest precision for an angle estimation, we decided to
use the two microphones with the largest distance to each
other, i.e., the two outer microphones on the left and right
side of the Kinect device, depicted in Fig. 4. Another
advantage is that the signal strength for those microphones
is almost equal. This is not necessarily true for the inner
two microphones which are located more inside the kinect
case.

Fig. 4. Kinect microphone configuration, 4 mics are aligned
in a line, we used to two outer mics (gray).

In the next section we want to describe how the sound
source estimation and sensor fusion of the two Kinect
devices was implemented.
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Fig. 5. Each shift between the two microphone signals
corresponds to a segment (an interval) of possible
angles, given that shifts can take only integer values.

4. SOUND SOURCE LOCALIZATION

In this section we are going to show how to localize
an object using two microphones only. Furthermore we
will focus on the direction accuracy given all possible
directions. In the second part we will show how the
resulting angular probabilistic distribution functions of
two Kinect devices can be combined. One advantage of this
method will be to constrain the set of possible solutions.

4.1 Calculation for one Kinect with two microphones

Estimation of the sound source using two microphones was
designed straightforward using a cross-correlation function
over the two microphone signals. Given the signal of the
left microphone f and the right one g, for a continuous
signal the cross-correlation function f ? g with respect to
the shift τ can be calculated as:

(f ? g)(τ) =

∫ ∞

−∞
f(t) · g(t+ τ) dt (1)

Since we handle digital signals, for discrete functions the
cross-correlation is calculated similarly with respect to a
given shift n between the two signals f and g:

(f ? g)[n] =
∞∑

−∞
f [m] · g[m+ n] (2)

Now we want to take a look at the real Kinect audio sig-
nals. Both Kinect microphones were sampled with 16800
Hz. For every calculation step we compared 216 data
points from the two signals with a shift n ranging from
-20 to +20. These 216 data points (provided by a module
including the open source libFreenect library) showed to be
sufficient for the cross-correlation calculation and allowed
us to estimate the sound direction with more than 70
Hz. Each shift between the two signals would result in a
certain direction. Regarding the number of possible shifts
between the two signals, the two outer microphones of the
Kinect are about 22 cm apart, we therefore assumed a
base distance of b = 0.22m. With the speed of sound at
vs = 340m

s at sea level and with a sampling rate for each
microphone of fk = 16800Hz, there is a maximum and a
minimum value for possible shifts. These two boundaries

correspond to the sound source being perfectly on the left
or on the right side of the device. The maximum and
minimum shift can be calculated as:

nmax = b · fk · v−1s (3)

=
0.22m · 16.8kHz

340ms−1
(4)

≈ 11 (5)

nmin = −b · fk · v−1s (6)

≈−11 (7)

, resulting in approx. 22 possible values for shifts, making
it sufficient to check these 22 possible shifts. As we will
see later, on a planar surface with two microphones there
are ususally two solutions for each signal shift (except for
nmin = −11 and nmax = 11). Thus, we can map each shift
n to two angular segments (angular intervals) which are
symmetrically located with respect to the connecting line
between the two microphones. The angular segments (or
intervals) are depicted in Fig. 5.

The calculation of the corresponding angle for a given
signal shift is straightforward, too. Given the speed of
sound vs we can translate each shift n into a distance n·vs.
Now we have a triangle with a base length of b = 0.22m
and a known difference of the two other sides of n · vs
towards each other. Since the real distance to the sound
source is unknown, we have to make an assumption, e.g.,
25 m (the result of the calculation converges for higher
distances) and can solve the angle to the object for each
microphone using the Law of Cosines. A geometric sketch
of the triangle is shown in Fig. 6.

Fig. 6. Given the base distance of the triangle, the dif-
ference of the two sides and an assumed far distance
(for drawing reasons the distance here is very close)
to the object, the angles of the object to each micro-
phone can be calculated - and should converge with
increasing distance. Two solutions remain.
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Fig. 7. Symmetry of angular distribution for front facing
Kinect (left) and sideways facing Kinect (right). Sym-
metry axis depicted in yellow.

4.2 Sensor fusion of two Kinect devices

Since the two Kinect devices are not synchronized, we
cannot just combine the data of the four outer micro-
phones for triangulation. Moreover, we decided to combine
the resulting probability distributions, cf. Fig. 5 of the
Kinect devices with each other. As mentioned earlier,
the probability of each segment containing the angle to
the sound source is calculated from the cross-correlation
function. Since both Kinect devices are rotated to each
other by 90 degrees, the segment sizes do not match and
thus cannot be combined directly. To overcome this prob-
lem, we subsample the angular segments for each Kinect
with 64 equally-spaced angular segments. In a next step,
after we generate the two equally spaced angular segment
sets, we can combine them by pairwise multiplication
of the probabilities of two corresponding segments, i.e.,
segments that contain the same angles. As a result of
this combination via multiplication, we get a final segment
set which represents the resulting probability distribution
for both Kinect sensors (belief distribution). While each
Kinect device alone cannot distinguish between objects
in front and objects behind (see symmetry depictions in
Fig. 7), after combination with the second sensor, those
symmetries vanish. We show the calculation schematically
in Fig. 8 and a step by step calculation with experimental
data in a real traffic scenario in Fig. 9.

Fig. 8. Schemtatic calculation. The upper two segment sets
result from the two different Kinect sensors. Since the
segment sizes of the two sets are not equally aligned
with respect to each other, we need to subsample them
seperately into two segment sets with 64 equally sized
segments. In a next step, they can be combined via
pair-wise multiplication into a final segment set.

After sensor fusion, the resulting segment set corresponds
to a probability distribution (belief distribution) of pos-

(a) (b)

(c) (d)

(e)

Fig. 9. Illustration of the approach, sound source vehicle
in the upper right corner. Segment lengths correspond
to cross-correlation amounts of the underlying signal
shift and can be interpreted as a probability for the
sound source lying in that angular interval. (a) Non-
uniform segments for front facing Kinect and (b) left
facing Kinect; (c) uniform (equally spaced) segments
for front facing Kinect after subsampling, (d) uniform
segments for left facing kinect; (e) uniform segments
after combining (c) and (d), the resulting probability
distribution (belief) for the sound source direction.

sible directions, i.e., where the sound source is located.
To calculate a discrete value for the most likely direction,
we selected the segement with the highest probability
value assigned and took the mean value of that particular
segment as the resulting angle. There would have been
more sophisticated methods, e.g., integrating over different
segments; also we thought about how to calculate direc-
tions to multiple sound sources but left this open to future
research work.

5. EXPERIMENTAL EVALUATION

As mentioned above, the proposed algorithm was im-
plemented for our autonomous vehicle and tested in a
real traffic scenario. The algorithms were tested within
a modular robotics framework, the Open Robot Control
Software Project Orocos (2011) under an Ubuntu 12.4.
64bit operating system. The data from both Kinect sensors
were integrated into our AutoNOMOS software project
and time stamped to compare them with our lidar sensory
data. The six lidar Lux sensors from Ibeo run with a
frequency of 12.5 Hz, the Kinect sensors ran with 70 Hz.
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5.1 Test scenario

We tested our approach in a Berlin traffic scenario, close to
the campus of the Freie Universität Berlin. Because driving
the car was causing a lot of wind noise, we decided to park
the car on the road side of the Englerallee, a medium-
sized traffic road with trees, parked cars and houses on
the side. Vehicles on the street were maintaining a velocity
of 50-60 km/h (approx. 35 mph). Since there are trees
on the middle strip seperating the two road lanes, cars
of the more distant lane were partially occluded by trees
while passing. We were interested in the angular accuracy
of our approach in comparison to object angles from the
lidar sensor. Therefore, data from the lidar sensor (a point
cloud) was clustered into 3d-objects and tracked over time,
resulting in a position and velocity vector for all clustered
lidar objects. Since we were interested in moving (non-
static) objects only, we compared the calculated angle from
audio data to the closest angle of a moving object (from
lidar).

5.2 Experimental results

In Fig. 10 we evaluated the angular error over time. We
therefore took more than 5000 measurements, the resulting
error-over-time function is depicted in Fig. 10.
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Fig. 10. Experimental evaluation: Difference between the
angle from Kinect data to lidar data over time, 5000
data points were recorded. The standard deviation for
the difference is σ = 10.3 degrees.

We also plotted the angular errors over all distances to
the objects, as can be seen in Fig. 11. What is interesting,
the highest angular errors occurred not for the farest
objects but for objects within medium distances. One
explanation could be that objects very far away would
occupy a very small angular segment in the laser scanner,
while objects closer occupy larger angular segments. Since
the laser scanner always takes the center point of the
detected object as a reference, and since the Kinect sensor
will receive the loudest noise from the closest part of the
vehicle, which is usually not the center of a car but the
approaching front or leaving rear, this might be one reason
for an increased detection error. Another reason could be
increased reflection of noise on houses or trees for certain
distances, which need further analysis.

In Fig. 12 we plotted the standard deviation of the angular
error for different distance intervals, which showed the
same result in terms that medium distances generated the
highest error rates. The calculation time of the algorithm
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Fig. 11. The angular error over different object distances
(measured by lidar). Higher error rates occured for
medium distanced objects.

was negligible so that all experiments were performed
under realtime constraints
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Fig. 12. Angular detection error for different distance
intervals. While for high distances the angular error
standard deviation was about 9 degrees, for medium
distances it was approx. 15 degrees.

6. CONCLUSION

We presented, implemented and tested an approach which
allows a road vechicle, equipped with to off-the-shelve
Kinect cameras to localize objects in a distance of up to
50 meters and with a velocity of 50-60 km/h. We showed
how to combine probabilistic density functions from two
Kinect microphone devices using equally spaced angu-
lar interval segment sets, which helped to disambiguate
possible angular locations while keeping the whole belief
distribution. The algorithm can easily perform under real-
time constraints with a frequency of 70 Hz. We also showed
how the acoustically derived angle to the sound source
could be assigned to moving objects from lidar sensors.

6.1 Future work

Future work needs to focus on localization and tracking
of multiple objects, since in real traffic scenarios there
are usually multiple vehicles in close proximity. Handling
wind noise will be a crucial and challenging task for sound
localization while in motion. Noise reflections on trees,
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buildings and cars provide another challenge. Distance
estimation, at least to some extend could support the data
fusion problem with objects from other sensors. Band pass
filters, e.g., application of Fast Fourier Transformation
(FFT) shall be considered in future works. FFT can
help to select specific signals, e.g. emergency vehicles
with certain signal horn frequencies and signal patterns.
Here the detection of alternating sound frequencies, as for
emergency horns, would be helpful, too. Another research
path worth following could be acoustic object tracking and
velocity estimation, taking advantage of the doppler effect,
i.e., the change of a frequency spectrum for an approaching
or leaving vehicle.
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Abstract: The challenge of determining pedestrians head poses in camera images isa topic that has already been re-
searched extensively. With the ever-increasing level of automation in thefield of Advanced Driver Assistance
Systems, a robust head orientation detection is becoming more and more important for pedestrian safety. The
fact that this topic is still relevant, however, indicates the complexity of this task. Recently, trained classi-
fiers for discretized head poses have recorded the best results. Butlarge databases, which are essential for
an appropriate training of neural networks meeting the special requirements of automatic driving, can hardly
be found. Therefore, this paper presents a framework with which reference measurements of head and upper
body poses for the generation of training data can be carried out. This data is used to train a convolutional
neural network for classifying head and upper body poses. The result is extended in a semi-supervised manner
which optimizes and generalizes the detector, so that it is applicable to the prediction of pedestrian intention.

1 INTRODUCTION

The research on automated driving is more relevant
than ever. Semi-automated functions such as auto-
matic parking or driving in stop-and-go traffic have
long been available in the form of assistance systems
(parking and traffic jam assistant). Even fully auto-
mated driving is no longer limited to motorway sce-
narios. Many projects, like Stimulate1 in Berlin, mas-
ter the challenges of urban traffic already completely
autonomous, although limited in speed. This work is
part of a project, which is contributing to the ongoing
development of self-driving cars.

One of the biggest challenges in urban scenarios is
the robust prediction of pedestrians. Simple tracking
and adapted motion models are not sufficient to map
the highly dynamic behaviour of humans. Therefore,
countless research groups try to extract more infor-
mation from the human posture. In addition to a more
precise analysis of the leg positions, many researchers
also focus on the head pose. Kloeden et al. (2014)
have already shown that the head pose is suitable as a
characteristic for predicting the movements of pedes-
trians. They proved that pedestrians show a protec-
tion behaviour particularly before crossing the road,

1https://www.wir-fahren-zukunft.de

which can be attached to the increased head move-
ment. For many decades, classical machine learning
has been used to extract this orientation of the head. A
common methodology is the quantification of the an-
gular ranges, and thus the declaration of a classifica-
tion problem (Schulz and Stiefelhagen, 2012). In that
work, the authors scan the upper part of a pedestrian
image, assuming the head to be there. Eight classi-
fiers are used to locate the head within this part and
estimate an initial pose. These classifiers are trained
for eight different head pose classes, each with a
range of 45◦. For the continuous estimation of poses,
regression is the preferred method. Lee et al. (2015)
and Chen et al. (2016) extract gradient based charac-
teristics like HOG (Histogram of Oriented Gradients)
features and then use a SVR (Support Vector Regres-
sor) to estimate the head pose.

All these methods only consider the yaw angle of
the head. Contrary to this, the approaches of Reh-
der et al. (2014), Chen et al. (2011) and Fanelli et al.
(2011) take additional orientation directions into ac-
count. The latter receives 3D data from a depth cam-
era and uses it to find the position of the tip of the nose
as well as the yaw, pitch and roll angles of the head
using a Random Regression Forest. A disadvantage
of this method is therefore that only a limited area of
the possible head poses, namely the one with a visible
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nose, can be determined. It is furthermore assumed
that the head was detected in the image in advance.
Conversely, in Reh-der et al. (2014) monocular RGB
images serve as input data, which do not have to be re-
stricted to the head section, but can contain complete
as well as covered pedestrians. The head localiza-
tion is done within the algorithm via HOG/SVM and
a part-based detector proposed by Felzenszwalb et al.
(2010). Proceeding from this, four discrete classes are
defined for the pose estimation, for each of which a
classifier is trained using logistic regression with LBP
(Local Binary Pattern) features. By integrating the
discrete orientation estimates using a HMM (Hidden
Markov Model), they obtain continuous head poses.
This approach is particularly interesting in that the
head poses are plausibilized and impossible poses are
discarded with the help of the upper body pose and
the motion direction. Chen et al. (2011) go one step
further and estimate both the head and body poses in
pedestrian images. Therefore, the orientation of the
body is divided into eight discrete direction classes
and multi-level HOG features are extracted. Further-
more, the yaw angle range of the head is divided into
twelve classes and the pitch angle range of the head
into three classes. After localizing the head, texture
and color features are extracted by another multi-level
HOG descriptor and histogram-based color detector.
A particle filter framework is subsequently used to
estimate the body and head poses. The dependency
between the poses as well as the temporal relation-
ship are taken into account. Another approach also
estimates both the head and body pose (Flohr et al.,
2015). For both poses, eight orientation-specific de-
tectors are trained, whose class centers are shifted by
45◦ each. To locate the exact body and head position
in the image, they make use of disparity information
obtained from the stereo input data. Based on this, a
DBN (Dynamic Bayesian Network) is used to get the
current orientation states. Thereby the current head
pose depends on the previous head pose and also on
the current body pose.

Recently, (deep) neural networks have become in-
creasingly important and their application also aims
for an improvement of the head pose detection. Lat-
est nets as presented in (Patacchiola and Cangelosi,
2017) or (Ruiz et al., 2017) predict yaw, pitch and roll
angles in a continuously manner and achieve great ac-
curacy. The input, however, is also here only the head
section, which must be available in relatively high res-
olution. If these approaches are to be used in the con-
text of automatic driving, pedestrians and their head
positions must be recognized early, i.e., from a great
distance, so that the poor quality of the input data does
not fulfill the requirements of the mentioned meth-

ods. The present work, therefore, presents a neural
network that recognizes head poses from images with
the quality of cameras commonly used in vehicles.
Not only the head but the entire pedestrian’s image
section serves as input, since the head pose in rela-
tion to the upper body provides further important in-
formation. From this it can be deduced, for exam-
ple, whether a pedestrian shows a safety behaviour,
which is a clear indication of the intention to cross
the road. For the training of this head and upper body
pose detector, commonly available data sets for head
poses and pedestrians in general like Human3.6m2,
PETA3 or INRIA4 cannot be used, because the ref-
erence to the upper body alignment is missing. In
addition, most researchers only consider yaw angles
in the range of−90◦ to 90◦, i.e., the frontal view of
the pedestrian heads. In the present project, however,
it is just as important whether a passer-by perceives
oncoming traffic or the automated driving vehicle.
Therefore, a framework for the generation of a ”full-
range” data set will be briefly presented here. Using
a semi-supervised approach, a trained convolutional
neural network (CNN) is extended so that the com-
paratively small amount of self-generated annotated
data is enriched by many unlabeled data from real
test drives within the project and the detector achieves
more accurate results.

The contributions of this work can be summarized in
the following key points:

• a framework for generating a data set with head
and upper body poses,

• training and evaluation of a network (CNN) using
the data set,

• enhancement of training data with real driving
data,

• evaluation of an approach to semi-supervised
learning and improvement of the network.

The paper is structured as follows:

After the second chapter presented the framework
for data set generation, Chapter 3 gives a detailed de-
scription of our detector design. The obtained results
are illustrated in the following chapter. Chapter 5
draws a conclusion and presents an outlook for future
work.

2http://vision.imar.ro/human3.6m/description.php
3http://mmlab.ie.cuhk.edu.hk/projects/PETA.html
4http://pascal.inrialpes.fr/data/human
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Figure 1: The used framework setup for data set generation.

2 DATA SET GENERATION

As already mentioned, this work requires data that
is not annotated in the common pedestrian data sets.
The added value lies in the fact that not only the pose
of the head, but also that of the upper body in relation
to the head is considered. In order to annotate such
data automatically, a data generation setup and soft-
ware framework was developed which can be applied
to capture images of pedestrians together with the cor-
responding head and upper body poses. Therefore
this section first explains the experimental setup and
the processing infrastructure after that. An overview
of the framework setup is given in Figure 1.

2.1 Experimental Environment

The images were taken by a camera installed in a test
vehicle alongside other sensors such as Lidar. The ve-
hicle was also equipped with an object tracking mo-
dule, which outputs 3D positions of the pedestrians in
vehicle coordinates. Two inertial sensors (MPU6050)
with 6 degrees of freedom each were used to mea-
sure the exact head and upper body orientations. To-
gether with one microcontroller with integrated WiFi
module (ESP8266−12F) each, these were placed on
the head and upper body of the test persons. Since the
position and orientation of the MPU6050s on the head
and body depend a lot on the probands and the up-
coming measurement, an online calibration was per-
formed at the beginning of each exposure and the sen-
sor values were transformed into quaternions relative
to the corresponding initial pose. In addition, IMU
(inertial measurement unit) drift compensation was
carried out beforehand and the drift behavior was an-
alyzed in the following. With an average duration of
the measurement sequences of 2 minutes, the drift of
0.5◦ per minute was negligible.

2.2 Processing Infrastructure

The control of the IMU, the online calibration and the
time synchronization via ntp server were realized in
Arduino on the microcontrollers. The measured poses
and the related timestamps were sent via TCP to a log-
ging computer where they were processed and added
to the data set. A single date then consists of the
timestamp with corresponding image, the 3D object
position and yaw, pitch and roll angles of either head
and the upper body. A total of 2500 test and training
data was annotated, including recordings of 20 differ-
ent people at different times of the day and year.

3 HEAD AND UPPER BODY POSE
DETECTOR

This section introduces the developed head pose de-
tector. First of all, the definition of the individual
classes is discussed. The training process is divided
into the two parts supervised and its unsupervised ex-
tension, which are explained in the following two sub-
chapters.

3.1 Class Definition

The detector presented in this paper is intended to de-
tect the yaw angles of the head and upper body. Since
we want to address a classification problem, the an-
notated data has to be mapped to classes. Therefore,
the possible head poses in the range[−105◦,105◦] are
quantized inαH = 30◦ steps, whereby a yaw angle of
0◦ implies the head pointing directly towards the cam-
era. All following angles are specified in this defini-
tion of coordinate system.

45°-45°

15°-15°

75°-75°

105°-105°

155°-155°

Figure 2: The head pose range is divided into 10 classes.
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The range]105◦,180◦]∪ [−180◦,−105◦[ (i.e., facing
away from the camera) is divided into three partsá
αH2 = 50◦. Accordingly there arenhc = 10 head
classes in total (see Figure 2). For anatomical rea-
sons, the deviation of the upper body pose from the
head pose is limited to a range of−90◦ to+90◦. This
area is divided intonbc = 3 body classesCB depend-
ing on the head pose. The body either points left
(CB = 0), right (CB = 2) or in the same direction as
the head (CB = 1). This results in an overall number
of 30 classes for the detector. The output classCout re-
sulting from the head (CH ) and upper body (CB) class
is calculated according to Eq. 1. The head and upper
body class are derived from the respective yaw angles
ψH andψB.

Cout =CB ·nhc+CH (1)

with

CH=





⌊ψH− 1
2αH

αH
⌉+ nhc

2 , if −105◦ ≤ ψH ≤ αH
2

⌊ψH− 1
2αH

αH
⌉+ nhc

2 +1 , if αH
2 < ψH ≤ 105◦

⌊ψH− 1
2αH2

αH2
⌉+ nhc

2 −1 , if ψH <−105◦

⌊ψH− 1
2αH2

αH2
⌉+ nhc

2 +1 , if 105◦ < ψH ≤ 155◦

0 , otherwise
(2)

and

CB = ⌊δψ
αB

+
1
2
⌉+ ⌊nbc

2
⌉ (3)

where

δψ =





ψH −ψB+360◦ , if ψH −ψB <−180◦

ψH −ψB−360◦ , if ψH −ψB >+180◦

ψH −ψB , otherwise
(4)

3.2 Semi-Supervised Learning with
CNN

In the domain of neural networks, CNN have been es-
tablished to handle classification tasks. Most of the
best-known classification networks are trained in a
supervised manner with a large amount of annotated
data. Since the present use case makes different de-
mands on the annotation, only the few self-generated
data are available in comparison. The idea to train a
reliable classification network from it nevertheless is
based on a semi-supervised approach.

Figure 3: Samples of unlabeled data, the first row shows
unsorted, the second and third row clustered samples.

Supervised Learning

As mentioned above, CNN are very well suited to
solving classification problems and there are many
proven network architectures. Hence, a CNN is also
used here and the layer topology is oriented to these
architectures. Figure 4 shows a schematic representa-
tion of the underlying network structure.

The input data is scaled to a fixed size (128x128)
and converted to grayscale values. They subsequently
pass through three consecutive blocks each with three
convolutional and one maxpooling layer until a fully
connected layer maps them to an embedding vector
with size 64, which is transformed to logit class scores
by a final dense layer. During training, a dropout layer
located between the last two fully-connected layers
was used with a dropout rate of 0.5 in order to gener-
alize the learning result. To find the best hyper param-
eters for the training, a grid search was applied. Ac-
cordingly, the following parameter configuration pro-
vides the best performance and has been used further:

Table 1: Best parameters found by grid search.

batchsize 50
initial learning rate 0.0001
learning rate decay 0.33
decay steps 10000
optimizer Adam
loss function Cross Entropy

The loss function of the supervised part with labelsλ
and predicted outputsy is given by

losslogit =−∑
x

λ · log(y+1e−8). (5)
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Figure 4: Schematic representation of the used network architecture.

Semi-Supervised Extension

Due to the comparably small variance of the training
data, the network performed well on similar testing
data. With the aim of optimizing and generalizing
the network, it was extended to include unsupervised
learning. In general, as with most semi-supervised
methods, the results of supervised learning are im-
proved by clustering the unlabeled data and then as-
signing them to already trained classes. Inspired by
the concept of Haeusser et al. (2017), the assignment
is not based on the last but the penultimate layer. In
this so-called ”embedding” level, the similarity of all
unlabeled data to the labeled data is determined. An
actual assignment of the unlabeled data only takes
place if it has been attributed to the same class la-
bel twice due to the highest similarity. To find a suit-
able scale for this similarity, different metrics were
tested and compared to each other. The following
two metrics have emerged as the ones with the best-
performing results.

The cosine similarity describes the correspon-
dence of the orientations of two vectors to be com-
pared. For this purpose the cosine of the angle be-
tween them is determined according to Eq. 6.

cos(θ) =
a·b

‖a‖‖b‖ (6)

The resulting value range for this scale is therefore
limited to [-1,1], where ’1’ means that the orientation
of both vectors is identical (θ = 0◦). ’-1’ however de-
notes an opposite orientation (θ= 180◦) and ’0’ signi-
fies the vectors are orthogonal to each other (θ= 90◦).
Aside from being independent of the vectors mag-
nitudes, this metric has the advantage that it is very
computation-performant, since only the dot product
has to be calculated. The loss is determined analogue
to Haeusser et al. (2017) by comparing the resulting
association probability with the expected probability
distribution using cross entropy.

TheMahalanobis distanceindicates the distance of a
data point to the mean of a point distribution of one
class in multiples of the standard deviation. Thus, in
contrast to theEuclidean distance, the correlation be-
tween the data points is taken into account and the
assignment to individual clusters of data (classes) be-
comes more accurate.

If ~x is a data point to be assigned and~µ is the mean
value of the data set of a class with covariance matrix
C, the Mahalanobis distance is given by:

DM(~x) =
√
(~x−~µ)TC−1(~x−~µ) (7)

The result initially expresses the dissimilarity of the
sample to the data set. By scaling to the value range
DMs = [0,1], reverting the range and normalizing the
multiplication of this association probability with its
transposed the following probability distribution is
obtained stating that several unlabeled data points are
associated with the respective classes:

p= ||(pA · pT
A)||2 (8)

with

pA = 1−DMs (9)

The expected probability distributionpE in this case
is equal to the unit matrix with ranknC (number of
classes), since a sample is to be assigned uniquely to
one class. For this purpose it must be ensured that
each class is represented with at least one sample per
batch in the set of unlabeled data. This is achieved
by adding one labeled sample for each class to the
batch with unlabeled samples. The total loss is finally
calculated by applying cross entropy on these proba-
bilities and adding the result to the logit loss from the
supervised part (see Eq.5).

loss=−∑
x

pE · log(pA+1e−8)+ losslogit (10)
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Table 2: Train error, test error, average precision (AP), averagerecall (AR) and test error including ’adjacent classes’ (TE*)
of SUP, COS and MAHA in [%]. The last two columns declare the distribution of train and test samples within the supervised
and the semi-supervised methods.

train err test err AP AR TE* train samples test samples
SUP 0.17 82.19 16.96 18.27 54.86 2000 500
COS 30.59 66.55 32.57 25.17 43.52 12000 500

MAHA 0.41 58.53 32.26 30.21 32.15 12000 500

Figure 5: Precision and recall of the trained networks, the results of the semi-supervised approaches (COS and MAHA)
improve the supervised one (SUP).

4 EXPERIMENTS

For the training of the head pose detector 2500 la-
beled and 10000 unlabeled data were used. It was
performed on a computer with four GTX 2080 Ti
with 12 GB memory each. Because of the high im-
balance of the class distribution in the labeled train-
ing data set, the maximum number of samples used
per class in all three trainings was limited to avoid
overfitting of more frequent classes. This was al-
ready recommended by Weiss and Provost (2001),
who showed that an unequal distribution does not
usually lead to the best performance. In the follow-
ing, the results of the purely supervised trained net-
work (further referred to as SUP) and the two differ-
ent methods for estimating similarity within the semi-
supervised trained network (MAHA for the one using
the mahalanobis distance, COS for the cosine similar-
ity) are compared. Due to the small number of labeled

samples, SUP converged comparatively quickly after
about 500 epochs. With the best parameters found
by the grid search, a training error of 0.17% was
achieved. But the evaluation with test data confirmed
that the network specialized in the training data. The
error rate for the randomly distributed test data was
82.19% at best (see Table 2).

In the approach of association using cosine simi-
larity, it was necessary that each class is represented in
each batch of labeled data so that each unlabeled sam-
ple can be assigned properly as well. Depending on
the number of samples used per class per batch, this
results in very large batch sizes for 30 classes, which
caused memory issues. But with 10 samples per class
per batch a suitable compromise between training ef-
ficiency and executability was found. This of course
led to a declining of the obtained network accuracy,
resulting in a training error of about 30%. Never-
theless, this as well as the second semi-supervised
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solution MAHA reduces the test error by a relevant
amount, which is also reflected in Figure 5, depict-
ing the precision and recall per class of all three ap-
proaches. Even if individual classes perform worse
for COS and MAHA than for SUP, the average pre-
cision (AP) and recall (AR) noticeably are higher as
can be seen in Table 2. And although MAHA also
required restrictions in parameter selection due to the
limited memory capacity, this approach yielded the
lowest test error of 59.17%. The fact that the semi-
supervised approaches generalize the training result
and thus enhance it is particularly evident when the
confusion matrix is analyzed more closely. Therefore
Figure 6 illustrates the confusion matrix of MAHA.
For comparison, those of SUP and COS can be found
in the appendix. First of all, it is conspicuous that test
samples of other classes are assigned more often to
the columns 10 to 19, which correspond to the classes
with the same alignment of head and upper body. This
is probably due to the fact that this natural human pose
occurs more frequently in the unlabeled data set and
thus their training was more effective. Furthermore,
the principal diagonal is highlighted in dark blue as
these cells map the amount of true positives. Accord-
ing to the class definition in Section 3, the classes
ending with the same number (e.g. 3, 13 and 23)
represent the same head class. These cells are also
shaded light blue. The remaining cells are marked
darker gray the higher their cell value is. Mainly in
contrast to the confusion matrix of SUP (see Figure
8), whose predictions are highly scattered, an orienta-
tion of the predicted classes to the principal diagonal
as well as partially to the secondary diagonals of the
same head classes can be observed here.

Figure 6: Confusion matrix of MAHA, rows index the pre-
dicted and columns the actual classes.

In addition, cells ofadjacent classes, i.e., those which
differ only in the head pose by a maximum of 30◦,
were colored green. It becomes plausible that a high
percentage of test samples are associated with these
cells regarding the fact that these small differences are
difficult to detect, as can be seen in Figure 7. Consid-
ering this in the error calculation and including thead-
jacent classesin the set of correct predictions, results
in the test error listed in Table 2 under TE*, which for
MAHA is only 32.15%.

Figure 7: Prediction example, Left: a sample incorrectly
predicted as class 14, Right: an actual sample of class 14.

5 CONCLUSIONS

In this paper, a head pose detector was presented that
meets the special requirements of automated driving.
Since the relative pose of the upper body was of im-
portance in the project within which the work was de-
veloped, in addition to the pure yaw angle of the head,
a new data set was generated. Conceived for this pur-
pose, a reference data measuring setup with software
framework was used to generate data for training and
evaluating a neural network. Due to the relatively
small amount of data, the performance of this purely
supervised trained classifier was, as expected, poorly.
Therefore, the data set was enriched by the numerous
unlabeled data available from test drives in the project
and an approach of semi-supervised learning was de-
veloped and optimized. The test result was thus im-
proved by almost 25%. Furthermore, it was found that
many of the misclassifications were associated with
the so-calledadjacent classes. In the context of auto-
mated driving, one of the strongest motivations for the
detection of head poses is the assessment of whether a
pedestrian has perceived the driving vehicle or not. It
could be demonstrated that the small pose differences
between two adjacent classes are often very difficult
to identify and have little influence on the determina-
tion of whether the vehicle was seen or not. An ad-
justed test error of only about 32% could be reported.
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Overall, it was found that the semi-supervised
method used is very well suited to improve the perfor-
mance of the head pose detector despite a small data
set. In the future, further result optimizations can be
achieved by more labeled training data. In addition,
better performance will be obtained by upgrading the
computer’s performance and memory capacity.
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6 APPENDIX

Figure 8: Confusion matrices of the supervised (top) and
the cosine (bottom) approach.
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