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Abstract

In this thesis we study aspects at the interplay of holography, quantum field theory and
quantum simulation with tensor network and related techniques. The discussion is divided
in three parts. In the first introductory part, we describe the necessary background of the
gauge/gravity duality as well as tensor network methods and algorithms for our work.
The second part focuses on simulations of quantum spin chain models to extract properties
of (1+1)-dimensional quantum field theories at zero and finite temperature. We review rele-
vant aspects of quantum chromodynamics and heavy-ion collisions, which primarily motivate
our work. Subsequently we present a new method that combines matrix product operator
simulations with a signal analysis method, allowing us to make ab initio predictions about
the thermal response in nonintegrable interacting quantum field theories. We then extend this
line of research by employing scaling operators originating from an analytic wavelet solution of
the multiscale entanglement renormalization ansatz. Based on this alternative discretization
scheme, we calculate dynamical correlation functions in a coarsegrained system and compare
them to the ones for the bare Ising model. Partially motivated by these considerations, we sub-
sequently discuss the effect of meson melting, which describes the thermally induced breaking
of nonperturbative bound states in a medium. Phenomenological approaches for its under-
standing from the quantum chromodynamics side as well as holographic models are reviewed.
We introduce a new paradigm for the description of meson melting by analyzing entanglement
entropies in a static and dynamical setting for the nonintegrable ferromagnetic phase of the
Ising quantum field theory. We explain observed features at high enough temperatures through
the fact that meson states in the quantum many-body system are melted and argue that the
considered entanglement measures can serve as a witness of that process. In the last project of
this part of the thesis, we explore the capabilities of analog quantum simulations with trapped
ions to detect relativistic meson spectra, and present a method for its experimental realization
on current devices via absorption spectroscopy.
The third part of this thesis deals with complexity as a quantum information quantity, which
quantifies the difficulty of realizing a quantum circuit. We review its computational definition
and recently proposed holographic interpretations of it. We then give an overview of two
approaches, circuit complexity and path integral optimization, to understand complexity for
quantum field theories. We unify these two concepts by showing that path integral complexity
arises as an approximation to a particular choice in the circuit approach to complexity. We
discuss this result in the context of quantum gravity through discrete tensor network inter-
pretations of the gauge/gravity duality based on the multiscale entanglement renormalization
ansatz.



Zusammenfassung

In dieser Dissertation studieren wir Themen an der Schnittstelle von Holographie, Quan-
tenfeldtheorien und Quantensimulationen mittels Tensornetzwerken und verwandten Metho-
den. Die Diskussion ist in drei Teile aufgeteilt. Im ersten Einleitungsteil beschreiben wir den
notwendigen Hintergrund zur sogenannten Eich/Gravitations Dualität sowie Tensornetzwerk-
Methoden und Algorithmen, welche relevant für unsere Arbeit sind.
Im zweiten Teil fokussieren wir uns auf Simulationen von Quantenspinketten-Modellen, um
Eigenschaften von (1+1)-dimensionalen Quantenfeldtheorien bei verschwindender und end-
licher Temperatur zu extrahieren. Dazu geben wir zunächst einen Überblick über relevante As-
pekte der Quantenchromodynamik sowie Schwerionenkollisionen, welche unsere Arbeit haupt-
sächlich motivieren. Anschließend stellen wir eine neue Methode vor, welche Simulationen
mittels Matrixprodukt-Operatoren mit einer Signalanalyse-Methode verbindet. Dies erlaubt
uns ab-initio Vorhersagen über die thermische Reaktion in nicht-integrablen wechselwirk-
enden Quantenfeldtheorien zu treffen. Anschließend erweitern wir diese Forschungsrichtung
durch den Einsatz von Skalierungsoperatoren, welche aus einer analytischen Wellen-Lösung des
Multiskalen-Verschränkungs-Renormierungsansatzes stammen. Auf der Grundlage dieses al-
ternativen Diskretisierungsschemas berechnen wir dynamische Korrelationsfunktionen in einem
großskaligen System und vergleichen diese mit denen für das ursprüngliche Ising Modell. In
einem verwandten Projekt diskutieren wir im Anschluss den Effekt des Mesonenschmelzens,
welcher das thermisch induzierte Auflösen von nichtperturbativ gebundenen Zuständen in
einem Medium beschreibt. Wir geben dafür zunächst einen Überblick über phänomenologis-
che Ansätze zum bisherigen Verständnis dieses Prozesses von Seite der Quantenchromody-
namik als auch durch holographische Modelle. Wir führen ein neues Paradigma zur Beschrei-
bung dieses Prozesses ein, indem wir Verschränkungsentropien sowohl in einem statischen als
auch dynamischen Setting für die nicht-integrable ferromagnetische Phase der Ising Quan-
tenfeldtheorie analysieren. Wir erklären beobachtete Eigenschaften bei hohen Temperaturen
durch die Tatsache, dass Mesonen-Zustände im Quanten-Vielkörpersystem geschmolzen sind
und argumentieren, dass die betrachteten Verschränkungsmaße zur Charakterisierung dieses
Prozesses dienen können. Im letzten Projekt dieses Teils der Dissertation erforschen wir die
Möglichkeiten analoger Quantensimulationen mittels gefangenen Ionen relativistische Meson-
spektren nachzuweisen und präsentieren eine Methode zur experimentellen Realisierung mittels
Absorptionsspektroskopie für bereits existierender Hardware.
Im dritten Teil dieser Dissertation behandeln wir Komplexität als eine quanteninformation-
stheoretische Größe, welche die Schwierigkeit der Realisierung eines Quanten-Schaltkreises
quantifiziert. Wir geben einen Überblick über die rechnerische Definition und vorgeschlagene
holographische Interpretationen davon. Anschließend geben wir einen Überblick über zwei
Ansätze, Schaltkreiskomplexität und Pfadintegraloptimierung, welche vorgeschlagen wurden,
um die Komplexität von Quantenfeldtheorien zu definieren. Wir vereinheitlichen diese beiden
Konzepte, indem wir zeigen, dass die Pfadintegralkomplexität eine Approximation für eine bes-
timmte Wahl im Schaltkreisansatz zur Komplexität darstellt. Wir ordnen unser Ergebnis im
Zusammenhang mit Quantengravitation durch diskrete Tensornetzwerk-Interpretationen der
Eich/Gravitations Dualität basierend auf dem Multiskalen-Verschränkungs-Renormierungs-
ansatzes ein.
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Part I

Introduction
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1 Motivation and overview

In modern theoretical physics, one major quest is to understand fundamental matter under ex-
treme conditions. Such circumstances existed for example at the beginning of our universe, and
today in the interior of black holes (BHs) – one of the most fascinating objects in our cosmos,
which were predicted by Einstein a century ago, but only recently have been directly experi-
mentally observed via gravitational wave measurements [7] or the event horizon telescope [8].
The understanding of such systems necessarily involves the description of many interacting
quantum bodies, which appear not only in particle but also condensed matter physics. In this
research field, it is one of the most interesting developments of the past decade, that ideas from
quantum field theory (QFT), quantum information science and quantum gravity are becoming
increasingly important as a joint effort. This research trend is most visible in the field of tensor
network (TN) studies.

TNs – a formalism originating from quantum information concepts – are representations of
quantum states, which can be visualized graphically through a network of connected tensors.
They capture the relevant entanglement properties of a quantum system and are the basis for
very efficient algorithms to simulate the dynamics of many-body systems. This is achieved by
exploiting properties that circumvent the normal exponential increase of (classical) computa-
tional resources with the number of microscopic constituents. While we provide the necessary
background of our work in the following chapters, general introductions and reviews into this
interdisciplinary field can be found in [9–17].

TNs are useful not only in their original context of condensed matter physics, but also to study
QFTs. The latter are the building blocks of the standard model in particle physics, which de-
scribes the fundamental interactions in nature, and have been tested with an amazing precision
up to very high energies. In more detail, the electroweak theory describes microscopic particle
interactions, whereas Quantum Chromodynamics (QCD) is the theory of strong interactions,
whose properties and understanding is an important motivation for the topics in this thesis.
QCD has quarks and gluons as fundamental degrees of freedom, which carry both an electric
and color charge, and appear in nature only as color-neutral hadronic matter states due to
color confinement. One relevant type of hadrons are are mesons, which consist of a quark-
antiquark pair that form a non-perturbative bound state. At high energies, the QCD coupling
strength between particles is decreasing, causing a transition from the confined hadronic phase
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4 1 Motivation and overview

to the deconfined quark-gluon plasma (QGP). The QGP at high temperatures or densities is
one such extreme matter state as mentioned in the beginning. It existed in the early universe
after the big bang when nucleons were formed during the cooling process, and nowadays is
expected to be in the interior of neutron stars. Experimentally, the QGP can be created in
heavy-ion collisions (HICs) or, more generally, nuclear collisions, at particle accelerators like
the Relativistic Heavy Ion Collider in Brookhaven or the Large Hadron Collider at the Euro-
pean Organization for Nuclear Research. At these facilities, it was measured that the QGP is
the most perfect [18–21] and also the fastest-rotating fluid [22] ever observed in the universe.
The theoretical understanding of HICs as dynamical QFT processes is of upmost importance
in modern physics. In this context, TNs allow a study of QFTs in Hamiltonian formulation,
and, in contrast to state-of-the-art Monte Carlo based methods, provide the advantage of being
free of the famous sign-problem, which prohibits calculations a finite density or in real-time
formalism. TN methods therefore have the potential to address physical situations relevant to
the description of HICs.

On the other side, holography, also known as gauge/gravity duality, describes a relation be-
tween QFTs and gravitational theories. In particular, based on the holographic principle
developed by ’t Hooft and Susskind [23,24] it was conjectured that a QFT in 𝐷 dimensions
could be related to a gravitational theory in 𝐷+ 1 dimensions. It found a concrete realization
in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence [25–27], which links a
specific superstring theory to a supersymmetric gauge theory. This duality exhibited a signifi-
cant influence on theoretical physics as a whole, becoming one of the most important tools to
study strongly coupled systems, and a new quantitative perspective to understand quantum
gravity (see e.g. [28–30] for a broad overview of the theoretical background and applications).
Holographic methods have been successfully used to describe HICs and lots of other phenom-
ena in particle and condensed matter physics. 2 The main reason for its applicability is the
fact, that a strongly coupled QFT is translated into a weakly coupled classical gravitational
theory, which is computationally more tractable.

TNs provide several conjectured frameworks for discrete interpretations of this duality, giving
insight into the quantum nature of gravity and the emergence of spacetime. As reviewed ex-
tensively in [34], this development is mostly driven by the exploration of quantum information
measures, which have a dual holographic interpretation. Most prominently, the breakthrough
result of Ryu and Takayanagi [35,36] identifies the entanglement entropy in a CFT with the
minimal surface in the bulk of AdS spacetime for a chosen entangling area. Another infor-

2For example, the complicate dynamics of systems out-of-equilibrium and questions related to the time
dependence of their hydrodynamization and isotropization were analyzed in models of HICs. Furthermore,
the celebrated holographic result for the shear viscosity to entropy density ratio [31], 𝜂/𝑠 = 1/4𝜋, is in good
agreement with experimental results [18–21]. In a solid-state context, holographic models were developed to
describe e.g. superconductors. Comprehensive overviews are given in [32,33] (for QCD related topics) and
[28,29] (for all fields).
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mation quantity, which has received an enormous amount of attention in the last years, is
complexity [37]. The general idea behind complexity is to quantify how difficult it is to reach
a certain quantum state starting from another one. From a holographic perspective, it has
been conjectured to be dual to gravitational volumes and actions [38,39]. Complementary to
entanglement entropy, its precise definition on the QFT side of the duality is, however, less
understood.

The main theme of this thesis is to use TN and related techniques to study important aspects
at the interplay of QFT and holography. Some inspiring and motivating questions in this line
of research are:

• How can we use TN algorithms in combination with (other) numerical tools to model
and understand equilibration processes similar to collisions of atomic nuclei at particle
accelerators?

• What role does complexity as a quantum information measure play in the connection of
TNs, QFT and holography?

Regarding the first question, one major motivation is the understanding of microscopic mech-
anisms which govern the equilibration of the QGP phase from an initial far-from-equilibrium
state in HICs. TN approaches open the novel possibility to access this phenomenon in the most
difficult regime of intermediate coupling, where strongly-coupled and weakly-coupled methods
are naturally not applicable and do not provide a description. As a limitation, we constrain
our studies in this thesis to (relativistic) QFTs which arise as infra-red (IR) descriptions of
(1+1)-dimensional quantum spin systems near a critical point. The available algorithms are
most advanced in this scenario and allow us to study phenomena which are important across
dimensions. In particular, as part of this thesis, a new method is presented that combines TN
simulations and signal analysis methods to compute and analyze retarded thermal two-point
functions. This allows us to extract their analytic structure and to make fully ab initio predic-
tions for specific non-integrable interacting QFTs at finite temperature. As it will be outlined
in this thesis, such analyses are directly motivated by similar holographic studies, which allow
to compute transport coefficients or to identify time scales at which the hydrodynamic regime
in models of the QGP and HICs applies. From a broader perspective, these analyses can be
embedded into a research trend of studying soluble models of phenomena relevant to our actual
physical world.
Beyond QFTs emerging as effective descriptions of discrete spin models, TNs allow also a
direct implementation of (lattice) gauge theories (LGTs). Such explorations are already very
advanced in (1+1) and (2+1) dimensions, as comprehensively reviewed in [40]. Most recently,
there has been even a first study of Quantum Electrodynamics in (3+1) dimensions [41].
Moreover, specific TN algorithms allow to describe physical systems directly either in the
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thermodynamic or continuum limit. Eventually, one ultimate goal of this entire research
direction is the study of full QCD in (3+1) dimensions, which is one of the grand challenges of
modern theoretical physics. An important step in this direction are nonperturbative studies
which access regimes that are difficult to treat using existing approaches.

The simulation of quantum systems with TN methods that are not directly defined in the con-
tinuum implicitly assume a discrete lattice structure as an underlying geometry. For the previ-
ously described study of correlation functions we use matrix product states (MPS) and matrix
product operator (MPO) techniques on a line to derive QFT information. The multiscale en-
tanglement renormalization ansatz (MERA) [42] is another type of TN ansatz, which combines
a renormalization group (RG) flow with entanglement properties. It has a two-dimensional
circuit geometry and is particularly well suited to capture CFT information. Based on an ana-
lytic wavelet solution [43] for the MERA, we ask the question whether this TN type provides a
more faithful encoding of QFT information, which we similarly test in the context of retarded
correlation functions and their analytic structure. This effort is related to the more general
quest to find suitable discretizations of QFTs, a topic which is not only relevant in the context
of TNs and LGTs, but also for quantum simulations (QS) as we will motivate below.

As an extension of this line of research, we then study the phenomenon of meson melting
through TN simulations. Mesons, which we already introduced as bound states in QCD, are
expected to break apart into their fundamental constituents when the temperature of the
environment is heavily increased. The understanding of this process is particularly important
for HICs and the QGP in the early universe, where effectively the inverse transition took place.
Mesons appear also in the spectrum of spin chain Hamiltonians in specific parameter regimes.
Near a quantum critical point, they correspond in the IR limit to bound states of an underlying
relativistic QFT. Using TN methods, we study this regime both statically (as properties of a
thermal state) and dynamically (through a quantum quench protocol) in different temperature
regimes. While phenomenological QCD approaches as well as holographic models typically
focus on spectral correlation functions to describe the melting of mesons, we, for the first
time, describe this process from properties of entanglement measures, i.e. entropies, which
are easily accessible in TN simulations. This analysis provides new insights into the meson
melting process in a class of simplified models in lower-dimensional systems. In that vein, we
see our investigation as a first step to address entanglement quantities as characteristics of
meson melting also in more complicate (gauge) theories, leading eventually to QCD, for which
currently no detailed microscopic understanding is known.

TN methods can be seen as an effort intimately related to the larger field of QS with the
prospect to understand fundamental physics. Exactly 40 years ago, Richard Feynman envi-
sioned in his seminal keynote address the use of universal quantum computers to simulate
physical systems [44]. Due to the unprecedented improvement of experimental capabilities
in the last decade, current technologies already allow the simulation of systems with a small
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number of qubits. One of these technologies is based on trapped ions, which can perform either
digital QS (i.e. the implementation of universal quantum circuits) or analog simulations (i.e.
the implementation of specific spin chain Hamiltonians). For the latter case, we develop in
this thesis a spectroscopical method to measure a relativistic meson spectrum on such an ion
trap quantum simulator. Based on numerical modelling on classical computers, we estimate
the capabilities of small current devices to extract properties of QFT mesons, which, as previ-
ously described, appear in the scaling limit of spin chain models near its critical point. Due to
the enormous theoretical and experimental efforts of the community to develop methods that
allow more complicate gauge theory simulations with quantum devices, this project opens the
avenue of using ion traps to study fundamental meson physics. With that, we express the
hope that in the future QS can answer some of the fundamental questions that motivated the
previous projects in this thesis.

In the context of the second main question formulated above, the pioneering contributions [45,
46] used a geometric quantum circuit approach and an associated gate counting procedure to
define and analyze complexity for certain QFTs. While this procedure is motivated by quan-
tum information theory concepts, an independent program evolved, known as path integral
optimization, which is originating from TN ideas. The latter definition of complexity is based
on an optimization of a discretized Euclidean path integral that prepares an operator or state.
As part of this thesis, it is shown how the latter path integral optimization program can be
understood as a particular choice in the language of circuit complexity. We will show how this
unification opened the avenue towards a better understanding of complexity for QFTs and
in holography. Since complexity has been discussed as a probe for the BH interior and the
emergence of dynamical spacetimes from microscopic quantum mechanical degrees of freedom,
these explorations can serve as a starting point for a better understanding of quantum gravity,
i.e. the attempt to describe QFTs and gravitational theories within one unified framework.

This thesis is organized in three parts. In this first part, we introduce the necessary background
knowledge about holography and the gauge/gravity duality (chapter 2) as well as TN methods
and concepts (chapter 3). Since our simulation-based research work is using the latter as
computational tools, we keep the holography introduction rather compact. In sections of
both of these chapters, which describe well established textbook knowledge, we follow in our
discussion the cited reviews or lecture notes and refrain from citing all original publications.
Part II contains all discussions related to the TN simulation and QS of QFT properties. In
particular, chapter 4 is based on the project [1] in which we develop methods to extract thermal
field theory properties from real-time TN simulations and apply them to non-trivial QFT
regimes. We also describe necessary elements of QCD and holography, which motivate this
line of research. In chapter 5 we extend these analyses based on entanglement renormalization
approaches [3] and in chapter 6 we present our studies in the context of meson melting [4].



8 1 Motivation and overview

The explorations of using ion trap QS for meson physics [2] are discussed in chapter 7. In
part III we discuss complexity in the context of TNs. At first, chapter 8 motivates holographic
complexity proposals, while chapter 9 gives an overview of the different QFT interpretations.
In chapter 10 the project [5] is discussed, in which the two QFT approaches for complexity are
unified. We provide an overall summary and discussion in chapter 11. Appendix A contains
a demonstration of a Prony signal analysis in a non-trivial holographic setup. We list for the
reader’s convenience all our acronyms in appendix B. Throughout this thesis we standardly
assume natural units ~ = 𝑐 = 𝑘B ≡ 1.



2 The gauge/gravity duality

The gauge/gravity duality identifies a gravitational theory in 𝐷 + 1 dimensions with a 𝐷-
dimensional QFT. Already ’t Hoofts early work [47] on planar diagrams provided the starting
point for this theoretical idea by identifying the large-𝑁 limit of a gauge theory with a dual
string. The holographic principle of ’t Hooft and Susskind [23,24] then stated that the quantum
(gravitational) information within a spacetime volume can be fully encoded on its boundary,
generalizing the BH entropy formula of Bekenstein [48], in which gravitational entropy is
proportional to the horizon’s area (rather than volume, which at least in some cases has been
conjecture to be related to complexity). It was Maldacenas original AdS/CFT proposal [25],
which gave this idea a concrete realization. Two other foundational papers [26,27] provided a
dictionary allowing to translate between the gravity and QFT side by identifying their partition
functions (cf. the operator/field map below) and an interpretation of thermal QFT effects via
BH thermodynamics. Countless studies explored and used this correspondence in all areas
of physics, both from a conceptual standpoint to understand quantum gravity as well as for
fundamental problems, e.g., in particle or condensed matter physics, which are experimentally
falsifiable. As already alluded in the previous chapter, many of these applications trace back to
the fact that a strongly coupled QFT problem is translated into a weakly coupled gravitational
problem, which often is more tractable. As we will explain below, the QFT is defined (or “lives”)
on the boundary of the higher-dimensional gravitational spacetime, giving rise to the term
holographic duality, which is inspired by the optical phenomenon. Although the AdS/CFT
correspondence in its original formulation (cf. section 2.4) relates very specific theories, many
top-down and bottom-up phenomenological approaches have been developed and adjusted to
physical problems (like heavy-ion collisions, the quark-gluon plasma, superconductivity and
many more) by taking results from other physical methods into account. They are included in
the term gauge/gravity duality as the more general holographic framework. Such holographic
QFTs have a large number of degrees of freedom and strong interactions among them. It can
then be an illuminating strategy to analyze how interesting physical effects generalize when
lowering the number of degrees of freedom or changing the interaction strength etc. In this
vein, we can motivate our explorations about real-time thermal field theory effects in chapter 4.

Many of these foundations, developments and applications are discussed in the text-
books [28–30,49,50]. Following mostly [28] and [30], we intend to give a very compact overview,
similar to the presentation style in [51], of the most important aspects of the gauge/gravity du-
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ality in this chapter. Detailed aspects of holographic descriptions, which are directly relevant
to our research based on TN methods, are discussed in the individual chapters.

2.1 Anti-de Sitter spacetimes

The AdS spacetime is a maximally symmetric solution to the Einstein–Hilbert action

𝑆EH =
1

16𝜋𝐺
(𝐷+1)
𝑁

∫︁
d𝐷+1𝑥

√−𝑔 (𝑅− 2Λ) (2.1)

for negative cosmological constant Λ = −𝐷(𝐷−1)
2𝐿2 < 0 with AdS radius 𝐿. 3 It can be defined in

(𝐷+1) dimensions by a hyperboloid embedded into (𝐷+2)-dimensional Minkowski spacetime
as

−𝑋2
0 +

𝐷∑︁
𝑖=1

𝑋2
𝑖 −𝑋2

𝐷+1 = −𝐿2, d𝑠2 = − d𝑋2
0 +

𝐷∑︁
𝑖=1

d𝑋2
𝑖 − d𝑋2

𝐷+1 (2.2)

with coordinates (𝑋0, . . . , 𝑋𝐷+1) ∈ R𝐷,2. 4 An important property for the identification within
the AdS/CFT correspondence is the invariance under the 𝑆𝑂(𝐷, 2) symmetry group. The
compactified 𝐷-dimensional Minkowski spacetime can be identified as the conformal boundary
of this spacetime. In Poincaré patch coordinates, the line element takes the form

d𝑠2 =
𝐿2

𝑟2
d𝑟2 +

𝑟2

𝐿2

(︀
− d𝑡2 + d𝑥⃗ 2

)︀
=
𝐿2

𝑧2
(︀
− d𝑡2 + d𝑥⃗ 2 + d𝑧2

)︀
, (2.3)

where 𝑡 ∈ R, 𝑥⃗ = (𝑥1, . . . , 𝑥𝑑−1) ∈ R𝐷−1. The coordinates 0 ≤ 𝑟 ≤ ∞ or 0 ≤ 𝑧 ≡ 𝐿2

𝑟
≤ ∞

allow holographic interpretations for the conformal boundary at 𝑟 → ∞ or 𝑧 = 0.
Within the holographic correspondence, empty AdS spacetimes represent the trivial time de-
velopment of the vacuum state in a dual CFT. More general solutions of the gravitational field
equations in asymptotic AdS spacetimes can be thought of as the time development of other
states. For example, thermal deconfined states correspond to BHs, which are encoded as a
zero of a blackness function 𝑓(𝑧) at the event horizon. Their thermodynamic properties can
be associated to the QFT side of the gauge/gravity duality as outlined in section 2.5 below.
Most prominently, the Schwarzschild AdS BH solution reads

d𝑠2 =
𝐿2

𝑧2

(︂
−𝑓(𝑧) d𝑡2 + d𝑥⃗ 2 +

d𝑧2

𝑓(𝑧)

)︂
, (2.4)

whereby 𝑓(𝑧) = 1 − (𝑧/𝑧ℎ)4 admits a simple zero at the horizon 𝑧 = 𝑧ℎ. More generally, any
solution of the form d𝑠2 = e2𝐴(𝑧) (−𝑓(𝑧) d𝑡2 + d𝑥⃗ 2 + d𝑧2/𝑓(𝑧)), for which the scaling factor

3Maximally symmetric means that AdS solutions possess the maximum number of Killing vectors for constant
curvature 𝑅 = −𝐷(𝐷+1)

𝐿2 = const < 0. Here, 𝐺(𝐷+1)
𝑁 is the (𝐷 + 1)-dimensional Newton constant.

4Similarly, de Sitter (dS) spacetimes are given by −𝑋2
0 +

∑︀𝐷
𝑖=1𝑋

2
𝑖 +𝑋2

𝐷+1 = 𝐿2 as sphere-like embeddings.
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satisfies 𝐴(𝑧→0) → − ln(𝑧/𝐿) and 𝑓(𝑧→0) = 1 −𝒪(𝑧4), represents an asymptotic AdS BH
metric.

2.2 Foundations of conformal field theories

Conformal field theories (CFTs) play an important role in this thesis: They appear as effective
descriptions of lattice models in (1+1) dimensions, which can be studied with TN methods.
Relevant deformations of them can give rise to more involved theories with interesting phys-
ical features. Moreover, our holographic complexity studies are in the realm of 2𝐷 CFTs as
the most controllable case. In higher dimensions, CFTs are relevant for the deduction of the
AdS/CFT correspondence presented in this chapter. By definition, they are QFTs invariant
under conformal transformations. They are one way to bypass the Coleman–Mandula theo-
rem [52], which states that extensions of the Poincaré algebra would make the S-matrix vanish
and are therefore forbidden. The second way is by introducing graded Lie algebras, which
leads to the supersymmetry (SUSY) algebra. Both symmetries are obeyed by 𝒩 = 4 super
Yang–Mills (SYM) theory, which appears on the gauge theory side of the holographic dual-
ity. We describe in this section the most basic elements of CFTs based on [28,29,53]. For a
comprehensive discussion of CFTs we refer to [54].

We start by considering regularization and renormalization methods to cancel divergences in
QFTs, which introduce an energy scale 𝜇, whose dependence on the coupling constant 𝑔 of the
theory is described by the 𝛽 function

𝛽(𝑔) = 𝜇
d𝑔

d𝜇
. (2.5)

While classical theories can be globally scale invariant, anomalies can break this property
on the quantum level. Quantum mechanically scale invariant theories therefore require a
vanishing 𝛽 function. This can be realized as 𝛽 = 0 for all values of 𝑔 (as in 𝒩 = 4 SYM) or
for a nontrivial interacting fixed point 𝛽(𝑔0) = 0 (as in the critical point of a quantum phase
transition). All known examples of such theories are additionally also conformally invariant,
which is a local generalization. Conformal coordinate transformations locally preserve angles
and the causal structure. In terms of a positive conformal factor Ω(𝑥)2, the metric components
and line element satisfy

𝑔𝜇𝜈(𝑥) ↦→ Ω(𝑥)−2𝑔𝜇𝜈(𝑥) ⇔ d𝑠′2 = Ω(𝑥)−2 d𝑠2, (2.6)

which implies
(𝑔𝜇𝜈𝜕𝜌𝜕

𝜌 + (𝐷 − 2) 𝜕𝜇𝜕𝜈) 𝜕𝜇𝜖
𝜇 = 0 (2.7)

for infinitesimal conformal transformation 𝑥𝜇 ↦→ 𝑥𝜇 + 𝜖𝜇(𝑥).
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Due to the factor (𝐷−2), there is an important differentiation between CFTs in two dimensions
and higher. We consider at first the conformal algebra in 𝐷 = 2. The condition (2.7) then
reads 𝜕0𝜖1 = −𝜕1𝜖0 and 𝜕0𝜖0 = 𝜕1𝜖1 for the two components, being identical to the Cauchy-
Riemann differential equations in functional analysis. Introducing complex coordinates as
𝑧 ≡ 𝑥0 + 𝑖𝑥1 and 𝑧 ≡ 𝑥0 − 𝑖𝑥1, conformal transformations in two dimensions are thus realized
by holomorphic and anti-holomorphic functions as 𝑧 ↦→ 𝑓(𝑧), 𝑧 ↦→ 𝑓(𝑧). They form an infinite
dimensional Virasoro algebra, generated by the modes of the energy-momentum tensor, which
are given as Laurent coefficients

𝑇𝑧𝑧(𝑧) =
∑︁
𝑛∈Z

𝐿𝑛

𝑧𝑛+2
, 𝐿𝑛 =

1

2𝜋𝑖

∮︁
d𝑧𝑧𝑛+1𝑇𝑧𝑧(𝑧). (2.8)

Their commutation relation takes in the quantum theory the form

[𝐿𝑚, 𝐿𝑛] = (𝑚− 𝑛)𝐿𝑚+𝑛 +
𝑐

12
𝑚(𝑚2 − 1)𝛿𝑚+𝑛,0, (2.9)

where 𝑐 is called central charge and specifies the conformal anomaly (or central extension) in
the second term. 5 The conformal dimension (ℎ, ℎ̄) characterizes how fields in a CFT transform
under conformal transformations. A primary field (or tensor operator) 𝜑 satisfies

𝜑(𝑧, 𝑧) ↦→ 𝜑′(𝑧, 𝑧) =

(︂
𝜕𝑓

𝜕𝑧

)︂ℎ(︂
𝜕𝑓

𝜕𝑧

)︂ℎ̄

𝜑(𝑓(𝑧), 𝑓(𝑧)), (2.10)

leaving the differential 𝜑(𝑧, 𝑧)(d𝑧)ℎ(d𝑧)ℎ̄ invariant. Under rescalings 𝑧 ↦→ 𝜆𝑧, 𝑧 ↦→ 𝜆𝑧, this
implies 𝜑 ↦→ 𝜆Δ𝜑𝜑, where we defined the scaling dimension ∆𝜑 ≡ ℎ+ ℎ̄. 6 A so-called highest-
weight state |ℎ⟩ satisfies 𝐿0 |ℎ⟩ = ℎ |ℎ⟩ and 𝐿𝑛 |ℎ⟩ = 0 for 𝑛 > 0. It is related to a primary
field 𝜑 by the the operator-state correspondence as |ℎ⟩ = lim𝑧→0 𝜑(𝑧) |0⟩, where |0⟩ is denoting
the vacuum. A representation of the Virasoro algebra is then constructed by the method of
induced representation, in which descendant states of the form (𝐿−𝑛1𝐿−𝑛2 · · ·𝐿−𝑛𝑘

) |ℎ⟩ follow
from the action of modes 𝐿−𝑛 on the highest-weight state as 𝐿0𝐿−𝑛 |ℎ⟩ = (ℎ+ 𝑛)𝐿−𝑛 |ℎ⟩.
In higher dimensions, 𝐷 > 2, the general solution of eq. (2.7) reads

𝜖𝜇(𝑥) = 𝑎𝜇 + 𝜔𝜇
𝜈𝑥

𝜈 + 𝜆𝑥𝜇 + 𝑏𝜇𝑥2 − 2(𝑏 · 𝑥)𝑥𝜇, (2.11)

where 𝑎𝜇 parameterizes translations (generated by the momentum operator 𝑃𝜇), 𝜔𝜇
𝜈 corre-

sponds to Lorentz transformations (generated by 𝐽𝜇𝜈), 𝜆 to dilatations (generated by D), and
𝑏𝜇 to special conformal transformations (generated by 𝐾𝜇). In contrast to the two-dimensional
case, they form a finite-dimensional Lie algebra with symmetry group 𝑆𝑂(𝐷, 2). As before,

5Note that only the generators {𝐿−1, 𝐿0, 𝐿1} define a closing, finite-dimensional subalgebra representing
global conformal transformations.

6The difference ℎ− ℎ̄ is interpreted as the spin of the field, specifying its behavior under rotations.
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group representations are constructed inductively, but now from eigenfunctions of the scaling
operator D with eigenvalue −𝑖∆𝜑, which is the analogon of 𝐿0. 7 The role of any other 𝐿𝑛 and
𝐿−𝑛 is taken by 𝐾𝜇 (annihilation operator) and 𝑃𝜇 (creation operator), which act on fields
as D(𝑋𝜇𝜑) = −𝑖(∆𝜑 ± 1)(𝑋𝜇𝜑) for 𝑋𝜇 ≡ 𝑃𝜇, 𝐾𝜇. Descendants follow from their successive
application on the primary operator/state of lowest dimension, defined by 𝐾𝜇𝜑0 = 0.
Conformal symmetry severely restricts the form of correlation functions and entanglement
entropies in CFTs. We discuss these aspects in the relevant sections of the next chapter 3. A
way of obtaining nontrivial QFTs is to deform CFTs by relevant operators with ∆ < 𝐷, which
affects the physics at large distances. This property enables us in part II to study interesting
physical effects.

The final remarks in this section are devoted to 𝒩 = 4 SYM theory as a realization of the
superconformal group in 𝐷 = 4. SUSY extends the Poincaré algebra by new field contents in
a graded Lie algebra representation. 𝒩 = 4 SYM theory possesses the maximum number of
16 supercharges 𝑄𝑎, 𝑄̄𝑎 (without gravity), which follow from Noether’s theorem as conserved
quantities and act as operators transforming fermion fields into bosonic ones and vice versa. 8

The defining action of this maximally supersymmetric and non-Abelian gauge theory can be
derived from the𝒩 = 1 superspace formalism or by dimensional reduction from 10-dimensional
𝒩 = 1 SYM theory. 9 It has the following field content: A vector gauge field 𝐴𝜇(𝑥) with gauge
group 𝑆𝑈(𝑁𝑐), four Weyl fermions 𝜆𝑎𝛼(𝑥) (𝑎 = 1, . . . , 4) and six real scalars 𝜑𝑖(𝑥) (𝑖 = 1, . . . , 6).
The coupling is parametrized by the Yang–Mills constant 𝑔YM with dimension [𝑔YM] = 0,
making this massless theory classically scale invariant. Due to a vanishing 𝛽 function in all
perturbative orders, this holds also for the quantum theory, which can be shown to be invariant
under the more general superconformal group.

2.3 Elements of string theories

We motivate the most basic elements of string theory in this section to provide the necessary
background of the AdS/CFT derivation in the next section. While our discussion is based
on [29], we refer to [53,56,57] as comprehensive textbooks on this topic.
In an attempt to formulate a fundamental theory of quantum gravity, string theory generalizes
QFT from relativistic point particles to strings as extended one-dimensional lines or loops with
an associated tension, i.e. energy per unit length. By the variational principle, their action
needs to minimize the area of the string worldsheet, which is the surface swept out by moving
strings. Denoting the string position coordinates as 𝑋𝜇(𝜎, 𝜏), this leads to the Nambu-Goto

7The scaling dimension Δ𝜑 is defined as previously as the exponent under field rescalings, i.e. for 𝑥 ↦→ 𝜆𝑥 one
has 𝜑(𝑥) ↦→ 𝜆Δ𝜑𝜑(𝜆𝑥).

8The index 𝑎 = 1, . . . ,𝒩 enumerates the number of independent supersymmetries.
9We refer to, e.g., [28,29,55] for its explicit form and omit the details here, since they are not relevant for the
understanding of the gauge/gravity derivation in this chapter nor the actual research part in this thesis.
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action 𝑆𝑁𝐺 = −𝑇
∫︀

d𝜎 d𝜏
√︀

det(ℎ𝑎𝑏) with 𝑇 ≡ (2𝜋𝛼′)−1 as the string tension, containing the
string length 𝑙𝑠 via 𝛼′ ≡ 𝑙2𝑠 , and ℎ𝑎𝑏 = 𝜕𝑎𝑋

𝜇𝜕𝑏𝑋
𝜈𝑔𝜇𝜈(𝑋) as the induced spacetime metric. This

action can be transformed into the more fundamental Polyakov action of the form

𝑆P = −𝑇
2

∫︁
d𝜎 d𝜏

√−𝛾𝛾𝑎𝑏ℎ𝑎𝑏, (2.12)

where 𝛾𝑎𝑏 is an independent worldsheet metric. Open strings with Neumann (free endpoints)
or Dirichlet (fixed endpoints) boundary conditions as well as closed strings appear as solutions
of the resulting equation of motion. After canonical quantization of the bosonic string, it turns
out that the vacuum consists of unstable tachyons of negative mass. Massless excitations are
consistent only in the critical spacetime dimension 𝐷 = 26. The unstable tachyons can be
projected out if the Polyakov action is extended to the supersymmetric form

𝑆P,SUSY = −𝑇
2

∫︁
d𝜎 d𝜏

√−𝛾𝛾𝑎𝑏
(︀
𝜕𝑎𝑋

𝜇𝜕𝑏𝑋
𝜈 + 𝑖Ψ̄𝜇𝛾𝑎𝜕𝑏Ψ̄

𝜈
)︀
𝑔𝜇𝜈(𝑋), (2.13)

where Ψ𝜇 are fermionic spinors on the worldsheet and 𝛾𝑎 Dirac matrices. The quantized su-
persymmetric string is consistent in the critical dimension 𝐷 = 10, which can be reduced to
𝐷 = 4 in our real world by the dimensional reduction procedure of Kaluza–Klein. Depending
on the boundary conditions for the individual left- and right moving modes, closed superstring
solutions of (2.13) can be projected out in four consistent ways, giving rise to distinct super-
string theories, which are related to each other by a set of dualities. It is conjectured that they
arise from a more fundamental M-theory in 11 dimensions. One of these superstring theories is
denoted as type IIB, which reduces in the low-energy limit (𝛼′ → 0) to a supergravity solution,
representing a SUSY extension of general relativity.

Amplitudes of scattering processes in type IIB superstring theory (or any other) can be cal-
culated by generalizing Feynman diagrams to a sum over two-dimensional topologies. The
interaction strength is parametrized by the coupling constant 𝑔𝑠, which, in fact, can be shown
to be given in terms of the asymptotic vacuum expectation value of a scalar field in the
spectrum.

We finally introduce 𝑝-branes and D𝑝-branes as important objects in superstring theories.
Black 𝑝-branes are BH solutions in 𝑝 spatial dimensions, which can carry a charge 𝑄𝑝 under
an antisymmetric tensor field 𝐴𝜇1···𝜇𝑝+1 . They appear as supergravity solutions and are called
extremal if their tension 𝑇𝑝 saturates the bound 𝑇𝑝 ≥ const · 𝑄𝑝. D𝑝-branes are dynamical,
nonperturbative hyperplanes in (𝑝+ 1) dimensions, on which open strings (i.e. with Dirichlet
boundary conditions) end. They contain nontrivial gauge fields and other degrees of freedom
by deformations through the open strings.
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2.4 The AdS/CFT correspondence

Symmetry properties are one of the most important considerations for physical theories (in
the standard model and beyond). From section 2.1 and 2.2, it becomes apparent that a 𝐷-
dimensional CFT and AdS spacetime in (𝐷 + 1) dimensions share the same symmetry group,
providing a necessary condition to identify very different theories on both sides of the duality
with each other. We describe in this section very briefly the original AdS/CFT correspondence,
which was found by Maldacena in [25].

Making use of the result that extremal 𝑝-branes and D𝑝-branes are two ways of viewing the
same physics [58], the AdS/CFT proposal originates from two different perspectives on these
branes, which we explain using Fig. 2.1. We consider type IIB superstring theory in 10 di-
mensions with coordinates 𝑥0, 𝑥1, . . . , 𝑥9 and a stack of 𝑁𝑐 D3-branes along the spacetime
directions 𝑥0, . . . , 𝑥3 transversal to 𝑥4, . . . , 𝑥9.

The open string viewpoint, visualized in the left panel, is considered in the perturbative
regime of small string coupling 𝑔𝑠 ≪ 1. For small energies 𝐸 ≪ 𝛼′−1/2 = 𝑙−1

𝑠 , only the
massless part of the string spectrum contributes, which contains a gauge field 𝐴𝜇(𝑥), six scalar
fields 𝜑𝑖(𝑥) and their superpartners. The effective action of a D3-brane can be written as
𝑆 = 𝑆open + 𝑆closed + 𝑆int, referring to closed and open string modes and their interactions. If
additionally also the limit 𝛼′ → 0 is considered, open and closed string decouple, i.e. 𝑆int = 0,
and 𝑆closed reduces to the supergravity action in Minkowski spacetime. The relevant action
𝑆open reduces to 𝒩 = 4 SYM theory with gauge group 𝑆𝑈(𝑁𝑐).

In the closed string viewpoint (cf. right panel), one considers the opposite regime of strong
coupling, 𝑔𝑠𝑁𝑐 → ∞. D𝑝-branes are therefore treated as massive gravitating objects. One can
show that the supergravity solution for D3-branes reduces in the near-horizon region of the
BH to the metric d𝑠2 = 𝑟2

𝐿2 (− d𝑡2 + d𝑥⃗ 2) + 𝐿2

𝑟2
d𝑟2 +𝐿2 dΩ2

5, where we defined 𝑟2 ≡∑︀9
𝑖=4 𝑥

2
𝑖 as

a radial coordinate and 𝐿4 ≡ 4𝜋𝑔𝑠𝑁𝑐𝛼
′2. By comparing with eq. 2.3, one identifies this metric

as an AdS5 spacetime times a compact five-sphere 𝑆5. On the other hand, for large distances,
the geometry is given by the usual Minkowski metric. In the low-energy limit, these regimes
decouple again.

Both perspectives yielded two decoupled regimes, which now can be identified with each other.
Since the supergravity solutions in R9,1 agree, Maldacena proposed (by relaxing the low-energy
condition) the following theory identification

𝒩 = 4 𝑆𝑈(𝑁𝑐) SYM in R1,3 ⇐⇒ IIB superstring theory in AdS5 × 𝑆5 (2.14)

where the parameters are mapped to each other as 𝑔2YM = 2𝜋𝑔𝑠 and 2𝑔2YM𝑁𝑐 = (𝐿/𝑙𝑠)
4.

In the strongest form, the parameter mapping is expected to be valid for any values. In a
strong version, the string theory is assumed to be in the classical gravitational regime 𝑔𝑠 → 0,
𝑙𝑠/𝐿 ̸= 0 fixed. This translates into the planar limit 𝑁𝑐 → ∞ at constant ’t Hooft coupling
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Figure 2.1: Schematic illustration of the open (left panel) and closed string perspective
(right panel) on a stack of D3-branes. Open strings (in blue) can start and end on the same
brane or different ones. Their parallel excitations are described by a gauge field in type
IIB superstring theory, while scalar fields capture transverse fluctuations. They reduce to
𝒩 = 4 SYM theory in the small coupling, low energy limit. In both perspectives, closed
strings propagate in flat Minkowski spacetime (in green, close to the stack) and in the right
perspective also in a curved throat close to the BH horizon of the D3-brane (shown in red).
The latter reduce to IIB supergravity theory on AdS5×𝑆5 in the strong coupling, low energy
limit.

𝜆 ≡ 𝑔2YM𝑁𝑐. The correspondence between SYM theory at strong coupling and a classical
gravitational theory at weak coupling arises if additionally the limit 𝜆 → ∞ is taken, which
maps to 𝑙𝑠/𝐿→ 0.

2.5 Entries in the holographic dictionary

As elaborated before, apart from Maldacenas original formulation of the AdS/CFT correspon-
dence between very specific theories, many more holographic counterparts to QFT aspects
were found. We describe the most relevant ones in this short overview, motivating some of the
research questions addressed in this thesis.

2.5.1 RG flow geometrization and UV/IR relation

As reviewed in [30], the AdS/CFT correspondence can be intuitively understood as a ge-
ometrization of the RG flow. Considering a 𝐷-dimensional QFT (in Minkowski spacetime)
with an ultraviolet (UV) regulator 𝜖, an effective field theory description at large distances
𝑧 ≫ 𝜖 is found by integrating out short-distance degrees of freedom. One can interpret the re-
sulting set of theories, labelled by the continuous RG scale 𝑧, as a theory embedded in (𝐷+ 1)
dimensions, where 𝑧 takes the role of the additional dimension. An AdS geometry of the form
(2.3) follows uniquely by demanding Poincaré and conformal symmetry. The gauge theory
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energy 𝐸YM is then related to its holographic counterpart 𝐸 in the bulk as

𝐸YM =
𝐿

𝑧
𝐸. (2.15)

Due to its inverse dependence on 𝑧, the UV limit (𝐸YM → ∞) is holographically described by
bulk processes near the Minkowski boundary (𝑧 → 0), while IR physics (𝐸YM → 0) is mapped
to the region 𝑧 → ∞. 10 In real space, a similar geometrization of the RG flow was the basis
for discrete holographic interpretations of the MERA TN, as we will describe in section 3.7.1.

2.5.2 Operator/field map

In the most general way, the gauge/gravity duality can be formulated by identifying the
partition function of a conformal gauge theory with its string theory counterpart,

𝑍𝑂[𝜑0(𝑥)]CFT = 𝑍Φ[𝜑0(𝑥)]string. (2.16)

For that, we consider a bulk field Φ with a boundary value 𝜑0(𝑥) = lim𝑧→0 𝑧
𝛼ΦΦ(𝑥, 𝑧),

which sources a local field operator 𝑂 in the CFT partition function 𝑍𝑂[𝜑0(𝑥)]CFT =∫︀
𝒟𝑂 exp

(︀
−𝑆CFT +

∫︀
d𝑑𝑥𝑂(𝑥)𝜑0(𝑥)

)︀
. 11 The string theory partition function is typically only

calculable in the classical limit as a supergravity saddle point approximation, i.e.
𝑍Φ[𝜑0(𝑥)]string = e−𝑆SUGRA[Φ[𝜑0]]. This procedure allows to derive correlation functions of the
form ⟨𝑂(𝑥1) . . . 𝑂(𝑥𝑛)⟩ either as functional derivatives of the CFT partition function w.r.t. its
sources, or, in the dual formulation, by evaluating (tree level) Witten diagrams. The latter
can be seen as generalizations of Feynman diagrams in AdS spacetime, where the supergravity
equations of motion are solved and holographically renormalized. Most prominently, for a
bulk scalar field 𝜑 in AdS𝐷+1, one can find that its mass 𝑚 is related to the scaling dimension
∆𝑂 of a dual scalar field theory operator as 𝑚2𝐿2 = ∆𝑂(∆𝑂 −𝐷). 12 Since this prescription
relates gauge theory operators to bulk fields, it is referred to as the operator/field map. While
we sketched here the prescription in Euclidean signature, the works [60,61] generalized it to
Minkowski spacetimes.

2.5.3 Thermodynamic quantities

BHs and higher-dimensional black branes within an asymptotic AdS spacetime possess an
event horizon as a defining property. They obey the thermodynamic laws of Hawking and

10As an extension, gapped theories can be can be described via a cutoff/ending at 𝑧0 ∼ 1/𝑚, with 𝑚 as the
mass gap. Particularly interesting is the situation when 𝑧0 is the position of a BH horizon, which allows to
identify thermodynamic quantities; see below.

11The properties of Φ (tensor rank, spin,. . .) determine the specific value of the coefficient 𝛼Φ.
12This relation depends on the spin and tensor type of the considered field. For a more complete overview,

see, e.g., [28,59].
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Bekenstein and therefore have a temperature 𝑇 and entropy 𝑆. These quantities follow from
the relations

𝑇 =
κ
2𝜋
, 𝑆 =

𝐴ℎ

4𝐺
(𝐷+1)
𝑁

, (2.17)

where κ is the surface gravity and 𝐴ℎ the event horizon area. 13 Based on the AdS/CFT
correspondence, these are interpreted as the holographic dual of their CFT counterpart, or,
more generally, of the gauge theory for more sophisticated holographic models.

2.5.4 Entanglement entropy

Throughout this thesis, entanglement entropy plays a major role to characterize quantum
correlations both in QFTs and QMB systems. This quantity is defined as the von Neumann
entropy

𝑆(𝜌𝐴) = −Tr [𝜌𝐴 log 𝜌𝐴] = 𝑆(𝜌𝐵) (2.18)

for the reduced density matrix 𝜌𝐴 = Tr𝐵(𝜌) of a (pure) state density operator 𝜌. Here, 𝐴 is a
connected region of the physical system and 𝐵 its complement.

Ryu and Takayanagi provided in [35,36] a holographic formula for the entanglement entropy.
Specifically for a subregion 𝐴 on a boundary time slice of a CFT in 𝐷 Minkowski dimensions,
it takes the form

𝑆HEE =
Area(𝛾𝐴)

4𝐺
(𝐷+1)
𝑁

, (2.19)

where 𝛾𝐴 is the minimal bulk surface that anchors on the boundary of 𝐴, cf. Fig. 2.2 for an
illustration. Since the calculation of entanglement entropy in arbitrary QFTs is very diffi-
cult, this dual formula initiated a plethora of studies, e.g. to analyze its behavior in strongly
coupled QFTs, time evolution under quantum quenches or deconfinement phase transitions.
These developments are partly reviewed in the lecture notes [62]. Subsequently, the work [63]
found a covariant generalization, which was formally derived in [64]. Since eq. (2.19) relates
a fundamental quantum measure to a geometric quantity, it was conjectured that spacetime
itself could be an emergent phenomena, which is dynamically generated by the underlying
entanglement degrees of freedom. Major steps in this development can be found in [65–67].

While we have briefly reviewed the holographic counterpart here, we will give a detailed dis-
cussion of entanglement entropy in the context of area laws of QMB systems and CFTs in
section 3.2.

13We refer to the standard textbook literature on general relativity or AdS/CFT for detailed explanations of
the latter quantities. Note that this framework can be extended if a charged BH with a 𝑈(1) gauge field 𝐴𝜇

is introduced in the bulk theory. Then a chemical potential 𝜇 can be derived as 𝜇 = 1
𝐿 lim𝑧→0𝐴𝑡 for the

temporal component 𝐴𝑡 of the gauge field.
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Figure 2.2: According to the Ryu–Takayanagi proposal, the entanglement entropy for a
subregion 𝐴 in a CFT𝐷 is calculated holographically as the area of the associated minimal
surface 𝛾𝐴 (shown in blue) in the bulk of AdS𝐷+1.

2.5.5 Generalized entanglement entropies and dualities

Apart from entanglement entropy itself, also other entropy measures and interpretations have
been discussed in a holographic context. For example, in [68] a more general surface/state
correspondence was proposed in which arbitrary codimension-two space-like surfaces can be
associated with a dual quantum state (independent from any boundary). Furthermore, the
works [69,70] interpreted the mixed state measure entanglement of purification as the cross sec-
tion area of the minimal surface that connects two disjoint boundary regions. In [71], a pseudo
entropy was defined, which was found to generalize eq. (2.19) in time-dependent Euclidean
metrics. The authors could interpret this proposal quantum information theoretically in terms
of Bell pairs for specific cases. Recently, the work [72] defined a generalized entanglement
measure, denoted as entwinement, by taking entanglement of both spatial and field degrees of
freedom into account. This allowed the author to reconstruct the whole bulk geometry from a
geodesic with non-zero winding number for a specific example of the AdS3/CFT2 correspon-
dence. Detailed discussions on these and further entanglement measures in holography can be
found in the up to date review [34].

2.5.6 Complexity

Explorations on holographic interpretations of quantum information measures through ge-
ometric quantities got fueled by Susskinds works on complexity [73]. These directly make
contact to quantum gravitational aspects by describing the interior of black holes in holo-
graphic spacetimes. Based on the observation that a Einstein–Rosen bridge (ERB), which
connects two copies of a CFT in the bulk of an eternal AdS BH, grows on exponentially longer
time scales than present in the boundary field theory, he interpreted the additional degrees of
freedom with computational complexity. The latter quantity describes the minimal number of
gates to realize a quantum circuit. This led to the slogan “entanglement is not enough” [38],
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which is actually referring to entanglement entropy. It was proposed that the boundary state
complexity 𝒞 can be holographically calculated either from volumes (codimension-1) [73,74] or
actions (codimension-0) [39,75] as follows

𝒞𝑉 (Σ) = max
Σ=𝜕𝐵

[︃
𝑉 (𝐵)

𝑙 𝐺
(𝐷+1)
𝑁

]︃
, 𝒞𝐴(Σ) =

𝑆WDW

𝜋
. (2.20)

In the 𝒞𝑉 proposal, the maximum is taken over all bulk surfaces 𝐵 whose boundary 𝜕𝐵 is
anchored on a time slice Σ where the CFT state is considered. Here, 𝑙 is a non-unique length
scale and 𝑆WDW denotes the gravitational action on a Wheeler–DeWitt (WDW) patch. The
volume proposal is motivated by considerations of thermal entropy in the BH solution. At the
same time, this represents an entanglement entropy between the two CFT copies, and hence is
related to the previously discussed ideas of emergence of spacetime from entanglement. While
these proposals lead to numerous studies of holographic complexity in different gravitational
scenarios, they left open the question of what is the actual definition of complexity on the
QFT side of the duality. While the first steps answering this question were taken in [45,46],
the underlying problem motivates our research in part III of this thesis, where we will combine
a geometric quantum circuit approach with a path integral optimization procedure. The latter
arose as an attempt to find a microscopic understanding of the AdS/CFT duality from TN
approaches (see section 3.7). We will give a more detailed introduction into these concepts in
chapter 8 and 9.



3 Introduction to tensor network
concepts and methods

In this chapter we describe the theoretical background of TNs in the context of quantum
many-body (QMB) systems. Different types of TNs are presented as well as relevant numer-
ical algorithms, which are used in the following parts. We also describe some holographic
interpretations of discrete TN structures. The discussion primarily follows the reviews and
introductions [11] and [9,12,17].

3.1 Quantum many-body systems and the Hilbert space

problem

At the core of lots of physical problems is the description of QMB systems from both a theo-
retical and numerical viewpoint. As motivated in the previous chapter, this task is particularly
important to study QFTs in the standard model, and condensed matter phenomena, such as
superconductivity or topological phases and other exotic quantum matter. But also in the
emerging field of quantum technologies and computing, quantum chemistry and material de-
sign, the development and progress relies on the understanding of such many-body systems.
The fundamental problem associated to these systems is the exponential growth of their Hilbert
space ℋ of quantum states: Assuming 𝑁 elementary constituents of local physical dimension
𝑑, the whole Hilbert space is represented by the tensor product of the local Hilbert spaces, i.e.
ℋ = ℋ1 ⊗ℋ1 ⊗ . . .⊗ℋ𝑁 , with overall dimension

dim(ℋ) = 𝒪(𝑑𝑁). (3.1)

For any macroscopic system of the size of the Avogadro number 𝑁 ∼ 1023, the resulting
Hilbert space dimension, which quantifies the number of wave function coefficients, is of order
𝒪(101023), which is higher than the number of all fermions in the entire universe. More severely,
also the time needed to reach the majority of the Hilbert space by starting with some initial
state scales exponentially with the system size and thus easily exceeds the age of the universe
for macroscopic systems [11].
The collective behavior of interacting QMB systems can exhibit complicated emergent phenom-

21
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ena. It is therefore an overarching goal to find efficient representation methods and simulation
techniques for them. While mostly an exact solution is not available, it also becomes obvious
from the above estimates, that it would be inefficient and impossible to solve this system by
exact diagonalization on a classical computer. This restriction to small system sizes is far
away from the thermodynamic limit (𝑁 → ∞) in which quantum phase transitions as an
example of emergent behavior appear. Similarly, other analytical approximations and numer-
ical approaches have their intrinsic limitations (see [11,17] and references therein for detailed
discussions): For example, semiclassical and mean-field methods do not properly take quan-
tum correlations into account and hence especially suffer in low dimensions. Perturbative and
series expansion methods are restricted to small couplings. Monte Carlo methods provide a
scalable way of evaluating statistical partition functions and are very successfully applied to
lattice gauge theories, in particular QCD. They are however limited by the sign problem, i.e.
the appearance of complex determinants or actions, which poses a NP-hard problem for real-
time calculations and finite densities. Another powerful way of capturing low-energy physics
of QMB systems is given by Wilson’s renormalization group paradigm: By integrating out
the high-energy degrees of freedom of an effective field theory model, one can extract univer-
sal information at critical phase transitions. This approach however suffers for quantitative
predictions and at strong couplings. From a condensed matter perspective, White’s density
matrix renormalization group (DMRG) [76] is a particular example, where this procedure is
further developed and allows efficient spin chain simulations in one dimension. Below, we will
make use of this approach as a reformulated variational tensor network algorithm.

Tensor networks provide a new and very efficient way of tackling many QMB systems of
significant physical interest, which, in contrast to the other methods, is based on entanglement
considerations. As we will explain in the next section, the structure of entanglement and
quantum correlations depends strongly on the dimensionality but also phase properties of the
physical system. By making suitable ansätze, one can single out relevant physical corners of the
huge Hilbert space. A graphical representation in form of network diagrams makes the tensor
structure of the Hilbert space and its entanglement properties apparent. This is achieved by
decomposing the full wave function into smaller tensors carrying the entanglement degrees of
freedom and introducing an effective lattice geometry. The limitation of this method hence
lies in the structure and amount of entanglement in the QMB state. This concept is very
powerful, since it allows to simulate lots of relevant models in several dimensions, to include
symmetries, to study systems based on a gauge principle or to work in the thermodynamic
and continuum limit.
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3.2 Entanglement structure and area laws

The numerical studies in part II of this thesis will be based on spin systems, which are naturally
equipped with a tensor product structure on an underlying lattice geometry. These, and lots
of other relevant models, typically have a local Hamiltonian. That is, one can write the
Hamiltonian with finite-ranged interactions as

𝐻 =
𝑁∑︁
𝑖=1

ℎ𝑖,𝑛, (3.2)

where the density ℎ𝑖,𝑛 acts on site 𝑖 and its 𝑛 − 1 closest neighbors. As comprehensively
reviewed in [77], the locality of such physical interactions in QMB systems imposes strong
restrictions on the correlation and entanglement structure. The ground state, i.e. the state
which minimizes ⟨𝜓|𝐻 |𝜓⟩, is of primary importance here, since quantum effects are strongest
in the vacuum or low temperatures. 14 Furthermore, there are crucial differences for gapless
versus gapped states, i.e. states with vanishing or finite Hamiltonian gap (from the ground
state energy to the first excited state) in the thermodynamic limit. Critical systems belong
to the first class with infinite correlation length 𝜉 (described by CFTs), whereas the latter
quantity is finite for gapped systems. The locality of Hamiltonian interactions is inherited to
the correlation functions. In gapped models, they decay exponentially with the distance on
the lattice,

|⟨𝑂𝐴𝑂𝐵⟩ − ⟨𝑂𝐴⟩⟨𝑂𝐵⟩| ∼ e−dist(𝐴,𝐵)/𝜉, (3.3)

for operators 𝑂𝐴,𝐵. This effect is sometimes denoted as clustering of correlations [12] and
can be proven by using Lieb-Robinson bounds [78] on the speed of information spreading. In
contrast, gapless models exhibit a power-law decay, represented by the normalized CFT result

⟨𝑂(𝑥1)𝑂(𝑥2)⟩ =
1

|𝑥1 − 𝑥2|2Δ𝑂
(3.4)

for an operator 𝑂 with scaling dimension ∆𝑂 at positions 𝑥1,2. 15

Beyond the decay of correlation functions, the locality of Hamiltonian interactions implies
even deeper properties on the entanglement structure. This is captured by the entanglement
entropy (2.18), which we consider here for the reduced density matrix 𝜌𝐴 = Tr𝐵(𝜌) of the
(ground) state density operator 𝜌 = |𝜓0⟩ ⟨𝜓0|. This entanglement entropy as well as the more
general Rényi entropies

𝑆𝛼(𝜌𝐴) =
1

1 − 𝛼
log(Tr 𝜌𝛼𝐴) (3.5)

14In addition, first excited states of local Hamiltonians are typically local perturbations of the ground state,
i.e. particles; see e.g. the discussion and references in [17].

15The operator product expansion (OPE) generalizes the product of two operators 𝑂𝑖, 𝑂𝑗 as a sum of all
possible operators 𝑂𝑘 and coefficients 𝑐𝑘𝑖𝑗 , i.e. ⟨𝑂𝑖(𝑥𝑖)𝑂𝑗(𝑥𝑗)⟩ =

∑︀
𝑘 𝑐

𝑘
𝑖𝑗(𝑥𝑖 − 𝑥𝑗)⟨𝑂𝑘(𝑥𝑗)⟩.
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quantify the amount of entanglement between the two subsystems. 16 In the continuum or in
presence of gauge fields, the definition of reduced density matrices can lead to mathematical
subtleties, which, however, will not be relevant for our subsequent spin chain calculations.
An important characterization now is the scaling of the entanglement entropy with the size
|𝐴| of asymptotically large subregions. For random states in the Hilbert space, there is an
extensive scaling with the volume, 𝑆(𝜌𝐴) = 𝒪(|𝐴|). Ground states of local Hamiltonians
behave, however, very special by satisfying an area law. In this case, the entanglement entropy
scales with the boundary area of the region,

𝑆(𝜌𝐴) = 𝒪(|𝜕𝐴|). (3.6)

This is illustrated in Fig. 3.1 (left panel). Ground states of gapped QMB systems are believed
to obey this area law generically. Specifically, this has been proven in [79] for any gapped
quantum model with unique ground state in one dimension. In higher dimensions, the area
law (3.6) implies 𝑆(𝜌𝐿) ∼ 𝐿𝐷−1 for a block of size 𝐿 on a 𝐷-dimensional lattice. For specific
models, such as gapped free fermionic or bosonic theories, this is explicitly proven and believed
to hold for all models in any dimension. 17 MPS, which we will introduce below, are TN ansätze
which satisfy this area law by construction and hence allow an accurate description of ground
states in gapped models.

Critical (gapless) models show an important violation of the area law in one dimension. The
entanglement entropy of critical spin systems scales as

𝑆(𝜌𝐴) = 𝒪(log(|𝐴|)). (3.7)

For example, at the critical point of the Ising model, which we will introduce in chapter 4,
this scaling is valid for subregions of size |𝐴| = 𝐿 ≤ 𝑁/2. Although this property violates
the area law (3.6), the logarithmic correction is still mildly, i.e. exponentially smaller than the
volume scaling in random states of the Hilbert space. In the CFT framework, the logarithmic
divergence is given explicitly as [80]

𝑆(𝜌𝐿) =
𝑐

3
log

(︂
𝐿

𝑎

)︂
+ 𝒪(1), (3.8)

where 𝑐 is the central charge of the theory and 𝑎 a UV cutoff, e.g. the lattice spacing. This
scaling thus provides a way of deducing the central charge of an unknown but critical model. 18

In higher dimensions, the scaling of critical systems is not unique and known only for specific

16Observe that in the limit 𝛼↘ 1, 𝑆𝛼(𝜌𝐴) reduces to 𝑆(𝜌𝐴).
17See [77] for detailed discussions and examples.
18For the general Rényi entropies, this formula is modified to 𝑆𝛼(𝜌𝐿) = 𝑐

6

(︀
1 + 1

𝛼

)︀
log
(︀
𝐿
𝑎

)︀
+ 𝒪(1). Close to

criticality, for a large but finite correlation length, the dependence is 𝑆(𝜌𝐿) ∼ 𝑐
6 log

(︁
𝜉
𝑎

)︁
.
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Figure 3.1: Left panel: The entanglement entropy of subregion 𝐴 of a local system scales
with its boundary area. Right panel: Area law states populate only an exponentially small
physical corner of the entire Hilbert space.

models. 19 At finite temperature, it is known that mutual information satisfies an area law [81].

In summary, the locality of physical interactions has dramatic effects on the correlation and
entanglement structure. Most of the entanglement is concentrated at the boundary of sub-
regions. In [17], an intuitive understanding of this property is presented by observing that
ground states of translationally invariant local Hamiltonians are fully determined by their ex-
tremal reduced density matrix, i.e. that one, which minimizes 𝐸 =

∑︀
𝑖 Tr[ℎ𝑖,𝑛𝜌𝑖,𝑛] = Tr[ℎ𝑛𝜌𝑛]

(using the notation in (3.2)). Spins which correlate strongly with neighbors far away would
destabilize the extremum and hence the entanglement should scale only with the boundary
area of a bipartition. Physically relevant ground states and low excitations have much less
entanglement than random states by satisfying an area law and therefore represent only an
exponentially small subset of the enormous Hilbert space. This is sometimes denoted as the
physical corner of the Hilbert space as illustrated in Fig. 3.1 (right panel). The aim and power
of TNs is to define ansätze for wavefunctions of QMB states, which accurately capture the
underlying entanglement structure, both for gapped and critical models.
We close this section by pointing out that area laws appeared already in other contexts in this
introduction. The Bekenstein–Hawking formula (2.17) expresses the thermodynamic entropy
of a BH as its event horizon area. As encapsulated in eq. (2.19), the holographic entanglement
entropy formula of Ryu and Takayanagi is nothing else than a (minimal) area in the bulk
of AdS spacetime. The latter is the holographic counterpart of the entanglement entropy in
dual CFTs, defined in (2.18). As discussed in [82], entanglement entropy itself was found to
represent a quantum correction to the BH entropy formula originating from matter fields. 20

In the limit when the boundary subsystem 𝐴 in the holographic setting is chosen arbitrarily

19In fact, this logarithmic correction is even not always present. There are boson models satisfying an exact
area law but which are critical, i.e. gapless. In other words, the converse of the expected area law for gapped
states does not hold.

20On the other hand, it was shown in [83] that the one loop correction to holographic entanglement entropy
is given by the bulk entanglement entropy between the two regions defined by the minimal surface.
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large, the minimal surface tends to wrap around the BH horizon if an AdS geometry with
event horizon is considered. The extensive contribution to it then represents the thermal BH
entropy.

3.3 Tensor network diagrams

An arbitrary state vector |Ψ⟩ in the tensor product Hilbert space (C𝑑)⊗𝑁 of a QMB system
can be written as

|Ψ⟩ =
𝑑∑︁

𝑖1,𝑖2,...,𝑖𝑁=1

𝜓𝑖1,𝑖2,...,𝑖𝑁 |𝑖1⟩ ⊗ |𝑖2⟩ ⊗ · · · ⊗ |𝑖𝑁⟩ , (3.9)

where 𝜓𝑖1,𝑖2,...,𝑖𝑁 are complex coefficients w.r.t. some basis vectors |𝑖1⟩ , |𝑖2⟩ , . . . , |𝑖𝑁⟩. This
exponentially large set of 𝑑𝑁 coefficients can be interpreted as a tensor, which means a multi-
dimensional array in this context. A diagrammatic notation, introduced originally by Penrose,
allows to represent tensors graphically. For that purpose, the rank (or order) of the tensor
denotes the dimensionality of the array. A tensor is then represented by a shape and outgoing
edges stand for its indices given by the rank. Contractions (summations over all possible index
values) between several tensors are represented by lines that connect the shapes. The following
graph shows some elementary examples:

.

Here, (a) denotes a scalar (rank 0), (b) a vector and its dual (rank 1) and (c) visualizes a
matrix (rank 2). In (d), the multiplication of a matrix with a vector is represented, while
in (e) the trace of one single tensor is taken. Through this graphical notation, complicated
expressions can be visualized in a very compact manner and we can refrain from explicitly
writing out long tensorial equations. 21 Consequently, the wave function coefficients 𝜓𝑖1,𝑖2,...,𝑖𝑁

are represented by a box with 𝑁 edges for every physical index 𝑖1, 𝑖2, . . . , 𝑖𝑁 ,

.

As it became apparent from the discussions in the previous chapters, the specification of all
coefficients is computationally highly inefficient. Therefore, tensor networks aim for providing
ansätze for the wave function that take the entanglement structure into account and reduce
21See, e.g., [13] for further examples and a detailed introduction to tensor operations.
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Figure 3.2: Basic idea of the tensor network ansatz and overview of tensor network dia-
grams: Tensor networks decompose the full wave function tensor into local tensors of lower
rank. In 1𝐷, MPS and the MERA are examples. Projected entangled pair states (PEPS)
are generalizations of MPS in 2𝐷. Tree tensor networks (TTN) can be extended to 2𝐷 (and
higher).

the amount of parameters to a polynomial order. This is achieved by decomposing the full
wave function tensor of rank 𝑁 into a network of local tensors of lower order. Tensor network
diagrams represent these ansätze graphically. Figure 3.2 shows some important examples in
several spatial dimensions 𝐷. This procedure introduces auxiliary indices between the local
tensors. Their dimension 𝜒 is called bond dimension and the total number of parameters is
reduced to𝒪(𝑝𝑜𝑙𝑦(𝑁)𝑝𝑜𝑙𝑦(𝜒)) for an efficient representation. As we will demonstrate explicitly
for MPS and the MERA below, both the geometric pattern of the TN and the bond dimension
𝜒 encode the entanglement structure of the QMB system and hence also parameterize the
quantum correlations, ranging from product states (𝜒 = 1) up to the exact state (𝜒 = 𝑑𝑁).
The full wave function |Ψ⟩ is obtained by contracting the entire TN diagram, which gives a
rank 𝑁 tensor. This depends strongly on the order of the individual index summations and
the optimal scheme needs to be found for every TN diagram type.

3.4 Matrix product states and operators

Matrix product states (MPS) make the following ansatz for the wave function coefficient

𝜓𝑖1,𝑖2,...,𝑖𝑁 = 𝐴
(1)
𝑖1
𝐴

(2)
𝑖2

· · ·𝐴(𝑁)
𝑖𝑁
. (3.10)

The full wave function (3.9) is decomposed into individual rank-3 tensors of the form 𝐴
(𝑘)
𝛼𝛽𝑖𝑘

at every spatial position 𝑘 = 1, . . . , 𝑁 , where the physical index 𝑖𝑘 takes 𝑑 values and 𝛼, 𝛽 are
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bond indices with 𝜒 entries. In (3.10), the contraction over the bond indices is implied. 22 In
a TN diagram, this is represented as

. (3.11)

For a finite system with open boundary conditions, the first and last tensors are row and
column vectors, respectively. If periodic boundary conditions are assumed, an overall trace is
taken, which is represented by the grey dashed line in the TN diagram.

MPS play a major role for the numerical investigations in this thesis, as they are at the heart
of several algorithmic approaches for TNs. From its ansatz, it becomes clear that MPS reduce
the amount of variational parameters in the QMB wave function to an efficient polynomial
level 𝒪(𝑁𝑑𝜒2). For 𝜒 = 1, product states are the simplest examples of MPS. 23 With (ex-
ponentially) increasing bond dimension, MPS lie dense in the full Hilbert space. From an
alternative viewpoint, MPS can be introduced also as a preparation from maximally entangled
pair states. In that picture one assumes two virtual systems on every lattice site, each one of
it being maximally entangled with its neighbor, i.e. |𝜑𝑘⟩ =

∑︀𝑑
𝑖=1 |𝑖𝑘𝑖𝑘⟩. Upon acting with a

projector 𝒫(𝑘) =
∑︀

𝛼,𝛽,𝑖𝑘
𝐴𝛼𝛽𝑖𝑘 |𝑖𝑘⟩ ⟨𝛼𝛽| on every pair, one recovers the state (3.10). The same

construction yields the PEPS tensor network in 2𝐷, c.f. Fig. 3.2.

We now describe some of the characteristic properties of the MPS ansatz. Most importantly,
a one-dimensional area law is satisfied. From the representation (3.11) this becomes clear by
constructing the pure state density matrix |Ψ⟩ ⟨Ψ|. A definition of a subsystem 𝐴 of length 𝐿
cuts the bond indices twice and thus one has

𝑆(𝜌𝐿) ≤ log(𝜒2) = 2 log(𝜒), (3.12)

which is simply a constant, i.e. 𝑆(𝜌𝐿) ∼ 𝐿0. From our previous discussion in section 3.2 we
therefore conclude that MPS accurately describe ground and low excited states of gapped local
Hamiltonians. More generally, any state satisfying an area law, and under the mild assumption
𝑆𝛼(𝜌𝐿) . log(𝑁) for Rényi entropies with 𝛼 < 1, can be well approximated by MPS. 24 In the
inverse direction, it can be shown that any arbitrary MPS of the form (3.10) is the ground
state of a local gapped parent Hamiltonian [17].

Another important property of MPS is the exponential decay of correlation functions. For

22For every fixed value of the physical index 𝑖𝑘, this is a product of matrices, hence the name MPS.
23See, e.g., [13,17] for further analytical examples of MPS with finite bond dimension.
24This means 𝜒 ∼ 𝑝𝑜𝑙𝑦(𝑁). See [17] for extended discussions.
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this, we introduce the transfer operator

. (3.13)

If 𝑂 is the identity, we denote the transfer matrix as E𝐼 . Assuming a translationally invariant
state, powers of E𝐼 are given by

E𝑘
𝐼 = |𝑟1⟩ ⟨𝑙1| +

𝜒2∑︁
𝑗=2

𝜆𝑘𝑗 |𝑟𝑗⟩ ⟨𝑙𝑗| , (3.14)

where 𝜆𝑗 are eigenvalues of E𝐼 in decreasing order, |𝑟𝑗⟩, ⟨𝑙𝑗| are right- and left-eigenvectors
(defined by the oriented action of E𝐼 onto them), and we have chosen the normalization 𝜆1 = 1.
In the thermodynamic limit, correlation functions follow as

⟨𝑂𝐴𝑂𝐵⟩ = ⟨𝑙1|E𝑂𝐴
Edist(𝐴,𝐵)−1

𝐼 E𝑂𝐵
|𝑟1⟩

= ⟨𝑙1|E𝑂𝐴
|𝑟1⟩ ⟨𝑙1|E𝑂𝐵

|𝑟1⟩ +

𝜒2∑︁
𝑗=2

𝜆
dist(𝐴,𝐵)−1
𝑗 ⟨𝑙1|E𝑂𝐴

|𝑟𝑗⟩ ⟨𝑙𝑗|E𝑂𝐵
|𝑟1⟩

= ⟨𝑂𝐴⟩⟨𝑂𝐵⟩ +

𝜒2∑︁
𝑗=2

𝜆
dist(𝐴,𝐵)−1
𝑗 ⟨𝑙1|E𝑂𝐴

|𝑟𝑗⟩ ⟨𝑙𝑗|E𝑂𝐵
|𝑟1⟩ . (3.15)

We therefore recover the exponential decay of correlation functions (3.3) in gapped models.
The correlation length is identified as 𝜉−1 ≡ − log |𝜆2|. Algebraically decaying correlations
(3.4) as in critical models cannot be captured, unless the bond dimension is large enough and
only small spatial separations are considered.

A state defined by the MPS ansatz (3.10) is not uniquely specified. One can perform a gauge
transformation by inserting an identity 𝐼 = 𝑋𝑋−1 on the bond indices for any invertible
matrix 𝑋. In a TN diagram, this is represented as

. (3.16)

This gauge freedom allows to define a convenient canonical form of the MPS. In this represen-
tation every bond index 𝛼 labels the Schmidt decomposition of a state |Ψ⟩ across that bond
into a left and right part,

|Ψ⟩ =

𝜒∑︁
𝛼=1

𝜆𝛼 |Ψ𝐿
𝛼⟩ ⊗ |Ψ𝑅

𝛼 ⟩ , (3.17)

where the Schmidt values 𝜆𝛼 ≥ 0 are ordered decreasingly and satisfy
∑︀

𝛼 𝜆
2
𝛼 = 1 from the state
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normalization. The {|Ψ𝐿,𝑅
𝛼 ⟩} form an orthonormal basis. In this form, the MPS coefficients

take the form
𝜓𝑖1,𝑖2,...,𝑖𝑁 = Γ

(1)
𝑖1
𝜆(1)Γ

(2)
𝑖2
𝜆(2) · · ·Γ(𝑁)

𝑖𝑁
𝜆(𝑁), (3.18)

where bond indices are again suppressed. Here, the tensors 𝜆(𝑘)𝛼𝑘 contain the Schmidt values
and the tensors Γ

(𝑘)
𝛼𝑘−1𝛼𝑘𝑖𝑘

realize a change between physical spin basis and Schmidt basis. If
the MPS is infinite (𝑁 = ∞) but possesses a translational symmetry, it suffices to consider
the unit cell, i.e. the minimal set of tensors that are repeating. For a 1-site translationally
invariant MPS, the form (3.18) is then represented as

, (3.19)

where the second and third diagram define the right- and left-canonical property of the tensors.
In a finite size MPS, this canonical form is achieved by performing the Schmidt decomposition
successively, i.e. between physical indices {1} and {2, . . . , 𝑁}, then between {2} and {3, . . . , 𝑁}
and so on, cf. the following pictorial representation

. (3.20)

The Schmidt decomposition can be realized computationally by a singular value decomposition
(SVD) as indicated by the grey dashed line. A SVD decomposes a matrix 𝑀 as 𝑀 = 𝑈𝑆𝑉 †,
where 𝑈 and 𝑉 are unitary and 𝑆 contains the singular values on the diagonal in decreasing
order, which, upon normalization, agree with the Schmidt coefficients. Applications of SVDs
are very important in TN algorithms in the next section, because a truncation of small singular
values is known to be the best low-rank approximation of the original matrix [84]. Explicit
canonicalization algorithms are also known for the unit cell of infinite MPS, see e.g. [11].

The framework presented so far can be easily extended to represent not only states but also
operators. Such a matrix product operator (MPO) is defined as

𝑂 =
𝑑∑︁

𝑖1,𝑖2,...,𝑖𝑁=1
𝑗1,𝑗2,...,𝑗𝑁=1

𝐴
(1)
𝑖1𝑗1
𝐴

(2)
𝑖2𝑗2

· · ·𝐴(𝑁)
𝑖𝑁 𝑗𝑁

|𝑖1⟩ ⊗ |𝑖2⟩ ⊗ · · · ⊗ |𝑖𝑁⟩ ⟨𝑗1| ⊗ ⟨𝑗2| ⊗ · · · ⊗ ⟨𝑗𝑁 | , (3.21)

where summation over bond indices is implied. The tensors 𝐴(𝑘)
𝛼𝛽𝑖𝑘𝑗𝑘

have now two physical
indices corresponding to the bra and ket operation. The corresponding TN diagram is

.
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While MPS can represent pure states, MPOs allow to encode also Hamiltonians and mixed
states, in particular the thermal density matrix 𝜌𝛽 ≡ e−𝛽𝐻/Tr(e−𝛽𝐻).

3.5 Tensor network algorithms

Apart from a correct capture of entanglement properties of QMB systems, the power of TNs
is rooted in the existence of efficient algorithms to calculate ground, low excited and thermal
states of local model Hamiltonians as well as performing their time evolution. We describe in
this section the relevant aspects for MPS and MPO algorithms which we employ in the field
theory studies in part II. We implemented these algorithms in the Julia language and make
them available in [85].

3.5.1 DMRG

The DMRG as invented byWhite in [76] is a numerical RG method which allows the calculation
of ground states of local lattice systems. It became later reformulated as a variational method
for MPS as extensively reviewed in [10]. We describe here the latter interpretation for finite
systems with open boundary conditions. 25

In the variational ansatz, the ground state of a Hamiltonian 𝐻 minimizes the energy

𝐸 =
⟨Ψ|𝐻|Ψ⟩
⟨Ψ|Ψ⟩ . (3.22)

Introducing a Lagrange multiplier 𝜆, this expression is minimized by solving

min
|Ψ⟩∈MPS

(⟨Ψ|𝐻|Ψ⟩ − 𝜆 ⟨Ψ|Ψ⟩) , (3.23)

where the second term ensures the normalization of the state, and one makes use of the
fact that a Hamiltonian of the form (3.2) (with an implied tensor product structure) can
be represented as a MPO of the form 𝐻 = 𝑀 (1)𝑀 (2) · · ·𝑀 (𝑁) by defining operator-valued
matrices 𝑀 (𝑘)

𝛼𝛽 =
∑︀

𝑖𝑘,𝑗𝑘
𝐴

(𝑘)
𝛼𝛽𝑖𝑘𝑗𝑘

|𝑖𝑘⟩ ⟨𝑗𝑘| from (3.21). 26 Due to the matrix product structure
of |Ψ⟩, this optimization problem is highly-nonlinear for a system of 𝑁 sites. In the DMRG
it is therefore tackled iteratively: The algorithm proceeds by optimizing a single MPS site
𝐴

(𝑘)
𝛼𝛽𝑖𝑘

while keeping all others fixed. Starting from one side, the minimization is continued by
sweeping site by site through the chain (back and forth) and updating the individual tensors

25The DMRG algorithm can also be extended to infinite translational invariant systems and to study time
evolution, see the same review [10]. Periodic boundary conditions do not yield such a simple eigenvalue
problem as discussed here, but can be implemented too, see e.g. [9].

26The individual entries can be easily constructed for a chosen (spin) Hamiltonian. Reversely, the multiplica-
tion of the operator matrices reconstructs the tensor product sum (3.2).
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by solving

min
𝐴(𝑘)

(⟨Ψ|𝐻|Ψ⟩ − 𝜆 ⟨Ψ|Ψ⟩) = min
𝐴(𝑘)

(︀
𝐴(𝑘)†𝐻𝑒𝑓𝑓𝐴

(𝑘) − 𝜆𝐴(𝑘)†𝑁𝑒𝑓𝑓𝐴
(𝑘)
)︀
. (3.24)

Here, the effective Hamiltonian 𝐻𝑒𝑓𝑓 and normalization 𝑁𝑒𝑓𝑓 are constructed from ⟨Ψ|𝐻|Ψ⟩
and ⟨Ψ|Ψ⟩ by removing the tensors 𝐴(𝑘) and 𝐴(𝑘)†, respectively. Requiring that the derivative
of the right side of (3.24) w.r.t. 𝐴(𝑘)† vanishes, the minimization is realized for the solution of
the generalized eigenvalue problem 27

𝐻𝑒𝑓𝑓𝐴
(𝑘) − 𝜆𝑁𝑒𝑓𝑓𝐴

(𝑘) = 0. (3.25)

In practice, one can assure 𝑁𝑒𝑓𝑓 ≡ 1 by keeping the MPS in a mixed-canonical form, i.e. left-
canonical for sites 𝑖 < 𝑘 and right-canonical for 𝑖 > 𝑘, as defined by (3.19). In diagrammatic
form, the minimization of a single site (shown in green) is hence the solution of the following
equation

. (3.26)

The eigenvalue problem is of size (𝑑𝜒2 × 𝑑𝜒2) and the sweeping procedure is iteratively con-
tinued until convergence is reached, which can be numerically controlled by the variance
⟨Ψ|𝐻2|Ψ⟩ − ⟨Ψ|𝐻|Ψ⟩2 → 0 for high enough bond dimension 𝜒. The final minimum yields
the ground state |Ψ0⟩ and its energy 𝐸0 ≡ 𝜆𝑚𝑖𝑛 with a very high precision, which made
the DMRG to one of the leading simulation methods for strongly correlated systems in 1𝐷.
By extension, one can also easily determine excited states by introducing further Lagrange
multipliers. For example, the first excited state |Ψ1⟩ follows from solving the minimization

min
|Ψ1⟩∈MPS

(⟨Ψ1|𝐻|Ψ1⟩ − 𝜆 ⟨Ψ1|Ψ1⟩ − 𝜇 ⟨Ψ1|Ψ0⟩) , (3.27)

where the last term ensures orthogonality. Since the bond dimension limits the amount of
entanglement, this allows to iteratively determine the lowest excited states.

3.5.2 TEBD

The real-time evolution of a pure state |Ψ⟩ is given by the application of the unitary time
evolution operator 𝑈 on some initial state as

|Ψ(𝑡)⟩ = e−𝑖𝑡𝐻 |Ψ(𝑡 = 0)⟩ ≡ 𝑈(𝑡) |Ψ(𝑡 = 0)⟩ . (3.28)

27Note that 𝐻𝑒𝑓𝑓 is interpreted here as a matrix and 𝐴(𝑘) as a vector through reshaping of the tensor indices.
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Figure 3.3: Representation of one discretized time evolution step in the TEBD algo-
rithm [86,87]. Based on the first-order Suzuki-Trotter decomposition, the 2-site time evolu-
tion operators 𝑈𝑖(𝑑𝑡) are applied on all odd sites in the first row and then on all even sites
in the second row, constructing together the total evolution operator 𝑈(𝑑𝑡).

In the language of TNs, this time evolution can be implemented based on a time discretization
𝑡 = 𝑛 𝑑𝑡 with 𝑛→ ∞, 𝑑𝑡→ 0. In view of the studied models in part II, we restrict ourselves now
to nearest-neighbor interactions, i.e. 𝐻 =

∑︀
𝑖 ℎ𝑖,𝑖+1. The infinitesimal time evolution operator

𝑈(𝑑𝑡) then can be split into a product of 2-site gates via a Suzuki-Trotter decomposition
(see [88] and references therein). The first-order approximation takes the form

𝑈(𝑑𝑡) = e−𝑖 𝑑𝑡𝐻 = e−𝑖 𝑑𝑡ℎ1,2 e−𝑖 𝑑𝑡ℎ2,3 · · · e−𝑖 𝑑𝑡ℎ𝑁−1,𝑁 +𝒪(𝑑𝑡2). (3.29)

The Trotter error of order𝒪(𝑑𝑡2) originates from the noncummutativity of two successive terms
[ℎ𝑖,𝑖+1, ℎ𝑖+1,𝑖+2] ̸= 0. Vidal’s time-evolving block decimation algorithm (TEBD) [86,87] exploits
the fact that all terms ℎ𝑖,𝑖+1 with odd and even 𝑖 are all commuting among each other, respec-
tively. The time evolution is therefore discretized as 𝑈(𝑑𝑡) = e−𝑖 𝑑𝑡𝐻𝑜𝑑𝑑 e−𝑖 𝑑𝑡𝐻𝑒𝑣𝑒𝑛 +𝒪(𝑑𝑡2). 28

Fig. 3.3 shows how this operator is applied to a finite size MPS with initial bond dimension
𝜒. The orange blocks denote the incremental 2-site operators 𝑈𝑖(𝑑𝑡) ≡ e−𝑖 𝑑𝑡ℎ𝑖,𝑖+1 , which are
applied to all odd sites in the first row and then to all even sites in the next layer. A single
update consists of the following steps, yielding two new MPS tensors

.

Here, the the time evolution operator 𝑈𝑖(𝑑𝑡) is contracted into two MPS tensors at positions
𝑖 and 𝑖 + 1. The resulting rank-4 tensor is split into the new MPS tensors via a SVD. This
increases the bond dimension from 𝜒 to 𝑑2𝜒. To avoid the exponential growth of the tensor
sizes in the overall quantum circuit with 𝑛 ≫ 1, a truncation is performed, i.e. the smallest
singular values 𝜆𝛼 in the SVD are disregarded, giving rise to a truncation error 𝜖 =

∑︀𝑑2𝜒
𝛼>𝜒𝑚𝑎𝑥

𝜆2𝛼

for a chosen maximal bond dimension 𝜒𝑚𝑎𝑥.

28As an extension, the second-order Suzuki-Trotter decomposition reduces the error as 𝑈(𝑑𝑡) =
e−𝑖 𝑑𝑡𝐻𝑜𝑑𝑑/2 e−𝑖 𝑑𝑡𝐻𝑒𝑣𝑒𝑛 e−𝑖 𝑑𝑡𝐻𝑜𝑑𝑑/2 +𝒪(𝑑𝑡3).
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Interesting physical Hamiltonians introduce correlations between the constituents. Due to
the resulting entanglement growth in QMB states under real-time evolution, 𝜖 is in general
increasing for fixed 𝜒𝑚𝑎𝑥. Alternatively, the latter can be increased dynamically to capture
the entanglement content of the MPS. While the exact result is valid for 𝜒𝑚𝑎𝑥 → ∞, 𝜖 → 0,
the achievable time scales are in practice limited for finite 𝜒𝑚𝑎𝑥 and sufficiently small 𝜖. This
very important property conceptually limits the predictive power of TN simulations.

The described TEBD algorithm is not restricted to real-time evolution. Analogously, one
can perform imaginary time evolution, which allows to construct the (non-degenerate) ground
state |Ψ0⟩ of a given Hamiltonian from any random initial state as

|Ψ0⟩ = lim
𝜏→∞

e−𝜏𝐻 |Ψ(𝜏 = 0)⟩ . (3.30)

In this case, the 2-site gates 𝑈𝑖(𝑑𝜏) ≡ e−𝑑𝜏ℎ𝑖,𝑖+1 are close to the identity operator for small
enough imaginary time step 𝑑𝜏 = 𝜏/𝑛, such that still a faithful truncation can be performed.
From the eigenvalue decomposition e−𝜏𝐻 =

∑︀
𝑘 e−𝜏𝐸𝑘 |𝑒𝑘⟩ ⟨𝑒𝑘| in terms of energy eigenstates, it

can be seen that the convergence is exponentially fast w.r.t. to the energy gap ∆𝐸 = 𝐸1−𝐸0. In
the limit ∆𝐸 → 0 of an infinite chain, the bond dimension has to grow indefinitely, 𝜒𝑚𝑎𝑥 → ∞,
to represent the ground state correctly (𝜖→ 0). In a gapless (critical) model, this leads to the
concept of finite entanglement scaling [89] when in practice a finite 𝜒𝑚𝑎𝑥 and 𝜖 are chosen. This
means that the entanglement entropy of a semi-infinite bipartition scales as 𝑆(𝜌𝐴) ∼ log(𝜒𝑚𝑎𝑥),
from which the central charge of the underlying CFT can be deduced [90]. 29

Imaginary time evolution can be also used to construct a thermal state 𝜌𝛽 ≡ e−𝛽𝐻 of inverse
temperature 𝛽 = 1/𝑇 [9,10]. This makes use of the fact that in general any mixed state 𝜌𝑋
in some physical space 𝑋 can be derived from a purification as 𝜌𝑋 = Tr𝑌 |Ψ⟩ ⟨Ψ|, where the
partial trace is taken over a ancillary state space 𝑌 of a pure state |Ψ⟩ defined on 𝑋𝑌 . To
find a MPO approximation of 𝜌𝛽, we rewrite its definition as

𝜌𝛽 ≡ e−𝛽𝐻 = e−𝛽/2𝐻 ·1 · e−𝛽/2𝐻 , (3.31)

where the auxiliary system is just a copy of the physical state space. It therefore suffices to
construct the operator 𝜌𝛽/2 as a MPO by performing imaginary time evolution on the identity
operator, which is an exact MPO with unit bond dimension. 30 This can be implemented by
the same TEBD algorithm as discussed before. For that, the identity MPO can be vectorized
into MPS form with physical dimension 𝑑2 and the imaginary time evolution can be performed

29Real and imaginary time evolution of MPS can also be performed as a variational method based on the
DMRG algorithm. For subtle connections and differences to TEBD see [9,10].

30Observe that this also gives a square root computational improvement. As discussed in more detail in [9,10],
the identity MPO as the infinite temperature density operator can also be seen as a maximally entangled
state between the system and ancilla, written as a tensor product of maximally entangled pairs for each site
in the system.
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w.r.t. the Hamiltonian 𝐻 ⊗ 1, where the second term refers to the ancilla. The full thermal
operator 𝜌𝛽 then follows from its purification 𝜌𝛽/2 (which represents the thermofield double
(TFD) state upon vectorization) as 𝜌𝛽 = 𝜌𝛽/2𝜌

†
𝛽/2. By keeping the state in its canonical

form, the TEBD algorithm ensures the normalization Tr 𝜌𝛽 = Tr[𝜌𝛽/2𝜌
†
𝛽/2] = 1. Operator

expectation values follow from the purification as ⟨𝑂⟩𝛽 = Tr[𝜌𝛽𝑂] = Tr[𝜌𝛽/2𝜌
†
𝛽/2𝑂].

3.5.3 iTEBD

For a translational invariant Hamiltonian, one can work directly in the thermodynamic limit
𝑁 → ∞ by considering the elementary unit cell, which is repeating within the MPS or MPO.
In the case of nearest-neighbor interactions under consideration, this simply consists of two
sites. The infinite time-evolving block decimation algorithm (iTEBD) [91] makes use of this
feature to generalize the real- or imaginary-time evolution to infinite systems. The Schmidt
values of a semi-infinte bipartition of the system are properly taken into account by working
in the MPS definition (3.18) using the Γ and 𝜆 tensors.
Fig. 3.4 shows how a single time evolution update is performed. In the first step (𝑖) the 2-site
gate 𝑈𝑖 is contracted into two MPS sites, labelled by 𝐴 and 𝐵, consisting of tensors Γ𝐴, 𝜆𝐴 and
Γ𝐵, 𝜆𝐵, yielding a rank-4 tensor Θ, which then is split in step (𝑖𝑖) by a SVD into Θ = 𝑋𝜆̃𝐴𝑌 .
The singular values 𝜆̃𝐴 are contracted up to the maximal bond dimension, representing the
new Schmidt values across the link of site 𝐴. By inserting two identities 1 = 𝜆𝐵𝜆

−1
𝐵 as shown

in (𝑖𝑖𝑖), one gets the new MPS sites Γ̃𝐴, Γ̃𝐵, cf. (𝑖𝑣). This single update can be seen as the
odd part of the Hamiltonian, and the full iTEBD step is completed by repeating these tensor
operations for the swapped updated sites of 𝐵 and 𝐴.
As described previously for the finite size case, the iTEBD algorithm can be used equally for
real- and imaginary time evolution, in particular also to construct thermal MPOs. Obviously,
it provides the advantage of avoiding finite size effects. As described in detail in [92], the
iTEBD methods can be modified to include also non-unitary (time) evolutions, which rest
upon a proper canonicalization procedure to ensure a faithful truncation of the state.
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Figure 3.4: Representation of one discretized time evolution step in the iTEBD algo-
rithm [91]. Based on the first-order Suzuki-Trotter decomposition, the 2-site time evolution
operator 𝑈𝑖 (real or imaginary) is absorbed into two MPS sites 𝐴 and 𝐵, yielding two new
sites by the shown steps (𝑖− 𝑖𝑣).

3.6 The multiscale entanglement renormalization ansatz

In section 3.2 we emphasized the importance of the entanglement structure to capture the
physics of QMB systems. Another major physical concept is given by the seminal work of
Wilson [93], which introduced the RG paradigm. While particle physics calculations based
on Feynman diagrams typically operate in momentum space, Kadanoff’s block spin transfor-
mation [94] can be seen as a real-space realization of a RG transformation. It was originally
applied to the classical 2𝐷 Ising model and unveiled that that its critical point is a fixed
point of the RG transformation with correlations on all length scales, i.e. diverging correla-
tion length. This introduced the important concept of universality to describe (very different)
systems at macroscopic length scales and critical phenomena. The MERA, introduced by
Vidal in [42], is based on the concept of entanglement renormalization [95], which combines
these two principles. In summary, the MERA is a variational tensor network ansatz that com-
bines a real-space RG approach on a lattice with a disentangling transformation to reduce the
amount of entanglement in ground state wave functions of local QMB systems. We here follow
the reviews and introductions [96–98] to explain the underlying ideas to make this statement
precise.

The starting point of the construction is a one-dimensional lattice ℒ0 with 𝑁 sites, c.f. Fig. 3.5.
As before, we are interested in describing pure states in the Hilbert space ℋℒ0 ≃ (C𝑑)⊗𝑁 . In a
RG group picture, the MERA assembles 𝜏 = 1, 2, . . . , 𝑇 layers of a coarsegraining transforma-
tion in the vertical direction of the tensor network representation. In each layer, the number
of lattice sites is exponentially decreased as 𝑁2−𝜏 , defining a sequence of lattices

ℒ0 → ℒ1 → ℒ2 → · · · → ℒ𝑇 . (3.32)
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Figure 3.5: Tensor network representation of the binary MERA. The quantum circuit con-
sists of two type of tensors, disentanglers 𝑢 and isometries 𝑤, which successively implement
a coarsegraining transformation, starting from an original lattice ℒ0 with 𝑁 sites towards
the 𝜏 direction, representing the RG flow. The past causal cone of three selected sites is
shown up to the second level as the shaded region.

By construction, the maximal coarsegraining is achieved after 𝑇 ≈ log2(𝑁) steps. A single
coarsegraining layer is build up of two rows of different tensors, disentanglers 𝑢 and isometries
𝑤. The isometries perform the actual coarsegraining transformation by blocking two sites to-
gether, while the function of disentanglers is to reduce the amount of short range entanglement
in the system. The defining properties of these operators are 31

𝑤†𝑤 = 1 and 𝑢†𝑢 = 𝑢𝑢† = 1, (3.33)

or graphically

. (3.34)

The entanglement renormalization step is realized by the isometric operator 𝑊𝜏 shown in
Fig. 3.6, comprising one layer of the tensor network. It maps pure states on a lattice ℒ𝜏−1 to
pure states on the succeeding coarsegrained lattice ℒ𝜏 , that is |Ψ𝜏 ⟩ = 𝑊 †

𝜏 |Ψ𝜏−1⟩, giving rise

31Note that for the isometry 𝑤𝑤† ̸= 1 holds.
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Figure 3.6: Form of the isometric operator 𝑊𝜏 implementing a RG transformation from
the lattice ℒ𝜏−1 to ℒ𝜏 in the binary (left panel) and ternary (right panel) MERA. The green
ovals mark the number of sites on which operators need to act to preserve locality.

to a sequence of coarsegrained states

|Ψ0⟩ → |Ψ1⟩ → |Ψ2⟩ → · · · → |Ψ𝑇 ⟩ (3.35)

in the MERA tensor network. A state |Ψ0⟩ on ℒ0 hence follows from the composition
|Ψ0⟩ = 𝑊1𝑊2 · · ·𝑊𝑇 |Ψ𝑇 ⟩. By acting with the operator 𝑊 †

𝜏 on a state |Ψ𝜏−1⟩, the func-
tion of the unitary disentanglers is in the first step the transformation into a product state as
|Ψ𝜏−1⟩ ↦→ |Ψ′

𝜏−1⟩ ⊗ |𝑙⟩. This approach assumes that the entanglement structure is arranged
in different length scales due to the locality of physical interactions, such that |𝑙⟩ contains
partially decoupled local degrees of freedom. In the next step, the isometries block two sites
together, yielding the lattice ℒ𝜏 . This procedure leaves a considerable amount of freedom. In
particular, we have introduced so far the binary MERA, in which the isometries block two
sites together. As one alternative, a ternary MERA can be defined, in which three sites are
blocked together. The right side of eq. (3.34) shows the defining property of the corresponding
isometric 𝑤 tensor, and the form of the coarsegraining operator is visualized in the right panel
of Fig. 3.6. 32

From the coarsegraining perspective, the MERA defines a tensor network with the fictitious
time direction 𝜏 , which represents the RG flow as shown in Fig. 3.5. It is however equally valid
to read this tensor network from top to bottom. In this scenario, the MERA can be seen as
an implementation of a quantum circuit. The isometries are hereby seen as originating from
a rank-4 unitary tensor, in which one index is in a fixed state |0⟩ as follows

.

An initial product state |Ψ𝑇 ⟩ = |0⟩⊗𝑁 is then transformed into |Ψ0⟩ by the MERA circuit.
Apart from coarsegraining states, the MERA also can be used to consider the RG flow of
operators. Under the action of 𝑊𝜏 , a local operator 𝑜𝜏−1 is transformed as 𝑜𝜏 = 𝑊 †

𝜏 𝑜𝜏−1𝑊𝜏 .
32In the ternary MERA, some of the calculations considerably simplify. We therefore partially use this form

of the ansatz for the following explanations. Depending on the choice, the logarithms appearing in Figs. 3.5,
3.7 and 3.8 have either base 2 or 3.
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An important property of this mapping is the preservation of locality. As indicated in Fig. 3.6,
the binary MERA maps 3-site operators to 3-site operators, while in the ternary case the
same holds for 2-site operators, irrespective of the relative lattice position. Most relevantly, if
a model with a local bare Hamiltonian 𝐻0 of the form (3.2) is considered, then a sequence of
local Hamiltonians is constructed as 𝐻0 → 𝐻1 → · · · → 𝐻𝑇 . Similarly to the state sequence
(3.35), the coarsegraining of the microscopic degrees of freedom describes the RG flow towards
lower energies (or larger length scales).

The individual tensors 𝑤 and 𝑢 of the total tensor network |Ψ⟩ are determined by minimiz-
ing the energy ⟨Ψ|𝐻0 |Ψ⟩ of the system. The reason that the individual expectation values
⟨Ψ|ℎ𝑖,𝑛 |Ψ⟩ can be efficiently calculated is that past causal cones have bounded width. The
past causal cone is the set of all tensors within the MERA circuit that can affect a set of
chosen sites. In Fig. 3.5 an example is shown for three selected sites by the shaded region. It
can be observed that the past causal cone never exceeds the size of three isometries and two
disentanglers in every layer, independent of the system size 𝑁 and the relative lattice position.
Due to the constraint (3.34), all tensors outside the causal cone annihilate to the identity when
calculating an expectation value of the form ⟨Ψ|ℎ𝑖,𝑛 |Ψ⟩. As described in full detail in [96],
the necessary contractions can be performed efficiently with a computational cost polynomial
in the bond dimension 𝜒. 33 The explicit entries of the isometries and disentanglers are found
algorithmically by minimizing the energy iteratively. The MERA is therefore a variational
TN ansatz for the ground state wave function. In contrast to Kadanoff’s block spin trans-
formation mentioned above, the RG flow in the MERA is more faithful, because short-range
entanglement is removed under the action of the Hamiltonian. As an alternative to this “tradi-
tional” approach, the tensor network renormalization (TNR) algorithm of [99,100] introduced
a sequential coarsegraining transformation for a uniform TN preparing the Euclidean path
integral of a QMB system. The insertion of optimized disentanglers and unitaries then yields
the MERA for the groundstate. 34

For the following discussion, it is important to take symmetry considerations into account.
The MERA is called translational invariant if the isometries and disentanglers in any chosen
layer of the TN are identical. 35 Similarly, scale invariance is present if all layers in the circuit
are identical. Considering a physical model at its quantum critical point, the Hamiltonian flow
following from the variational energy minimization takes the form

𝐻0 → 𝐻1 → · · · → 𝐻𝑡 → 𝐻* → 1

Λ
𝐻* → 1

Λ2
𝐻* → · · · . (3.36)

33The tensors at the layer ℒ0 have a size set by the physical dimension 𝜒0 = 𝑑. The bond dimension 𝜒𝜏 in
all intermediate layers is a free parameter impacting the accuracy of the result. In the description of pure
states, as we assumed so far, the top tensor has size 𝜒𝑇 = 1.

34This procedure will be relevant in the context of our complexity studies for the path integral optimization
program. We describe these details in section 9.2.

35Note that this in general does not imply that also a state defined on arbitrary sublattices is translational
invariant, since lattice sites in the TN are in different relative positions w.r.t. each other.
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Figure 3.7: In a scale invariant MERA, scaling operators 𝜑𝑖 are given as eigenvectors of the
scaling superoperator 𝑆, which is composed of two isometries in the ternary ansatz (right
panel). The two-point correlation function ⟨𝜑𝑖(𝑥)𝜑𝑗(𝑥+ 𝑙)⟩, with operator insertions at the
shown specific locations with distance 𝑙 in the lattice, has a very narrow past causal cone
of only one site (left panel). After log(𝑙) coarsegraining steps, these sites are neighboring,
causing a polynomial decay of the correlator.

Here, the scale invariant Hamiltonian 𝐻* represents the fixed point of the RG flow, which is
(approximately) achieved after 𝑡 transitional layers, in which short-distance effects are removed.
The scale invariant layers then only realize the transformation 𝐻*

𝜏 = 𝐻*
𝜏−1/Λ, where Λ = {2, 3}

for the binary or ternary MERA, and are fully specified by the single set of tensors {𝑤*, 𝑢*}.
The ground state is hence given as |Ψ0⟩ = 𝑊1𝑊2 · · ·𝑊𝑡𝑊

*𝑊 * · · · . In such a scale invariant
MERA, a local operator 𝑜 transforms under the action of the entanglement renormalization
operator as

𝑜′ = 𝒮(𝑜). (3.37)

Here, 𝒮 is the scaling superoperator, which is the only nontrivial part remaining inside the
causal cone of 𝑜 in the operator 𝑊 *†𝑜𝑊 *. Scaling operators 𝜑𝑖 are given as eigenvectors of
this superoperator,

𝒮(𝜑𝑖) = 𝜆𝑖𝜑𝑖, ∆𝑖 ≡ − log 𝜆𝑖. (3.38)

The scaling dimensions ∆𝑖 are defined from the eigenvalues 𝜆𝑖. 36 For a quantum critical model,
this spectral decomposition includes the primary scaling operators and their scaling dimension
of the underlying CFT.

In Fig. 3.7, an example of the ternary MERA is shown, in which 1-site operators are inserted
at the shown specific lattice positions. The corresponding 1-site scaling superoperator consists
of only one isometry (cf. right panel). From this construction, one can easily calculate the
correlation function ⟨𝜑𝑖(𝑥)𝜑𝑗(𝑥+ 𝑙)⟩ of two scaling operator insertions with distance 𝑙 (cf. left
panel). The operator coarsegraining transformations are performed log3(𝑙) times until they are
nearest neighbors. Since the past causal cone consists of only one site, each layer contributes

36The base of the logarithm depends on the MERA type, i.e. 2 or 3 for the binary or ternary ansatz, respectively.
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Figure 3.8: In a (binary) MERA, the minimal curve (shown in green) corresponding to
a subsystem of 𝐿 lattice sites has approximately log𝐿 cuts in the bulk, giving rise to a
logarithmic violation of the area law for the entanglement entropy.

only an eigenvalue. One therefore has

⟨𝜑𝑖(𝑥)𝜑𝑗(𝑥+ 𝑙)⟩ = (𝜆𝑖𝜆𝑗)
log3(𝑙)⟨𝜑𝑖(𝑥)𝜑𝑗(𝑥+ 1)⟩

= (3−Δ𝑖3−Δ𝑗)log3(𝑙)𝐶𝑖𝑗

=
𝐶𝑖𝑗

|𝑙|Δ𝑖+Δ𝑗
, (3.39)

where 𝐶𝑖𝑗 is just a constant. The MERA is therefore capable of reproducing the algebraic
decay of correlation functions as it appears in critical models and CFTs, cf. eq. (3.4). 37

The final property of the MERA that we discuss here is the scaling of the entanglement
entropy, cf. Fig. 3.8. If a subsystem of 𝐿 sites is chosen, then the minimal curve inside the TN
that causally connects the endpoints of the subregion, bounds the entanglement entropy. This
becomes clear by observing that, if the system is cut along this curve, the contraction over it
would entangle the two regions. Since there are approximately log𝐿 cuts, the entanglement
entropy is estimated as

𝑆(𝜌𝐿) = −Tr [𝜌𝐿 log 𝜌𝐿] ≤ log(𝜒) · (# cuts) ∼ log(𝜒) · log(𝐿). (3.40)

We therefore recover the logarithmic violation (3.7) in critical models. By properly calculating
the actual reduced density matrix, one can extract the central charge of the underlying CFT
from the result (3.8).

In summary, the discussions in this section have shown that the MERA is a TN, which is
especially well suited to capture critical models. This is in contrast to the discussion of MPS,

37This results was derived structurally for the specific operator insertions. In any other case, it is valid for a
scale invariant MERA actually encoding the ground state of a critical model, cf. e.g. [97].
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which primarily recover properties of gapped models. The MERA also allows to extract (or
encode) CFT data, such as scaling dimensions and the central charge. By extension, also
further coefficients of the OPE can be derived. They are typically summarized as conformal
data. Although we have focused on a 1𝐷 lattice, the MERA can be efficiently extended to
higher dimensions, cf. e.g. the discussions in [101].

3.7 Holographic interpretations of tensor networks

The connection between holography and TNs appears in two ways in this thesis. On the
one hand, the research topics presented in part II are either directly motivated by earlier
holographic explorations, or physical observables calculated with TN methods have a dual
holographic interpretation. On the other hand, the structure of TNs has also been associated
with a discrete interpretation of the AdS/CFT correspondence. The main idea is to identify
a TN diagram with a discrete geometry. If the resulting metric resembles a hyperbolic AdS
spacetime, a connection between the underlying field theory content of the TN and the geo-
metric dual can be drawn. This scenario applies to the path integral optimization program,
which we consider in the context of circuit complexity in part III.

In this section, we focus on the latter connection between TNs and holography. As an in-
troduction into the field, we concisely review some major developments. The choice of topics
necessarily is very selective and we refer to [102] for a recent review of the subject focusing
primarily on holographic quantum error correction in TNs.

3.7.1 AdS/MERA

The proposal of Swingle in [103,104] provided the starting point for the study of TNs encapsu-
lating a RG flow and holographic geometry. It argues that a quantum critical state, represented
by the scale invariant MERA TN, can be identified with a discrete version of AdS spacetime,
hence the name AdS/MERA correspondence. Based on the MERA construction presented in
the previous section 3.6, the artificial time direction 𝜏 , encoding the RG flow, is interpreted as
the additional holographic dimension, such that each tensor in the network diagram is a cell
lying in the bulk of the higher-dimensional spacetime. Since the MERA is based on the QMB
entanglement structure, the geometric size of the cell is proposed to be proportional to the
entanglement entropy of the corresponding site in the renormalized lattice. This makes use of
the estimation (3.40), which demonstrates that discrete entanglement contributions are added
along the cuts on the outside boundary of the causal cone for a subsystem. In the holographic
picture, this minimal curve, which is an upper bound for the entanglement entropy in the UV,
is interpreted as the minimal surface in the Ryu-Takayangi prescription for the holographic
entanglement entropy. The entanglement renormalization, as generated in the discrete graph
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of the MERA TN, is then associated with the metric

d𝑠2 = 𝑅2

(︂
d𝑤2 +

e−2𝑤

𝑎2
d𝑥2
)︂
, (3.41)

where 𝑅 is the entanglement entropy of local lattice sites, 𝑤 ≡ 𝜏 the layer index, 𝑥 the
spatial lattice coordinate and 𝑎 the lattice constant. By extension to finite temperature, it is
further argued that also BHs are effectively described through entanglement renormalization
in the higher-dimensional geometry. Apart from correlation functions (3.39) and entanglement
entropy (3.40) of critical models and their underlying CFT, the MERA thus can also capture
thermal BH solutions, which is another ingredient of the AdS/CFT correspondence. However,
the description of critical spin chain Hamiltonians is obviously simpler than the appearance of
supersymmetric CFTs in the original AdS/CFT proposal. Furthermore, the precise geometry,
which can be associated to the MERA, is still under debate. For example, in [105], several
consistency conditions for a proper holographic AdS identification are worked out, which are,
in fact, not met by the conventional MERA. More recently, the authors of [106,107] provide
an interpretation of tensor networks as path integral geometry and argue that the MERA
corresponds to a null (light sheet) geometry, and only upon insertions with other tensors, can
be interpreted as a dS or AdS discretization. 38 Based on these shortcomings, some of the
more modern approaches, as e.g. in [108–110], try to construct holographic TNs not relying
on debated MERA interpretations in holography.

3.7.2 Tree tensor network interpretation of p-adic AdS/CFT

In our earlier work [111], we constructed a discrete analog of the AdS/CFT correspondence
based on p-adic numbers. The number field Q𝑝 is the completion of rational numbers w.r.t.
the non-Archimedean p-adic norm, which allows to write a p-adic number 𝑧 as the series

𝑧 = 𝑝𝜈
∞∑︁

𝑚=0

𝑎𝑚𝑝
𝑚; 𝜈 ∈ Z; 𝑎𝑚 ∈ {0, 1, . . . , 𝑝− 1}; 𝑎0 ̸= 0 (3.42)

with absolute value |𝑧|𝑝 = 𝑝−𝜈 . The value of 𝑝 is typically chosen to be a prime number and by
replacing 𝑝 → 𝑝𝐷, one can consider also higher-dimensional extensions. The set of all p-adic
numbers can be represented as a regular tree with coordination number 𝑝 + 1, known as the
Bruhat-Tits (BT) tree, cf. Fig. 3.9. In the p-adic AdS/CFT formalism, this discrete structure
fills out the bulk of AdS spacetime and a p-adic CFT is living on the boundary of the tree.
Holographic propagators and correlation functions of this construction resemble the expected
CFT form. In [112], a concrete TTN interpretation was given for this setup. In contrast to
an previous attempt [113], in which the TN comprising the BT tree was used to describe a

38Elements of this identification will be the starting point for our studies of path integral optimization (see
below) and circuit complexity in part III.



44 3 Introduction to tensor network concepts and methods

p0

1

01 11

p1

p2

p-1

0.1 1.1

00.1 10.1 01.1 11.1

.1

10

0

¥

UppUpp2Up p-1Up

z Î Qp

0

p2p2

p1

p0

p-1

z0

Figure 3.9: Illustration of the 2-adic Bruhat-Tits tree with a suitable coordinate system
(left) and its extension to two dimensions (right). A p-adic number 𝑧 of the form (3.42)
corresponds to an infinite path starting from ∞ and terminating on the boundary. In the
TTN interpretation of p-adic AdS/CFT, the partition function of a p-adic CFT is equivalent
to a TN on the tree, representing the bulk of the higher-dimensional geometry. Figures taken
from [111].

wavefunction (as e.g. in the MERA case), the authors instead propose that the TN describes
a Euclidean path integral of a p-adic CFT to avoid inconsistencies. From this perspective, the
TTN on the BT tree contains a tensor

𝑇 𝑎1···𝑎𝑝+1 =
∑︁

𝑏1,...,𝑏𝑝−2

𝐶𝑎1𝑎2𝑏1𝐶𝑏1𝑎3𝑏2 · · ·𝐶𝑏𝑝−2𝑎𝑝𝑎𝑝+1 (3.43)

on each vertex and all edges contain the weights 𝑝−Δ𝑎 for the contracted index. 39 Upon taking
a proper regularization procedure into account, the partition function of the p-adic CFT can
be calculated from the generating functional and all correlation functions are reproduced even
at higher genus. By turning on sources, also RG flows and fixed points thereof can be studied.
In [114,115], this framework was recently extended to show that Einstein’s field equations
emerge from an underlying field action on the BT tree.

An interesting lesson here is that this p-adic approach naturally allows to construct a bulk
interpretation of the p-adic AdS/CFT correspondence using TTNs. In the same vein, but based
on the MERA, we can interpret the path integral optimization program, which we are now
discussing as an promising attempt to achieve this in the context of the standard AdS/CFT
duality.

39Here, 𝐶𝑎𝑏𝑐 are the coefficents in the OPE of the p-adic CFT and Δ𝑎 the primary operator scaling dimensions.
In the 2-adic case as shown in Fig. 3.9, the tensors simplify to 𝑇 𝑎𝑏𝑐 = 𝐶𝑎𝑏𝑐.
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3.7.3 Path integral optimization

The connection of TNs and holography via a path integral formulation already appeared in the
previous two approaches. An independent program was presented by the authors of [116–118],
who are similarly motivated by the quest for a microscopic understanding of the AdS/CFT
correspondence and the emergence of spacetime via TNs. They address this question explicitly
by considering Euclidean path integrals and their optimization. This allows to remain working
in the continuum and to consider CFTs directly, in contrast to the other concepts, in which
CFTs appear as effective descriptions of the underlying model.

We describe here the principle for 2𝐷 CFTs, in which the ground state wavefunction can be
expressed by the discretized Euclidean path integral as

Ψ0[𝜑(𝑥)] =

∫︁ (︃∏︁
𝑥

∏︁
𝜖≤𝜏<∞

𝒟𝜑(𝜏, 𝑥)

)︃
e−𝑆CFT[𝜑] ·

∏︁
𝑥

𝛿(𝜑(𝜖, 𝑥) − 𝜑(𝑥)). (3.44)

Here, 𝜑 are the fields of the theory specified by the action 𝑆CFT and 𝜖 is a UV cutoff, i.e. lattice
spacing, w.r.t. the flat space metric d𝑠20 = 𝜖−2(d𝜏 2 + d𝑥2). The initial discretization hence can
be seen as a square lattice as depicted in the left panel of Fig. 3.10. The optimization process
means a change of the structure of the lattice discretization without changing the correct
ground state functional up to a normalization factor, i.e. finding a relation Ψ𝑜𝑝𝑡 ∼ Ψ0. In
the first work [116], this was done by introducing a position dependent cutoff: Considering
the path integral in Fourier space, only modes with wavelength above the lattice spacing, i.e.
𝑘 ≪ 1/𝜏 , contribute. In the lattice discretization, this means, that at each temporal step 𝜏 ,
𝒪(𝜏/𝜖) lattice sites can be combined. This coarsegraining procedure introduces a factor 1/𝜏 2 in
the metric and the modified geometry is hence identified with a hyperbolic space, in particular
with a time slice of AdS3. It is further argued that the wavefunction resembles the continuous
generalization of the MERA (cMERA) [120], which allows a holographic interpretation of the
TN. From a different viewpoint [117,118], the optimization procedure can be realized as a
modification of the background metric itself, cf. the middle panel in Fig. 3.10. This procedure
can be seen as a continuous generalization of TNR, in which a uniform TN approximation
of the path integral is transformed into the MERA. The maximal optimization is achieved
by minimizing a functional 𝐼Ψ[𝑔(𝜏, 𝑥)], which is associated to each quantum state. For Weyl
rescaled geometries of 2𝐷 CFTs, it is argued in [117,118] that this functional is given by the
Liouville action and its minimization is identified with the computational complexity of the
state.

In part III we provide a more detailed introduction into the path integral optimization pro-
gram and its conjectured connection to complexity. By employing a specific path integral
discretization provided in [106,107], we rigorously connect it to the concept of circuit com-
plexity and show its connection to variants of the MERA with tensor insertions following from
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Figure 3.10: Schematic illustration of the path integral optimization procedure and its
relation to tensor networks. The ground state wave function of a 2𝐷 CFT can be calculated
from the Euclidean path integral on a strip of flat (left) or deformed geometry (middle).
(Dashed lines indicate lines of constant time (horizontal) and spatial position (vertical).) Its
optimization is related to a specific form of the MERA tensor network (right). See text for
further explanations. Figure taken from our discussion in [119].

TNR (cf. right panel in Fig. 3.10). Since it was argued in [121], that Einstein’s equation can
be derived from this complexity functional, this framework also directly provides access to
quantum gravity aspects.
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4 Real-time thermal field theory

Understanding properties of QCD is one major motivation behind several research directions in
contemporary physics. As motivated in chapter 1, HICs are the most relevant experimental tool
to probe phases of QCD. Their theoretical description needs to take the dynamical behavior
of collective QFT states into account. In particular, the QGP, which is created in a far-
from-equilibrium initial state, is strongly correlated and relaxes, according to our current
phenomenological understanding, to a long hydrodynamic regime. The precise process of its
formation in the initial stage after the collision and its subsequent in-medium thermalization is
not yet understood. Over the past decade, progress in a microscopic understanding was made
primarily with interdisciplinary approaches based on kinetic theory (as an approximation to
weakly-coupled QFTs), relativistic hydrodynamics, weakly-coupled QFTs or holography (for
a description of strongly-interacting QFTs). For an overview of these developments, we refer
to the reviews [30,32,33,122].

Real-time thermalization and relaxation dynamics are also an interdisciplinary and timely
field of research in QMB systems, which has been fueled by the enormous recent progress in
experimental and numerical techniques. The term thermalization hereby means that expec-
tation values of observables assume at late times after an initial perturbation values indistin-
guishable from those in thermal equilibrium (despite unitarity of time evolutions). Compre-
hensive discussions on that topic and its underlying mechanisms can be found, e.g., in the
reviews [123–128]. One important aspect of these developments for our work is integrability
in the context of equilibration dynamics. In particular, while integrable theories are usually
believed to be too constrained to thermalize in the standard sense, it is known that the mag-
netization of the critical Ising model at non-zero temperature is decaying, i.e. thermalizing at
late times [126,129,130] although the model is integrable in terms of free fermions. (See e.g.
reference [131], where this phenomenon was recently analyzed in the context of an operator
thermalization hypothesis.)

While holographic approaches or kinetic theory approximations are respectively suitable for
strongly or weakly-interacting regimes, the knowledge about collective QFT dynamics in the
most relevant regime of intermediate coupling is very limited. TN methods allow to study
exactly this parameter range in an efficient ab initio way. An overview of these developments
is given in [132–134]. Their applicability is based on the absence of the sign problem, which
allows to study real-time phenomena and finite-density problems and therefore goes beyond the

49
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power of conventional Monte Carlo (i.e. LGT) methods. For completeness, let us mention that
also related TNR techniques [135,136] and quantum link models [137,138] were successfully
employed to study properties of such QFTs.
In this chapter, we study questions motivated by the formation and relaxation of the QGP in
HICs using MPO simulations. We consider linear response theory as a natural starting point to
study real-time dynamics of QFTs. In particular, this allows us to calculate retarded correlation
functions at non-zero temperature fully ab initio. We consider a class of (1+1)-dimensional
QFTs, which emerge in the IR limit of the quantum Ising model. By developing a signal
analysis method based on the Prony method, we can extract the analytic structure of retarded
correlators in the complex frequency plane, which gives access to relaxation properties of the
underlying QFT from the numerically simulated real-time signal. The IR description covers
both the parameter case of a massive free fermion QFT, which we use to compare the numerical
data with analytical results, as well as nonintegrable interacting QFTs with mesonic bound
states. As motivated already in the overview chapter 1, the latter are particularly important in
the context of QCD phenomenology. Although the structure of the spin chain Hamiltonian is
rather simple, we therefore can make highly nontrivial predictions about the thermal response
of QFTs to local perturbations. Moreover, this setup allows us to solve and study integrable
interacting QFTs such as the E8 regime discussed below.
Before explaining linear response theory and the quantum Ising model as the underlying frame-
works for our numerical studies in section 4.2 and 4.5, we at first provide a short discussion
of QCD and HICs in the next section. Section 4.3 then summarizes some holographic results,
which motivate our studies about transient effects in correlation functions in section 4.9. In
section 4.4 we gain insights into 2𝐷 models from a kinetic theory approach. Sections 4.7 and
4.8 then outline the computational setup of MPO simulations and signal analysis, respectively.
In sections 4.9 and 4.10 we study separately transients and mesons as two major types of poles.

4.1 Aspects of QCD and heavy-ion collisions

The strong force in nature is described by QCD as a non-Abelian QFT with gauge group
𝑆𝑈(𝑁𝑐). (For an introduction see e.g. [139].) On a classical level, the defining Lagrangian

ℒQCD,𝑐𝑙 = −1

4
𝐹 𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 +

𝑁𝑓∑︁
𝑓

𝑞𝑓 (𝑖𝛾𝜇𝐷𝜇 −𝑚𝑓 )𝑞𝑓 (4.1)

contains 𝑁𝑓 = 6 quark flavors, which are described by Dirac spinors 𝑞𝑐𝑓𝛼. Here, 𝑐 = 1, . . . , 𝑁𝑐 is
the color index and 𝛼 = 1, . . . , 4 the spinor index. Gluons 𝐴𝑎

𝜇 (𝑎 = 1, . . . , 𝑁2
𝑐 −1; 𝜇 = 1, . . . , 4)

enter the field strength tensor 𝐹 𝑎
𝜇𝜈 ≡ 𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇𝐴
𝑐
𝜈 as gauge bosons with 𝑔 being

the gauge coupling and 𝑓𝑎𝑏𝑐 the structure constants of the associated Lie algebra. This form of
the field strength tensor allows not only quark-gluon interactions but also multiple gluon self-
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interactions. While quarks are defined in the fundamental representation, gluons appear in the
adjoint representation. The covariant derivative 𝐷𝜇 = 𝜕𝜇− 𝑖𝑔𝐴𝑎

𝜇𝑡𝑎 contains the representation
matrices 𝑡𝑎 of the group 𝑆𝑈(𝑁𝑐). The quark masses 𝑚𝑓 as the only free parameters are
experimentally measured (see e.g. [140]). Within QCD, mesons appear as non-perturbative
bound states of a quark-antiquark pair. They are described as currents, e.g. the singlet current
𝑞𝑓𝛾

𝜇𝑞𝑓 , which are constructed from left and right-handed components of the quark fields. 40

To quantize the classical theory, canonical schemes for a perturbative treatment are applicable
as well as path integral methods, which are relevant for numerical Monte Carlo techniques.
The 𝛽 function (2.5) at one-loop order then takes the form

𝛽(𝑔) = − (11𝑁𝑐 − 2𝑁𝑓 )
𝑔3

48𝜋2
+ 𝒪(𝑔5). (4.2)

The important minus sign of this negative expression implies a decreasing of the coupling at
high energies or momentum. This property is known as asymptotic freedom. Conversely, it
causes the confinement of quarks into color-neutral hadrons at large distances (or low energies).
A complete theoretical understanding of this phenomenon is currently not at hand. The finite
values of 𝑚𝑓 at the physical point break classical scale invariance explicitly. In the quantized
theory, the trace anomaly of the energy-momentum tensor also breaks this symmetry and
introduces a scale ΛQCD ≃ 200 MeV by dimensional transmutation.
Together, these quantum properties of QCD cause the rich set of emergent phenomena but
also demand the necessity for numerical or non-perturbative methods to explore the strongly-
coupled regime. In particular, asymptotic freedom suggests a phase transition from the con-
fined hadronic phase to a deconfined QGP of individual quarks and gluons. LGT methods
provide a way to evaluate the grand partition function of QCD in the path integral formalism
on a discretized spacetime lattice and extrapolate the results to the continuum limit. They
unveiled [141] that this phase transition is at zero chemical potential a continuous crossover
in the temperature range 150 − 170 MeV [142,143]. 41

The QGP created in HICs provides the primary experimental way of studying conditions sim-
ilar to the first few microseconds after the big bang in the early universe. As comprehensively
reviewed in [30,32,33,122], highly Lorentz-contracted nuclei or nucleons collide and form a
droplet of extremely high temperature (primarily in central collisions) and density (primarily
in fixed-target setups). The time evolution of a HIC is typically modelled in three different
stages, which we summarize here following [32,122] and using Fig. 4.1.

1) The initial stage takes place from the moment of the collision up to a characteristic
proper time scale of order 𝜏0 ∼ 1 fm/c. The lump of primordial matter is in a state far

40For example, the 𝜋+ and 𝜋0 mesons as prominent pseudoscalar examples consist of an up and anti-down
quark in different combinations.

41As pointed out in [122], this absence of a first-order phase transition is the reason why there are no observable
cosmological imprints visible in the present universe.
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Figure 4.1: Illustration of the different phases in a HIC. The left panel shows a space-time
diagram with lines of constant proper time as hyperbolas assuming a collision at the origin.
The color is a proxy for the temperature. The right panel shows a numerical simulation of
a lead-lead collision at different times. Blue and grey spheres indicate hadrons, red ones
represent the QGP. In both figures, red lines denote constant rapidities 𝑦. The figures
visualize the freezeout of hadrons from an initial far-from equilibrium stage in the HIC.
Figure taken and adapted from the arXiv version of [122]. The right panel was originally
adapted from [144].

from equilibrium with many nuclear constituents interacting in a very complex manner.
During this process, a QGP with deconfined but strongly-interacting quarks and gluons
is created. Microscopic approaches, which aim for a theoretical description of this stage,
assume some initial condition of the colliding matter when using an effective QCD mod-
elling (such as a color glass condensate). Alternatively, holographic approaches allow
an ab initio study of the collision but are based on phenomenological models in some
class of QFTs. The prospect of TNs is precisely to overcome this difficulty, since they
allow an ab initio study of the underlying QFT, which can address both equilibrium and
non-equilibrium physics in the time, temperature (or more generally energy density) and
(charge) density domain. As a first step in this direction, this motivates us to study
retarded thermal correlators in this chapter, since such correlation functions give access
to the fundamental relaxation and thermalization behavior of a QMB system. Although
established TN methods limit us to (1+1)-dimensional systems, we can still explore a
nontrivial class of interacting QFTs, which shares important confinement features with
QCD. TN methods also provide the advantage of giving access to entanglement prop-
erties and thus allow to study the process of (entanglement) entropy production in this
violent first stage of a HIC. This topic was recently addressed in [145] in a QED context.

2) The second stage is characterized by the evolution of the QGP at a very low shear
viscosity to entropy density ratio. Assuming local thermalization, relativistic viscous hy-
drodynamics provided a successful framework to explain particle momentum anisotropies
as a phenomenological consequence of spatial anisotropy. Holographic studies came to



4.2 Linear response theory 53

the competing conclusion that the hydrodynamic regime is applicable even when spatial
anisotropies are still present (i.e. in absence of thermal equilibrium) [146–150].

3) When the expanding matter has cooled down enough, hadronic, i.e. confined particles
decouple and freeze out at times later than a scale 𝜏𝑓 > 𝜏0. This process takes place
sequentially and causes detectable particle signatures.

In summary, TN methods have the prospect of giving new insights particularly for the most
difficult far-from-equilibrium initial stage of a HIC. This is not only relevant for a theoretical
understanding of this dynamical process itself, but also due to the fact that HICs provide a
way of exploring rich structures in the QCD phase diagram. The latter is standardly studied
as a function of temperature and baryon density and is a topic of intense research from both
the QCD side (see e.g. [151–154]) and holography (see e.g. [155,156]).

4.2 Linear response theory

Linear response theory provides a framework to study the near-equilibrium properties of per-
turbed thermal systems. We motivate here the calculation of retarded correlation functions
to characterize the relaxation behavior of QMB systems and QFTs following the discussion
in [32] and the general introduction in the corresponding chapter of [157]. 42

The basic assumption is that the equilibrium Hamiltonian 𝐻0 of a physical system is perturbed
by a small source 𝒥 (𝑡, 𝑥) coupled to some operator 𝑂,

𝐻 = 𝐻0 + 𝒥𝑂. (4.3)

We are interested in the change in the thermal expectation value 𝛿⟨𝑂⟩ w.r.t. an initial thermal
equilibrium state 𝜌𝛽 = e−𝛽𝐻0 at inverse temperature 𝛽 = 1/𝑇 , which is given in real space as

𝛿⟨𝑂⟩(𝑡, 𝑥) =

∫︁ 𝑡

−∞
d𝑡′
∫︁

d𝑥′𝐺𝑂
𝑅(𝑡− 𝑡′, 𝑥− 𝑥′)𝒥 (𝑡′, 𝑥′). (4.4)

The differential change 𝛿⟨𝑂⟩ is proportional to the source, which is chosen to satisfy
𝒥 (𝑡 → −∞, 𝑥) → 0. The two-point function 𝐺𝑂

𝑅(𝑡 − 𝑡′, 𝑥 − 𝑥′) of the operator 𝑂 depends
only on the retarded arguments, ensuring causality of independent perturbations at different
spacetime points. It can be calculated explicitly with Kubo’s formula as a thermal expectation
value of the operator commutator, given by

𝐺𝑂
𝑅(𝑡, 𝑥) = 𝑖 𝜃(𝑡) Tr {𝜌𝛽[𝑂(𝑡, 𝑥), 𝑂(0, 0)]} , (4.5)

42The notation here is adjusted to (1+1)-dimensional systems with coordinates 𝑡,𝑥 but the conclusions hold
generally.
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Figure 4.2: Nonanalytic structures in the lower complex frequency plane of the contour
integral (4.6). The integration along the blue curve can encompass pole singularities (green
squares) and branch cuts (orange curve) between branch points (orange crosses). Every
individual frequency contribution is a mode of the retarded thermal correlation function.
Figure reproduced from [32].

where we have chosen without restriction 𝑡′ = 𝑥′ = 0. 43 Causality is represented in this
equation by the Heaviside theta function 𝜃(𝑡− 𝑡′). In Fourier space, eq. (4.4) reads

𝛿⟨𝑂⟩(𝑡, 𝑝) =

∫︁
d𝜔 e−𝑖 𝜔 𝑡 𝐺𝑂

𝑅(𝜔, 𝑝)𝒥 (−𝜔,−𝑝). (4.6)

Here, 𝑝 is the momentum of the system and arguments specify the transformed functions.
This expression is now evaluated as a contour integral. As a consequence of causality, the
retarded correlation function is analytic in the upper half plane of the complex frequency 𝜔,
while nonanalytic features in the lower half plane provide important insights into the response.
These are inevitable to characterize the thermalization or, more generally, relaxation behavior
of the perturbed system. As illustrated in Fig. 4.2, they encompass (arbitrarily many) pole
singularities and branch cuts stretching between branch points. Time reversal symmetry de-
mands that all structures are symmetric w.r.t. the imaginary axis. A single pole singularity
at a value 𝜔 = 𝜔𝑝𝑜𝑙𝑒(𝑝) gives rise to a term

𝛿⟨𝑂⟩(𝑡, 𝑝) = e−𝑖 𝜔𝑝𝑜𝑙𝑒(𝑝) 𝑡 . (4.7)

The real part of 𝜔𝑝𝑜𝑙𝑒(𝑝) causes persistent oscillations in time, while the imaginary part de-
scribes an exponential decay. On the other hand, branch cut singularities generate time depen-
dencies in the form of power-laws on top of the branch point pole singularities. A singularity in
the Fourier-transformed retarded two-point function at some value of the frequency 𝜔 (i.e. on
the right hand side of eq. (4.6)) is therefore identified with its corresponding time-dependent

43We focus here on a single operator 𝑂, but the formula generalizes trivially for two distinct operators in the
commutator.
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feature of the response 𝛿⟨𝑂⟩(𝑡, 𝑝) (i.e. on the left hand side of eq. (4.6)), which is constrained
by the fundamental equations of motion of the system. Any such contribution is called a
mode. The specific pattern and structure of modes is a property of the microscopic model
or QFT under consideration. Of particular importance is a potential mode 𝜔1(𝑝) with the
smallest imaginary part. Its inverse provides the relaxation time scale 𝜏𝑅 = 1/ Im(𝜔1(𝑝)) of
the system. Such a mode is called hydrodynamic, because it is arbitrarily long-lived in the
limit Im(𝜔1(𝑝)) → 0. Further modes (and branch cut singularities) with a larger imaginary
part are faster decaying, hence short-lived. They are denoted as transient or nonhydrodynamic
modes or features. Equilibrium excitations with a real part of a mode much bigger than the
imaginary part can be interpreted as quasiparticles.

4.3 Elements of holographic descriptions

The study of the structure of retarded correlators as a probe of a system’s thermal response
to perturbations is explicitly motivated by similar holographic explorations, for which we give
a short summary in this section. Our discussion is based on [32,158]; other useful overviews
on the subject are given, e.g., in [159–161].
In a gravitational theory, quasinormal modes (QNMs) are eigenfrequencies of a linearly per-
turbed fixed background. For this we consider a system described by the Einstein–Hilbert
action (2.1) plus some matter fields, represented by the Lagrangian ℒ𝑚,

𝑆 = 𝑆EH +

∫︁
d𝐷+1𝑥

√−𝑔ℒ𝑚. (4.8)

The underlying equations of motion are then given by the gravitational field equations, 𝑅𝑎𝑏 −
1
2
𝑅𝑔𝑎𝑏+Λ𝑔𝑎𝑏 = 8𝜋𝐺

(𝐷+1)
𝑁 𝑇𝑎𝑏, with 𝑇𝑎𝑏 as the gravitational energy momentum tensor, in combi-

nation with the equations of motion for the matter fields. 44 By considering the linearization of
the system around background fields, defined by 𝑔𝑎𝑏 = 𝑔bg

𝑎𝑏 +ℎ𝑎𝑏 for the metric and Φ = Φbg +𝜑

for a bulk field (of any type), one gets a simplified set of linear differential equations for the
perturbations. QNMs are complex frequencies, which appear in solutions of these equations
in Fourier space for physically motivated initial and boundary conditions (at spatial infinity
and the BH horizon).
The operator/field map, introduced in section 2.5.2, allows to identify the QNMs of the gravity
fluctuation 𝜑 in asymptotically AdS𝐷+1 spacetimes (with a BH solution) with the poles of the
retarded thermal correlation function of the dual operator 𝑂 in a 𝐷-dimensional QFT. In
particular, the boundary value of the metric ℎ𝑎𝑏 itself sources the energy-momentum tensor
𝑇𝜇𝜈 of the dual gauge theory. Its expectation value can be extracted from the near-boundary
behavior of the bulk metric perturbation: For a bulk metric ansatz d𝑠2 = 𝑔𝑎𝑏(𝑥, 𝑧) d𝑥𝑎 d𝑥𝑏 =

44Here, we use Latin indices for the (𝐷+1)-dimensional spacetime and Greek indices for the QFT in 𝐷
spacetime dimensions.
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Figure 4.3: Left: Schematic illustration of the pattern of the lowest QNMs in (3+1)-
dimensional holographic CFTs, which can be interpreted as poles of the retarded thermal
correlator. Green squares represent a large spatial momentum 𝑘, red circles a small momen-
tum value. Only the first mode 𝜔1 is hydrodynamic. The frequencies are measured in units
of 𝑇 , which provides the only scale in the CFT.
Right: Dependence of the real (green) and imaginary (red) part of the lowest QNM 𝜔1 in
a nonconformal 𝒩 = 2* gauge theory in dependence on the mass perturbation. The curves
correspond to scalar operators of dimension Δ = 2, 3, 4 (from bottom to top). Figure taken
from the arXiv version of [162].

𝐿2

𝑧2
(𝑔𝜇𝜈(𝑥, 𝑧) d𝑥𝜇 d𝑥𝜈 + d𝑧2), one finds the following behavior for 𝑧 → 0

𝑔𝜇𝜈 = 𝜂𝜇𝜈 +
𝜋2

2𝑐
⟨𝑇𝜇𝜈⟩(𝑥)𝑧4 + 𝒪(𝑧6). (4.9)

Here, 𝜂𝜇𝜈 is chosen as the flat Minkowski metric. Holography therefore provides a framework to
analyze the pole structure of the retarded two-point function of the gauge theory stress tensor,
which characterizes the near-equilibrium behavior of the system, via the QNM spectrum of
the perturbed background. This setup is typically considered in (3+1) dimensions, where the
the linear response specializes to the form

𝛿⟨𝑇 𝜇𝜈⟩(𝑥) = − 1

(2𝜋)4

∫︁
d3𝑘

∫︁
d𝜔 e−𝑖𝜔𝑥0+𝑖𝑘⃗·𝑥⃗𝐺𝜇𝜈,𝛼𝛽

𝑅 (𝜔, 𝑘⃗)𝛿𝑔𝛼𝛽(𝜔, 𝑘⃗), (4.10)

with 𝑘⃗ as the three-momentum vector. It can be shown that the components decompose into
a scalar, shear and sound channel. For all these components, and more generally also for other
operators, as well as for different holographic CFTs under consideration, a rather universal
picture arises as visualized in the left panel of Fig. 4.3. The QNMs consist of infinitely many
single poles at frequencies 𝜔𝑛(𝑘), symmetrically to the imaginary axis in the lower half plane
and depending continuously on 𝑘 = |⃗𝑘|. Their position is aligned on a linear axis, whereby
only the first mode 𝜔1 with the smallest imaginary part is (arbitrarily) long-lived (𝜔1 → 0 for
𝑘 → 0), i.e. hydrodynamic, as identified in the previous section. Note that these hydrodynamic
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modes exist only for conserved quantities, such as the stress tensor under discussion. The real
and imaginary part of all other modes are of the same order of magnitude and therefore fast
decaying in absence of quasiparticle excitations.

While these findings are formally valid for CFTs and their holographic counterpart, the
work [162] initiated the study of QNMs also for massive theories, i.e. with broken confor-
mal symmetry, which are a starting point for realistic models of the QGP. As demonstrated
in the right panel of Fig. 4.3, the authors found for a particular nonconformal gauge theory
that the position of lowest QNM is altered mildly by the mass deformation and the overall
equilibration time scale is dominated by the temperature scale.

This motivates us to perform similar considerations also for (1+1)-dimensional systems, where
TN methods are applicable. In fact, the study of 2-dimensional holographic CFTs provided
the starting point of explorations on the QNM structure in thermal correlators [163]. We
describe these results in section 4.6 and compare our extracted singularity structure from the
MPO simulations to them. However, beyond the conformal case (and more generally massive
free fermion regime), nothing is known when massive perturbations additionally also break
the integrability of the system. We use our TN simulations to make fully ab initio predictions
in exactly this most complicate regime. Furthermore, we are interested in the role of branch
cuts, which are absent in all higher-dimensional holographic calculations. To get a more
complete picture on these analytic structures in (1+1) dimensions, we at first consider a kinetic
theory model in the next section. We finally point out that the importance of these QNM
analyses stems from the fact that, beyond thermalization time scales, they also provide access
to dispersion relations and further transport coefficients, which lead to the famous holographic
result 𝜂/𝑠 = 1/4𝜋 [31]. 45

4.4 Insights from kinetic theory

In this chapter we are primarily interested in the analytical structure of retarded correlators
of (1+1)-dimensional systems. To gain further insights about the physical properties of such
systems, in particular for massive theories with broken conformal symmetry, we consider in
this section a kinetic theory model to develop some intuition about the structure of correlators.
As discussed in [32,33], kinetic theory effectively describes a system in terms of phase space
distributions of particles and represents a weakly-interacting approximation to QFTs at high
temperatures and densities, in which particles acquire effective masses and widths. It assumes
that the de Broglie wavelength of quasiparticles is smaller than the mean free path between
collisions, and that quantum interference effects are are negligible. In [165], this was for
the first time worked out for QCD using effective action techniques. Whereas similar and

45Note that this value holds for two-derivative gravity duals. More general cases can yield smaller values as
discussed in [164].
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more recent considerations as e.g. in [166–168] focus on (3+1) dimensions to describe the
QGP thermalization towards the hydrodynamic regime, the present lower-dimensional case is
typically not considered in the literature. To the best of our knowledge, the results presented
here have not been worked out in the literature before. We do not intend to give an introduction
into the topic kinetic theory itself. For this purpose we refer instead to the literature, for
example the lecture notes [169].

We consider the Boltzmann equation in the relaxation time approximation

𝑝𝜇𝜕𝜇𝑓 =
𝑝𝛼𝑢𝛼
𝜏𝑅

(𝑓 − 𝑓𝑒𝑞) , (4.11)

which describes the time evolution of the one-particle distribution function 𝑓(𝑥, 𝑝). The latter
quantity represents the number of states per phase-space volume. Here, 𝑓𝑒𝑞 is the local equilib-
rium distribution function, 𝑝𝜇 is the particle’s four-momentum, 𝑢𝜇 is a collective four-velocity
vector and 𝜏𝑅 the relaxation time scale (which is proportional to the mean free path). For
notational convenience, we suppress arguments. Small perturbations 𝛿𝑓 and 𝛿𝑓𝑒𝑞 obey the
relation

𝑝𝜇𝜕𝜇𝛿𝑓 =
𝑝𝛼𝑢𝛼
𝜏𝑅

(𝛿𝑓 − 𝛿𝑓𝑒𝑞) . (4.12)

Assuming 𝑢𝛼(𝑡, 𝑥⃗) = (1, 0⃗) + 𝛿𝑢𝛼(𝑡, 𝑥⃗), this equation reads in Fourier space

− 𝑖𝑝𝜇𝑘𝜇̃︁𝛿𝑓 = − 𝑝0

𝜏𝑅

(︁̃︁𝛿𝑓 − ̃︂𝛿𝑓𝑒𝑞)︁ , (4.13)

from which one can deduce

̃︁𝛿𝑓 =
𝑝0̃︂𝛿𝑓𝑒𝑞

−𝑖𝜏𝑅𝑝𝜇𝑘𝜇 + 𝑝0
=

𝑝0̃︂𝛿𝑓𝑒𝑞
−𝑖𝜏𝑅𝑝0𝜔 + 𝑖𝜏𝑅𝑝𝑘⃗ + 𝑝0

. (4.14)

We assume the local equilibrium function to have the Boltzmann type form

𝑓𝑒𝑞 = e𝛽𝑝
𝛼𝑢𝛼 , (4.15)

which depends on the inverse temperature 𝛽 = 1/𝑇 and the velocity 𝑢𝛼 as macroscopic quan-
tities. Using this ansatz, perturbations of the local equilibrium are given as

𝛿𝑓𝑒𝑞 =
𝑓𝑒𝑞,0
𝑇0

(︂
𝑝𝛼𝛿𝑢𝛼 − 𝛿𝑇

𝑇0
𝑝𝛼𝑢𝛼

)︂
=
𝑓𝑒𝑞,0 𝑝

0

𝑇0

(︂
𝑝𝛼

𝑝0
𝛿𝑢𝛼 +

𝛿𝑇

𝑇0

)︂
. (4.16)

The global equilibrium distribution is 𝑓𝑒𝑞,0 = e−𝑝0/𝑇0 . 46 Perturbations of the energy-momentum
tensor, which is defined as the second moment w.r.t. the distribution function 𝑓 , i.e. as

46In the following, a subscript “0” denotes quantities in global thermal equilibrium.
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𝑇 𝜇𝜈 = ⟨𝑝𝜇𝑝𝜈𝑓⟩, are given in Fourier space as

𝛿̃︂𝑇 𝜇𝜈 =

∫︁
d𝑑𝑝

(2𝜋)𝑑
𝑝𝜇𝑝𝜈

𝑝0
̃︁𝛿𝑓 =

∫︁
d𝑑𝑝

(2𝜋)𝑑
𝑝𝜇𝑝𝜈

𝑝0
𝑓𝑒𝑞,0
𝑇0

(𝑝0)2
(︁

𝑝𝛼

𝑝0
̃︂𝛿𝑢𝛼 +

̃︁𝛿𝑇
𝑇0

)︁
−𝑖𝜏𝑅𝑝0𝜔 + 𝑖𝜏𝑅𝑝𝑘⃗ + 𝑝0

, (4.17)

where we used (4.14) and (4.16).

The aim of this section is to analyze the structure of the retarded correlation function 𝐺𝜇𝜈,𝛼𝛽
𝑅 ,

which describes the response of the energy-momentum tensor to metric perturbations:

⟨𝑇 𝜇𝜈⟩ =
𝜕𝑇 𝜇𝜈

𝑒𝑞

𝜕ℎ𝛼𝛽

⃒⃒⃒⃒
ℎ=0

ℎ𝛼𝛽 −
1

2
𝐺𝜇𝜈,𝛼𝛽

𝑅 ℎ𝛼𝛽 ⇐⇒ 𝐺𝜇𝜈,𝛼𝛽
𝑅 =

𝛿𝑇 𝜇𝜈

𝛿ℎ𝛼𝛽
. (4.18)

We are particularly interested in breaking conformal invariance in 1+1 dimensions by introduc-
ing a finite mass 𝑚, where the energy component of the momentum vector takes the form 𝑝0 =√︀
𝑚2 + 𝑝2. Instead of finding explicit expressions for the correlator as in [166,167] for mass-

less particles in higher dimensions, we analyze its structure by identifying (non)hydrodynamic
poles (modes) or branch cuts in the complex frequency plane.

As discussed in [167], an intuitive picture of generic properties of the retarded correlator in
kinetic theory can be obtained by considering the following situation: Assuming alternating
overdense and underdense regions with wavelength 2𝜋/𝑘, sound channel perturbations of an
equilibrium state can be mimicked by studying the response of an initial overdense sheet at
the spacetime point (𝑥⃗, 𝑡 = 0). For massless interacting particles, the contribution to the
retarded correlator is given by integrating the following expression over a sphere of radius 1,
representing particles at the speed of light: 47

∫︁
|𝑣⃗|=1

d𝑑𝑣
1

1 − 𝑖𝜏𝑅𝜔 + 𝑖𝜏𝑅𝑘⃗𝑣⃗
=

∫︁ 1

−1

d cos 𝜃Ω𝑑−2

1 − 𝑖𝜏𝑅𝜔 + 𝑖𝜏𝑅 |⃗𝑘| cos 𝜃
. (4.19)

In dimensions greater than 1 + 1, this gives rise to a term

ln

[︃
1 − 𝑖𝜏𝑅(𝜔 − |⃗𝑘|)
1 − 𝑖𝜏𝑅(𝜔 + |⃗𝑘|)

]︃
, (4.20)

resulting in a logarithmic branch cut between the two poles 𝜔 = −𝑖/𝜏𝑅 ± |⃗𝑘| in the complex 𝜔
plane. In 1 + 1 dimensions, we only get a term

1 − 𝑖𝜏𝑅𝜔 ± 𝑖𝜏𝑅 |⃗𝑘|, (4.21)

i.e. there are only two poles located at 𝜔 = −𝑖/𝜏𝑅±|⃗𝑘|, which we identify as nonhydrodynamic
ones. How does this behavior change for broken conformal invariance with massive particles

47Here, we are use the notation 𝑣𝜇 ≡ 𝑝𝜇/𝑝0 = (1, 𝑣⃗).
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in 1 + 1 dimensions? In this case, the expression contributing to the retarded correlator takes
the form 48 ∫︁

d𝑑𝑝
1

𝑝0(1 − 𝑖𝜏𝑅𝜔) − 𝑖𝜏𝑅𝑘⃗𝑝
=

∫︁ ∞

−∞
d𝑝

1√︀
𝑝2 +𝑚2(1 − 𝑖𝜏𝑅𝜔) − 𝑖𝜏𝑅𝑘𝑝

. (4.22)

In the limiting case 𝑝 = 0, the denominator in the integrand takes the form 𝑚(1 − 𝑖𝜏𝑅𝜔),
implying a singularity at 𝜔 = −𝑖/𝜏𝑅. For 𝑝→ ±∞, the denominator reads 𝑝(1 − 𝑖𝜏𝑅(𝜔 ± 𝑘)),
implying poles at 𝜔 = − 𝑖

𝜏𝑅
± 𝑘. We therefore conclude that the entire correlator exhibits

a nonhydrodynamic branch cut stretching between the two poles at 𝜔 = − 𝑖
𝜏𝑅

± 𝑘. This
property is similar to the structure in higher dimensions discussed above. Breaking conformal
invariance explicitly by finite particle masses thus has an effect similar to higher dimensions
in the massless case.

To identify also hydrodynamic poles in the complex 𝜔 plane, we need to solve the kinetic
model (4.11) self-consistently by imposing the following Landau matching conditions:

𝑇 𝜇𝜈
0 = ⟨𝑝𝜇𝑝𝜈𝑓 0

𝑒𝑞⟩, (4.23)

𝑇 𝜇
𝜈𝑢

𝜈 = −𝜖𝑢𝜇. (4.24)

Using 𝑢𝛼𝑢𝛼 = −1 (from which follows 𝛿𝑢𝛼𝑢𝛼 = 0 and hence 𝛿𝑢0 = 0), the second condition
(4.24) implies

𝛿𝑇 00 = 𝛿𝜖 and 𝛿𝑇 𝑖0 = (𝜖0 + 𝑃0)𝛿𝑢
𝑖 (4.25)

(from the timelike and spatial components respectively). In 1+1 dimensions, the first condition
(4.23) can be solved analytically: Writing the energy-momentum tensor in global equilibrium
as 𝑇 𝜇𝜈

0 = diag(𝜖0, 𝑃0, 𝑃0, 𝑃0), the temporal and spatial components of the integral can be
expresses in terms of modified Bessel functions as

𝜖0 =
𝑚

𝜋
[𝑚𝐾0(𝑚/𝑇0) + 𝑇0𝐾1(𝑚/𝑇0)] and 𝑃0 =

𝑚𝑇0
𝜋

𝐾1(𝑚/𝑇0). (4.26)

Denoting the two integrals in the sum (4.17) as 𝐼𝜇𝜈𝑢 and 𝐼𝜇𝜈𝑇 (w.r.t. the perturbations ̃︂𝛿𝑢𝛼 and̃︁𝛿𝑇 respectively), the Landau matching conditions (4.25) imply

̃︂𝛿𝑇 00 = 𝐼00𝑢
̃︁𝛿𝑢1 + 𝐼00𝑇

̃︁𝛿𝑇 =
𝜕𝜖

𝜕𝑇
̃︁𝛿𝑇 (4.27)̃︂𝛿𝑇 01 = 𝐼01𝑢

̃︁𝛿𝑢1 + 𝐼01𝑇
̃︁𝛿𝑇 = (𝜖0 + 𝑃0)̃︁𝛿𝑢1. (4.28)

48The components are denoted as 𝑘𝜇 = (𝜔, 𝑘) and 𝑝𝜇 = (𝑝0, 𝑝) with 𝑝0 =
√︀
𝑝2 +𝑚2.
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Figure 4.4: Hydrodynamic modes for a (1+1)-dimensional kinetic model in the relaxation
time approximation. The dispersion relation is shown as Re(𝜔) (left panel) and Im(𝜔) (right
panel) in dependence of the momentum 𝑘.
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Figure 4.5: Pole locations for hydrodynamic modes in the kinetic model in the scaled
complex 𝜔-plane.

In matrix form, this system can be rewritten as

ℱ
(︃̃︁𝛿𝑇̃︁𝛿𝑢1

)︃
≡
(︃
𝐼00𝑇 − 𝜕𝜖

𝜕𝑇
𝐼00𝑢

𝐼01𝑇 𝐼11𝑢 − (𝜖0 + 𝑃0)

)︃(︃̃︁𝛿𝑇̃︁𝛿𝑢1
)︃

= 0, (4.29)

where we call ℱ the fluctuation matrix. For given values of 𝑚 and 𝑘, one can identify hydro-
dynamic poles as solutions to the equation

detℱ = 0 (4.30)

in the complex 𝜔 plane.
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Figure 4.6: Overview of the results for poles in the complex 𝜔-plane in the (1+1)-
dimensional kinetic theory model with relaxation time approximation: The left panel il-
lustrates the conformal case (𝑚 = 0), which exhibits two nonhydrodynamic poles (orange)
and two hydrodynamic poles (green). For broken conformal invariance (𝑚 > 0, right panel),
a nonhydrodynamic branch cut stretches between the the branch points of the confromal
case (orange). Hydrodynamic poles lie, depending on their mass and momentum, inside of
the complex plane.

For massless particles, 𝑚 = 0, the integrals can be easily solved analytically and one gets

𝜔 = ±𝑘 (4.31)

as the hydrodynamic poles. For finite 𝑚, we solve the condition (4.30) numerically by setting
𝜏𝑅 = 𝑇0 = 1 (which defines the units 𝑚[𝑇0] , 𝜔[𝜏𝑅] and 𝑘[𝜏𝑅]). Figure 4.4 shows the resulting
dispersion relations (left and right panel) and Fig. 4.5 the location of poles in the complex
𝜔 plane for several values of 𝑚. The real part Re(𝜔) shows a linear dependence with 𝑘 and
the slope can be interpreted as the speed of sound. For small values of 𝑘, the imaginary part
Im(𝜔) is quadratic in k. With increasing mass, the locations of the poles are shifted towards
smaller real frequencies. Note that the blue curve in Fig. 4.5 corresponds to a very small mass.
It exhibits a pole at 𝜔/𝑘 ≈ 1 on the real frequency axis as already found analytically above.
The horizontal lines at | Im(𝜔)𝜏𝑅| ≈ 1 indicate that we numerically hit the branch cut between
𝜔 = −𝑖/𝜏𝑅±𝑘. Since we numerically do not have access to the next sheet, we cannot determine
the pole locations for large values of 𝑘.

The results from this kinetic theory analysis are summarized in Figure 4.6. It can be concluded
that beyond hydrodynamic poles also nonhydrodynamic structures play a significant role in
the relaxation behavior of (1+1)-dimensional systems. Breaking conformal invariance can have
significant effects, since branch cuts can arise and pole locations are significantly altered.
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4.5 The quantum Ising model and IR QFTs

4.5.1 Phase diagram

The Ising model, originally developed by Ernst Ising in [170] as a model for ferromagnetism,
represents even a century after its introduction still a cornerstone in present-day quantum and
condensed matter physics. We follow here the modern discussion in [129]. Another useful
reference is [171]. The nearest-neighbor quantum Ising model in one spatial dimension is
defined by the Hamiltonian

𝐻NN = −𝐽
(︃

𝑁−1∑︁
𝑗=1

𝜎𝑧
𝑗𝜎

𝑧
𝑗+1 + ℎ

𝑁∑︁
𝑗=1

𝜎𝑥
𝑗 + 𝑔

𝑁∑︁
𝑗=1

𝜎𝑧
𝑗

)︃
. (4.32)

This local Hamiltonian is of the form (3.2) and therefore possesses all previously discussed
properties on the entanglement and correlation structure. Here, quantum spins are described
by Pauli matrices 𝜎𝑥,𝑧

𝑗 at lattice positions 𝑗 in a chain of 𝑁 sites. The energy scale is set by the
unit 𝐽 > 0 and the parameters ℎ > 0 and 𝑔 quantify transverse and longitudinal perturbations
w.r.t. the first interaction term. 49 In fact, the form (4.32) of the Hamiltonian is a short-hand
notation for tensor products of the Pauli matrices, which commute with each other on different
sites, and identity matrices at all remaining lattice sites. It is common to work in the 𝜎𝑧

𝑗 basis
with eigenvalues ±1, such that the two possible spin orientations can be interpreted as “up”
|↑⟩𝑗 and “down” |↓⟩𝑗 states. At ℎ = 0 the model is classical (through its diagonal form) but at
any finite ℎ > 0, entanglement is present in the system that can induce spin flips via tunneling.

From this basic definition, the phase diagram shown in Fig. 4.7 follows for the 1𝐷 quantum
Ising model. 50 We consider at first the case 𝑔 = 0. At large field values ℎ≫ 1, the transverse
term is dominating, such that the ground state is given by |0⟩ =

∏︀
𝑗 |→⟩𝑗 with |→⟩𝑗 =

(|↑⟩𝑗+|↓⟩𝑗)/
√

2 as the eigenstate of 𝜎𝑥
𝑗 with eigenvalue +1. This is the disordered paramagnetic

phase. On the other hand, at ℎ = 0, the ground state consists of all spins pointed upwards
or downwards, i.e. |0⟩ =

∏︀
𝑗 |↑⟩𝑗 or |0⟩ =

∏︀
𝑗 |↓⟩𝑗, which is denoted as ferromagnetic ordering.

The Ising Hamiltonian (4.32) admits invariance under a global Z2 symmetry, generated by∏︀
𝑗 𝜎

𝑥
𝑗 , which maps 𝜎𝑧

𝑗 ↦→ −𝜎𝑧
𝑗 and 𝜎𝑥

𝑗 ↦→ −𝜎𝑥
𝑗 . In combination with a vanishing tunneling

matrix element between these two degeneracies, this is the reason why in an infinite system the
ferromagnetic ordering persists also for small values of ℎ, since only a small number of spins
will be flipped. As a consequence, there must be a phase transition at some critical value ℎ𝑐𝑟𝑖𝑡.
It is a quantum phase transition, since it exist at zero temperature and is entirely induced by
quantum fluctuations (in contrast to thermal fluctuations).

49We set 𝐽 ≡ 1 for all our numerical studies.
50Note that the classical Ising model in arbitrary 𝐷 dimensions is identical to the quantum Ising model with

a transverse field in 𝐷 − 1 dimensions. By this duality, the quantum phase transition in 1𝐷 corresponds to
the thermal critical point of the classical 2𝐷 Ising model. For details of the mapping see [129].
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Figure 4.7: Phase diagram of the one-dimensional quantum Ising model (4.32).

4.5.2 Free fermion mapping

The precise value of the critical transverse field can be determined via a mapping to free
fermions. This is possible for vanishing longitudinal field (𝑔 = 0), in which case the system
is integrable, i.e. it can be solved analytically. 51 The well-known procedure outlined here is
described for example in [129]. Detailed calculations are available in the documents [171,174].
The starting point is the Jordan–Wigner transformation [175], which allows to rewrite a spin-1

2

system as spinless fermions with the definitions

𝜎𝑥
𝑗 = 1 − 2 𝑏†𝑗 𝑏𝑗 and 𝜎𝑧

𝑗 =

(︃∏︁
𝑙<𝑗

(1 − 2 𝑏†𝑙 𝑏𝑙)

)︃
(𝑏𝑗 + 𝑏†𝑗). (4.33)

Here, 𝑏†𝑗 and 𝑏𝑗 are respectively fermionic creation and annihilation operators that satisfy the
anticommutation relations {𝑏𝑖, 𝑏†𝑗} = 𝛿𝑖𝑗 and {𝑏𝑗, 𝑏𝑗} = {𝑏†𝑗, 𝑏†𝑗} = 0. The form (4.33) ensures
at the same time the commutation rules [𝜎+

𝑖 , 𝜎
−
𝑗 ] = 𝛿𝑖𝑗𝜎

𝑧
𝑖 and [𝜎𝑧

𝑖 , 𝜎
±
𝑗 ] = ±2𝛿𝑖𝑗𝜎

±
𝑖 of the Pauli

spin flip operators 𝜎±
𝑗 ≡ (𝜎𝑥

𝑗 ± 𝑖𝜎𝑦
𝑗 )/2 through the inserted string of operators. Using these

definitions, the Hamiltonian (4.32) is transformed into

𝐻𝑓𝑓 = −𝐽
∑︁
𝑗

(︁
𝑏†𝑗𝑏𝑗+1 + 𝑏†𝑗+1𝑏𝑗 + 𝑏†𝑗𝑏

†
𝑗+1 + 𝑏𝑗+1𝑏𝑗 − 2ℎ𝑏†𝑗𝑏𝑗 + ℎ

)︁
. (4.34)

The apparent violation of the fermion number conservation can be circumvented via a Bogoli-
ubov transformation. For that, we work with Fourier space operators 52

𝑏𝑘 =
1√
𝑁

∑︁
𝑗

𝑏𝑗 e−𝑖𝑘𝑥𝑗 (4.35)

51As remarked before, the resulting solution is transformable to the classical 2𝐷 Ising model, which was first
solved by Onsager in [172]. The solution in the form presented in this section was found by Pfeuty [173].

52Here, the position 𝑥𝑗 = 𝑗𝑎 contains the lattice spacing 𝑎.
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with wave number 𝑘 = 2𝜋
𝑁𝑎
𝑛 (𝑛 = 0, . . . , 𝑁 − 1), and introduce fermionic operators 53

𝛾𝑘 ≡ 𝑢𝑘𝑏𝑘 − 𝑖𝑣𝑘𝑏
†
−𝑘. (4.36)

For the parametrizations 54 𝑢𝑘 ≡ cos(𝜃𝑘/2) and 𝑣𝑘 ≡ sin(𝜃𝑘/2) and the choice

tan 𝜃𝑘 =
sin(𝑘𝑎)

ℎ− 𝑐𝑜𝑠(𝑘𝑎)
(4.37)

the resulting free fermion Hamiltonian reads

𝐻𝑓𝑓 =
∑︁
𝑘

𝜖𝑘

(︂
𝛾†𝑘𝛾𝑘 −

1

2

)︂
, (4.38)

which obeys the fermion number conservation principle. The single-particle energy 𝜖𝑘 ≥ 0

follows the dispersion relation

𝜖𝑘 = 2𝐽
√︀

1 + ℎ2 − 2ℎ cos(𝑘𝑎) (4.39)

and takes its minimal value 𝑀ℎ ≡ 𝜖𝑘=0 = 2𝐽 |1 − ℎ| for vanishing momentum. The vanishing
mass gap at ℎ = 1 marks the critical point of the Ising model, where the quantum phase
transition between the ferromagnetic (ℎ < 1) and paramagnetic (ℎ > 1) phase takes place.

4.5.3 Continuum limit and IR QFTs

The existence of a critical point in the transverse Ising model suggests that in the continuum
the IR physics is effectively captured by a CFT. The QFT limit for the most general form (4.32)
of the Hamiltonian is nicely discussed in [176]. This description follows from the introduction
of two independent Majorana fermion fields as 𝜓(𝑥 = 𝑗𝑎) =

√︀
𝜋/𝑎(𝑏†𝑗 + 𝑏𝑗) and 𝜓(𝑥 = 𝑗𝑎) =

−𝑖
√︀
𝜋/𝑎(𝑏†𝑗 − 𝑏𝑗). The lattice spacing is set to 𝑎 = 2/𝐽 , from which the speed of light follows

as 1. In the continuum limit 𝑎 → 0, the fields anti-commute with each other and satisfy
{𝜓(𝑥), 𝜓(𝑦)} = {𝜓(𝑥), 𝜓(𝑦)} = 2𝜋 𝛿(𝑥 − 𝑦), ensuring that two-point correlation functions
decay in the vacuum as 1

𝑥−𝑦
at long distances, which is demanded by the CFT result. In the

thermodynamic limit 𝑁 → ∞, combined with the scaling limit, which encompasses 𝑎→ 0 and
𝑀ℎ/𝐽 → 0, while the ratio 𝑀ℎ/𝑀𝑔 is kept fixed, the IR, i.e. long distances compared to the
lattice spacing, is described by the following Majorana fermion QFT [176]

𝐻IR =

∫︁ ∞

−∞
d𝑥

{︂
𝑖

4𝜋

(︀
𝜓𝜕𝑥𝜓 − 𝜓𝜕𝑥𝜓

)︀
− 𝑖𝑀ℎ

2𝜋
𝜓𝜓 + 𝒞𝑀15/8

𝑔 𝜎

}︂
. (4.40)

53The anticommutation relations translate into {𝛾𝑘, 𝛾†𝑘′} = 𝛿𝑘,𝑘′ and {𝛾𝑘, 𝛾𝑘′} = {𝛾†𝑘, 𝛾
†
𝑘′} = 0.

54The functions in the Bogoliubov transformation obey the properties 𝑢2𝑘 + 𝑣2𝑘 = 1 and 𝑢𝑘 = 𝑢−𝑘, −𝑣𝑘 = 𝑣−𝑘.
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Apart from the previously defined free fermion mass𝑀ℎ ≡ 2𝐽 |1−ℎ|, the longitudinal mass scale
𝑀𝑔 is given as 𝑀𝑔 ≡ 𝒟𝐽 |𝑔|8/15. Here, 𝒞 ≈ 0.062 and 𝒟 ≈ 5.416 are numerical constants [176,
177]. For non-zero temperatures, IR degrees of freedom are excited in the limit 𝛽𝐽 → ∞.
From the scaling limit, it becomes apparent that the Ising model, defined by the lattice Hamil-
tonian (4.32) is described in the vicinity of the critical point by the class of QFTs captured by
the Hamiltonian (4.40). As visualized in Fig. 4.7, there are several distinct parameter regimes,
which we now discuss in detail.

• 𝑀ℎ = 𝑀𝑔 = 0: The parameters translate into the lattice fields {ℎ = 1, 𝑔 = 0} at the
quantum critical point of the Ising model. The Hamiltonian (4.40) represents the Ising
CFT, which is a free Majorana fermion CFT with central charge 𝑐 = 1

2
. There are two

scalar primary Hermitian operators: 𝜖 ≡ 𝑖𝜓𝜓 with scaling dimension ∆𝜖 = 1 and 𝜎 with
∆𝜎 = 1

8
. In the lattice discretization (4.32), they are given in terms of transverse and

longitudinal Pauli matrices as 𝜖(𝑗𝑎) = − 𝑎
𝜋
𝜎𝑥
𝑗 and 𝜎(𝑗𝑎) = 𝑎𝜎𝑧

𝑗 .

• 𝑀ℎ ̸= 0,𝑀𝑔 = 0: This massive free fermion QFT, characterized by the fermion mass𝑀ℎ,
is integrable. It corresponds to the continuum limit of the transverse Ising model in the
phase diagram (cf. Fig. 4.7), in which the free fermion mapping allows to find analytical
expressions in both the ferromagnetic and paramagnetic phase.

• 𝑀ℎ = 0, 𝑀𝑔 ̸= 0: This regime describes the integrable and interacting E8 QFT of
Zamolodchikov [178], which is mathematically captured by the exceptional simple Lie
algebra of rank 8. It contains 8 stable mesons as nonperturbative fermionic bound states
in the spectrum. Their masses 𝑀𝑛 are known and can be expressed as analytical ratios
in terms of the lightest mass 𝑀1 = 𝑀𝑔 as given in Tab. 4.1.

• 𝑀ℎ ̸= 0, 𝑀𝑔 ̸= 0: This parameter range with both 𝜖 and 𝜎 perturbations turned on
represents an interacting nonintegrable QFT with stable and unstable bound states [178–
181].

Table 4.1: Analytical ratios of meson masses for the integrable interacting E8 QFT [178]
in comparison to the numerically extracted value from the TN+Prony method outlined in
sections 4.7 and 4.8.

𝑀2/𝑀1 𝑀3/𝑀1 𝑀4/𝑀1 𝑀5/𝑀1

analytical 2 cos 𝜋
5

2 cos 𝜋
30

4 cos 7𝜋
30

cos 𝜋
5

4 cos 2𝜋
15

cos 𝜋
5

numerical 1.6180 1.9890 2.4049 2.9563
TN+Prony 1.6147(7) 1.962(1) 2.413(2) 2.936(3)

𝑀6/𝑀1 𝑀7/𝑀1 𝑀8/𝑀1

4 cos 𝜋
30

cos 𝜋
5

8 cos2 𝜋
5

cos 7𝜋
30

8 cos2 𝜋
5

cos 2𝜋
15

3.2183 3.8912 4.7834
3.165(6) 3.52(3) -
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While the massive free fermion regime allows us to benchmark our TN simulations, we are
primarily interested to study the nonintegrable regime at non-zero temperature, where the
combination of TN simulations and subsequent signal analysis methods, which we develop
below, have the most predictive power. Despite the simplicity of the Ising lattice Hamiltonian,
we therefore can study highly nontrivial QFTs. We denote the entire class of QFTs described
by the Hamiltonian (4.40) as Ising QFT. As pointed out in [176], this Hamiltonian makes
no distinction between the ferromagnetic and paramagnetic phase. Only at the level of the
Hilbert space, the difference becomes visible. In the ferromagnetic phase at 𝑔 = 0, elementary
excitations can be interpreted as domain walls. As soon as a longitudinal field is turned
on (𝑔 ̸= 0), these are non-perturbatively confined into mesons [182]. In the paramagnetic
phase, excitations are interpreted as spin waves and a longitudinal field instead introduces
perturbative corrections. Due to the relativistic nature of the Ising QFT, any excitation with
mass 𝑀𝑛 follows the dispersion relation 𝜔(𝑝) =

√︀
𝑀2

𝑛 + 𝑝2, where 𝑝 is the spatial momentum.

4.6 Retarded thermal correlators in solvable cases

As emphasized before, we are interested in this chapter in the frequency structure of retarded
thermal correlators. The free fermion mapping allows us to derive an explicit expression for
this quantity in the integrable free case at 𝑔 = 0. In particular, for zero momentum (𝑝 = 0),
the retarded correlator 𝐺−𝜋

𝑎
𝜎𝑥

𝑅 of the transverse magnetization can be derived as follows. From
the Jordan–Wigner transformation (4.33), the relevant term is given by

𝐺
−𝜋

𝑎
𝜎𝑥

𝑅 (𝑡 > 0, 𝑗 − 𝑙) = 4𝑖Tr
(︁

[𝑏†𝑗(𝑡)𝑏𝑗(𝑡), 𝑏
†
𝑙 (0)𝑏𝑙(0)]

)︁
. (4.41)

Using the inverse of the Fourier modes (4.35) and working in an energy eigenbasis with modes
(4.39), the correlator can be evaluated as

𝐺
−𝜋

𝑎
𝜎𝑥

𝑅 (𝑡 > 0, 𝑝 = 0) =
4

𝑁2
Tr

(︃∑︁
𝑘

e−𝛽𝜖𝑘

𝑍𝛽

[e𝑖𝜖𝑘𝑡 𝑏†𝑘𝑏𝑘 e−𝑖𝜖𝑘𝑡, 𝑏†𝑘𝑏𝑘]

)︃
, (4.42)

where 𝑍𝛽 is the finite temperature partition function. Upon insertion of the Bogoliubov-
transformed fermion operators (4.36) in their inverted form (given as 𝑏𝑘 = 𝑢𝑘𝛾𝑘 + 𝑖𝑣𝑘𝛾

†
−𝑘),

only terms with an equal amount of creation and annihilation operators in the commutator
contribute to the trace. In the thermodynamic limit, 𝑁 → ∞, the sum over 𝑘 is replaced by∑︀

𝑘 → 𝑁
2𝜋

∫︀
d𝑘. Terms of the form 𝛾†𝑘𝛾𝑘 yield the Fermi–Dirac distribution 𝑛𝑘 = (1+𝑒𝛽 𝜖𝑘)−1 =

𝑛−𝑘 in the canonical ensemble average. Using 𝑢2𝑘𝑣2𝑘 = sin2 𝜃𝑘
4

(as defined in (4.37)), one arrives
at

𝐺
−𝜋

𝑎
𝜎𝑥

𝑅 (𝑡 > 0, 𝑝 = 0) = 2𝐽

∫︁ 𝜋

−𝜋

d𝑘 (2𝑛𝑘 − 1) sin2 𝜃𝑘 sin (2 𝜖𝑘 𝑡). (4.43)
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A similar calculation for finite momentum 𝑝 generalizes this result to

𝐺
−𝜋

𝑎
𝜎𝑥

𝑅 (𝑡 > 0, 𝑝) = 2𝐽

∫︁ 𝜋

−𝜋

d𝑘
[︀

sin (𝑡(𝜖𝑘 + 𝜖𝑞))(𝑛𝑘 + 𝑛𝑞 − 1)(𝑢𝑘𝑣𝑞 + 𝑢𝑞𝑣𝑘)2+

sin (𝑡(𝜖𝑘 − 𝜖𝑞))(𝑛𝑘 − 𝑛𝑞)(𝑢𝑘𝑢𝑞 − 𝑣𝑘𝑣𝑞)
2
]︀
, (4.44)

where 𝑘 − 𝑞 ≡ 𝑝 (mod 2𝜋).

We are primarily interested in the case of vanishing momentum. The integral formula (4.43)
then can be understood via two-particle exchanges: The operator 𝜎𝑥

𝑗 excites a continuum of
states consisting of fermions with zero net momentum but distinct relative momentum. The
corresponding analytic structure in the complex frequency plane can be derived by simple
observations: The integral contains terms that oscillate in the time domain with frequencies
ranging from 2𝜖0 = 2𝑀ℎ (i.e. twice the fermion mass) to 2𝜖𝜋 = 8𝐽−2𝑀ℎ (containing the lattice
spacing 𝑎 = 2/𝐽). This results in a branch cut stretching between the IR and UV scale, set
by these two limits. Fig. 4.8 shows this representation in the scaled complex 𝜔 plane in blue.
From a mathematical viewpoint, it is well known that the location of branch cuts between
two branch points is ambiguous. That is, one can alternatively represent the structure as
shown in red in Fig. 4.8. Here, a branch cut stretches between the points ±2𝑀ℎ, originating
from the creation of fermion pairs with relative momenta ±𝑝 and hence zero net momentum.
Additionally, there is a second branch cut connecting the UV scale with infinity and extra poles
originating from zeros of the Fermi–Dirac function. They are known as Matsubara frequencies
𝜔̃𝑛 = −𝑖𝜋

𝛽
(2𝑛 + 1) (𝑛 ∈ N) [183]. As a consequence of he factor 2 in the sinus function in

(4.43), the poles lie at 𝜔𝑛 ≡ 2𝜔̃𝑛. From the general remarks about correlators in section 4.2,
we can identify their contribution as a transient effect. Due to this separation of IR and UV
scales, this representation is inherent to a QFT viewpoint.

The result (4.43) is valid for an infinite chain but not yet in the continuum (arising in the limit
𝛽𝐽 → ∞ at constant 𝛽𝑀ℎ). The described features, in particular decaying poles, are therefore
present also in the discrete spin chain system. In the conformal case (𝑀ℎ = 𝑀𝑔 = 0), we expect
the continuum result to be given by CFT techniques. In fact, conformal symmetry entirely
fixes in (1+1) dimensions the retarded two-point function on a line at non-zero temperature
to the form [131,163]

𝐷
𝑂Δ=ℎ𝐿+ℎ𝑅
𝑅 (𝑡 > 0, 𝑥) = 𝑖𝜃(𝑡)

{︂
(𝜋𝑇𝑅)2ℎ𝑅

sinh2ℎ𝑅 [𝜋𝑇𝑅(𝑥− 𝑡+ 𝑖𝜀)]

(𝜋𝑇𝐿)2ℎ𝐿

sinh2ℎ𝐿 [𝜋𝑇𝐿(𝑥+ 𝑡− 𝑖𝜀)]
− (𝜀 ↦→ −𝜀)

}︂
,

(4.45)
where the subscripts 𝐿 and 𝑅 refer to left- and right-moving sectors. From the Fourier trans-
formation of this function, assuming 𝑇𝐿 = 𝑇𝑅 ≡ 𝑇 = 1/𝛽, it follows that an operator of
conformal dimension ∆ = ℎ𝐿 + ℎ𝑅 has single poles at frequencies

𝜔𝑛 = ±𝑝− 𝑖 2𝜋 𝑇 (∆ + 2𝑛) for 𝑛 ∈ N0. (4.46)
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Branch cut

Matsubara poles

Figure 4.8: Analytic structure of the retarded thermal correlator (4.43). The freedom to
deform branch cuts leads to two valid choices as illustrated in blue and red. The latter one
decouples the UV scale from the IR which makes it more natural for QFT considerations.
In this case, single poles related to Matsubara frequencies arise. Figure taken from [1].

These values are in agreement with the frequencies originating from the Matsubara poles for
the ∆ = 1 operator considered above. The simplified Fourier transformation of (4.45) at 𝑝 = 0,
yields the following explicit result for the correlator (neglecting contact terms)

𝐺𝒪Δ=1
𝑅 (𝑡 > 0, 𝑝 = 0) = −4𝜋

𝛽
e−

2𝜋
𝛽
𝑡
(︁

1 − e−
4𝜋
𝛽
𝑡
)︁−1

, (4.47)

which has a sequence of poles at the values (4.46). Additionally, we can now read off that the
residues are given by −4𝜋

𝛽
. This value agrees with the prediction following from (4.43) in the

scaling limit (𝛽𝐽 → ∞ at 𝑀ℎ = 0). The value of the residue of a transient pole therefore
provides strong indications for us to correctly identify the QFT regime. We numerically
extract these data by combining MPO simulations with a Prony based signal analysis method,
which gives access to residues as normalization coefficients of complex exponentials. It will be
demonstrated below that the CFT regime is reached even for moderate values of 𝛽𝐽 in the
order of 5 to 10.

Finally, we want to stress the dual holographic interpretation of the sequence of frequency
values (4.46). In the important work [163], the authors identify these CFT modes as QNMs
of the BTZ black hole solution. 55 This allowed, for the first time, the identification of ther-
malization time scales in a CFT from the inverse of the lowest transient mode in the decay of
BH perturbations and initiated all further explorations of higher-dimensional QNMs as moti-
vated in section 4.3 above. Interestingly, this in turn means that our spin chain setup allows
us directly to address questions and problems, which have a dual gravitational interpretation,
although we are not considering explicitly a holographic CFT.

55The BTZ metric, named after Bañados, Teitelboim and Zanelli, is a particular BH solution in AdS3 [184].
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4.7 Tensor network setup

Real and imaginary time evolution can be combined in TN simulations in order to obtain
thermal response functions [185–188]. We are interested here to numerically calculate retarded
thermal correlation functions of the form

𝐺𝑅(𝑡) = 𝑖𝜃(𝑡) Tr(𝜌𝛽[𝑂1(𝑡), 𝑂2(0)]) (4.48)

for local operators defined in terms of Pauli matrices as

𝑂1(0) =
∑︁
𝑗

𝜎𝑥,𝑧
𝑗 and 𝑂2(0) = 𝜎𝑥,𝑧

𝑁/2. (4.49)

This amounts to the calculation of individual expectation values of the form

⟨𝑂1(𝑡)𝑂2(0)⟩𝛽 = Tr
{︀
𝜌𝛽𝑈

†(𝑡)𝑂1(0)𝑈(𝑡)𝑂2(0)
}︀
. (4.50)

As discussed in detail in [188], the real and imaginary time steps can be grouped in different
ways, the optimal configuration being dependent on the concrete setup. Here, we can evaluate
the expectation value as

⟨𝑂1(𝑡)𝑂2(0)⟩𝛽 = Tr
{︀

[𝑈 †(𝑡/2)𝜌𝛽/2𝑂1(0)𝑈(𝑡/2)] [𝑈(𝑡/2)𝑂2(0)𝜌𝛽/2𝑈
†(𝑡/2)]

}︀
, (4.51)

which allows us to gain a factor of two in the real-time evolution. We use the TEBD algorithm
(cf. section 3.5.2) to efficiently represent the purified thermal state 𝜌𝛽/2 as a MPO approxi-
mation [189–192] through imaginary time evolution for a finite system with open boundary
conditions. In the second group of operators in (4.51) (indicated by the brackets), the operator
𝑂2 acts at time 𝑡 = 0 onto this thermal state 𝜌𝛽/2 (at the mid chain position). Since it is a local
operator, this step does not change the bond dimension of the MPO. The resulting new MPO
is then evolved for time 𝑡/2. In the first group of operators in (4.51), the operator product of
the thermal state with 𝑂1 is evolved backwards in time. We use again the TEBD algorithm
to implement the real-time evolution of the individual MPOs. The growth of entanglement
during real time evolution is reflected by the increasing truncation error in the numerical simu-
lation. The convergence of the results can be checked by comparing data for different values of
the maximal bond dimension 𝜒, or by comparing to the exact result when available. Evolving
each term for only half the time hence allows us to reach longer total times with the same
resources. Finally, the desired expectation value is obtained from the contraction of the two
time evolved MPOs, which can be computed exactly in an efficient manner.
In general, the retarded correlator can be calculated w.r.t. the transverse or longitudinal Pauli
matrix. Based on the general principles of the linear response framework (cf. section 4.2), the
convolution of the correlator with a time-dependent profile of the fields ℎ or 𝑔 then either
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Figure 4.9: Left: Results of MPO simulations for the transverse (solid curves) and longitu-
dinal (dash-dotted curves) response function (at 𝛽𝑀ℎ = 0.2, 𝛽𝑀𝑔 = 0 in the ferromagnetic
phase and two lattice spacing values corresponding to 𝛽𝐽 = 4 and 𝛽𝐽 = 32). Observe that
the longitudinal response is oscillating on a much longer time scale.
Right: Results of MPO simulations (solid curves) and exact results from free fermions (black
dotted curves) for the transverse response function at criticality (𝛽𝑀ℎ = 𝛽𝑀𝑔 = 0). One
can observe an excellent agreement for all lattice spacing values 𝛽𝐽 .
Numerical parameters: 𝑁 = 100, 𝜒 = 200, 𝐽𝛿𝑡 = 0.005, 𝐽𝑡max = 10, 2nd order Trotter
decomposition. Both plots are scaled w.r.t. the minimum of the correlation function for
graphical purposes. Figures taken from [1].

yields the transverse or longitudinal magnetization, which the system follows under small
perturbations. From the discussions around the Ising QFT Hamiltonian (4.40), we know that
the two corresponding CFT operators 𝜖 and 𝜎 differ by a factor of 8 in their scaling dimensions.
Within coverable simulation time scales, the longitudinal response therefore decays too slowly
to be seen and analyzed efficiently. The left panel in Fig. 4.9 demonstrates this for a particular
parameter value in the massive free fermion regime. Here, the 𝜎𝑧-correlator is calculated by
the outlined method using MPO simulations.

From now on, we focus entirely on the transverse correlation function. The right panel in
Fig. 4.9 shows the time dependence of this quantity for several temperatures (or lattice spac-
ings) at criticality. One can observe damped oscillations, which qualitatively differ only at the
lowest temperature 𝛽𝐽 = 8 near the ground state. Note that the visible signal is dominated
by the UV, which causes fast oscillations at high frequencies. The aim to study IR physics
therefore demands us to extract frequencies with small real parts. On top of the numeri-
cal data obtained by MPO simulations (shown as colored solid curves), the results of the free
fermion solution (4.43) are superimposed (shown as dash-dotted curves). The two curves agree
respectively very well in the whole time period.
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4.8 Prony signal analysis

To analyze the analytic structure of the retarded response function, we need to exploit a method
that is able to extract complex frequencies from the numerical real-time signal. The standard
Fourier transformation is limited to real frequency values in this regard: Real frequencies
(describing oscillations) appear as peaks in the spectrum. The imaginary frequency part
(describing their decay) is, however, hidden in an indefinite way in the width of the peak.
Complicating matters further, the frequency resolution depends on the total time interval
available and therefore obscures the actual peak width. A way out is offered by the Prony
method, which was invented in its original form already a long time ago [193]. The basic
concept of this method is to represent a function (i.e. the retarded correlator) as a sum of
complex exponentials,

𝐺(𝑡) =
𝑀∑︁
𝑘=1

𝑐𝑘 e−𝑖 𝜔𝑘 𝑡 . (4.52)

Here, the coefficients 𝑐𝑘 and frequencies 𝜔𝑘 are chosen complex valued and 𝑀 is the (variable)
total number of modes. The mathematical background of the Prony method and its general-
ization in terms of eigenfunctions of linear operators are explained in detail in [194], including
numerical codes for their implementation. In its original form, Prony’s method makes use
of the fact that the ansatz (4.52) satisfies a finite difference equation for sparse input data
𝐺𝑅(0), 𝐺𝑅(1), . . . , 𝐺𝑅(2𝑀 − 1). It consists of the following steps [194].

i) Construct the Hankel matrixH := (𝐺𝑅(𝑛+ 𝑙))𝑀−1
𝑛,𝑙=0 and the vector g := (𝐺𝑅(𝑀 + 𝑛))𝑀−1

𝑛=0

and solve the system Hp = −g for the coefficients p = (𝑝𝑛)𝑀−1
𝑛=0 .

ii) Set 𝑝𝑀 = 1 and determine all roots 𝑧𝑘 ≡ e−𝑖 𝜔𝑘 of the characteristic polynomial 𝑃 (𝑧) =∑︀𝑀
𝑛=0 𝑝𝑛𝑧

𝑛.

iii) Construct the Vandermonde matrixV := (e−𝑖 𝜔𝑘𝑛)
𝑀−1,𝑀
𝑛=0,𝑘=1 and the vector f1 := (𝐺𝑅(𝑛))𝑀−1

𝑛=0

and solve the system Vc = f1 for the coefficients c = (𝑐𝑘)𝑀𝑘=1.

Due to the linearity of this system of equations, the algorithm is able to determine the fre-
quencies 𝜔𝑘 independently from the coefficients 𝑐𝑘. For our numerics, we use a version of this
Prony method known as ESPRIT (estimation of signal parameters via rotational invariance
techniques) [195]. As a modification, this algorithm performs a SVD on the Hankel matrix
and takes only singular values into account that are larger than some chosen threshold 𝜀. The
number of modes 𝑀 represents then an upper bound. Some related methods, known as linear
prediction, have also been used in the context of TN simulations [185,196–200].
Based on the functional ansatz (4.52), one can expect to faithfully recover single poles in the
frequency space of the retarded correlator. However, the identification of branch cuts, which
play a major role in the analytical solution discussed above and as visualized in Fig. 4.8, is not
directly possible by this ansatz. The key novelty of our method here is to identify also the
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Figure 4.10: Schematic illustration of our Prony signal analysis procedure: The Prony
method is applied only in the finite analysis window, which is sequentially shifted towards
later times. For each analysis window, defined by its starting and end time, a unique color
(shown in the colorbar) is associated to all identified complex frequency values.

latter as a sequence of single poles inherent to the Prony method we employ. This is achieved
by applying the Prony algorithm to a sequence of time-shifted data analysis windows. See
Fig. 4.10 for an illustration of this procedure. Identified complex frequencies are then visualized
in different colors for each time window. Poles of the correlator will appear as frequencies
that are stable across different time windows, while branch cuts are visible as streaks. The
uncertainty of any such structure is related to its “fuzziness” in the complex 𝜔 plane. (In the
next section we will develop a quantitative estimate of it based on a rigorous procedure.)
We test our signal analysis method in the free case for the transverse correlator (4.43), for
which we have sketched the derived analytical structure in Fig. 4.8. The left panel in Fig. 4.11
shows the Prony result for that case at criticality, which allows to identify both the UV branch
cuts and Matsubara poles: One can clearly see the first two transient poles on the imaginary
axis. On the other side, the Prony method seems to favor a vertical representation of the UV
branch cuts in the lower half plane, which are visible as the colorful bands of poles, which
are concatenated from different time windows. The precise identification of these decaying
structures is a clear advantage over the conventional Fourier transform, which was employed
in a real-time context e.g. in [201], but allows a reliable identification of frequencies only on
the real axis. The right panel in Fig. 4.8 shows the same situation but for finite momentum. In
this case, only the first CFT transient is visible, which now attains a finite real part as given
in (4.46). (Additional poles on the real axis arise from the lattice result (4.44).)
The ambiguity in the location of branch cuts is visible in Fig. 4.12. 56 Here, the retarded
correlator is analyzed with the Prony method for two masses. For a small mass (left panel) the
red representation of the analytic structure in Fig. 4.8 is obtained, while the blue representation
is assumed for a larger mass (right panel). The Prony method seems to make implicitly a

56Such a non-uniqueness played in a similar context also a role in a kinetic theory model of [167].
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Figure 4.11: Result of the Prony method applied to the retarded transverse correlator
(4.44) at criticality (𝑀ℎ = 0) for zero momentum (𝑝 = 0, left) and finite momentum (𝑝 = 1,
right). The shifted time windows in the signal analysis are visualized according to the shown
colorbar. The identified complex frequency structure on the left has to be compared to the
analytical expectation shown in red in Fig. 4.8 (for 𝑀ℎ = 0). At finite momentum, the
Matsubara poles are shifted away from the imaginary axis according to (4.46). Left figure
taken from [1].

Figure 4.12: Result of the Prony method applied to the retarded zero momentum transverse
correlator (4.43) at small mass (𝑀ℎ/𝐽 = 0.5, left) and large mass (𝑀ℎ/𝐽 = 1, right). The
identified complex frequency structures have to be compared to the analytical expectation
shown in red and blue in Fig. 4.8. The colorbar is as in Fig. 4.11.
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choice, which favors a vertical alignment within the lower half plane. At an intuitive level,
such a representation is favored at late times since poles with larger imaginary part will decay
fast. However, this alignment then potentially obscures transient poles on the imaginary axis.
As it becomes apparent from the left panel, the first transient is not visible anymore, since
it is overlaid by the IR branch cut. Only the second transient is faintly identifiable. When
putting the focus on the identification of transient features, the transverse mass hence should
be small enough to not obfuscate Matsubara poles by branch cut locations.
In the following sections we want to use the MPO simulations in combination with the pre-
sented Prony signal analysis technique to analyse properties of the retarded thermal correlator
in the Ising QFT.

4.9 Transient singularities of the retarded thermal

correlator

4.9.1 The free fermion QFT limit

The preceding discussions have shown exemplarily that the Prony method allows us to iden-
tify the lowest transient poles when applied directly to the analytical integral formula (4.43)
for the 𝜖 correlator. In the CFT case they are given by (4.46), which exemplifies them as
intrinsically thermal features that cause exponential decays in time. We now want to study
systematically the QFT limit 𝛽𝐽 → ∞ by applying the Prony analysis to integrable massive
free fermion results (at 𝑀ℎ ̸= 0, 𝑀𝑔 = 0) in comparison to the numerical MPO simulations.
Based on the findings about branch cut locations, we choose a small transverse perturbation
𝛽𝑀ℎ = 0.2 ≡ const. The continuum is approached for 𝛽𝐽 = {2, 4, 8, 12, 16, 32}, which trans-
lates into transverse field values ℎ = {0.95, 0.975, 0.9875, 0.991667, 0.99375, 0.996875} in the
ferromagnetic phase. Since the transverse mass 𝑀ℎ/𝐽 is decreasing as the critical point at
ℎ = 1 is approached, the IR length scale of the free fermion 𝑙 ∼ 1/𝑀ℎ is increasing. We
therefore have to keep in mind that finite size effects might play a role for a considered chain
of 𝑁 = 100 sites. Under the assumption of a prefactor of order 𝑙 ∼ 𝒪(1)/𝑀ℎ, this should set
in only at the largest chosen value of 𝛽𝐽 = 32.
Fig. 4.13 shows the resulting Prony diagrams for the free fermion results in an infinite system
(left) and the MPO simulation of the finite spin chain (right) at two selected lattice spacing
values 𝛽𝐽 = 8, 32 (top and bottom). As observed previously, the UV branch cut is approxi-
mated as a vertical line of poles in the lower half plane. The IR branch cut between the branch
points ±2𝑀ℎ is visible at 𝛽𝐽 = 8 only as a pole at the origin. It cannot be clearly resolved
since only the time interval up to 𝐽𝑡𝑚𝑎𝑥 = 10 is analyzed, while such small real frequencies
would require longer time intervals to see their oscillation periods. In contrast to the left plot
in Fig. 4.12 (which is for a larger transverse mass), it does, however, not obscure the transient
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Figure 4.13: Results of the Prony frequency analysis for the transverse retarded correlator
in the free (integrable) continuum limit at 𝛽𝑀ℎ = 0.2. Identified poles are shown in the
scaled complex 𝜔𝛽/2𝜋 plane based on the analytical result (left column) and MPO simula-
tions (right column) for two temperatures (first and second row). Horizontal lines denote
the analytical locations for the transients.
Numerical parameters: 𝑁 = 100, 𝜒 = 200, 𝐽𝛿𝑡 = 0.005, 𝐽𝑡max = 10, 2nd order Trotter
decomposition. Figures taken from [1].

poles, which are our main focus here. On the rescaled imaginary axis, these decaying poles
(4.46) are located at −1,−3, . . .. In all examples, the first transient pole is clearly visible. For
both the analytical result and the MPO simulation at 𝛽𝐽 = 8 also the second transient is
visible, whereas at 𝛽𝐽 = 32 only the Prony method applied to the analytical result allows an
identification of the latter. The previously anticipated finite size effects are visible in the lower
right panel of Fig. 4.13. Here, the MPO simulation of the finite spin chain causes spurious and
erratic poles in the complex 𝜔 plane.

From the Prony analyses we want to extract the position of the first two transients in a
quantitative manner. Using our signal analysis technique, we chose an analysis window that
encompasses 75% of all discrete data points of the retarded correlator, which is then shifted
towards later times. In each time window, there are potentially frequencies which respectively
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Figure 4.14: Example of a Prony analysis applied to the MPO simulation of the retarded
transverse correlator at 𝛽𝐽 = 8. Left: (Scaled) position of the first transient on the imagi-
nary axis for each time window (with time increment step 𝛿𝑡 = 0.005). Right: The corre-
sponding coefficient multiplied with the inverse time dependence exp[2𝜋𝑡/𝛽] for each time
window. Horizontal red lines indicate respectively the average value which is assumed for
time windows later than the vertical red lines indicate. Figures taken from [1].

can be identified as the transient poles. A sufficiently large number of time windows therefore
allows us to obtain statistically significant information on the position and stability of decaying
poles. The left panel in Fig. 4.14 demonstrates this procedure for the first transient in a selected
example. The identified position on the imaginary axis is plotted for all time windows. The
numerical values are unstable at early times, which is presumably caused by the overlapping
of several transient frequencies. At later times, when higher-order transients are decayed
enough and thus do not overlap the signal anymore, the imaginary frequency stabilizes. In
each simulation, we identify this stable branch, from which we calculate its mean value and
standard deviation.

The resulting uncertainties of the first two transient positions, which we determine from this
analysis, are shown as error bars in Fig. 4.15. The left panel is based on the free fermion
calculation, the right on the MPO simulation. The plots demonstrate that the numerical
continuum limit for increasing values of 𝛽𝐽 is consistent with the analytical expectations
− 1

2𝜋
Im(𝛽𝜔1) = 1 and − 1

2𝜋
Im(𝛽𝜔2) = 3. In particular, the first transient position can be

identified for all temperatures (or lattice spacings) in the free fermion and MPO case. The
uncertainty increases from less than than 1% (𝛽𝐽 ≤ 8) up to 5% (free fermions) or 18% (MPO
simulations) at 𝛽𝐽 = 32. The second transient can be extracted with less accuracy in the
temperature range 8 ≤ 𝛽𝐽 ≤ 32 for free fermions and 8 ≤ 𝛽𝐽 ≤ 16 for the MPO simulations.
The fact that this second mode is not visible at low 𝛽𝐽 is that the UV branch cut is bending
towards the imaginary axis and therefore obscures the decaying poles. At large 𝛽𝐽 , on the
other side, it is an interplay of finite time and finite size effects that hamper the visibility of the
pole. The latter becomes relevant for the MPO simulations, where the increasing fermion (or
correlation) length scales close to criticality can exceed the system size. Since the uncertainty
increases also in the free fermion case (for an infinite system), it is also the limited Prony time
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Figure 4.15: Results of the extracted position of the first two transient poles in the free
(integrable) ferromagnetic phase at 𝛽𝑀ℎ = 0.2 based on the Prony analysis applied to the
analytical result (left) and MPO simulation (right). Error bars denote the uncertainty of the
calculated pole locations, grey lines represent the analytical values. The continuum limit is
approached for increasing values 𝛽𝐽 . Figures taken from [1].

window that causes deviations from the analytical frequency value.

The piece of information, which was left out until now are the coefficients 𝑐𝑘 in the Prony
ansatz (4.52). The right panel in Fig. 4.14 shows their extracted values in all time windows for
the same parameter example as before. They are multiplied with the inverse time dependence
of the first decaying mode. As in the case for the imaginary frequency value on the left side,
a stable branch forms at late times. Using the same methodology as for the pole location, we
calculate the residue 𝑟1 of the transient as its mean value. The corresponding uncertainties
are shown in the right panel of Fig. 4.16. For a comparison, we perform the same analysis
also in the CFT regime (i.e. at criticality) as shown in the left panel. For both cases, one
can see that the residues approach for increasing values 𝛽𝐽 the analytical continuum value
(shown as grey dashed lines), which is calculated from (4.43). Despite a non-optimal numerical
resolution, one can clearly find a shift in the extracted residue data between the critical point
(describing the CFT) and the ferromagnetic phase (describing a massive free fermion QFT).
The best agreement is visible at intermediate values 𝛽𝐽 = 5 . . . 15 for both the data based on
free fermion results (shown in blue) and MPO simulations (shown in green). The deviation
of the MPO based result at the largest inverse temperature 𝛽𝐽 = 32 indicates again the
impact of finite size effects. As explained in section 4.6, the residue is important to identify
the QFT regime. From these findings we hence conclude that our Prony signal analysis method
is indeed capable of identifying the proper QFT regime at large enough 𝛽𝐽 . Moreover, the
results suggest that the method is sensitive enough to see the effect of massive transverse
perturbations. This applies to both the analyses based on analytic free fermion results as well
as to our MPO simulations, which, upon marginal finite size effects, agree very well with each
other in all our studied quantities.
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Figure 4.16: Results of the extracted residue of the first transient in the continuum limit
at criticality (left) and for finite transverse mass in the ferromagnetic phase (right). Blue
error bars are based on analytical results, green error bars on MPO simulations. Grey lines
represent the analytical values. The MPO simulations are rescaled to take the finite chain
normalization from the free fermion mapping into account. Figures taken from [1].

4.9.2 The nonintegrable QFT limit

Having established our TN based simulations in combination with the signal analysis technique
as a reliable tool to extract thermal QFT information in the free and integrable regime of the
2𝐷 Ising QFT, we now turn to interacting nonintegrable parameter ranges, where our analyses
allow us to make predictions. In particular, we want to systematically analyze the question
whether the locations (4.46) of the transients are modified for finite longitudinal perturbations
(𝑀𝑔 ̸= 0). This investigation is directly motivated by holographic results (cf. section 4.3),
where it was found that integrability breaking perturbations can lead to changes in the QNM
structure (cf. Fig. 4.3). Here, we choose 𝛽𝑀ℎ = 0.5 and 𝛽𝑀𝑔 ≈ {0.27, 0.54, 1.08, 1.62}. From
our previous explorations we expect that it will be possible to describe continuum physics
for the parameter range 𝛽𝐽 = {6, 8, 10}. We again use MPO simulations for a spin chain
with 𝑁 = 100 sites to calculate the transverse retarded correlator up to the maximal time
𝐽 𝑡𝑚𝑎𝑥 = 10.
Fig. 4.17 shows the resulting Prony diagrams for two selected values of 𝛽𝑀𝑔 (first and second
row) in the ferromagnetic (ℎ < 1, left column) and paramagnetic phase (ℎ > 1, right column)
at 𝛽𝐽 = 10. A first transient mode is visible at 𝛽

2𝜋
Im(𝜔) ≈ −1 in all plots. The blurred set

of poles in the lower left panel (for the largest integrability breaking 𝛽𝑀𝑔 ≈ 1.62) around this
frequency value indicates that the corresponding uncertainty is larger in the ferromagnetic
phase than in the paramagnetic phase (in which a clearer pole is visible in the lower right
panel). This implies that the continuum limit is not identical in the two phases, which can
be explained with the nonsymmetric existence of meson versus quasiparticle states in these
two phases. In addition, also the second transient mode is identifiable on the imaginary axis
in all parameter examples of Fig. 4.17. However, its uncertainty is naturally larger (visible
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Figure 4.17: Results of the Prony frequency analysis for the transverse retarded correlator
in the nonintegrable continuum limit for two integrability breaking parameters 𝛽𝑀𝑔 (first
and second row). Identified poles are shown in the scaled complex 𝜔𝛽/2𝜋 plane in the
ferromagnetic (left column) and paramagnetic (right column) phase. Horizontal lines denote
the analytical locations for the transients in the free (integrable) case for a comparison.
Numerical parameters: 𝑁 = 100, 𝜒 = 200, 𝐽𝛿𝑡 = 0.005, 𝐽𝑡max = 10, 2nd order Trotter
decomposition. Figures taken from [1].

as a fuzzier pole structure), since it is a sub-leading contribution that can be less accurately
determined by the Prony analysis. We therefore focus entirely on the first transient mode in
the following quantitative discussions of this section.

Using the same analysis technique as in the integrable massive free fermion case, we determine
the position (i.e. frequency value) of the the first transient on the imaginary axis and its
residue. To further strengthen the robustness of this analysis, we vary the Prony cutoff value
in the range 10−6 ≤ 𝜀 ≤ 10−4 and the length of the time analysis window in the range 75−85%

of the total discrete simulation data. We estimate the resulting uncertainty as the mean value
from several parameter combinations in the Prony method. Fig. 4.18 shows the so obtained
frequency values in both phases. For increasing perturbations 𝛽𝑀𝑔 and increasing 𝛽𝐽 the
uncertainty grows up to 13% in the ferromagnetic phase while it does not exceed 5% in the
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Figure 4.18: Results of the extracted position of the first transient pole in the ferromagnetic
(left) and paramagnetic (right) phase using TN+Prony. The continuum limit is approached
for increasing values 𝛽𝐽 at fixed 𝛽𝑀ℎ = 0.5 and different values of 𝛽𝑀𝑔. Figures taken
from [1].
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Figure 4.19: Results of the extracted residue of the first transient pole in the ferromagnetic
(left) and paramagnetic (right) phase using TN+Prony. The continuum limit is approached
for increasing values 𝛽𝐽 at fixed 𝛽𝑀ℎ = 0.5 and different values of 𝛽𝑀𝑔. For a comparison
the free (integrable) case (𝛽𝑀𝑔 = 0), with analytical result given by the grey dashed line,
is shown by the black error bars. The error bars are shown slightly displaced for graphical
purposes. Figures taken from [1].

paramagnetic phase. This discrepancy is again a signature of differences in the continuum
limit between the two phases. Importantly, all obtained values are consistent with the CFT
value 𝛽

2𝜋
Im(𝜔1) = −1 (indicated by the grey dashed line). Under the influence of longitudinal

perturbations, the position of the leading transient does not seem to undergo considerable
changes within the achieved numerical resolutions.

Further information on the leading transient is provided by the corresponding residues 𝑟1,
which are shown in Fig. 4.19. The extracted uncertainties of the scaled values |𝑟1|𝛽/2𝜋 are
plotted in dependence of the inverse temperature 𝛽𝐽 for all ferromagnetic (left) and paramag-
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Figure 4.20: Results of the extracted position of the first transient pole in the ferromagnetic
phase using TN+Prony. The continuum limit is approached for increasing values 𝛽𝐽 at fixed
𝑀ℎ/𝑀𝑔 ≈ 0.4616 ≡ const and different values of 𝛽𝑀ℎ and 𝛽𝑀𝑔. Figure taken from [1].

netic (right) perturbations. For a comparison, black error bars denote the result of the same
analysis for the free case (𝛽𝑀𝑔 = 0) with an analytical result represented by the grey dashed
line. As for the pole locations, the uncertainties grow for increasing values of 𝛽𝐽 and 𝛽𝑀𝑔.
There seems to be the tendency that residues decrease in the ferromagnetic phase and increase
in the paramagnetic phase as the continuum is approached for growing values 𝛽𝐽 . Observe in
particular the situation represented by the orange error bars, when the transverse (𝛽𝑀ℎ = 0.5)
and longitudinal perturbation (𝛽𝑀𝑔 ≈ 0.54) are comparable. In this case the data seem to be
consistent with the analytical value of the integrable free result. That is, the nonintegrable
longitudinal perturbation does not seem to modify the residue value.
To further confirm the independence of the transient position on the perturbation, we addi-
tionally perform independent simulations of the transverse retarded correlator with different
values of 𝛽𝑀ℎ and 𝛽𝑀𝑔, but keeping their ratio 𝑀ℎ/𝑀𝑔 ≈ 0.4616 constant. The continuum is
approached for 𝛽𝐽 = {6, 8, 10} in the ferromagnetic phase with results presented in Fig. 4.20.
Here, the data points at 𝛽𝑀ℎ = 0.5 (corresponding to 𝛽𝑀𝑔 ≈ 1.08) are identical to the third
set of poles in the left panel of Fig. 4.18. The varying perturbations probe different instances
of the Ising QFT. Also in this scenario, all data points are consistent with the CFT result for
the pole position (shown as grey dashed line).
In summary, we have shown that the first transient mode, as the single-pole singularity gov-
erning the leading exponential decay of the retarded thermal correlator, exists also in the
case of integrability breaking longitudinal perturbations of the Ising QFT. Within the uncer-
tainties originating from the MPO simulations and subsequent signal analysis with the Prony
method, we make the surprising prediction that its position on the lower imaginary frequency
axis does not experience significant systematic deviations from the free fermion QFT result
𝛽
2𝜋

Im(𝜔1) = −1. This conclusion is valid for both the ferromagnetic and paramagnetic phase
of the Ising QFT.
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4.10 Meson singularities of the retarded thermal

correlator

4.10.1 Finite temperature effects

As soon as a longitudinal field 𝑔 is turned on in the ferromagnetic phase of the Ising model,
free fermions get confined and form nonperturbative meson bound states. In the paramag-
netic phase the (perturbative) counterpart can be interpreted as magnons (spin waves). In
this section, we use the combination of MPO simulations and Prony signal analysis in the lon-
gitudinal parameter regime to study the retarded 𝜖 correlator at non-zero temperature 𝑇 = /𝛽

and vanishing spatial momentum 𝑝 = 0. In essence, the discussions in this section show that
the branch cut along the real axis between ±2𝑀ℎ (cf. Fig. 4.8), which originated for a free
fermion CFT from the exchange of zero net momentum fermion pairs, is transformed into a
set of single poles at frequencies corresponding to meson masses.
In the integrable E8 theory there are 8 stable mesons whose mass ratios are analytically known
as tabulated in Tab. 4.1. Similar to the extraction of transient frequencies, we benchmark the
accuracy of our mass predictions at a very low temperature by determining their frequency
ratios on the real axis. The numerical results for seven out of eight mesons are listed in the
last row in Tab. 4.1. Except the heaviest detected meson, all mass ratios are in accordance
with the analytical value within 1.5% and in three cases even within a fraction of a percent.
We now consider the interacting nonintegrable regime of the Ising QFT in detail. We choose
𝑀ℎ/𝐽 = 0.125 and 𝑀𝑔/𝐽 ≈ 1.354, keeping the ratio 𝑀ℎ/𝑀𝑔 ≈ 0.09 constant. For these
theory parameters, meson or particle masses have been calculated previously using numerical
truncated Hamiltonian methods [180,181]. From these results the mass gaps, i.e. the the masses
of the first excited states, follow as 𝑀1/𝐽 ≈ 1.5 in the ferromagnetic and 𝑀1/𝐽 ≈ 1.2 in the
paramagnetic phase. Fig. 4.21 shows the mesonic part of the Prony reconstructed correlator
from the MPO simulations in both phases at low temperature (𝛽𝑀1 ≈ 24.5 and 𝛽𝑀1 ≈ 19.5).
Identified frequency poles agree very well with the known meson/particle masses. In particular,
we can identify 7 mesons in the ferromagnetic phase and 2 particles in the paramagnetic phase
(indicated respectively as solid vertical lines). In fact, in the latter also an additional pole at
Re(𝜔)𝛽/2𝜋 ≈ 8 is visible, which was previously not predicted as a particle in the literature.
Slightly above 𝑀3 in the ferromagnetic phase or 𝑀2 in the paramagnetic phase, there is a
fuzzy structure of poles appearing. It is lying at 2𝑀1, which marks the two-particle continuum
threshold (indicated respectively as dashed vertical lines). This feature should be associated
with a branch cut, which is identified as a set of poles that are the actual source of this
fuzziness. In both phases, there is a further fuzzy structure appearing slightly below 𝑀1

(indicated respectively as dashed vertical lines). This value, in fact, is an effect of open
boundary conditions that enable the existence of excitations close to the edges of the chain.
It is consistent with a finite size result found with the DMRG algorithm.
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Figure 4.21: Results of the Prony analysis of the retarded transverse correlator of 𝜖 = 𝑖 𝜓𝜓
near the vacuum in the nonintegrable ferromagnetic (left) and paramagnetic (right) phase.
Solid vertical lines represent meson masses from ref. [180]. Dashed lines mark the continuum
threshold of 2𝑀1 and a boundary state calculated with DMRG. The inset zooms in on the
4th and the 5th meson to emphasize their imaginary parts.
Simulation parameters: 𝑁 = 200, 𝜒 = 170, 𝐽 𝛿𝑡 = 0.02, 𝐽 𝑡max = 50, 2nd order Trotter
decomposition.
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Figure 4.22: Results of the Prony analysis of the retarded transverse correlator of 𝜖 = 𝑖 𝜓𝜓
near the vacuum (left) and for the highest achieved temperature (right) in the nonintegrable
ferromagnetic phase. The shaded regions indicate frequencies with wavelengths not fitting
in the time window. Solid vertical lines represent meson masses from ref. [180].
Left: The dashed lines mark the continuum threshold of 2𝑀1 and a boundary state calculated
with DMRG. The inset zooms in on the 4th and the 5th meson to emphasize their imaginary
parts. Right: The dashed lines indicate mass differences appearing as a result of heating
the system.
Simulation parameters: 𝑁 = 200, 𝜒 = 170, 𝐽 𝛿𝑡 = 0.02, 𝐽 𝑡max = 50, 2nd order Trotter
decomposition. Figures taken from [1].
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As a consequence of integrability breaking, meson poles above the continuum threshold can
develop an imaginary part, indicating their instability. In particular, this appears for the
fourth and fifth meson in the ferromagnetic phase. The ratio between their imaginary parts
(see inset in the left panel of Fig. 4.21) can be deduced from the Prony result as 0.22 ± 0.04,
which is in surprisingly good agreement with the value 0.233 obtained in ref. [179].

The effect of increasing the temperature is studied in Fig. 4.22 for the ferromagnetic phase.
For a comparison, the left panel is the same as in Fig. 4.21, but the data are now shown in
units of𝑀𝑔, which allows some further interesting observations. In particular, the deviation of
the of the first meson mass ratio 𝑀1/𝑀𝑔 ≈ 1.1 from 1.0 indicates the effect of the transverse
perturbation on top of the E8 regime, in which 𝑀1 = 𝑀𝑔 holds. This effect is at the same
order as the chosen parameter values𝑀ℎ/𝑀𝑔 ≈ 0.09 suggest. Simulations at high temperature
𝛽𝑀1 = 𝒪(1) are numerically more demanding, since the entanglement growth is larger. The
right panel in Fig. 4.21 shows the highest achieved temperature with 𝛽𝑀1 ≈ 3. A clear thermal
effect, which is not present in the low temperature result on the left, is the appearance of poles
at locations corresponding to mass differences 𝑀𝑖𝑗 ≡ 𝑀𝑖 −𝑀𝑗. In particular, 𝑀12 is visible
as a clean pole. Additional fuzzier pole structures are also visible for 𝑀23, 𝑀24 and 𝑀14. The
existence of such mass differences can be understood from a semi-analytic treatment of the
retarded thermal correlation function. In Fourier space (such that

∫︀
d𝑥 exp(𝑖𝑝𝑥) =

∫︀
d𝑥 1 for

𝑝 = 0) and in an energy eigenbasis in which the Fermi–Dirac distribution 𝑛(𝐸) enters, the
correlator can be expressed as

𝐺𝑂
𝑅(𝑡 > 0, 𝑝 = 0) = 𝑖 𝜃(𝑡) Tr(𝜌𝛽[𝑂1(𝑡, 𝑥), 𝑂2(0, 0)])

= 𝑖

∫︁
d𝑥

∫︁
d𝐸 ′ 𝑛(𝐸 ′)

e−𝛽𝐸′

𝑍𝛽

⟨𝐸 ′| [𝑂1(𝑡, 𝑥), 𝑂2(0, 0)] |𝐸 ′⟩

= 𝑖

∫︁
d𝑥

∫︁
d𝐸 ′d𝐸 ′′ 𝑛(𝐸 ′)𝑛(𝐸 ′′)

e−𝛽𝐸′

𝑍𝛽

{︀
⟨𝐸 ′|𝑂1(𝑡, 𝑥) |𝐸 ′′⟩ ⟨𝐸 ′′|𝑂2(0, 0) |𝐸 ′⟩−

⟨𝐸 ′|𝑂2(0, 0) |𝐸 ′′⟩ ⟨𝐸 ′′|𝑂1(𝑡, 𝑥) |𝐸 ′⟩
}︀

= 𝑖

∫︁
d𝑥

∫︁
d𝐸 ′d𝐸 ′′ 𝑛(𝐸 ′)𝑛(𝐸 ′′)

e−𝛽𝐸′

𝑍𝛽

{︀
e𝑖(𝐸

′−𝐸′′)𝑡 ⟨𝐸 ′|𝑂1(0, 𝑥) |𝐸 ′′⟩ ⟨𝐸 ′′|𝑂2(0, 0) |𝐸 ′⟩−

e−𝑖(𝐸′−𝐸′′)𝑡 ⟨𝐸 ′|𝑂2(0, 0) |𝐸 ′′⟩ ⟨𝐸 ′′|𝑂1(0, 𝑥) |𝐸 ′⟩
}︀

= 𝑖

∫︁
d𝑥

∫︁
d𝐸 ′d𝐸 ′′ 𝑛(𝐸 ′)𝑛(𝐸 ′′)

e−𝛽𝐸′

𝑍𝛽

2𝑖 Im
{︁

e𝑖(𝐸
′−𝐸′′)𝑡 ⟨𝐸 ′|𝑂1(0, 𝑥) |𝐸 ′′⟩ ⟨𝐸 ′′|𝑂2(0, 0) |𝐸 ′⟩

}︁
.

Here, we made use of the operator time evolution for 𝑂1 and the observation that the two
summands in the bracket on the second last line are complex conjugate of each other, and
therefore 𝑧 − 𝑧* = 2𝑖 Im(z) where 𝑧 symbolizes the first summand. Exponentials of the form
e𝑖(𝐸

′−𝐸′′)𝑡 do not remain in the zero temperature limit 𝛽 → ∞ and correspond to our observed
mass differences at high temperatures.

Within our uncertainties, we do not observe that meson masses (i.e. the real frequency part of
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Figure 4.23: Results of the Prony reconstruction of the retarded transverse correlator of
𝜖 = 𝑖 𝜓𝜓 in the nonintegrable ferromagnetic phase in the continuum limit. The circles
represent vacuum meson masses [180] and the leading transient for the free fermion QFT
case, respectively. Dashed lines indicate meson mass differences.
Simulation parameters: 𝑁 = 200, 𝜒 = 250, 𝐽 𝛿𝑡 = 0.005, 𝐽 𝑡max = 50, 2nd order Trotter
decomposition. Figure taken from [1].

poles) or decay rates (imaginary frequency part) change as the temperature is increased. Such
a feature would be a rough analogy to the QCD deconfinement phase transition. In this high-
temperature regime, one can expect that the natural degrees of freedom become fermions. We
analyze this numerically challenging problem in the context of meson melting in section 6.3.1,
where we can observe a decrease of the residues associated to the meson poles.

While we have so far discussed transient effects and meson states separately, we finally demon-
strate that both features can be detected simultaneously in the Prony reconstructed correlator
signal. Fig. 4.23 shows such a nonintegrable example in the ferromagnetic phase. The first
decaying pole is naturally most visible in light blue colors at early time windows (when the
transient contribution is not yet decayed too much), while meson states at large real frequen-
cies are best identified at late times (in red colors). The numerical results are in reasonable
agreement with the analytical data for the meson masses and what in a CFT would be the
transient’s position. Also in this case, features at meson mass differences are visible. Poles on
the positive imaginary axis are attributed to numerical artefacts. This analysis demonstrates
that nonperturbative bound state features, including thermal effects on such meson states,
and purely thermal poles causing decaying (transient) signals can be jointly identified in the
QFT regime.
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4.10.2 Ground state simulations

The main motivation for the research project under discussion are thermal effects in 2𝐷 QFTs,
which are exemplarily studied using the Ising model. But of course the same methodology of
TN simulations and Prony signal analysis can also be used to explore ground state properties.
In this final section we demonstrate that by analyzing meson features in the retarded two-point
function in the vacuum. We consider the nonintegrable ferromagnetic phase with the same
transverse and longitudinal mass as in Fig. 4.22 in the previous section.
In the fist approach, we calculate the ground state |0⟩ using the DMRG algorithm for some
chosen bond dimension √

𝜒. The ground state projector |0⟩ ⟨0| is then represented as a MPO
with bond dimension 𝜒. The subsequent real-time evolution of the retarded response function
is performed performed with the same TN setup as in the thermal case. The left panel in
Fig. 4.24 shows the result of the Prony reconstruction. Similarly to the very low temperature
result in Fig. 4.22 (left panel), the first three stable mesons can be identified very accurately.
While the continuum threshold 2𝑀1 is again visible as a branch cut stretching vertically in
the complex frequency plane, the boundary state below 𝑀1 is not seen here. The ratio of
the imaginary parts of the fifth to the fourth meson agrees equally well with the prediction in
ref. [179] as in the small temperature simulation. Structures at higher frequency values become
more fuzzy in the Prony reconstruction but still are identifiable at positions matching known
meson masses. Overall, these results clearly confirm that the previously found appearance
of mass differences in the correlator is indeed induced by thermal effects and that the Prony
method is sensitive enough to resolve them. These findings unsurprisingly demonstrate that
the vacuum density matrix approximated from the imaginary TEBD algorithm as lim𝛽→∞ 𝑒−𝛽𝐻

for large enough 𝛽 yields an equally well Prony reconstruction as the ground state projector
|0⟩ ⟨0| constructed from DMRG.
In a second approach, instead of the projector MPO |0⟩ ⟨0|, the the ground state |0⟩ can be used
itself as a MPS to calculate the time dependence of the retarded two-point function. In this
case, the bond dimension does not enter the simulation squared and hence the correlator can be
evolved for longer times more accurately. The right panel in Fig. 4.24 shows the corresponding
result of the Prony reconstruction. Here, higher meson poles become sharper. Apart from the
continuum threshold 2𝑀1, one now can also identify the mass sum 𝑀1 + 𝑀2 as a branch cut
(indicated by dashed vertical lines). Further mass sums lie very close to single meson states
and thus cannot be clearly distinguished.
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Figure 4.24: Results of the Prony analysis of the retarded transverse correlator of 𝜖 = 𝑖 𝜓𝜓
in the vacuum (i.e. for the ground state) in the nonintegrable ferromagnetic phase. Solid
vertical lines represent meson masses from ref. [180].
Left: The result is based on a MPO simulation. The dashed line marks the continuum
threshold of 2𝑀1. Simulation parameters: 𝑁 = 200, 𝜒 = 170, 𝐽 𝛿𝑡 = 0.02, 𝐽 𝑡max = 50, 2nd

order Trotter decomposition.
Right: The result is based on a MPS simulation. Dashed lines mark the continuum threshold
and further mass sums. Simulation parameters: 𝑁 = 200, 𝜒 = 150, 𝐽 𝛿𝑡 = 0.02, 𝐽 𝑡max =
80, 4th order Trotter decomposition. Figures taken from [1].

4.11 Discussion and outlook

In this chapter we have initiated an in-depth study of real-time thermal field theory properties.
Motivated primarily by holographic models, we studied retarded correlation functions at non-
zero temperature and analyzed their analytic structure in the complex frequency plane, which
gives invaluable insights into dynamical and thermalization properties of the physical system.
By solving a kinetic theory model, we learned that integrability breaking mass deformations
can alter this structure (also) in 2𝐷 systems which are not free. Using a combination of MPO
simulations and a signal analysis procedure based on the Prony method, we extracted the
structure within different classes of the Ising QFT (4.40). Although real-time simulations with
TNs are in general reliable only for a finite time window, we have demonstrated here that
this technique is reliable to extract the singularity and pole structure from the available data.
Notice that we were not interested to predict the full details of correlators at late times (i.e.
beyond the reliable time simulation window), but instead to utilize the available numerical
data at intermediate times to reconstruct relevant features of the model by identifying the
structure of complex modes in Fourier space.

We could benchmark the accuracy of this method in the integrable massive free fermion regime
as well as in the integrable interacting E8 QFT. In the case of nonintegrable QFTs we repro-
duced both the real and imaginary parts of several meson and quasiparticle frequencies that
were earlier found in [178–181]. As the system is heated up we observe the appearance of
frequency poles corresponding to mass differences. Apart from meson poles we also analyzed
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transient poles, which describe decaying contributions to the retarded correlator that are in-
trinsically triggered by non-zero temperatures. In the free fermion case they are related to
Matsubara frequencies [167] and for holographic CFTs correspond to QNMs of AdS3 BH solu-
tions [60,159]. Within the numerical accuracy of our simulations that allow us to study such
frequencies we predict that these modes are not affected by interactions or integrability break-
ing. We confirmed that our conclusions are stable w.r.t. numerical variations in the system
size, bond dimension and other parameters. Overall, our study provides important insights
into thermalization properties of 2𝐷 QFTs, a timely subject, which was recently addressed
e.g. in [202] from a hydrodynamic perspective.
This analysis framework and physical setting opens up several research directions that we
address in the following chapters. In particular, we have focused so far on MPS and more
generally MPO as the underlying type of TNs. It is, however, a intriguing question whether
other TN classes allow a better discretization of the underlying QFT or the extraction of
relevant data. We will address this point of view using the MERA in the following chapter.
Furthermore, the existence of mesons even in rather simple toy models such as the Ising QFT
allows us to investigate physical effects that are in rough analogy to QCD. In chapter 6 we
will follow this exciting research direction to study the phenomenon of meson melting within
a TN approach. Finally, we want to find out how much of information on meson physics
can be deduced from relatively small systems that are experimentally realizable on quantum
simulators. In chapter 7 we analyze that for a model relevant to ion traps.





5 Entanglement renormalization

The line of research in the present part of this thesis is characterized by the description of
a QFT from an underlying lattice discretization. This approach can be seen in general from
two sides: On the one hand, one can ask what is the best discretization scheme for a given
QFT, which then can be solved computationally in interesting regimes. On the other side,
one can explore how much and exactly QFT information can be extracted from a given lattice
model. TN ansätze provide a natural framework to pursue the latter path. Up to now,
we employed MPOs (and MPS) to implement a Hamiltonian formulation of a spin model
with a continuum (Ising) QFT emerging in the IR limit close to criticality. In this form,
the Ising model was defined on a linear line. As we introduced in detail in section 3.6, the
MERA instead represents a TN with a 2𝐷 circuit geometry. By organizing physical degrees of
freedom in different length scales and removing short-range entanglement, a faithful RG flow
is realized. While MPS reproduce by construction properties of gapped systems, the MERA
encodes critical systems more faithfully and therefore allows to extract precise CFT data. In
line with our previous studies, interesting theories can arise from relevant deformations of
CFTs. Hence, having better control over CFT data might result in a better ability to deal
with such theories. Based on these preconditions, we want to analyze in this chapter if scaling
operators originating from the MERA allow a more accurate description of the continuum
theory w.r.t. dynamical quantities. In particular, we will refer to the original nearest-neighbor
Ising Hamiltonian (4.32) as the bare model, and study in comparison an analytic wavelet
solution [43] for the MERA. The latter represents a scale invariant, i.e. infinitely coarsegrained
system at criticality, which reproduces some operator scaling dimensions exactly. We are
interested to make use of the scaling operators, which follow from these analytic MERA tensors,
to calculate from them retarded thermal correlation functions using MPO simulations. In
contrast to the previous chapter, where the lattice operators were given in terms of one-
site Pauli matrices as in (4.49), the MERA operators follow as more complicate numerical
combinations of Pauli matrices, defined on three lattice sites. Both descriptions give rise to
the Ising QFT (4.40) in the continuum. Since the MERA based primary operators partially
encode CFT data exactly, it is a intriguing possibility that the resulting correlation functions
allow a better lattice discretization. In this section, we test this hypothesis for relatively small
system sizes. The motivation for that comes from the fact that the underlying MERA is
defining a scale invariant system, which potentially allows to extract QFT information already
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on small lattices. Such small systems could be realized in experiments, which would open the
avenue for their quantum simulation.

5.1 The wavelet MERA tensor network

In section 3.6 we introduced the MERA as a variational class of TN states, which rests on
numerical simulations by minimizing the energy. In view of holographic interpretations of TNs
as well as for encodings of CFT data, it would be highly desirable to have instead analytic forms
of the MERA tensors available. Evenbly and White provided the first such solution in [43]. 57

This result was obtained by employing concepts of wavelets and wavelet transforms [204].
These are methods originating from the field of signal analysis, which became very important
for data and image compression. In contrast to the standard Fourier transform, which is fully
localized in momentum space and completely delocalized in real space, wavelets are compact
in both spaces. They allow to construct a basis of wavelet functions, which can be used to
represent arbitrary functions. When combined with a scaling transformation, their recursive
(i.e. repeated) application on a lattice valued function resolves information on different length
scales. This similarity with a real space coarsegraining procedure was used in [43] to find
a unitary representation of this discrete wavelet transformation, which resembles exactly the
structure of the MERA when seen as a quantum circuit. In the case of 1𝐷 free spinless
fermions, a MERA circuit built from so-called Daubechies D4 wavelets was found to prepare
an accurate approximation of the ground state of the critical quantum Ising model. For this
solution, the isometry 𝑤 and the disentangler 𝑢 take in the lowest order the form

(5.1)

for the binary MERA. Here, 𝑋𝑌 and others are short notations for tensor products of Pauli
matrices 𝑋, 𝑌, 𝑍 and the identity 𝐼, e.g., 𝑋𝑌 ≡ 𝜎𝑥⊗𝜎𝑦 etc. The definition for 𝑤 is understood
in the sense of (3.36). The analytic forms (5.1) are valid for the smallest possible bond
dimension 𝜒 = 2. In [43], it is also outlined how higher order tensors can be constructed from
multiple contractions, the second lowest being of dimension 𝜒 = 23 = 8. The importance of
this analytic result stems from the fact that this solution allows for a precise encoding of some
conformal data. From the following discussion, this will become apparent even for the smallest
nontrivial bond dimension 𝜒 = 2, which is much lower than for numerically optimized tensors.
Furthermore, this MERA generates a Hamiltonian RG flow to a gapless fixed point in the sense

57An excellent overview and discussion of it and related new results is presented in [203] by one of the authors.
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of (3.36), which was previously thought to be impossible from variational considerations, in
which relevant RG perturbations are numerically introduced.
As described in the general discussion in section 3.6, primary scaling operators follow as eigen-
vectors of the superoperator. Here, the averaged 3-site scaling superoperator for the binary
MERA is defined as

. (5.2)

Its diagonalization yields uniquely the identity operator 𝐼 with scaling dimension ∆𝐼 = 0,
𝜖 = 𝑖𝜓𝜓 with ∆𝜖 = 1 and the spin field 𝜎 with ∆𝜎 = 0.1402 . . . ≈ 1/8 = 0.125 as one
of the eigenvectors, respectively. Amazingly, the first two scaling dimensions are obtained
numerically exactly, i.e. this part of the CFT data is encoded exactly even for the lowest
order combination of Pauli matrices (5.1), while the scaling dimension for the 𝜎 operator
can be improved as ∆𝜎 = 0.1233 at the next analytical order for 𝜒 = 8. Furthermore, the
diagonalization of 𝒮3 yields four degenerate Hermitian eigenvectors with scaling dimension
∆ = 2 (numerically exact). Physical operators with these properties include 𝑇 , 𝑇 , 𝜕𝑡𝜖 and 𝜕𝑥𝜖.
They differ in their conformal spin as 𝑠 = ±2 for the first two and 𝑠 = ±1 for the latter. While
it is in principle possible to devise a scheme to construct the Hamiltonian fixed point density
ℎ* ∼ 𝑇 + 𝑇 from a priori unknown linear combinations of these eigenvectors, it was already
observed in the original work [43], that ℎ* can be obtained alternatively by projecting the bare
Hamiltonian onto the subspace of operators with scaling dimension ∆ = 2. Altogether, we
hence have the operators 𝜖 and 𝜎 at our disposal as well as the Hamiltonian density ℎ*, which
generates the dynamics.

5.2 Real-time correlator simulations

5.2.1 The CFT case

Based on the operators ℎ* and 𝜖 or 𝜎, we can construct thermal states and perform the real-
time evolution of retarded two-point functions using MPO simulations. We consider here the
case of the lowest order wavelet MERA tensors with bond dimension 𝜒 = 2. When we refer to
these fixed point tensors, we denote them as the coarsegrained system. In contrast to the bare
system, in which the operators are one-site tensors, all scaling operators now act on three sites.
To make use of the TEBD algorithm in the form described in section 3.5.2, we symmetrize the
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3-site gates as follows

. (5.3)

This implicit blocking procedure increases the bond or, equivalently, physical dimension from
𝑑 = 2 (rhs of (5.3)) to 𝑑 = 4 (lhs of (5.3)). Thermal expectation values of the retarded
two-point function (4.48) are then calculated as

⟨𝑂1(𝑡)𝑂2(0)⟩𝛽 = Tr
{︀
𝑂1(0)[𝑈(𝑡)𝑂2(0)

√
𝜌𝛽𝑈

†(𝑡)]
√
𝜌𝛽

†}︀ (5.4)

for operators
𝑂1(0) =

∑︁
𝑗

𝜖𝑗,𝑗+1 and 𝑂2(0) = 𝜖𝑁/2,𝑁/2+1. (5.5)

We consider 𝑁 spins with physical dimension 𝑑 = 2, which are treated as a finite chain of
length 𝑁/2 with dimension 𝑑 = 4 and open boundary conditions. The perturbation 𝑂2(0)

√
𝜌𝛽

acts locally on the mid chain position of the thermal state and is subsequently evolved in time
as indicated by the term in brackets. Individual traces w.r.t. the first operator in (5.5) are then
summed up. To faithfully compare the bare and coarsegrained system, we need need to ensure
a proper normalization of the latter. This is achieved by diagonalizing the total Hamiltonian
𝐻 = 𝐽

∑︀
𝑗 ℎ

*
𝑗,𝑗+1 on small lattices and normalizing the first excitation, such that it assumes the

value 1/8 as required by the smallest scaling dimension of all possible Ising CFT primaries. 58

Considering several small system sizes up to 𝑁 = 12, we find the following fit function

𝐽 = (0.134 + 3.33/𝑁2.58)−1. (5.6)

From this setup, we calculate the retarded thermal correlation function for the 𝜖 operator at
criticality. We choose 𝛽𝐽 = 8, which we know from our previous studies to lie in the IR QFT
regime. Fig. 5.1 compares the resulting curves for the coarsegrained system (right panel) to the
bare model (left panel, calculated as discussed in detail in chapter 4) for small up to moderate
chain lengths 𝑁 = 10, 20 and 40. In both scenarios, the fast decay after the first peak at
early times represents the effect of transient poles. After the initial appearance of damped
oscillations, large revival effects are visible, indicating the effect of the finite chain length. As
𝑁 is increasing, the onset of these revivals is accordingly pushed towards later times. The
curves of the bare and coarsegrained model exhibit structural differences, i.e. the decay and
oscillation pattern is not identical. Note for example that the magnitude of the first peak is
strongly modified by finite size changes in the bare model but not in the coarsegrained case.
Overall, however, there do not seem to be fundamental differences between the two cases. By
that we mean that systems of the same size exhibit a similar time onset of revivals for both the

58In [43] it was observed that the resulting numerical energy spectrum resembles already for 10 sites closely
the low-lying Ising CFT spectrum, which is determined by the scaling dimensions of the primary operators.
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Figure 5.1: Comparison of the time-dependent transverse retarded thermal correlation
functions of the 𝜖 operator in the bare model (left panel) and coarsegrained system (right
panel). Simulations are performed for chains of different sizes 𝑁 at the critical point of the
quantum Ising model (𝛽𝑀ℎ = 𝛽𝑀𝑔 = 0).
Numerical parameters: 𝛽𝐽 = 8, 𝜒 = 150, 𝐽𝛿𝑡 = 0.02, 𝐽𝑡max = 20, 2nd order Trotter
decomposition.

bare and coarsegrained simulation. Although the latter one is based on a Hamiltonian, which
follows through an infinite number of RG steps from the bare one, that property does not seem
to translate directly into different finite size dependencies when discretized on a linear lattice.

From these results it becomes apparent that we need a sufficiently large chain also in the
coarsegrained system to reliably identify the QFT part of the correlator signal. We therefore
analyze the signal for 𝑁 = 40 in more detail. In Fig. 5.2, the results of the Prony signal
analysis are compared for the bare model (in the left panel) and coarsegrained system (in the
right panel). In contrast to our previous studies in chapter 4 for large systems, we here analyze
only the time window up to 𝑡𝐽 = 5 to avoid finite size imprints in the signal (cf. the color
bar). While the bare simulation exhibits the usual vertical UV branch cut at 𝜔/𝐽 ≈ 8, the UV
behavior of the coarsegrained simulation is altered. The latter one shows additional double
branch cut structures at larger frequency values. Due to the indefinite relation between the UV
scale in the bare and coarsegrained system, we are not able to provide an analytical expectation
for this analytical structure. Instead, our simulations here have predictive character for this
particular aspect. In contrast to the bare model, the IR and UV are separated even more here,
which necessarily is an outcome of the RG flow of the MERA. Apart from the branch cut, both
simulations show the first transient at the expected analytical position 𝛽/2𝜋 Im(𝜔) = −1. Al-
though the coarsegrained simulation is able to capture this thermal feature, the corresponding
pole is more fuzzy. From a detailed analysis using the methodology introduced in section 4.9.1,
we find the values −0.998 ± 0.004 in the bare model and −1.020 ± 0.040 in the coarsegrained
system for the position 𝛽/2𝜋 Im(𝜔1) of the first transient pole. As we emphasized previously,
apart from this frequency value, its associated residue value is important to compare with the
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CFT prediction. Since the relatively small size limits the available time window, a reliable
extraction of this value is, however, not possible in this case. Contrary to the bare simulation,
there is no indication for the second transient pole visible in the coarsegrained simulation.

5.2.2 The interacting E8 regime

In section 4.9.1 we came to the conclusion that the position of the first transient pole in the
complex frequency plane does not change for perturbations away from criticality, independent
from phase properties. Here, we check this prediction for a perturbation of the critical fixed
point Hamiltonian with 𝜎 into the interacting 𝐸8 QFT regime to confirm the stability. In
other words, we construct a thermal state at 𝛽𝐽 = 8 w.r.t. the Hamiltonian density ℎ :=

𝐽ℎ* + 𝜎. To have longer time windows available, we choose a chain of 𝑁 = 60 sites. Fig. 5.3
shows the corresponding result of the Prony analysis. It should be noted at this point, that
the simulations of the coarsegrained system are computationally much more demanding and
costly. One reason is that due to the symmetrization in eq. (5.3), contractions with physical
indices enter squared in their dimension as compared to the bare calculation. Furthermore, the
truncation error, as defined in section 3.5.2, is growing larger for wavelet based simulations.
This is visible from Fig. 5.4, which shows the time dependence of this quantity. For the
previously considered critical case at 𝑁 = 40, the coarsegrained system (blue solid curve)
is growing larger than the bare system (orange solid curve) at early times, but reaches a
comparable magnitude at the latest times. In the present case in the E8 regime (blue dashed
curve), the truncation error at late times is several orders of magnitudes larger instead. We
therefore choose only the the time interval up to 𝑡𝐽 = 7 for the Prony analysis, in which finite
size effects are not yet present and the truncation error is sufficiently low. In the corresponding
Prony result, several spurious poles appear in the frequency plane. The first transient pole
is visible as a fuzzier structure than at criticality. We can extract the value 𝛽/2𝜋 Im(𝜔1) =

−1.02 ± 0.04 for its location, which is again consistent with what constitutes the CFT result,
i.e. our original claim.

5.2.3 Discussion and outlook

In this chapter we explored the capabilities of wavelet based MERA tensors to encode thermal
QFT information from a dynamical viewpoint. Focusing on the lowest order solution with
physical dimension 𝑑 = 2 and its corresponding scaling operators, the outcome is that MPO
simulations of retarded correlators allow at most an equally good resolution of the first transient
pole as an intrinsic finite temperature effect when compared to the bare system. This comes
as a surprise to us, since from the underlying RG flow in the MERA, which generates the
fixed point tensors with their exact scaling dimensions, we expected that the encoding of
thermal QFT data could have been better. Instead, the bare and coarsegrained system show a
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Figure 5.2: Results of the Prony frequency analysis for the transverse retarded correlator
of the 𝜖 operator at criticality in the bare (left) and coarsegrained (right) system. In both
cases, a chain of 𝑁 = 40 sites is considered, corresponding to the green curves in Fig. 5.1.
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Figure 5.3: Results of the Prony frequency analysis for the transverse retarded correlator
of the 𝜖 operator in the E8 regime. The results are obtained in the coarsegrained system.
Numerical parameters: 𝛽𝐽 = 8, 𝑁 = 60, 𝜒 = 200, 𝐽𝛿𝑡 = 0.02, 𝐽𝑡max = 20, 2nd order Trotter
decomposition.
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Figure 5.4: Time dependence of the truncation error in the finite size TEBD algorithm for
several systems.

similar finite size dependence of the correlation function for the same number of spins-1/2 on
a chain. Therefore, a reliable extraction of QFT data from the wavelet tensors is not possible
for smaller system sizes than for the bare case. Naively, this might be understood from the
fact that in both scenarios the physical dimension 𝑑 = 2 is identical and simply no better
encoding of the Ising CFT is possible at this matrix size. Indeed, in preliminary studies we
see indications that the next higher order wavelet solution with 𝑑 = 8 allows a better encoding
of spectral properties. This seems to support the picture, that an exact encoding of the CFT
data might be formally available in the limit of 𝑑 → ∞. However, similar calculations of
dynamical quantities with such tensors would be computationally very costly, and it is not yet
clear if they are feasible at all. From a broader perspective, it would be desirable to explore
in a similar vein also other quantities of interest, including static ones. In transition to our
next chapter, this could encompass in particular entanglement measures and entropies, which
provide invaluable insights into QMB systems and QFTs.



6 Meson melting

6.1 Motivation from QCD

Emergent phenomena of QFTs under extreme conditions can pose significant challenges for
their theoretical treatment. Our motivation here is again driven by QCD at finite tempera-
ture, where the melting process of mesons, as one such example, is of major interest in the
theoretical and experimental community. Building up on our general introduction to QCD
and HICs in section 4.1, we provide here an introduction into the topic based on the recent
and comprehensive review [205]. Apart from a conceptual understanding of quarkonium in
conditions similar to the first microsecond after the big bang in the early universe, the signifi-
cance of the meson melting mechanism and its inverse, the recombination of individual quarks
into bound states, stems from the fact that it causes observable effects in the experimental
detection of a HIC. This is the reason why historically the suppression and melting of meson
are studied and discussed often together.

The key task at hand is the development of theoretical tools to characterize the physics of
a meson as a nonperturbative bound state immersed in a thermal environment consisting of
the QGP and nuclear matter. Over the last decades, the understanding of this setup shifted
from a static to a dynamical paradigm to explain meson melting as a sequential process. The
precise nature of the strong interactions between meson states and the deconfined environment,
and more generally the hadronization and thermalization process itself, are currently not
understood from a detailed microscopic theory or at least model.

In this chapter, we want to introduce a new paradigm in the understanding of meson melting
by studying entanglement measures. We see this as an important new concept for a compre-
hensive understanding of the melting phenomenon. The simple reason is that beyond QCD as
the underlying QFT, in which particles are mathematically described as field excitations, the
system under consideration is additionally also a QMB problem. In the latter viewpoint, en-
tanglement is the key property, which mediates correlations among the constituents. Its study
therefore can unveil new features which are not accessible by other approaches. In the present
work, we focus on nonintegrable parameter regimes of the 2𝐷 Ising QFT with mesons in the
spectrum. Inspired by the two different viewpoints, we study both static and time-dependent
thermal states in the thermodynamic limit of the quantum Ising model near its critical point.
The entanglement content in the QMB system is probed by analyzing (generalized) entangle-
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ment entropies, which, in contrast to QFT methods, are easily available with TN simulations.
The dynamical setup is generated by a quantum quench - a common method, which creates
an out-of-equilibrium state through an (instantaneous) parameter change in the underlying
Hamiltonian. This protocol can be seen as a theoretical method by itself, since it can induce
entirely new dynamical features to the system. We use it to mimic a a dynamical situation
as in the modern QCD viewpoint on meson melting. The next two subsections deepen the
background on meson melting from the QCD side to provide a more complete overview.

6.1.1 Theoretical methods

Spectral functions are the main quantity studied within thermal field theory to describe mesons
in a medium. To derive them, let 𝑀(𝑥⃗, 𝑡) ≡ 𝑞𝑓 (𝑥⃗, 𝑡) Γ 𝑞𝑓 (𝑥⃗, 𝑡) be the meson operator con-
structed from the Dirac spinor 𝑞𝑓 of a quark with flavor 𝑓 and Γ is the vertex operator - a
combination of gamma matrices, which selects the spin and angular momentum. 59 Real-time
properties such as strength and form of field fluctuations are captured by the time-ordered
two-point function

𝐷(𝑥⃗, 𝑡, 𝑥⃗0, 𝑡0) = ⟨𝒯𝑀(𝑥⃗, 𝑡)𝑀 †(𝑥⃗0, 𝑡0)⟩𝛽 = Tr{𝜌𝛽𝒯𝑀(𝑥⃗, 𝑡)𝑀 †(𝑥⃗0, 𝑡0)} (6.1)

=

∫︁
d[𝐴+, 𝑞+𝑓 , 𝑞

+
𝑓 ]d[𝐴−, 𝑞−𝑓 , 𝑞

−
𝑓 ] ⟨𝐴+, 𝑞+𝑓 , 𝑞

+
𝑓 |𝜌𝛽|𝐴−, 𝑞−𝑓 , 𝑞

−
𝑓 ⟩ ·

·
∫︁ 𝐴−,𝑞−𝑓 ,𝑞−𝑓

𝐴+,𝑞+𝑓 ,𝑞+𝑓

𝒟[𝐴, 𝑞𝑓 , 𝑞𝑓 ]𝒯𝑀(𝑥⃗, 𝑡)𝑀 †(𝑥⃗0, 𝑡0) e𝑖𝑆QCD,𝑐𝑙 . (6.2)

Here, 𝒯 is the the time-ordering operator, 𝑆QCD,𝑐𝑙 is the QCD action following from the
classical Lagrangian (4.1), 𝐴 is the short-hand notation for the gluon fields and the superscripts
± denote the forward and backward branch of the Schwinger–Keldysh contour, over which
the path integral in (6.2) is taken in the complex time plane. The first part in the path
integral on the second line contains the thermal density matrix elements and represents the
initial conditions, while the remaining term on the third line describes the quantum dynamics.
Similar to our considerations in chapter 4, the related definition of the retarded correlator,

𝐷𝑅(𝑥⃗, 𝑡, 𝑥⃗0, 𝑡0) = 𝜃(𝑡− 𝑡0)⟨[𝑀(𝑥⃗, 𝑡),𝑀 †(𝑥⃗0, 𝑡0)]⟩𝛽, (6.3)

59See [205] for a detailed selection of possible choices. In the simplest cases, the identity 1 or gamma matrix
𝛾𝜇 can be chosen.
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is of particular relevance here since it appears in the following decomposition of the time-
ordered two-point function

𝐷(𝑥⃗, 𝑥⃗0, 𝑡, 𝑡0) =
1

2
⟨{𝑀(𝑥⃗, 𝑡),𝑀 †(𝑥⃗0, 𝑡0)}⟩𝛽 +

1

2
sign(𝑡− 𝑡0)⟨[𝑀(𝑥⃗, 𝑡),𝑀 †(𝑥⃗0, 𝑡0)]⟩𝛽 (6.4)

≡ 𝐹 (𝑥⃗, 𝑡, 𝑥⃗0, 𝑡0) −
𝑖

2
sign(𝑡− 𝑡0)𝜌(𝑥⃗, 𝑡, 𝑥⃗0, 𝑡0). (6.5)

Here, we defined the statistical function 𝐹 , which measures the population of states, and the
spectral function 𝜌. In a QCD context, the latter quantity is typically considered in Fourier
space via a Wigner transformation, in which relative frequency and momentum coordinates
(𝑝, 𝜔) are used. It is then given in thermal equilibrium as the negative imaginary part of the
retarded correlator,

𝜌(𝑝, 𝜔) = − Im[𝐷𝑅(𝑝, 𝜔)]. (6.6)

The spectral function in this form probes the particle content of the physical system. Fig. 6.1
shows some example calculations for QCD. Meson bound states show up as peaks at frequency
values given by their masses. They depend on the momentum 𝑝, following the (relativistic)
dispersion relation of the QFT. Above the continuum threshold, given by twice the mass of
the lightest particle, unbound particle pair peaks can appear within a continuous background
structure. The thermal width of any such peak is proportional to the inverse lifetime of the
corresponding (quasi)particle. Another important quantity is the binding energy of a bound
state, which is given by the difference of its mass peak to the continuum threshold. In the
special case of a regularized theory with a discrete spectrum, the spectral function can be
written in terms of energy eigenstates |𝑛⟩ and |𝑚⟩ as

𝜌(𝜔) =
1

𝑍𝛽

∑︁
𝑛,𝑚

e−𝛽𝐸𝑛 {𝛿[𝜔 + 𝐸𝑛 − 𝐸𝑚] − 𝛿[𝜔 + 𝐸𝑚 − 𝐸𝑛]} |⟨𝑛|𝑀(𝑡0)|𝑚⟩|2, (6.7)

where all described features translate into single and densely spaced delta peaks.

Within QCD, there are several methods established to calculate spectral functions. Each of it
has intrinsic limitations as reviewed in detail in [205]. First, effective field theory approaches
make use of the fact that meson flavors of large mass can be integrated out to get a nonrela-
tivistic approximation of QCD. The resulting expansion in energy scales is, however, truncated,
limiting the physical content of the description. Furthermore, lattice QCD allows a nonpertur-
bative treatment on a discretized spacetime lattice based on Monte Carlo sampling. However,
the computations in taking the continuum limit are numerically extremely expensive. Both
these methods give access to the Euclidean correlator

𝐷𝐸(𝑥⃗, 𝜏) = ⟨𝑀(𝑥⃗,−𝑖𝜏)𝑀 †(⃗0, 0)⟩𝛽, (6.8)
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Figure 6.1: Left: Frequency dependence of the Euclidean in-medium bottonium spectral
function based on an effective nonrelativistic QCD description on the lattice [206].
Right: The same for the charmonium flavor, based on a lattice vetted potential method [207].
Figures taken from the arXiv version of [205]. (See this reference and citations therein for
details.)

which is related in Fourier space to the spectral function via the integral transformation

𝐷𝐸(𝑝, 𝜏) =
1

𝜋

∫︁ ∞

−∞
d𝜔

e−𝜏𝜔

1 − e−𝛽𝜔
𝜌(𝑝, 𝜔). (6.9)

The extraction of 𝜌(𝑝, 𝜔) from this relation for only a limited number of discrete, uncertainty-
prone lattice data points limits the quantitative robustness of the results. An alternative
approach is based on a potential method. To define it, consider the real-time Wilson loop

𝑊�(𝑟, 𝑡) = 𝒫 exp

[︂
𝑖𝑔

∮︁
𝑟×𝑡

𝐴𝜇d𝑧𝜇

]︂
(6.10)

along a rectangular path of size 𝑟 times 𝑡 in the spatial and time direction. The static interquark
potential 𝑉𝑠 is then defined as

𝑉𝑠(𝑟) = lim
𝑡→∞

𝑖𝜕𝑡𝑊�(𝑟, 𝑡)

𝑊�(𝑟, 𝑡)
. (6.11)

This potential together with a mass and kinetic term defines a Hamiltonian, which governs the
time evolution of the two-point meson correlator via the Schrödinger equation. The imaginary
part of its solution in Fourier space yields the spectral function. The accuracy of this method
is limited through the omittance of finite velocity corrections.
Overall, the presented methods of determining in-medium spectral functions for quark bound
states at finite temperature provide the basis for our current understanding of the meson
melting process, which we summarize now in the next subsection.

6.1.2 Phenomenology of the melting process

The influential work [208] initiated studies on suppression and melting of mesons. Starting
from an analogy with Debye screening in an electromagnetic plasma, the authors argue that
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the QGP created in a HIC weakens the binding energies of meson bound states in the ther-
mal environment, causing a suppression of meson detection rates. Building up on that, the
work [209] put forward the picture of a sequential process. In this static scenario, a in-medium
Hamiltonian describes mesons as its eigenstates. The potential term in the Hamiltonian gets
weaker for increasing temperatures, such that bound states transform into scattering states
at a unique melting temperature. Weakly bounded mesons states melt first, while strongly
bounded ones survive longer in the thermal medium. The work [210] opened a new way of
thinking about this process by showing that the quark potential (6.11) is complex. This im-
plies that a meson bound state is a dynamical system, which interacts constantly with its
thermal environment by scattering processes. In this modern picture, the melting process is
best understood from the behavior of spectral functions in dependence of the temperature,
which can be calculated by one the methods described above. Fig. 6.1 shows an example for
two different flavors. With increasing temperature (from blue to red curves), the meson peaks
move towards smaller frequency values. Their magnitude is decreasing while their thermal
width is increasing. Peaks at larger frequencies, i.e. lower binding energies, melt first and their
peak structure dissolves completely into a continuum. The combination of thermal broaden-
ing and decreasing of the binding between the quarks means that mesons transition into other
(unknown) states. The dynamical origin of this process is not known from this description.
As a consequence, the definition of a melting temperature in this time-dependent, sequential
scenario is not uniquely determinable any more and a less important concept. The overall
intuitive picture drawn in [205] is that the thermal environment acts as a sieve that filters
out weakly bounded meson states, which are exposed to intensifying scattering events as the
temperature is raised.

From these elaborations, it becomes obvious that only a fully real-time treatment can describe
all dynamical processes contributing to the melting of meson bound states. The open quan-
tum systems approach provided new insights in this direction (see, e.g., references in [205]). It
treats the interactions between a system (quark-antiquark pair) and its environment (thermal
medium) in a real-time Schrödinger formalism. Because of the sign problem, a fully nonpertur-
bative QCD calculation is not available on the lattice in this framework. Interestingly, it could
link the melting process to the quantum mechanical effect of decoherence (see e.g. [211,212]
and references in [205]). In this line of research, we would like to integrate the real-time
quench studies, which we will present in this chapter. The ab initio setting gives us access to
entanglement entropies as fundamentally quantum mechanical properties, which we expect to
drive the melting phenomenon. In contrast to the usual QCD frameworks, these entropies are
directly available in the spin-chain language, which we employ as models to study mesons in
2𝐷 QFTs.
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6.2 Insights from holographic models

Also in the context of meson melting, holographic approaches provide a framework to study
high-temperature properties of quarkonium. We briefly want to point out some major lessons
from these explorations, based on the recent series of papers [213–220], which are jointly
discussed in [221]. The basic ingredient is the description of meson states as test particles in
a fixed asymptotic AdS spacetime. 60 The underlying action

𝑆 =

∫︁
d4𝑥d𝑧

√−𝑔 e−𝜑𝐺(𝜑)𝐹𝑚𝑛𝐹
𝑚𝑛 (6.12)

contains a dilaton field 𝜑, a flavor coupling function 𝐺(𝜑), and a 𝑈(1) gauge field 𝑉𝑚 in the
definition 𝐹𝑚𝑛 = 𝜕𝑚𝑉𝑛 − 𝜕𝑛𝑉𝑚 of the field strength tensor. The dilaton breaks conformal
symmetry and models the running coupling in QCD. Upon a field redefinition 𝜓 in Fourier
space, the equation of motion of the gauge field takes in tortoise coordinates 61 the Schrödinger
form (︀

𝜕2𝜉 − [𝑈𝑇 −𝑚2]
)︀
𝜓 = 0 (6.13)

with a temperature-dependent potential 𝑈𝑇 . Normalizable solutions of this equation yield a
discrete mass spectrum 𝑚2

𝑛 (𝑛 ∈ N). The original soft-wall model of [222] uses a quadratic
ansatz (w.r.t. 𝑧) for the dilaton field and the simplest choice 𝐺 ≡ 1 to enforce a linear spectrum
of the form 𝑚2

𝑛 = 𝑐0 + 𝑐1𝑛, which matches experimental data of radial meson excitation
spectra at 𝑇 = 0. At finite temperature, the potential well in 𝑈𝑇 (𝑧) is decreasing, implying
the existence of lesser bound states. In other words, the model is capable of reproducing the
sequential melting of meson states. A typical example for such a scenario is shown in the left
panel of Fig. 6.2. Further studies in [223–230] on refinements of this model found, however,
unrealistic melting temperatures much below the QCD deconfinement scale 𝒪(150 MeV). The
authors of [213–220] resolved that problem by finding one-parameter extensions of the metric
and dilaton as well a construction principle for the blackening function that result in consistent
melting temperatures, and, at the same time, exhibit thermodynamic properties consistent
with the equation of state from lattice QCD. While this approach is based on ad-hoc ansätze
for the background, the latter can be determined also self-consistently, for example, in a
Einstein–dilaton model, defined by the action

𝑆 =
1

16𝜋𝐺
(5)
N

∫︁
d4𝑥d𝑧

(︂
𝑅− 1

2
(𝜕𝜑)2 − 𝑉 (𝜑)

)︂
, (6.14)

60As test particles, different meson flavors do not react back between themselves nor with the metric and the
dilaton.

61The tortoise coordinate 𝜉 follows from the blackening function 𝑓 and the holographic coordinate 𝑧 as d𝜉 =
d𝑧/𝑓 . The mass 𝑚 is the zero component 𝑝0 of the four-momentum.
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Figure 6.2: Left: Temperature dependence of the Schrödinger potential 𝑈𝑇 in the soft-wall
holographic model of [213] for a specific set of parameters. The dashed curve is for 𝑇 = 0,
solid curves are for temperatures indicated by the labels (in units of MeV). The first three
meson bound states are marked. Figure taken and adapted from the arXiv version of [213].
Right: Spectral function of the ϒ-meson for a specific parameter set in the holographic
model of [220]. The colors correspond to the different temperatures 100 MeV (blue), 150 MeV
(green) and 200MeV (red). Figure taken from the arXiv version of [220].

where the dilaton potential 𝑉 (𝜑) governs the thermodynamic system properties. It was found,
that then only non-trivial flavor functions 𝐺(𝜑) allow a consistent description of both meson
trajectories (governed by 𝑈𝑇 ) and thermodynamic functions (as a crossover deconfinement
transition). Based on the linear response framework for holographic settings (cf. section 4.3),
one can calculate the spectral function 𝜌(𝜔) = − Im𝐺𝑅(𝜔) from the boundary asymptotics of
the bulk field. The right panel in Fig. 6.2 shows a result for a selected meson species. In [220],
this lead to the observation that the temperature, at which a peak forms in the spectrum
might be much larger than the melting temperature following from the Schrödinger potential.

Overall, we can fairly conclude that holographic methods do not yet reach the level to provide
robust quantitative predictions of all QCD relevant features (meson trajectories, thermody-
namic quantities, spectral functions). As noted also in [205], some of the holographic models,
e.g. in the recent work [231], predict the melting of spectral functions towards larger frequencies
at high temperatures, which is in direct contradiction to the QCD results shown in Fig. 6.1.

In contrast to QCD based methods, holographic approaches provide the advantage of giving
access to entanglement measures. Starting with the work [232], it was observed that holo-
graphic entanglement entropy can serve as a probe (i.e. order parameter) of the confinement-
deconfinement transition. 62 However, no studies so far analyzed this phenomenon explicitly
related to meson states or their melting process. Our TN simulations in the next sections
therefore provide the genuinely first study of entanglement in this physical context.

62See also our earlier work [233] and references therein, where we studied this quantity in a Einstein–Maxwell–
dilaton model to characterize different structures in the QCD phase diagram.
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6.3 Results from tensor network simulations

6.3.1 Thermal correlator studies

The previous two sections have shown clearly that in a QCD context meson melting is indicated
by a thermal broadening and movement of peaks in the in-medium spectral function. In the
Ising spin chain model introduced in chapter 4, we have studied in detail retarded thermal
correlation functions. In this setup, in which the IR is governed by the 2𝐷 Ising QFT, we do
not have an explicit meson operator available. However, due to the sensitivity of the 𝜖 operator
with scaling dimension ∆𝜖 = 1 as a real-time probe of meson frequencies, as demonstrated in
section 4.10, and the intimate relation of the spectral function with the retarded correlator, it is
justified to expect that the melting of meson bound states could show up at high temperatures
as the emergence of an imaginary part in the frequency of a meson pole or a change of its
real part. In the Fourier spectrum along the real frequency axis, this would correspond to a
broadening of the thermal peak. However, in none of our previous simulations, such features
were visible. Since we considered the retarded correlator in chapter 4 at the nonintegrable
point 𝑀ℎ/𝑀𝑔 ≈ 0.09 near the E8 theory, it is a viable possibility that this potential change in
the signal is suppressed due to proximity to the integrable E8 regime.

To examine if this hypothesis holds, we compute here retarded thermal correlators via MPO
simulations at the nonintegrable point 𝑀ℎ/𝑀𝑔 ≈ 0.91 in the ferromagnetic Ising phase, i.e.
at about an order of magnitude larger transverse mass perturbations than before. We choose
𝛽𝐽 = {0.5, 1, 2, 4, 16} and 𝛽𝑀ℎ = {0.25, 0.5, 1, 2, 8}. Measuring the temperature in units of
the first physical meson mass 𝑀1/𝐽 ≈ 1.4, which we extract from the results of [180], the
parameters result in 𝛽𝑀1 ≈ {0.7, 1.4, 2.8, 5.6, 22.3}. Fig. 6.3 shows the time dependence of
the retarded correlator for three selected temperatures. Transient effects, which we studied
in section 4.9, correspond to the rapidly decaying peak at early times while mesons show
up as persisting oscillations at late times. With increasing temperatures (blue towards red
curve), these oscillations are seemingly suppressed. Using the quantitative method outlined in
section 4.9, we extract in Fig. 6.4 the residue of the first meson pole as the mean normalization
coefficient corresponding to its frequency in the Prony analysis. At low temperatures, 𝛽𝑀1 & 5,
the residue is nearly identical, i.e. not changing. On the other hand, it is decreasing by two
orders of magnitude at high temperatures (𝛽𝑀1 . 3), which quantifies the visual suppression
of meson oscillations in Fig. 6.3. Despite this decreasing of meson residues with increasing
temperatures, this effect is not accompanied by any movement of the first meson pole in the
complex frequency plane. That is, no thermal broadening via an imaginary part of the complex
frequency can be associated to the first meson peak. Based on our previous observations, this
conclusion seems to be robust against different parameter regimes of the underlying QFT.

In summary, a direct analogous analysis inspired by QCD approaches does not provide an
identical phenomenological picture regarding meson melting. While we can observe a decaying
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Figure 6.3: Time dependence of the (transverse) retarded thermal correlator in the non-
integrable ferromagnetic phase of the Ising model at 𝑀ℎ/𝑀𝑔 ≈ 0.91. Late-time frequencies
are dominated by meson masses and mass differences. Simulation parameters: 𝐿 = 200,
𝜒 = 200, 𝐽 𝛿𝑡 = 0.006 (at 𝛽𝐽 = 0.5), 𝐽 𝛿𝑡 = 0.01 (otherwise), 2nd order Trotter decomposi-
tion.

meson residue, this effect does not correspond to thermal broadening and frequency shift. We
therefore cannot assess with certainty, if this process is induced by the melting of individual
meson states. This might be not surprising, since we do not have an accurate meson operator
at out disposal. On the other hand, it cannot be excluded that the observed properties are
specific for the special 2𝐷 Ising QFT under consideration. To get a better phenomenological
understanding, we therefore start now considering entanglement measures. The motivation
for this approach comes from the fact that entanglement entropies are sensitive to several
correlations existing in the system and therefore could provide a better probe of meson features
at high temperatures.

6.3.2 Thermal Rényi entropy scaling

In this section we study entanglement properties of thermal states, i.e. in a static (equilibrium)
setting. Entanglement entropy, as defined in eq. (2.18), is a rigorous entanglement measure
for pure states. For mixed states, it receives contributions both from classical (here thermal)
and quantum correlations. In absence of quantum correlations, it is in thermal systems even
identical to the statistical entropy. Such an entwinement is also existing for Rényi entropies,
but it is less pronounced due to their higher-order powers in the reduced density matrix. We
therefore now consider the second Rényi entropy density as a quantity which can characterize
to large extent entanglement properties also in thermal states, defined by

𝑠2 = − 1

𝑁
log

Tr 𝜌2𝛽
(Tr 𝜌𝛽)2

. (6.15)
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Figure 6.4: Temperature dependence of the residue 𝑟1 of the first meson pole. The residue
is extracted from the Prony method applied to the real-time correlator signal from MPO
simulations. Temperatures are measured in units of the first physical meson mass 𝑀1.

Here, we analyze the global thermal state 𝜌𝛽 = exp[−𝛽𝐻] for the Ising system in the ther-
modynamic limit. That is, the iTEBD algorithm (see section 3.5.3) is used to represent the
purification √

𝜌𝛽 ≡ exp[−(𝛽/2)𝐻] as a 2-site MPO for the unit cell. Since the normalization
condition Tr 𝜌𝛽 = 1 is naturally obeyed in the canonical form, the second Rényi entropy density
then follows directly from the dominant eigenvalue 𝜂 of the transfer operator E𝜌2𝛽

as

𝑠2 = − log 𝜂. (6.16)

For the thermal system under consideration, the transfer operator E𝜌2𝛽
takes the form

, (6.17)

where a trace over the physical indices is implied. 63 The value of 𝜂 can be determined efficiently
by considering the action of E𝜌2𝛽

on an eigenvector and using iterative eigensolvers.

We are again interested in the nonintegrable ferromagnetic phase, where our TN simulations
have the most predictive power. We choose the same Ising QFT parameter point as in sec-
tion 4.10, specified by 𝑀ℎ/𝑀𝑔 ≈ 0.09. Additionally, we vary the individual masses 𝑀ℎ and 𝑀𝑔

according to the parametrization

𝑀
(𝑛)
ℎ,𝑔 =

𝑀
(0)
ℎ,𝑔

2𝑛
, (6.18)

63In (6.17), the two columns represent the two repeating sites in the 2-site unit cell of the translational invariant
chain. Light boxes symbolize √

𝜌𝛽 and darker boxes respectively the adjoint √
𝜌𝛽

†.
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keeping their ratio constant. The values 𝑀 (0)
ℎ /𝐽 = 0.125, 𝑀 (0)

𝑔 /𝐽 ≈ 1.356 are identical to
the parameters of section 4.10. For increasing values of 𝑛, the masses are decreasing, i.e. we
approach the critical point in the phase diagram. 64 The resulting masses 𝑀1/𝐽 of the first
meson, which we read out from [180], are hence also decreasing. For a fixed range of lattice
spacing values, 𝛽𝐽 ∈ [1, 16], we therefore can probe different physical temperatures, measured
in units 𝛽𝑀1.

Before discussing the results of these simulations, let us consider the expected scaling behavior
in the transverse Ising model, i.e. without longitudinal field perturbations causing confinement.
From the free fermion mapping (cf. section 4.5), the partition function follows as

𝑍𝛽 = Tr
[︀
e−𝛽𝐻

]︀
=
∏︁
𝑘

2 cosh

(︂
𝛽𝜖𝑘
2

)︂
, (6.19)

where the single-particle energies are given in (4.39). The definition (6.15) implies immediately
that the second Rényi entropy density can be calculated as 𝑠2 = 2𝛽[𝑓(2𝛽) − 𝑓(𝛽)], where the
free energy density is given as

𝑓(𝛽) = − 1

𝑁𝛽
log𝑍𝛽 = − 1

𝛽
log 2 − 1

𝑁𝛽

∑︁
𝑘

log

[︂
2 cosh

(︂
𝛽𝜖𝑘
2

)︂]︂
. (6.20)

This results in

𝑠2(𝛽) = log 2 − 1

𝑁

∑︁
𝑘

log

[︃
cosh(𝛽𝜖𝑘)

cosh2(𝛽𝜖𝑘
2

)

]︃
. (6.21)

In the thermodynamic limit (𝑁 → ∞), the discrete sum is replaced by the integral expression

𝑠2(𝛽) = log 2 − 1

𝜋

∫︁ 𝜋

0

d𝑘 log

[︃
cosh(𝛽𝜖𝑘)

cosh2(𝛽𝜖𝑘
2

)

]︃
. (6.22)

At low temperatures, i.e. in the limit 𝛽 → ∞, one can assume that the dominant contribution
to 𝑠2 originates from 𝑘 = 𝜋, which gives

𝑠2 ∼
e−2𝛽𝐽 |ℎ−1|√︁

𝜋𝛽𝐽ℎ
|ℎ−1|

. (6.23)

Note that the term |ℎ − 1| is proportional to the free fermion mass 𝑀ℎ = 2𝐽 |1 − ℎ|. On the
other hand, at the critical point (ℎ = 1), the integral can be evaluated to give a power-law
decay with the inverse temperature,

𝑠2 ∼
𝜋

16

(︂
1

𝛽
+

1

16𝛽3
+ . . .

)︂
. (6.24)

64This means nothing else than taking the scaling limit described in section 4.5.3.
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The exponential scaling at low temperatures in the massive free fermion regime is clearly
distinct from the power-law decay at high temperatures at criticality. While we do not have a
prediction for the scaling in the nonintegrable ferromagnetic regime, it is tempting to assume
that the temperature dependence could be equally determined by the existence of a mass gap
in the spectrum. To test this hypothesis, we need to analyze both the low-temperature regime,
given for 𝛽𝑀1 ≫ 1, and the high-temperature regime, given by 𝛽𝑀1 . 1. In the latter case,
we additionally need to ensure that the result is not dominated by lattice excitations, i.e.
𝛽/𝑎 & 1.

Fig. 6.5 (left panel) shows the behavior of 𝑠2 in dependence on the temperature 𝛽𝑀1. In
all parameter examples, a linear behavior in the logarithmic axis scaling is visible at low
temperatures. In the right panel, we analyze this regime quantitatively (exemplarily for 𝑛 = 1)
by applying the Prony analysis on the signal as a function of 𝛽𝐽 and decomposing it into
harmonic contributions with complex parameters. Assuming 𝛽𝐽 to be artificially complex
valued, two clear poles on the imaginary axis are visible. They quantify the exponential decay
at low temperatures. The values agree with the masses of the first two meson states (shown
as black circles). Based on these findings, we postulate the following low-temperature scaling
of the Rényi entropy density

𝑠2 ∼
∑︁
𝑖

𝑐𝑖 e−𝛽𝑀𝑖 (6.25)

for some coefficients 𝑐𝑖 and meson masses 𝑀𝑖, whereby 𝑀1 is obviously dominating. This
form of the asymptotic scaling is the natural generalization of the massive free fermion result
𝑠2 ∼ e−𝛽𝑀ℎ in (6.23).

Fig. 6.6 (left panel) shows again 𝑠2 in dependence on 𝛽𝑀1 but emphasizing the high-temperature
regime in a double-logarithmic plot. To the left of the grey line the high temperature regime
𝛽𝑀1 . 1 starts, while the dashed lines denote the estimated lattice scale for each curve. As 𝑛
is increasing, i.e. the individual masses 𝑀ℎ,𝑔 are decreasing, one can observe the emergence of
a linear scaling in between these two curves, indicating a power-law behavior. Assuming the
general functional dependence

𝑓(𝛽) ∼ 𝛽−𝑝, (6.26)

we extract in Tab. 6.1 the values of the power-law exponents 𝑝 from a linear fit to the numerical
data in between these two scales. For 𝑓 = 𝑠2, the value 𝑝 = 1 is obtained with a very good
accuracy of only a few percent. This implies that the high-temperature scaling behavior
matches the CFT expectation from (6.24). Based on the clear observation of meson states in
the entropy scaling at low temperatures and their absence at high temperatures, we interpret
this signature as strong evidence for meson melting. In this regime, which is not yet influenced
by the lattice scale, melted meson states do not leave an imprint on the entropy scaling any
more, which is why the scaling is identical to a critical system. To further corroborate this
finding, we additionally analyse also the scaling behavior of the thermal entropy (right panel
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Figure 6.5: Left: Temperature dependence of the Rényi entropy density 𝑠2. The curves
are calculated using iMPO simulation at constant ratio 𝑀ℎ/𝑀𝑔 ≈ 0.09 in the nonintegrable
ferromagnetic phase using the parametrization (6.18).
Right: Prony result of the 𝑛 = 1 curve of 𝑠2(𝛽𝐽) in the complex 𝛽𝐽 plane. The low
temperature decay is dominated by frequencies matching the meson masses𝑀1/𝐽 and𝑀2/𝐽 ,
shown as black circles.

Table 6.1: High-temperature scaling exponents 𝑝 in the functional power-law ansatz (6.26)
for several quantities 𝑓 .

𝑓 𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3 exact
𝑠2 0.926 1.073 1.106 1.078 1
𝐸 1.171 1.645 1.933 2.022 2
𝜕𝐸/𝜕𝛽 1.176 2.027 2.709 2.955 3

in Fig. 6.6) and its derivative. Both these thermodynamic quantities show a similar power-law
scaling at high temperatures. The corresponding exponents are tabulated in Tab. 6.1. At
𝑛 = 3 they agree well with the analytical expectation, which is set by the scaling dimension
∆ = 2 of the CFT operator. Interestingly, the Rényi entropy 𝑠2 seems to allow an even better
estimation of the scaling exponent for all values of 𝑛, indicating that entanglement measures
can provide a cleaner identification of the meson melting process.

In summary, we have shown that the scaling behavior of the second Rényi entropy density, as
the selected entanglement measure for thermal states, provides a clear signature of the asymp-
totic high and low-temperature regime in a nonintegrable QFT with meson bound states. At
low temperatures, we found that the behavior is dominated by the exponential damping of the
form (6.25). At high temperatures, the power-law dependence (6.26) matches the CFT be-
havior. We interpret the latter scaling with the fact that the meson states have been melted.
In fact, a similar analysis for the E8 regime yields the same qualitative picture, providing
evidence that the results are independent from integrability properties of the underlying sys-
tem. Naively, it might look trivial that a massive QFT matches at high temperatures the
CFT behavior due to the fact that the temperature then provides effectively the only scale



112 6 Meson melting

10-2 10-1 100

βM1

10-2

10-1

100

s 2

n= 0

n= 1

n= 2

n= 3

10-2 10-1 100

βM1

10-4

10-3

10-2

10-1

100

E
−
E

(β
J

=
16

)

Figure 6.6: High-temperature scaling of the second Rényi entropy density 𝑠2 (left) and
thermal energy density 𝐸 (right) in the nonintegrable ferromagnetic phase at 𝑀ℎ/𝑀𝑔 ≈ 0.09
for the parametrization (6.18). The grey line at 𝛽𝑀1 = 1 indicates the high-temperature
threshold. Dashed lines indicate the lattice scale for each curve.

in the system. (A similar situation for the massive free fermion regime in the Ising model is
discussed for example in [129].) However, in our present studies we do have nonperturbative
meson bound states in the spectrum, which are “visible” at low temperatures, and we observe
a smooth transition to the high-temperature regime, which we can disentangle from the UV
lattice scale. We therefore see the scaling properties of the second Rényi entropy as a clear
witness of the meson melting process in a static situation. While we have focused on the second
order definition, it is possible that this conclusion holds also to higher-order Rényi entropies.

6.3.3 Thermal quantum quenches

Quantum quench as a paradigm

We now turn to the concept of quantum quenches to study a dynamical situation in the
context of meson melting. A quantum quench means a rapid change of a Hamiltonian pa-
rameter governing the time evolution of a physical system. Initiated primarily by the the
works [234,235], quantum quenches became a theoretical paradigm to probe and characterize
dynamical properties of QMB systems. In contrast to all previous situations considered in this
thesis, the modification of the underlying Hamiltonian during time evolution kicks the system
out of equilibrium. This drastic change can induce new processes and effects through dynam-
ical interactions. An overview of thermalization and relaxation phenomena of such perturbed
systems can be found in [124,125].
The powerful quench approach plays a major role in all areas of physics. For example, in
our own work [6], we study quenches in a cosmological context in curved spacetime. Further
works analyze quench properties in (other) QFTs [236–238] and holography [239,240]. A
characteristic feature of some systems’ response to quenches are universal scaling behaviors.
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This can be observed not only for operator expectation values (see [238] and references therein)
but also for complexity [241] as a quantum information quantity. If a quench is performed
across a quantum critical point, dynamical quantum phase transitions [242] occur, which are
signalled by a nonanalytic kink of a time-dependent rate function, and can carry universal
CFT information in the entanglement spectrum [243]. Moreover, quantum quenches can cause
the scrambling of quantum information [244]. Besides this theoretical perspective, quantum
quenches became realizable via quantum simulations [245,246], which opens the intriguing
possibility to analyze out of equilibrium dynamics experimentally.

The following studies are motivated by the important work [201]. Therein, the authors analyze
the entanglement growth for quantum quenches in the Ising model. In more detail, iTEBD
methods are used to prepare the ground state |𝜓0⟩ of some Hamiltonian 𝐻0, which then is time
evolved with a Hamiltonian 𝐻1 in the ferromagnetic phase in presence of meson states, i.e. at
finite longitudinal field values. It was observed that the existence of mesons causes oscillations
in the entanglement entropy at frequencies given by their masses and mass differences. If
the initial state is in the paramagnetic phase (i.e. a quench across the phase boundary), the
associated entanglement growth persists mostly forever, whereas it is always bounded if |𝜓0⟩ is
located in the ferromagnetic phase. While the original work [201] considered a semi-classical
parameter regime away from the quantum critical point, the recent paper [247] observed such
entanglement oscillations also in the E8 QFT regime of the Ising model. Similar observa-
tions were made for gauge theories in [248–250] as well as for quasiparticles in paramagnetic
quenches [251,252].

Many properties of the entanglement production and spreading after quantum quenches can
be understood with a quasiparticle model (QPM). Originally developed in [253] for the Ising
model, it was later found to hold also for generic integrable systems (in absence of
mesons) [254–256] and TFD states [257]. A generalization of the model was provided in [258].
See also [259] for a pedagogical review on the topic. In essence, the model describes the initial
state as a source of independent entangled quasiparticle pairs, which are created at any given
point and move after the quench with opposite momentum and velocity through the QMB
system and therefore spread quantum correlations. In lattice systems, the maximum speed of
propagation is limited by the Lieb–Robinson bound [78]. As a consequence, the entanglement
entropy is increasing linearly as long as only one partner of the particle pair leaves a considered
subregion of finite size. When also the second partner leaves the interval, the entanglement
entropy saturates. 65 This picture is consistent with general entanglement scaling laws in the
time evolution found in [260]. For the special case of a semi-infinite spatial bipartition this
implies an indefinite entanglement growth. However, also the boundedness of entanglement
production for the meson case can be explained within the quasiparticle picture [201]. Namely,
the existence of a confining potential, due to the presence of meson states, induces that quasi-

65Note that it does not decrease since also new quasiparticle pairs are created.



114 6 Meson melting

particles bounce back as they get separated from their partners, causing the oscillatory and
bounded behavior.

Apart from influencing the entanglement evolution in QMB systems and QFTs, mesons impact
also the thermalization behavior of thermodynamic quantities after quantum quenches [261,
262]. In fact, as it is studied in the latter two references, thermalization can be avoided
due to the existence of rare and non-thermal states in the spectrum. The same conclusion
holds also for (1+1)-dimensional QCD as shown in [263]. The authors of [176,177] employed
Hamiltonian truncation methods to study quenches in the Ising QFT. In contrast to TN
simulations, they, however, do not provide access to entanglement measures. Further relaxation
and thermalization aspects in spin chains are discussed, e.g., in [264,265] for global quenches
and in [266,267] for broken translational invariance.

In the following, we are interested to apply the above quench protocol to thermal states. In-
stead of ground state quenches, finite temperature quenches are much less explored,
see [268–273] for selected results. In this scenario, we analyze the time evolution of gener-
alized entanglement entropies to detect the melting of mesons at high temperatures. Some of
these Rényi entropies became recently measurable in quantum simulation experiments [274].
This opens the opportunity to study similar physical systems and test our predictions beyond
the classical realm.

Setup

In our analysis, we prepare a pre-quench purified thermal state √
𝜌0 = exp[−𝛽𝐻0/2] using

the iTEBD algorithm, and in the subsequent real-time evolution we consider the purification
√
𝜌1(𝑡) = 𝑈(𝑡)

√
𝜌0 where 𝑈(𝑡) = exp[−𝑖𝐻1𝑡], i.e. an instantaneous global quench is applied

at 𝑡 = 0. The post-quench Hamiltonian 𝐻1 is kept fixed to study the same physical point
in the phase diagram. For the latter, we choose again the parameters 𝑀 (0)

ℎ /𝐽 = 0.125 and
𝑀

(0)
𝑔 /𝐽 ≈ 1.356 from the parametrization (6.18), which possess the smallest time period

2𝜋𝐽/𝑀1 ≈ 4.2 (for 𝑀1/𝐽 ≈ 1.5) of the first meson in comparison to the other parametrized
masses. As we know from the equilibrium studies in section 4.10.1, MPO simulations and
Prony signal analysis allowed a reliable identification of the QFT meson masses from available
time windows in this regime.

The previously considered global Rényi entropy density 𝑠2 in eq. (6.16) would be constant
under time evolution for this setup, while its corresponding value for a finite subsystem is
computationally too demanding to calculate for large bond dimensions. We therefore consider
a semi-infinite spatial bipartition and calculate the reflected (Rényi) entropies 𝑠1,2 from the
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singular values 𝜆𝑖 of the purified thermal state √
𝜌1(𝑡) as

𝑠1 = −
∑︁
𝑖

𝜆2𝑖 log(𝜆2𝑖 ), (6.27)

𝑠2 = − log

(︃∑︁
𝑖

𝜆4𝑖

)︃
. (6.28)

These reflected entropies can be interpreted as upper bounds for the corresponding Rényi
entropies, which would follow from minimal purifications. We will monitor their growth and
behavior of entanglement oscillations during the time evolution after the quench. The reflected
entropy was originally introduced in [275] in a holographic setting as a proposed dual to the area
of the entanglement wedge cross section. While we employ it here primarily for computational
reasons, reflected entropies found recently a considerable amount of attention in the context
of the AdS/CFT correspondence, see e.g. [276–280] for relevant explorations. In particular,
the works [281–283] discussed it also for CFT quenches, whereas [284] analyzed a variety of
related mixed state entanglement measures as a holographic probe of confinement.
Any such quench will perturb the initial state by increasing the energy density of the thermal
state. To quantify the quench magnitude, we introduce the important concept of the effective
(inverse) temperature 𝛽*. This quantity is defined by equating the (bare) energy density of the
pre-quench thermal state, measured w.r.t. 𝐻1, with the (bare) energy density of an equilibrium
state in the post-quench Hamiltonian, i.e. 66

Tr
[︀
𝐻1 e−𝛽𝐻0

]︀
= Tr

[︀
𝐻1 e−𝛽*𝐻1

]︀
. (6.29)

Since we keep the final Hamiltonian 𝐻1 fixed, the effective temperature can be increased either
by varying the initial temperature 𝛽 w.r.t. a fixed pre-quench Hamiltonian 𝐻0 or by modifying
the parameters of 𝐻0 for fixed 𝛽. We will employ both methods in our studies. In the latter
scenario, we choose the initial points in the phase diagram as shown in Fig. 6.7. The different
quench protocols, labelled by the numbers in Fig. 6.7, result in the effective temperatures 𝛽*𝐽

(measured w.r.t. 𝐻1) summarized in Tab. 6.2 (determined up to two digits) for several initial
temperatures 𝛽𝐽 (measured w.r.t. 𝐻0). The final quench point is realized for ℎ = 0.9375

and 𝑔 ≈ 0.0746. In the quench protocol 1 , we have ℎ = 0.93, and for 6 ℎ = 0.8732. In
type 7 , the longitudinal field is chosen asymptotically large as 𝑔 = 100. The remaining initial
parameters are identifiable from Fig. 6.7. Note in particular that protocol 4 and 5 start in
the classical regime, whereas 2 is in the E8 phase and 3 at the critical point. The different
quench types encompass pure transverse quenches ( 1 , 2 , 4 , 6 ) and longitudinal quenches 7 .
Otherwise, both fields are quenched. We consider the case of an initial low temperature (i.e.
close to the ground state) at 𝛽𝐽 = 16 as well as higher initial temperatures, cf. Tab. 6.2. Note

66Note that we always consider densities here since we work with the unit cell in the iMPO formalism. For
our global quench setup, the relation (6.29) is then identically also valid for the whole system.
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Table 6.2: Comparison of the initial pre-quench temperatures 𝛽𝐽 of the thermal state
(w.r.t. 𝐻0) and the resulting post-quench effective temperatures 𝛽*𝐽 (w.r.t. 𝐻1) for the
different quench types shown in Fig. 6.7.

initial temperature (𝛽𝐽)𝐻0 effective temperature (𝛽*𝐽)𝐻1

1 2 3 4 5 6 7
16 6.10 3.55 1.55 0.91 0.66 3.55 0.93
2 2.00 1.92 1.34 - - - -

0.97 - - 0.91 - - - -
0.5 0.50 - - - - - -

Figure 6.7: Overview of the different quench protocols in the transverse (ℎ) vs. longitudinal
(𝑔) field plane. Thermal initial states are prepared at inverse temperature 𝛽 for the param-
eter locations marked by green dots. By quenching to the final nonintegrable ferromagnetic
point, denoted by red arrows towards the black cross, an effective temperature 𝛽* as listed
in Tab. 6.2 is induced by the thermal quench. The E8 regime is marked by the grey dotted
line.

that protocol 6 is tuned such that is has the same effective temperature as 2 for 𝛽𝐽 = 16.
Similarly, type 4 and 7 at 𝛽𝐽 = 16 and 3 at 𝛽𝐽 = 0.97 result in (nearly) the same effective
temperature. Overall, we have adjusted our setup to achieve both low physical temperatures
𝛽*𝑀1 ≫ 1 as well as high temperatures 𝛽*𝑀1 . 1, while avoiding the lattice regime 𝛽*𝐽 ≪ 1.

Results

We start out considerations for quenches from an initial low-temperature thermal state at
𝛽𝐽 = 16. Fig. 6.8 shows the results for 𝑠1 (top row) and 𝑠2 (bottom row) for the quench
protocols 1 - 4 . As listed in Tab. 6.2, the effective temperatures are in increasing order from
𝛽*𝐽 ≈ 6.10 to 𝛽*𝐽 ≈ 0.91. As a consequence, it is visible from Fig. 6.8, that the entanglement
is growing larger as the effective temperature is raised, or, in other words, quantum correlations
are building up. In the quench types 1 and 2 , which are shown in detail in the right column,
𝑠1 and 𝑠2 exhibit an oscillatory behavior, similar to the ground state case as first discussed
in [201]. As we will analyze in detail below, these entanglement oscillations are caused by
the meson states at characteristic frequencies of their masses. Type 2 (orange curves) shows
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Figure 6.8: Time dependence of the first (top) and second (bottom) reflected entropies
for the quench protocols 1 - 4 with an initial temperature 𝛽𝐽 = 16. The right column
zooms into the first two quench types. With increasing effective temperature (in order of the
quench labels) the entanglement growth is getting enhanced and suppresses the entanglement
oscillations.

on top of these entanglement oscillations an overall increase, which does not yet seem to be
bounded as expected from the predictions in [201]. However, we have to keep in mind that
we have chosen a parameter point in the QFT regime of the Ising model close to its critical
point. The meson masses, e.g. in absolute units of 𝐽 , are smaller as compared to a semi-classical
regime and hence the arising envelope frequencies (that bound the entanglement growth) would
require (much) longer time scales. These are not in our focus here and partially also not easily
numerically achievable. We therefore concentrate our discussion on the entanglement behavior
at early and intermediate time scales after the thermal quantum quench. From Fig. 6.8 it
then becomes apparent that the entanglement oscillations become heavily suppressed as the
effective temperature is raised from type 1 to 4 . By that we mean that the meson states
do not dominate the entanglement growth at their characteristic mass frequencies anymore.
In particular, the first reflected entropy of quench protocol 4 (red dashed curve in top left
panel) seems to grow very strongly at early times, which superficially seems to resemble a
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linear behavior. Note that the plateau existing for this curve at times 𝑡𝐽 & 20 is, in fact, not
physical but an effect of the finite bond dimension. Below, we will study these effects in detail
separately.

These findings are in general valid for both 𝑠1 and 𝑠2 as plotted in the two rows in Fig. 6.8.
Observe, however, that the growth of 𝑠2 is suppressed as compared to 𝑠1. For this reason, it
turns out that the second reflected entropy allows for a more precise identification of meson
masses from the entanglement oscillations. That is why we now consider 𝑠2 for a detailed
analysis using both the Prony signal analysis method as well as the Fourier spectra. The
results are presented in Fig. 6.9 for the first 3 quench protocols (from left to right). At the
lowest effective temperature 𝛽*𝑀1 ≈ 9.3 for quench type 1 (left column), the Prony analysis
allows a clear identification of the first 5 meson poles, which are in good agreement with their
QFT mass values when compared to the predictions in [180] (solid vertical lines). Additional
features are visible also at𝑀6 to𝑀8, which, however, become fuzzier and hence more uncertain.
In addition, the continuum threshold at 2𝑀1 is identifiable as a vertical line of poles, indicating
a branch cut (shown as the dashed vertical line). In the corresponding Fourier spectra, the
meson poles translate into peaks at their frequency values. The peak of the first meson is
largely dominating over the other ones. Overall, the Fourier spectrum is decreasing over
several orders of magnitude towards larger frequencies. The green dash-dotted lines in the
Fourier spectra mark all 6 possible mass differences between the first 4 meson states. At their
respective values, kinks appear in the spectrum, corresponding to additional poles in the Prony
plot. They lie at frequencies smaller than the first meson mass as well as between 𝑀1 and 𝑀2.

As the effective temperature is raised to 𝛽*𝑀1 ≈ 5.4 in protocol 2 (middle column) and
𝛽*𝑀1 ≈ 2.4 in protocol 3 (right column), the meson pole identifications become fuzzier in
the Prony analysis. Notably, the absolute values of the corresponding Fourier spectra are
raised by 3 and 6 orders of magnitude, respectively. For protocol 3 , the Fourier spectrum
is flattening out. Since in all cases the post-quench nonintegrable QFT regime is identical,
it can be concluded that this effect is induced by raising the effective temperature. When
comparing the meson peak heights to the overall magnitude of the Fourier spectrum, the
impact of the meson mass frequencies seems to get suppressed at high temperatures. We see
this thermal suppression effect on the entanglement spectrum as a first hint how the melting of
meson states at even higher temperatures can be detected. The available data in Fig. 6.9 are,
however, inconclusive whether this process is consistent with a sequential process as existing
in a QCD context (cf. the discussion in section 6.1).

To analyze the influence of the initial state in more detail, the time evolution of the reflected
entropies and resulting Fourier spectra of quench protocols 2 and 6 are compared in Fig. 6.10.
Starting from a pre-quench thermal state at 𝛽𝐽 = 16, they both have the same effective
temperature 𝛽*𝐽 ≈ 3.55 or 𝛽*𝑀1 ≈ 5.4 but are initially prepared in the E8 regime versus the
ferromagnetic phase. Both 𝑠1 (dashed curves) and 𝑠2 (solid curves) differ only marginally in
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Figure 6.9: Results of the Prony signal analysis (top) and Fourier spectra (bottom) of 𝑠2
for the quench protocols 1 - 3 (from left to right) with an initial temperature 𝛽𝐽 = 16
and effective temperatures 𝛽*𝐽 as shown. Solid vertical lines represent meson masses from
ref. [180] and dashed lines mark the continuum threshold of 2𝑀1. Green dash-dotted lines
mark all possible mass differences of the first 4 mesons.
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Figure 6.10: Comparison of the quench protocols 2 [in blue] and 6 [in yellow] for an
initial temperature 𝛽𝐽 = 16 and the same effective temperature 𝛽*𝐽 ≈ 3.55 or 𝛽*𝑀1 ≈ 5.4.
Left: Time dependence of the first (dashed) and second (solid) reflected entropy in both
models. Right: Corresponding Fourier spectra of the second reflected entropy.
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the two quench protocols and exhibit a slight phase shift. The first meson peak dominates the
Fourier spectrum equally in both models. For the available frequency resolution and range,
both Fourier spectra are in close correspondence with each other. These results indicate that
the described effects, for this particular case, are primarily driven by thermal effects, set by
the effective temperature. Below, we will find a similar situation also for other models at
even higher temperatures, providing evidence for the robustness of the physical interpretation
about thermal effects from our findings.

We now study the situation of raised effective temperature by starting from an initial thermal
state at a higher temperature 𝛽𝐽 = 2. In this case, the entanglement growth is larger and
it becomes important to monitor carefully the behavior of the truncation error in the iTEBD
simulation. The obtained reflected entropies are shown in the upper row of Fig. 6.11 for two
bond dimensions, and the corresponding truncation error is plotted in the lower row for the
quench protocols 1 - 3 (from left to right). The effective temperatures for protocol 1 and 2
are very close, 𝛽*𝑀1 ≈ 3.1 and 𝛽*𝑀1 ≈ 2.9, resulting in very similar curves for the reflected
entropies. For quench type 3 , the effective temperature 𝛽*𝑀1 ≈ 2.0 causes an entanglement
growth about twice as large. The results for the reflected entropies deviate at late times
for the different bond dimensions (blue vs. orange curves), demonstrating that the results
have not yet fully converged in the simulated time interval. Due to the slower entanglement
growth, this effect is milder for 𝑠2. Once the maximal bond dimension is reached during the
time evolution, the truncation error is continuously growing as visible in the bottom row of
Fig. 6.11. In contrast to simulations at even higher temperature, which will be discussed below
(cf. Fig. 6.13), this simulation is, however, still faithful. That means that the truncation error
is not decreasing or saturating, which would be a sign that the obtained MPO does not contain
physical information anymore. Being aware of these limitations, we compare in Fig. 6.12 the
Prony results and Fourier spectra of 𝑠2 for the different quench protocols (for the highest bond
dimension). In all examples, features in the complex frequency become fuzzier in the Prony
analysis when compared to the quench results in Fig. 6.9 at lower temperatures. Some of the
meson poles fully disappear, in particular for type 3 (top right panel). The corresponding
Fourier spectra are increased by several orders of magnitude and now flattened out in all cases.

The overall phenomenological picture that arises from these analyses is that an increase of the
effective temperature leads to an enhancement of the entanglement growth, which suppresses
the entanglement oscillations caused by meson states in the thermal bath. In absence of
mesons, the QPM predicts a fully linear growth of entanglement entropies. We therefore aim
in the following discussion to identify a linear growth of the reflected entropies as a signature of
meson melting at the highest attainable temperatures. For this line of reasoning, we consider in
Fig. 6.13 the time evolution of reflected entropies for the quench protocol 4 with an effective
temperature 𝛽*𝑀1 ≈ 1.4 at different bond dimensions (left panel) and their corresponding
truncation error (right panel). Due to the large entanglement growth, convergence is realized
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Figure 6.11: Time dependence of the reflected entropies (top) and truncation error (bot-
tom) for the quench protocols 1 - 3 (from left to right) with an initial temperature 𝛽𝐽 = 2
and effective temperatures 𝛽*𝐽 as shown. The first (dashed) and second (solid) reflected
entropy are shown for several bond dimensions, indicating the time interval of convergence.
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Figure 6.12: Results of the Prony signal analysis (top) and Fourier spectra (bottom) of
𝑠2 for the quench protocols 1 - 3 (from left to right) with an initial temperature 𝛽𝐽 = 2
and effective temperatures 𝛽*𝐽 as shown. Solid vertical lines represent meson masses from
ref. [180] and dashed lines mark the continuum threshold of 2𝑀1. Green dash-dotted lines
mark all possible mass differences of the first 4 mesons.
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Figure 6.13: Time dependence of the reflected entropies (left) and truncation error (right)
for the quench protocols 4 with an initial temperature 𝛽𝐽 = 16 and effective temperature
𝛽*𝐽 as shown. The first (dashed) and second (solid) reflected entropy are shown for several
bond dimensions 𝜒.
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Figure 6.14: Time dependence of the first (dashed) and second (solid) reflected entropy for
the quench protocols 3 , 4 and 7 with the same effective temperature 𝛽*𝐽 ≈ 0.91. The
data are based on the 𝜒 = 500 simulations. The black dashed line marks a linear fit function
for 𝑠1 at early times.

only up to times 𝑡𝐽 . 9. At later times the entropies bend and saturate (cf. also the red
curves in Fig. 6.8 for 𝜒 = 500). This effect is coinciding with an irregular behavior of the
truncation error, which partially decreases and then saturates at even later times. As argued
before, we can interpret this unphysical feature as a signature of the breakdown of the MPO
simulation. In Fig. 6.14 the same data are compared to quench type 3 and 4 at (nearly) the
same effective temperature (cf. Tab. 6.2). There are only marginal differences for 𝑠1 between all
quench protocols and a small scaling difference for 𝑠2 in type 3 (blue solid curve) compared
to the others. Since the initial states are in very different regimes (classical, ferromagnetic
and critical) and even at different initial temperatures, the overall agreement confirms that
the discussed effects on the entanglement growth are indeed thermally induced. Since the
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Figure 6.15: Time dependence of the reflected entropies (left) and truncation error (right)
for the quench protocol 1 with an initial temperature 𝛽𝐽 = 0.5 and effective temperature
𝛽*𝐽 as shown. The first (dashed) and second (solid) reflected entropy are shown for several
bond dimensions 𝜒. The black dashed and solid lines mark a linear fit function for 𝑠1 and
𝑠2 at early times, respectively.
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Figure 6.16: Time dependence of the first (dashed) and second (solid) reflected entropy for
the quench protocol 1 (blue) and the corresponding free fermion regime (orange) with an
initial temperature 𝛽𝐽 = 0.5 and effective temperature 𝛽*𝐽 as shown. The data are based
on the 𝜒 = 500 simulations. Linear fit functions for 𝑠1 and 𝑠2 at early times are marked
respectively in black for type 1 and in grey for the free fermion case.

trustable time ranges are now very limited, a Prony signal analysis or Fourier transformation
is not applicable. Fig. 6.14 therefore exhibits directly also a linear function, which is obtained
by fitting 𝑠1 in the time interval 2 ≤ 𝑡𝐽 ≤ 9 as 0.09 + 0.42(𝑡𝐽). The data for 𝑠1 seem to be
bounded by such a linear growth, but, upon careful inspection, do not (yet) follow exactly
this scaling behavior. On the other hand, the curves for 𝑠2 grow less strongly in a nonlinear
fashion.

The data for the highest achieved effective temperature 𝛽*𝑀1 ≈ 0.8 are displayed in Fig. 6.15.
The entropy curves (left panel) are obtained for quench protocol 1 at two bond dimensions,
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indicating convergence up to 𝑡𝐽 ≈ 7.5. At later times, the truncation error (right panel)
is again irregular and hence signalling the limitations of the simulation. One can observe a
strong growth of both reflected entropies. In the time interval 1.5 ≤ 𝑡𝐽 ≤ 7.5, we can fit
the functions 0.04 + 0.67(𝑡𝐽) and 0.18 + 0.53(𝑡𝐽) to 𝑠1 and 𝑠2, respectively. In contrast to
the simulations at intermediate temperatures, both reflected entropies now seem to follow this
linear growth behavior after a brief initial time period with irregular growth induced through
the quench itself. As alluded before, this linear increase can be only understood within the
QPM if there are no meson states existent. Since in the present case we have 𝛽*𝑀1 < 1 in the
physical high-temperature regime, we explain this qualitative behavior through the fact that
the mesons are melted, i.e. do not contribute entanglement oscillations to the overall growth
of entanglement entropies anymore.

This interpretation is corroborated through a quench study in the (massive) free fermion
regime. For that case, we set the longitudinal field value to 𝑔 = 0 in quench type 1 and
choose again the highest initial temperature 𝛽𝐽 = 0.5. This integrable transverse quench
results analogously in the effective temperature 𝛽*𝐽 ≈ 0.50. In Fig. 6.16 the resulting reflected
entropies (shown in orange) are compared to the previous nonintegrable counterpart (blue
curves). The differences in the entanglement growth between these two quench types are
relatively small. In particular, the free fermion data confirm the linear growth of the reflected
entropies after the initial quench period. We can respectively fit the functions 0.01 + 0.68(𝑡𝐽)

and 0.08 + 0.59(𝑡𝐽) to 𝑠1 and 𝑠2, which are shown as grey curves and can be compared to the
black ones for the previous nonintegrable regime. These results confirm that a linear growth
of reflected entropies is a property of the free fermion regime, which is in accordance with
the QPM description. It therefore strengthens our interpretation on meson melting for the
nonintegrable ferromagnetic case, since this qualitative behavior can be only explained when
meson states are not present in the physical system.

6.4 Discussion and outlook

In this chapter we provided an in depth study of the meson melting phenomenon from a quan-
tum information perspective. Modern QCD approaches treat this mechanism as a sequential
process that strictly requires a dynamical treatment. While both QCD and holographic ap-
proaches indicate the melting of individual meson states through a thermal broadening of
their corresponding peaks in the spectral function, we could not observe a related feature in
the complex frequency structure of retarded thermal equilibrium correlators in nonintegrable
ferromagnetic parameter regimes of the 2𝐷 Ising QFT (cf. the analyses in section 6.3.1). It
should be emphasized that the absence of this feature for this particular observable does not
mean that the melting process does not take place or exist. Instead, one can interpret this
property through numerical challenges in its detection and the unavailability of an explicit
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meson operator in analogy to QCD.
We therefore motivated a new paradigm to capture and describe meson melting properties in
this theory via entanglement properties. In particular, for a thermal equilibrium setting, we
showed that the scaling of the second Rényi entropy density is determined at low temperatures
through an exponential damping (as a function of the inverse temperature 𝛽) set by the meson
masses. In contrast, at high temperatures, the behavior is identical to that one expected
in a CFT (power-law dependence), meaning that meson states have been melted, i.e. the
temperature sets the only scale in the physical system.
Independent from these findings, we could observe similar scaling differences also in a truly out
of equilibrium setting by studying real-time properties of reflected entropies and entanglement
production in the time evolution after thermal quantum quenches. For that, we prepared ini-
tial thermal states in the ferromagnetic phase of the Ising model and implemented a quantum
quench by simulating their evolution under a fixed post-quench Hamiltonian in the nonin-
tegrable ferromagnetic phase. We could vary the effective temperature of this setup either
through different parameter regimes in the pre-quench state or by modifying its initial tem-
perature. While at low effective temperatures mesons give rise to entanglement oscillations,
we observed a linear entanglement growth at the highest achieved temperatures, meaning that
the imprint of mesons is (fully) suppressed. The latter observation is consistent with a QPM
interpretation that excludes the presence of meson states, and MPO simulations in the mas-
sive free fermion regime. We similarly infer from these dynamical properties that the meson
melting process took place.
Our analyses comprehensively show that basic entanglement measures such as Rényi or re-
flected entropies can serve as witnesses of the meson melting process both in static and dy-
namical settings at finite temperature. For the particular theory under consideration, the 2𝐷
Ising QFT, we do not see conclusive indications to decide whether this process is consistent
with a sequential picture. In future studies, it therefore would be very interesting to address
the latter problem in more detail. While we focused on a relativistic QFT emerging in the
IR limit of a spin chain model, it would be of course highly desirable to analyse a similar
setting also in more complicated gauge theories. In particular, we want to export our view-
point, namely the study of entanglement measures as intrinsic properties of QMB systems,
also directly into the QCD community, where we are convinced that this new perspective can
shine light on many open questions related to meson properties.





7 Prospects for quantum simulations

The previous chapters in this part of the thesis exemplified how TN simulations help us in un-
derstanding emergent phenomena of QMB systems, which are important across different fields
in physics [285–287]. Many of these developments are closely connected to the field of quantum
computation and simulation, in which qubits as fundamental degrees of freedom are used to
carry out computational tasks or simulate physical systems. The first viewpoint is referring to
digital QS, in which quantum gates are sequentially applied to a quantum state, and the second
one is realizing an analog simulation by implementing a QMB Hamiltonian. TN methods al-
low similar algorithmic procedures by either contracting individual gates onto a quantum state
(like in the TEBD algorithm) or representing (Hamiltonian) operators as MPOs. Over the
last decade, QS technologies [288–290] advanced rapidly in controllable platforms like optical
lattices [291–293] or ion traps [294–297]. In contrast to TN approaches, they promise to study
physical systems and fundamental effects beyond the capability of classical computers. For
example, previous experiments already analyzed static and dynamical properties of quantum
matter [246,274,298–308] and LGTs [309–311]. Many proposals make concrete suggestions on
the observation of physical effects and theories on near-future devices [290,312–320].

Concretely, we are interested in this chapter to explore the capabilities of analog ion trap simu-
lations to identify and analyze relativistic meson physics on current devices. Similarly to chap-
ter 4 and 6, we are motivated by QCD, where the phenomenology of mesons is important for
a dynamical understanding of HICs, which in turn gives insights into early universe physics by
studying the QGP [151]. As the previous research chapters have already shown, meson states
have also in a condensed matter context severe implications for entanglement, correlations,
and thermalization in QMB system at zero and finite temperature [247,250,261,262,321–325].
Ion trap quantum simulators can implement 1-dimensional (Ising) spin chain Hamiltonians
with long-range (LR) interactions. Previously we employed parameter regimes of the nearest-
neighbor (NN) Ising model with a longitudinal field, which confines domain walls into bound
states, i.e. mesons [182]. The relatively new results [326,327] show that experimentally real-
izable LR interactions have, in fact, the same effect. We want to make use of this feature to
study meson physics in interesting physical parameter ranges. Under such conditions, it is
already known that the existence of meson states has also profound phenomenological conse-
quences. For example, they lead to the emergence of anomalous cusps in dynamical quantum
phase transitions [320,328,329].

127
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The first experimental observation of mesons in LR spin chains was provided in [330] via
trapped-ion QS of correlation spreading in quenched systems. From a theoretical perspective,
the recent works [331–333] analyzed the capabilities of quantum simulators to detect string
breaking and meson scattering as interesting fundamental processes. In all these examples,
a semiclassical regime was considered or very small transverse field values were assumed,
allowing for a reformulation as simple gauge theory. Here, we instead focus on Zamolodchikov’s
relativistic E8 regime of the Ising QFT [178], see our earlier discussion in section 4.5.3 for an
introduction. The integrability properties of this theory can be seen as a prediction, which
were first experimentally confirmed by measuring its meson spectrum in [334]. The recent
papers [335–337] expanded these neutron scattering based measurements and spectroscopic
methods to better precision and new materials in solid-state crystals.
In the present chapter, we want to systematically study if experimentally realizable small spin
chain models allow for an identification of the E8 meson regime. Exact diagonalization tech-
niques are employed to calculate the energy absorption spectrum within the linear response
framework. We will show that for sufficiently strong LR suppression, the low-lying E8 meson
states can be identified, and that the spectra are in accordance with analytical expectations
of the E8 QFT. We then propose an experimental protocol to realize this setup via absorption
spectroscopy [301,303] on ion trap quantum simulators. Fueled by the promising experimen-
tal [309,310] and theoretical [338–344] progress in implementing and studying LGTs on QS
devices, we foresee the potential to probe meson physics also in relativistic gauge theories,
which are relevant on the route to develop theoretical ideas for the QS of the standard model
in particle physics on near-future devices.

7.1 The long-range Ising model

In section 4.5 we have introduced the NN Ising model, defined by the Hamiltonian (4.32),
which gives rise to the Ising QFT (4.40) in the IR regime of the continuum limit. This
model now serves as an ideal prototype, which we compare to the LR Ising model, which
can be experimentally implemented on ion trap quantum simulators. It is defined by the
Hamiltonian [299,300,302,345]

𝐻LR = −𝐽
(︃

𝑁∑︁
𝑖<𝑗

1

|𝑖− 𝑗|𝛼𝜎
𝑧
𝑖 𝜎

𝑧
𝑗 + ℎ

𝑁∑︁
𝑗=1

𝜎𝑥
𝑗 + 𝑔

𝑁∑︁
𝑗=1

𝜎𝑧
𝑗

)︃
. (7.1)

The algebraic LR interaction between two spins at spatial index positions 𝑖 and 𝑗 is quantified
by the coefficient 𝛼. It now becomes important to consider differences in systems with open
boundary conditions (obc) versus periodic boundary conditions (pbc), defined by 𝜎𝑁+1 = 𝜎1.
In the NN model, this amounts to the addition of the interaction term −𝐽𝜎𝑧

𝑁𝜎
𝑧
1, while for

LR interactions on a circle we assume that two spins interact along their minimal distance
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between 𝑖 and 𝑗. Observe that the NN model is formally recovered in the limit 𝛼 → ∞. In
contrast, only the range 0 ≤ 𝛼 ≤ 3 is accessible in experimental setups [346,347]. However, it
was previously observed [348] that already LR systems with 𝛼 ≈ 3 resemble very closely the
physics of the NN Ising model.

7.2 Energy and absorption spectra

In the following analyses, we use numerical diagonalization techniques to characterize the the
LR model in the the E8 regime, i.e. for longitudinal perturbations along the critical point
(ℎ = 1, 𝑔 > 0). The NN and LR Ising model are compared with each other to investigate
whether the E8 meson spectrum (with analytical mass ratios given in Tab. 4.1) is surviving and
identifiable also in presence of power-law interactions. The relatively small system sizes, to
which the numerical diagonalization methods are limited, are within the scope of a few dozens
of trapped ions on current quantum simulators [296,297]. The basic logic for the observability
of meson states in such small systems is that the associated length scale of the first meson,
𝑙 ∼ 1/𝑀1 ∼ |𝑔|−8/15, is sufficiently small to be captured by the finite size chain. This is achieved
when the longitudinal field value 𝑔 is chosen large enough. While it might look contradictory
to observe QFT information further away from the critical point, it was, however, observed
in [349] that even relatively large values of 𝑔 are able to reproduce the E8 spectrum. The latter
reference was for a realistic model of a solid state crystal, which indicates the strong impact
of the QFT regime on the physics of the model.
We consider two main quantities in this section. The first are the energy levels (also denoted as
energy spectrum), expressed via the normalized mass gaps 𝑚𝑛/𝑚1 for the lowest 𝑛 = 1, 2, . . .

excited eigenstates. Here, the mass gap 𝑚𝑛 of level 𝑛 is given as the as the energy difference to
the groundstate, i.e. 𝑚𝑛 = 𝐸𝑛−𝐸0. Furthermore, we calculate the absorption spectrum within
the linear response framework. The latter is of primary interest, since spectroscopic methods
have been developed in recent years which allow to measure spectra on ion traps [301,303] akin
to neutron-scattering experiments in solid states. For that, following [157], we assume that a
constant operator 𝐴 is perturbing the system Hamiltonian in the time domain as follows

𝐻 = 𝐻0 +𝐻1, where 𝐻1 = −𝐴𝑓(𝑡), (7.2)

and let 𝑂 be an (a priori different) operator whose response to the system is considered. We
may 𝐴 assume to be Hermitian, 𝐴 = 𝐴†, such that a real external perturbation of the form
𝑓(𝑡) = cos(𝜔𝑡) can be chosen. The field induced energy absorption rate is then given as

𝑄 ≡ d

d𝑡
⟨𝐻⟩ =

⟨
𝜕𝐻

𝜕𝑡

⟩
= −⟨𝐴(𝑡)⟩ 𝜕𝑓

𝜕𝑡
, (7.3)

where we consider the (now time-dependent) operator 𝐴 in the Heisenberg picture. It can be
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shown that the mean energy absorption rate follows as

𝑄 =

⟨
𝜕𝐻

𝜕𝑡

⟩
=

1

2
𝜔 𝜒′′

𝐴𝐴(𝜔), (7.4)

where 𝜒′′(𝜔) ≡ 𝜒′′
𝐴𝐴(𝜔) is the imaginary (dissipative) part of the susceptibility (for 𝐴 = 𝑂 =

𝐴†). For in general distinct operators 𝐴 and 𝑂, it is given in the Lehmann representation as

𝜒′′
𝑂𝐴(𝜔) = 𝜋

2𝑁−1∑︁
𝑛,𝑚=0

⟨𝑛|𝐴|𝑚⟩ ⟨𝑚|𝑂|𝑛⟩ (𝑝𝑛 − 𝑝𝑚) 𝛿[𝜔 − (𝐸𝑚 − 𝐸𝑛)], (7.5)

where the double sum is taken over all eigenstates |𝑛⟩ and |𝑚⟩ of the system. The delta function
in eq. (7.5) ensures a contribution to the susceptibility iff the probe frequency 𝜔 equals the
energy differences 𝐸𝑚 − 𝐸𝑛. We are interested in the zero temperature case, in which the
finite temperature population factors 𝑝𝑛 = e−𝛽𝐸𝑛/𝑍𝛽, with 𝑍𝛽 =

∑︀
𝑛 e−𝛽𝐸𝑛 as the partition

function, simplify to 𝑝𝑛 = 0, 1. In particular, we consider the situation of all absorption
energies measured w.r.t. the ground state |0⟩ with energy 𝐸0, and 𝑝0 = 1 and 𝑝𝑛 = 0 for 𝑛 > 0.
(Either 𝑚 = 0 or 𝑛 = 0 is set in the double sum (7.5).) It will turn out that salient meson
features are accessible with the measurable operator

𝑂 = 𝐴 =
𝑁∑︁
𝑖=1

𝜎𝑧
𝑖 cos(𝑘𝑟𝑖). (7.6)

Here, 𝑘 ∈ [−𝜋, 𝜋] is the quasi-momentum and 𝑟𝑖 = 𝑎𝑖 the lattice position. We restrict our
studies to the zero momentum case of 𝑘 = 0. Upon relabelling, the expression for the imaginary
part susceptibility then takes the form

𝜒′′(𝜔, 𝑘 = 0) = 𝜋

2𝑁−1∑︁
𝑛=0

𝑁∑︁
𝑖=1

|⟨0|𝜎𝑧
𝑖 |𝑛⟩|2 {𝛿[𝜔 − (𝐸𝑛 − 𝐸0)] − 𝛿[𝜔 + (𝐸𝑛 − 𝐸0)]} . (7.7)

To mimic a realistic experimental situation, we have to keep in mind that the energy reso-
lution is restricted by the reachable observation time 𝑡obs. The delta function can then be
approximated by a Lorentzian

𝛿[𝜔 − (𝐸𝑛 − 𝐸0)] ≈
Γ

[𝜔 − (𝐸𝑛 − 𝐸0)]2 + Γ2
(7.8)

according to the Wiener–Khintchine theorem [350,351], where the width is related as

Γ =
1

𝑡obs
. (7.9)



7.2 Energy and absorption spectra 131

Based on this framework, we carefully analyze in the following subsections the dependence on
the system size, LR parameter and longitudinal field value to assess the prospects of identifying
the E8 regime in spin chain models amenable to ion trap QS.

7.2.1 Finite size effects

We consider system sizes in the range 12 ≤ 𝑁 ≤ 18, which are solvable either by exact
numerical diagonalization, or iterative eigensolvers for sparse matrices while ensuring to keep a
large portion of the spectrum. Fig. 7.1 shows the resulting mass gaps𝑚𝑛/𝑚1 for the lowest 𝑛 =

1, . . . , 400 (𝑁 = 12, top row) and 𝑛 = 1, . . . , 600 (𝑁 = 18, bottom row) excited eigenstates. 67

We choose an exemplary longitudinal field 𝑔 = 3 in the NN (left column) and LR (right column)
Ising model with the largest experimentally possible decay parameter 𝛼 = 3. As in any finite
size system, the spectrum is discrete and energy levels show up as as band structures. The
systems with obc (blue data) match some of the higher analytical E8 mass ratios (shown as
grey dashed background lines) but deviate from the lowest ones. In contrast, for pbc (orange
data) at least 5 lowest meson levels can be cleanly identified (6 levels for 𝑁 = 12). Only
the fourth meson level is slightly underestimated, otherwise the gap ratios agree well with the
analytical expectations. In this case, the first 𝑛 = 1, . . . , 𝑁 eigenvalues are determined by
the momentum dispersion relation in the first Brillouin zone and comprise the the first meson
level. The effect of the finite size difference on the energy spectrum (top vs. bottom row) is
very mild for both obc and pbc. For the former, it can be observed that higher bands in the
LR model seem to resemble a semi-continuous branch.
In the E8 theory, multiparticle states exist above the continuum threshold at 2𝑀1 and form
a continuum. Although the spectrum is discrete in the finite size system under consideration,
one still can identify the mass sum 𝑀1 + 𝑀2 (shown as the lowest grey dotted line). Higher
order mass sums are obscured since they are very close to some of the analytical mass ratios.
These results are overall valid for both NN and LR interactions. The latter resemble nearly
identically the NN profiles for pbc and are only slightly smeared-out for obc. In both cases, pbc
reproduce well the low-lying analytical meson spectrum. We therefore focus in the following
analyses on finite systems on a ring, but compare the results to the E8 theory on an infinite
line (as represented in Tab. 4.1), i.e. we neglect finite volume corrections according to Lüscher’s
formula [352].
From the characteristic eigenstates of the models, the absorption spectra, shown in Fig. 7.2
as a function of the frequency, are following from eqs. (7.7) and (7.8). We have chosen the
experimentally realistic value Γ/𝐽 = 0.1 in both the NN (left panel) and LR model (right
panel). Peaks exist at or very close to the analytical E8 mass ratios (marked by the grey

67The two system sizes differ exponentially in the number of their eigenstates. However, for this choice of
range for 𝑛, which is bounded by the computational resources at 𝑁 = 18, we can keep a comparable excerpt
of the total spectrum.
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Figure 7.1: Comparison of the numerical energy spectra (normalized mass gaps of excited
states) in the NN (left) and LR (right) Ising model with obc (blue data) and pbc (orange
data) for chains of size 𝑁 = 12 (top) and 𝑁 = 18 (bottom). Grey dashed lines represent
the the analytical E8 meson mass ratios (cf. table 4.1). Grey dotted lines correspond to
multiparticle states with masses 𝑀1 +𝑀2, 𝑀1 +𝑀3 and 2𝑀2 (in ascending order).
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Figure 7.2: Comparison of the energy absorption spectrum in the NN (left) and LR Ising
model (right) for different chain sizes 𝑁 . The data are scaled to the maximum of the
spectrum. Grey dashed lines represent the the analytical E8 meson mass ratios (cf. table 4.1).
Grey dotted lines correspond to multiparticle states with masses 𝑀1 +𝑀2 and 𝑀1 +𝑀3.
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dashed lines), indicating the existence of mesons. The first two meson peaks are very sharp
and there are nearly no differences visible between the results for 𝑁 = 12 and 𝑁 = 18.
Differences occur only in multiparticle states above the the continuum threshold at 2𝑀1. In
particular, the third and fifth peak structure are overlapping with the continuum threshold
and the mass sum𝑀1 +𝑀3, respectively. The mass sum𝑀1 +𝑀2 is independently visible as a
separate peak. Similar to the energy levels, these peak features appear almost equivalently in
the NN and LR model, i.e. experimentally measurable algebraic interactions allow an equally
good identification of the E8 meson spectrum.

7.2.2 Long-range dependence

We now analyze the dependence on the LR coefficient by considering the range from 𝛼 = 0

(all-to-all LR interactions) up to 𝛼 = 3 (strong LR suppression) in detail. To minimize finite
size effects as much as possible, we set 𝑁 = 18 and choose 𝑔 = 3. In Fig. 7.3 the resulting
energy spectra are shown for all integer values of 𝛼. At 𝛼 = 0, three completely degenerate and
identical branches exist for obc and pbc. As 𝛼 is increasing for obc, semi-continuous branches
become more and more gapped. For pbc, the branches split into discrete bands, resembling
the E8 theory ratios already for 𝛼 & 2.

The resulting absorption spectra are displayed for a quantitative comparison on an absolute
scale in the right panel of Fig. 7.4, and for a better visual perception also in relative units in
the left panel of Fig. 7.5. The left panel in Fig. 7.4 compares the spectra to the results of the
NN Ising model. As 𝛼 is increasing, peaks form at the analytical E8 meson mass ratios and the
previously identified and described mass sums. Their absolute height is enlarging and already
at 𝛼 = 3 there is only a very small difference in the spectral intensity of the first meson peak
in the LR vs. NN model. In fact, the first meson peak always retains the largest density and,
at 𝛼 = 0, is the only one which can be clearly identified.

In the right panel of Fig. 7.5, the absorption spectrum of the LR model at the largest suppres-
sion 𝛼 = 3 (green curve) is compared explicitly to the NN model (orange curve). In addition,
the dynamical structure function as the analogon in the E8 QFT is shown (blue curve). The
latter was very recently calculated in [353] for a comparable frequency broadening of 0.05𝑀1.
It is formally defined as the Fourier transformation of the two-point correlation function,

𝐷ΦΦ(𝜔, 𝑘) =

∫︁
d𝑡
∑︁
𝑟𝑖

e𝑖𝜔𝑡−𝑖𝑘𝑥 ⟨0|Φ(𝑥, 𝑡)Φ(0, 0) |0⟩ . (7.10)

Using the relation ⟨0|Φ(𝑥, 𝑡)Φ(0, 0) |0⟩ = ⟨0| e−𝑖𝑃𝑥 e𝑖𝐻𝑡 Φ(0, 0) e−𝑖𝐻𝑡 e𝑖𝑃𝑥 Φ(0, 0) |0⟩, the zero net
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Figure 7.3: Effect of the LR coefficient 𝛼 on the numerical energy spectrum (normalized
mass gaps of excited states). Background lines are as in Fig. 7.1. Figures taken from [2].
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the power-law coefficient 𝛼. The data are scaled to the maximum of the spectrum. Black
dashed lines represent the analytical E8 meson mass ratios (cf. table 4.1). Grey dotted lines
correspond to multiparticle states with masses 𝑀1 +𝑀2 and 𝑀1 +𝑀3.
Right: Comparison of the scaled energy absorption spectrum in the NN and LR model (at
the largest suppression 𝛼 = 3) with the analytical E8 dynamical structure function from
[353]. Background lines are as in Fig. 7.2.
Numerical parameters: 𝑁 = 18 (pbc), Γ/𝐽 = 0.1, 𝑔 = 3. Figures taken from [2].

momentum result can be expressed for QFT states as follows [353]

𝐷ΦΦ(𝜔, 𝑘 = 0) =
∞∑︁
𝑛=0

∑︁
{𝑎𝑖}

(︃
8∏︁

𝑎𝑖=1

1

𝑛𝑎𝑖 !

)︃
1

(2𝜋)𝑛−2

∫︁ ∞

−∞
d𝜃1 · · · d𝜃𝑛 |⟨0|Φ |𝐴𝑎1(𝜃1), . . . , 𝐴𝑎𝑛(𝜃𝑛)⟩|2

× 𝛿

[︃
𝜔 −

𝑛∑︁
𝑖=1

𝐸𝑖

]︃
𝛿

[︃
𝑛∑︁

𝑖=1

𝑝𝑖

]︃
. (7.11)

Here, |0⟩ is the vacuum in the E8 QFT, Φ is one of the Pauli operators 𝜎𝑥,𝑦,𝑧 and
|𝐴𝑎1(𝜃1), . . . , 𝐴𝑎𝑛(𝜃𝑛)⟩ are asymptotic momentum and energy eigenstates, which form an or-
thonormal basis. Any of the 𝑎1, . . . , 𝑎𝑛 assumes the values 𝑎𝑖 = 1, . . . , 8, labelling the 8 different
mesons. 68 The relativistic rapidity is related to the energy and momentum via 𝐸𝑖 = 𝑀𝑎𝑖 cosh 𝜃𝑖

and 𝑝𝑖 = 𝑀𝑎𝑖 sinh 𝜃𝑖. From the data in Fig. 7.5 (right panel), it becomes discernible that both
the LR and NN model allow for an identification of the first 5 meson states as well as the
mass sum 𝑀1 +𝑀2, as signalled by their peak structure. With exclusion of the fourth meson,
their frequency position is very close to the analytical meson mass ratios and there are only
marginal differences between the two models. In contrast to the numerical data for the finite
size systems, peak heights in the exact E8 spectrum are continuously decreasing. Nevertheless,
one can observe that the ratio of the first to the second meson peak height is also quantitatively
in good agreement with the QFT prediction. Since we observed in the previous section no

68The relation (7.11) follows by inserting an identity from a complete set of E8 basis states, i.e.
1 =

∑︀∞
𝑛=0

∑︀
{𝑎𝑖}

(︁∏︀8
𝑎𝑖=1

1
𝑛𝑎𝑖

!

)︁
1

(2𝜋)𝑛−2

∫︀∞
−∞ d𝜃1 · · · d𝜃𝑛 |𝐴𝑎1(𝜃1), . . . , 𝐴𝑎𝑛(𝜃𝑛)⟩ ⟨𝐴𝑎1(𝜃1), . . . , 𝐴𝑎𝑛(𝜃𝑛)|.
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significant finite size differences for the first two meson peaks below the continuum threshold,
we conclude that this agreement is a stable feature in the NN and LR model.

7.2.3 Longitudinal field dependence
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Figure 7.6: Effect of the longitudinal field value 𝑔 on the numerical energy spectrum
(normalized mass gaps of excited states) in the LR model. Background lines are as in
Fig. 7.1. Figures taken from [2].

In the former discussions, we had chosen one exemplarily longitudinal field value 𝑔 = 3. We
now analyze meson properties in the LR and NN model assuming 𝑔 to be a free parameter. The
energy spectra in the LR model (at the largest experimentally accessible suppression 𝛼 = 3)
are displayed in Fig. 7.6 for several integer values of 𝑔. As the field strength is increasing, large
semi-continuous branches break apart into several discrete and gapped bands. For pbc, they
flatten out at the expected analytical E8 mass ratios.
The eigenstates give rise to the absorption spectra shown in Fig. 7.7. For a suitable visual
perception, we compare the LR model to NN interactions for both the scaled spectra (top
row) and on an absolute scale for a quantitative comparison (bottom row). The splitting of
the energy levels translates into peaks that get narrower and sharper as the longitudinal field
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Figure 7.7: Comparison of the scaled (top) and absolute (bottom) absorption spectra in
the NN (left) and LR Ising model (right) with pbc in dependence on the longitudinal field
value 𝑔. Background lines are as in the left panel of Fig. 7.5 or Fig. 7.2, respectively. Figures
taken from [2].

is increasing. For such a small analyzed system of 𝑁 = 18 sites, we can conclude that for
longitudinal field values 𝑔 & 2 all meson length scales are captured in the finite chain, since
they allow for the identification of meson states and mass sums through their peak structures.
Observe in particular that only at the smallest field value 𝑔 = 1 (red curves), the NN and LR
model differ qualitatively in the form of the spectrum. For all larger values, only marginal
differences appear in the absolute scale of the absorption spectra.

7.3 Meson mass identifications

We now quantify how precise the meson mass ratios can be extracted from the absorption
spectra in comparison to the analytical E8 theory ratios (cf. Tab. 4.1). We obtain individual
meson masses ̃︁𝑀𝑛 from a Gaussian fit to each peak in units of the mass gap 𝑚1 of the first
excited state and estimate the corresponding uncertainty as its full width at half maximum.
The resulting data are shown in the left panel of Fig. 7.8 for the first 5 meson levels (encoded
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Figure 7.8: Extracted meson mass ratios from the absorption spectra in dependence of the
longitudinal field g. The left panel expresses the results in units of the first mass gap 𝑚1,
the right panel in units of the first extracted meson mass 𝑀1. Solid errorbars are for the NN
model, dotted ones for the LR model (shown slightly displaced for graphical purposes). Grey
dashed lines represent the the analytical E8 meson mass ratios (cf. table 4.1). Numerical
parameters: 𝑁 = 18 (pbc), Γ/𝐽 = 0.1, 𝛼 = 3. Figures taken from [2].

by the different colors) in dependence on the longitudinal field value 𝑔. Experimentally, the
mass gap 𝑚1 (or of any other individual eigenstate) is not accessible. We therefore express in
the right panel of the same figure the results in units of the first extracted meson mass ̃︁𝑀1 by
propagating its uncertainty.

As 𝑔 is increasing, the uncertainty of the mass ratios is decreasing, allowing for a reliable
identification of the analytical E8 mass ratios𝑀𝑛/𝑀1 (shown as grey dashed background lines)
up to the fifth level in both the NN (solid errorbars) and the LR model (dotted errorbars). Only
the fourth meson, which is identifiable as a separable peak for 𝑔 & 2, is always underestimated
except for the largest considered longitudinal field strength 𝑔 = 4. At 𝑔 = 1, only remnants of
the first three meson peaks can be extracted with a large uncertainty. Overall, the numerical
data of the finite size system are in best agreement with the E8 QFT in the range 3 ≤ 𝑔 ≤ 4,
justifying in retrospect our previous choice 𝑔 = 3 for our detailed analyses. In fact, the
measurable ratio ̃︁𝑀𝑛/̃︁𝑀1 in the right panel even allows for a slightly better consistency with
the analytical data. The uncertainty in the LR model is even smaller than in the NN case,
which is caused by a narrower peak structure in the absorption spectra. Note that these results
for the uncertainties are following as properties of the spectrum and eigenstates, but also in
combination with the chosen inverse observation time Γ/𝐽 = 0.1.

7.4 Fidelity analysis

The previous analyses have shown that there is a clear band structure in the energy spectrum
as well as meson peaks in the absorption spectrum of the LR Ising model. Since we observed
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Figure 7.9: Dependence of the fidelity (left) and fidelity susceptibility (right) on the LR
coefficient 𝛼. Coloured solid curves are for finite size systems, while the black dashed curve
represents and extrapolation to the thermodynamic limit. Figures taken from [2].

these features for sufficiently large longitudinal field values but still relatively small values
of 𝛼 and 𝑁 , the question is raised whether whether the underlying quantum states still can
be interpreted as mesons resembling the E8 regime of the NN Ising model (corresponding
to 𝛼 = ∞). In this section, we want to address this problem on a conceptual deeper level
of quantum information measures. In fact, this question is twofold. First, the previously
cited works [326,327] show that LR interactions indeed confine domain walls into mesons in
the Ising model. Discrete band structures therefore can be interpreted as meson states of
the underlying Hamiltonian. Second, we also have a longitudinal field acting in the physical
system, which also enables the existence of meson states. In the present case, we use the fidelity
𝐹 (𝛼) and fidelity susceptibility 𝜒𝐹 (𝛼) to quantify the agreement with the E8 parameter range
of the NN Ising model. Both quantities have been used previously for ground [354,355] and
excited states [345,356] as a theoretical framework to identify and characterize quantum phase
transitions. Here, we study these quantities to analyze if there is a fundamental change in the
meson structure as the LR coefficient 𝛼 is varied.

In systems with pbc the first meson band is comprised of the first 𝑛 = 1, . . . , 𝑁 excited
eigenstates of the Hamiltonian. In fact, these states have different degeneracies in the LR
and NN model, such that the overlap of some of these states is not well-defined and hence
numerically not unique. Only the first excited state (𝑛 = 1) is nondegenerate in all cases and
allows us to calculate the following well-defined fidelity

𝐹 (𝛼) = |⟨𝜑1(𝛼)|𝜑1(𝛼 = ∞)⟩|, (7.12)

where 𝜑1 denotes the first excited state in the LR and NN model, respectively. Following [354,
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355] we calculate the fidelity susceptibility as

𝜒𝐹 (𝛼) = −𝜕
2𝐹 (𝛼, 𝛿𝛼)

𝜕(𝛿𝛼)2

⃒⃒⃒⃒
𝛿𝛼=0

= lim
𝛿𝛼→0

−2 ln𝐹 (𝛼, 𝛿𝛼)

(𝛿𝛼)2
, (7.13)

where 𝐹 (𝛼, 𝛿𝛼) = |⟨𝜑1(𝛼)|𝜑1(𝛼 + 𝛿𝛼)⟩| is the overlap between two states in the LR model with
infinitesimally varied decay parameter. In our numerics, we use the second relation with the
numerical increment 𝛿𝛼 = 0.01 and probe the experimentally realizable range 0 ≤ 𝛼 ≤ 3 at
the longitudinal field value 𝑔 = 3.

Fig. 7.9 displays the results for the fidelity per site 𝑓(𝛼) ≡ 𝐹 (𝛼)1/𝑁 (left panel) and the fidelity
susceptibility 𝜒𝐹 (𝛼) (right panel) for several chain lengths. The former is a monotonically
increasing function of 𝛼. In all considered finite system sizes (colored solid curves), 𝑓(𝛼) lies
close to the maximal value of 1 for 𝛼 & 2, i.e. the first meson retains a large overlap with
the “ideal” counterpart in the E8 regime of the NN model. However, even at all-to-all LR
interactions (𝛼 = 0) the fidelity per site deviates at most by 1% from this value, indicating
that the quantum nature of the first excited state in the LR model resembles very closely its
counterpart in the NN case, as long as finite system sizes are regarded.

This behavior seems to be modified in the thermodynamic limit 𝑁 → ∞. To extrapolate the
data, we use the scaling ansatz 𝑓(𝛼) = 𝑓∞(𝛼)+ 𝑐(𝛼)𝑁−𝑏(𝛼), in which we leave 𝑐(𝛼) and 𝑓∞(𝛼),
but also the exponent 𝑏(𝛼) as free fit parameters, since we do not have an a priori theoretical
expectation for the latter. The additive constant 𝑓∞(𝛼) then represents the prediction for the
thermodynamic limit and is shown as the black dashed curve. While it shows similarly fast
convergence for large 𝛼, the curve indicates a transition in the nature of the first meson state
for large system sizes through the rapid decrease around 𝛼 . 1.5.

On the other side, the fidelity susceptibility is characterized by a peak at small values of 𝛼
and a fast decrease towards 0 for strong LR suppression. The appearance of a peak in 𝜒𝐹 (𝛼)

suggests a transition in the first excited meson state occurring at some intermediate value of
𝛼. As the system size is increasing, the peak becomes sharper and its position 𝛼max moves
towards larger values of 𝛼. Assuming a scaling with 𝑁−1 to extrapolate the data towards
𝑁 → ∞, we can extract the value 𝛼max ≈ 1.07 ± 0.02 for the thermodynamic limit. This
finding is in agreement with the range of the rapid decrease of the fidelity.

In summary, the first excited state as a proxy for the first meson seems to retain the same
physics across the entire range of 𝛼 in the finite size LR model. The scaling analysis suggests
for the thermodynamic limit the appearance of interesting new physics in the LR versus NN
model.
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7.5 Quantum simulation with trapped ions

Ions, which are trapped by a confining potential in electromagnetic fields, can be used to con-
stitute an analog quantum simulator. The modern standard of technology allows to routinely
encode the basis states |↑⟩ and |↓⟩ of spin-1/2 systems in two long-lived hyperfine states to
realize effective magnetic models. Their effective spin–spin interactions ∼ 𝐽 as well as effective
magnetic fields ∼ ℎ, 𝑔 can be induced through additional laser beams. 69

To identify the E8 meson spectrum via absorption spectroscopy, we propose the following
protocol.

1. The effective spins are prepared in the fully polarized electronic groundstate |↑, .., ↑⟩
at 𝑔 = ∞. Any parameter values can be adjusted by decreasing 𝑔 and turning on 𝐽

and ℎ, which adiabatically transfers the system to the ground state. For the considered
scenario, we saw that a relatively large longitudinal field value 𝑔 is necessary, implying a
large mass gap 𝑀𝑔 ≡ 𝑀1 = 𝒟𝐽 |𝑔|8/15. In particular, for 𝑔 = 3, one has 𝑀1 ≈ 9.7𝐽 and
and thus the initial state preparation can occur adiabatically in times much shorter than
~/𝐽 , which in turn are much shorter than typical coherence times. As an alternative to
this procedure, variational algorithms [310] can be employed to prepare ground states of
the desired parameters in trapped-ion quantum simulators.

2. After initialization, a periodically modulated laser beam can be used to perturb the
system with a time-dependent magnetic field, realizing an operator of the form (7.6).

3. The imaginary part susceptibility (7.7) can be extracted via two possible spectroscopy
methods: Either, an instantaneously turned on perturbation 𝐴 = 𝑂 is tracked in the
subsequent time evolution by standard fluorescence measurements [297,316,357]. Its
Fourier transform then yields 𝜒′′(𝜔) [157]. Alternatively, the absorbed energy per unit
time, related to 𝜒′′(𝜔) through eq. (7.4), follows from a temporally modulated perturba-
tion of the form 𝑓(𝑡) = cos(𝜔𝑡), and can be accessed indirectly by measuring few-body
correlators as demonstrated in [310].

The implementation of this protocol on ion trap quantum simulators for a many-body spin
system typically generates LR interactions [299–303]. The spatial power-law decay, as encapsu-
lated by the studied Ising Hamiltonian in eq. (7.1), is realized in linear chains with obc to good
precision [347,358]. A crucial result from our analyses, however, is that pbc are necessary to
reliably identify QFT information in the E8 regime even for small systems. Such preparations
of trapped-ions on ring configurations are already possible [359–361]. In principle, the experi-
mentally possible range of power-law decay exponents is 0 ≤ 𝛼 ≤ 3 [346]. While all-to-all LR
interactions (𝛼 = 0) are most favorable to implement, our studies on the LR dependence for
69In this thesis, we are only interested in the theoretical concepts of our proposal. For more detailed comments

regarding experimental implementations, we refer to our own paper [2] and references therein.
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both the absorption spectra and fidelity have shown, that strong meson features resembling
the E8 theory, can be expected already for 𝛼 & 2.

7.6 Discussion and outlook

In this chapter we have demonstrated that current ion trap QS technologies allow for the
identification of the relativistic E8 QFT. When implementing the LR Ising model at sufficiently
strong spatial power-law suppression with pbc, the system is closely resembling the NN model,
enabling the detection of E8 meson states even for relatively large longitudinal field values and
surprisingly small systems with 12 to 18 sites. We have discussed an experimental protocol to
access the energy absorption spectrum within the linear response framework. Based on exact
numerical diagonalization techniques, we calculated the latter for large parameter ranges and
showed that it shares qualitative and quantitative properties with its QFT equivalent. From
the peak structure, mesons and multiparticle states show up at frequencies very close to their
masses and mass sums, allowing for a precise extraction of the analytically predicted E8 meson
mass ratios. In future studies, it would be appealing to extend these analyses also to the finite
momentum case from which relativistic dispersion relations can be deduced.
The first meson always retains the strongest spectral density, even when higher-order mesons
are significantly altered through longer-ranged interactions. From a detailed fidelity analysis,
we conclude that in finite size systems this first meson state changes only insignificantly its
quantum nature across all experimentally accessible values of 𝛼. There are, however, strong
indications from a scaling extrapolation that this behavior is modified in the thermodynamic
limit at a critical value around 𝛼𝑐 ≈ 1, i.e. at a spatial power-law interaction ∼ 1/𝑟.
The relativistic E8 theory, which we considered previously in this chapter also in our TN
simulations, emerges from longitudinal perturbations along the critical point of the simple
Ising model. Although its existence has been experimentally confirmed already earlier from
spectroscopic measurements in solid state crystals, ion trap QS additionally enable the analysis
of meson states induced through LR interactions as well as the implementation and analysis of
(lattice) gauge theories [40]. The latter opens the new realm of studying meson physics also in
theories of the standard model beyond classical resources. Furthermore, recent advances [362,
363] lay out a framework to implement also finite-temperature systems with trapped-ions,
which would allow us to address our previous topics about thermal correlators and meson
melting also from a QS perspective.
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8 A holographic primer

The AdS/CFT correspondence and holographic concepts from the gauge/gravity duality ini-
tiated a plethora of studies on connections between quantum information, the emergence of
spacetime and their (quantum) gravitational encodings. Over the last years, this discussion
became very stimulated through explorations on complexity as a quantum information mea-
sure. From the very beginning, these ideas were motivated or closely connected to TNs. In
this chapter, we want to introduce the concept of holographic and computational complexity,
which provides the background for our research on their corresponding QFT interpretation.

The starting point of these analyses were the works [38,73,74] of Susskind and collaborators
on the eternal AdS BH as the holographic dual of the TFD state [364]. The latter entangles
two copies of a CFT, labelled by 𝐿 and 𝑅, and evolves in time as follows

|TFD(𝑡𝐿, 𝑡𝑅)⟩ =
1√︀
𝑍𝛽

∑︁
𝑛

e−𝛽𝐸𝑛/2 e−𝑖𝐸𝑛(𝑡𝐿+𝑡𝑅) |𝐸𝑛⟩𝐿 |𝐸𝑛⟩𝑅 . (8.1)

Here, 𝑍𝛽 is the canonical partition function and |𝐸𝑛⟩𝐿,𝑅 are energy eigenstates in either copy
of the CFT, such that a partial trace over one subsystem yields the thermal density matrix
of the other at inverse temperature 𝛽 = 1/𝑇 . In other words, the TFD state is the canonical
purification of the thermal density matrix. As such, it is a similar quantity as in our thermal
quench studies in section 6.3.3, from which we defined reflected entropies. In the corresponding
Penrose diagram of the holographic dual (cf. Fig. 8.2), the asymptotic boundaries are connected
by a wormhole, i.e. a ERB. According to the “ER=EPR” principle [365], such a ERB is created
only iff two systems are entangled. 70 This setup therefore provides an invaluable laboratory
for quantum gravitational studies on the BH interior beyond the event horizon. The puzzle
emerging from this system is as follows: Susskind and collaborators observed that the ERB is
a dynamical object and grows in time. In particular, the rate of the volume increase is given
by the constant value [38,73,74]

d𝑉

d𝑡
=

𝐿

𝐷 − 1
𝐴ℎκ, (8.2)

where we use the same notation as for the BH thermodynamics in eq. (2.17). Classically, the
resulting linear growth persists forever, while quantum mechanically recurrences potentially

70In more detail, the lhs of this principle stands for the ERB connecting two distant BHs, which are interpreted
as maximally entangled BH states forming a complex EPR pair, named after Einstein, Podolsky and Rosen
on the rhs.

145



146 8 A holographic primer

Figure 8.1: Properties of holographic and computational complexity.
Left: The graph visualizes Susskind’s conjecture [38,73] that the complexity of a QMB
system with 𝑁 qubits increases linearly to an exponentially large value 𝒪(e𝑁 ) up to a time
scale 𝑡 ∼ e𝑁 and then saturates.
Right: The figure illustrates a quantum circuit for a 𝑁 = 5 qubit system. The sequential
application of gates 𝑔𝑖 transform a reference state |Ψ𝑅⟩ over intermediate states |Ψ𝑖⟩ into
the target state |Ψ𝑛⟩ = |Ψ𝑇 ⟩. The minimal number of gates is defined as the complexity.

occur only on exponentially large time scales. On the boundary QFT side, in contrast, thermal
equilibrium is reached very fast, at order of 𝛽 log𝑆, as estimated by the scrambling time scale.
Apparently, “entanglement (entropy) is not enough” [38] to explain this mismatch, since spatial
entanglement entropy saturates for finite subsystems while the volume keeps growing [366]. It
was therefore conjectured that the quantum computational complexity of the TFD state is the
relevant quantity capturing this feature.

Complexity is a quantity originating from the field of computer science and quantum compu-
tation, for a broad review see, e.g., [367]. In the context of QMB systems, the problem at
hand is to create a target state |Ψ𝑇 ⟩ from a reference state |Ψ𝑅⟩ by sequentially applying gates
𝑔1, 𝑔2, . . . , 𝑔𝑛, i.e.

|Ψ𝑇 ⟩ = 𝑈 |Ψ𝑅⟩ = 𝑔𝑛𝑔𝑛−1 · · · 𝑔1 |Ψ𝑅⟩ . (8.3)

While the resulting quantum circuit 𝑈 is typically built from unitary gates in a quantum
mechanical context, we impose no restrictions here to keep the context as general as it will be
relevant for our studies on path integral optimization in chapter 10. The right panel in Fig. 8.1
shows an example of such a circuit for a 𝑁 = 5 qubit system. The application of the gates
onto |Ψ𝑅⟩ results in a sequence of states |Ψ1⟩ , |Ψ2⟩ , . . . , |Ψ𝑛⟩ = |Ψ𝑇 ⟩. The minimal number
of gates to obtain the target from the reference state is defined as the state complexity. When
the circuit 𝑈 is viewed as an object itself, we preferably denote the gate number as circuit
complexity. Clearly, the complexity 𝒞 depends on the choice of allowed gates 𝑔𝑖. For example,
in Fig. 8.1, we have two types of gates, acting either on two or three sites. A discrete circuit
like this can be implemented experimentally on a quantum computer. It then makes sense to
calculate the complexity w.r.t. some a small precision 𝜀 to take into account that the circuit
cannot realize the identity (8.3) exactly, i.e.

‖ |Ψ𝑇 ⟩ − 𝑈 |Ψ𝑅⟩ ‖2 ≤ 𝜀 (8.4)
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Figure 8.2: Setups for the volume (left) and action (right) conjecture as the holographic
dual to complexity. The panels show the Penrose diagram of an eternal AdS BH describing
the TFD state. The singularities are marked by the red lines. Left: A maximal spacelike
surface (blue curve) connects two boundary time slices 𝑡𝐿,𝑅. Right: The marked region
represents the corresponding WDW patch. Figure adapted from [45].

for some operator norm. In a QMB system consisting of 𝑁 qubits, important properties
of complexity can be derived from basic estimates and considerations [38]. First, due to the
exponential size of the Hilbert space, the maximal complexity for arbitrary state configurations
is of order 𝒪(e𝑁). While it takes the system only a polynomial time scale 𝒪(𝑁𝑝) to thermalize,
it follows immediately that the time to reach maximal complexity is also of order 𝒪(e𝑁). The
sequential circuit picture enforces that this complexity growth is linear. Moreover, it was
conjectured in [38,73,74] that the slope, representing the growth rate, is given by the explicit
relation

d𝒞
d𝑡

∼ 𝑆𝑇, (8.5)

where we defined 𝑡 ≡ 𝑡𝐿 + 𝑡𝑅 w.r.t. the TFD state (8.1). This formula is motivated by the fact
that complexity is an extensive quantity and therefore its rate should be proportional to the
thermal entropy 𝑆, measuring the degrees of freedom in the system. Furthermore, the units
have to be fixed by an energy scale. As such, the temperature 𝑇 is the only viable candidate.
The overall picture that arises from these considerations is summarized in the left panel of
Fig. 8.1. After an linear growth for exponentially long times, the complexity is expected to
saturate. Very recently, this linear growth and saturation behavior has been proven in a
rigorous mathematical way for such a discrete quantum circuit picture [368].

Based on these expectations and properties, two proposals were put forward to describe com-
plexity holographically in the eternal AdS BH setting. They are known as “complexity =
volume” [73,74] and “complexity = action” [39,75] conjecture as given in eqs. (2.20) and illus-
trated in Fig. 8.2. They both capture the phenomenology of the volume growth inside the BH
as one moves upward in the Penrose diagram, and they also represent covariant gravitational
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observables. In particular, the volume proposal is directly motivated by the rate equation
(8.5). Using the thermodynamic quantities in (2.17) for the volume growth in eq. (8.2), one
sees directly that the volume of the maximal time slice Σ anchoring at boundary times 𝑡𝐿,𝑅
satisfies the expected behavior for the complexity growth, cf. the blue curve in the left panel
of Fig. 8.2. As a shortcoming, however, an ambiguous length scale 𝑙 needed to be introduced.
To avoid this feature, it was subsequently observed that when multiplying and dividing the
volume formula with the AdS radius, one can rewrite the expression in units of an action. The
resulting action proposal hence calculates the complexity as the action on the WDW patch,
defined by in- and outgoing null rays at the boundary times 𝑡𝐿,𝑅, cf. the blue region in the
right panel of Fig. 8.2. Upon normalization, 𝒞𝐴 satisfies the Lloyd bound

d𝒞𝐴
d𝑡

≤ 2𝑀

𝜋
(8.6)

in any dimension, where 𝑀 is the BH mass. This value is seen as an upper bound for the
computation rate in any physical system [369]. More detailed studies on the time evolution
of holographic complexity in [370] however showed that this value is approached from above,
i.e. actually violating the bound at early times. In contrast to the volume proposal, the action
definition has no ambiguous scale in it. Nevertheless, the appearance of null boundaries and
joint terms in the WDW patch requires a careful separate treatment, which was later provided
in [371].

Both the volume and action complexity contain integrals over hyperbolic spacetimes and there-
fore yield infinite values. The precise structure of the singularities were analyzed in [372,373].
It was found that the leading divergences take the form [372]

𝒞𝑉 (Σ) ∼ 𝑉 (Σ)

𝛿𝐷−1
, 𝒞𝐴(Σ) ∼ log

(︂
𝑙

𝛿

)︂
𝑉 (Σ)

𝛿𝐷−1
. (8.7)

Here, 𝛿 is a short-distance cutoff scale in the boundary field theory. While in both scenarios the
divergences can be interpreted as originating from the UV vacuum structure of the CFT, the
action proposal contains an additional logarithmic scale, which provides a clear distinction from
the volume result. The scale 𝑙 therein is, however, again non-unique. Inspired by holographic
renormalization procedures, the work [374] proposed a regularization scheme to cancel these
divergences.

The outlined pioneering proposals on holographic complexity lead to numerous further analyses
in different gravitational theories. For example, the works [375,376] considered the complexity
evolution for a time-dependent collapse in Vaidya spacetimes. Further works studied com-
plexity in Jackiw–Teitelboim [377], Einstein-dilaton [378], Einstein–Maxwell-dilaton [379] or
Gauss–Bonnet theories [380]. Moreover, due to the ambiguities in the complexity definitions
and unclear relations to the Lloyd bound, modified proposals were put forwards, commonly
known as “CV2” [381] and “CA2” [382] conjectures, to resolve these problems. Motivated by
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thermodynamic relations, the former instead suggests to identify holographic complexity as
the spacetime volume of the WDW patch, whereas the latter proposes to calculate only the
non-derivative part of the gravitational WDW action. Similarly to the setup for holographic
entanglement entropy, the author of [383] outlined how complexity can be calculated for generic
subregions in a gravitational spacetime. This proposal was re-interpreted in [384] from a kine-
matic space approach. Based on the subregion proposal, many works analyzed holographic
complexity in different setups. For example, it was shown that complexity can characterize
quantum quenches [385–388] and phase transitions [389,390]. In particular, this was discussed
in holographic models for QCD [391–393] and holographic superconductors [394,395].
In summary, this chapter exemplified that certain effects or features cannot be captured by
entanglement entropy. As emphasized in [396], apart from the volume growth of a ERB,
regions or event horizons that are not reached by minimal Ryu–Takayanagi surfaces are further
such examples that evade bulk reconstruction. This led the authors of the latter paper to
propose entwinement as an alternative to complexity. Although entanglement (entropy) and
complexity are different concepts and quantities, it was shown recently in [397] that, at least
for very small values, tight bounds between them can be found in accordance with a linear
growth. Moreover, the recent paper [398] could show, using a path integral approach in
2𝐷 gravity models, that the BH interior volume indeed grows linearly and then saturates
at exponentially late times (w.r.t. the entropy), providing evidence for Susskind’s complexity
growth conjecture in the volume proposal. While these holographic complexity proposals are
physically well motivated, an ultimate decision on the correctness of their interpretations can
be only drawn once the QFT side of the duality is better understood. This is the topic of the
next chapter, where we outline the fundamental concepts to define notions of complexity in
the continuum and review recent progress in the field.
Finally, we would like to point out that already in Susskind’s early work [38] a TN interpreta-
tion of the quantum circuit picture of complexity was given. However, the translation of this
setup into the gravitational setting remained rather vague. The path integral optimization
program, which we will discuss below, instead directly aims for a more rigorous interpretation
of the underlying AdS/CFT principles in terms of TN encodings.
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Entanglement entropy as a quantum information quantity is well understood in QMB systems
as well as CFTs, and was subsequently interpreted holographically in terms of codimension-2
surfaces in the bulk. In contrast, studies on complexity were at first initiated in the context of
the AdS/CFT correspondence as discussed in the previous chapter. These analyses, however,
left open a definition and clear understanding of complexity in QFTs. The first steps in
bridging this gap were taken by two seemingly different approaches, based on a geometric
quantum circuit viewpoint, and, alternatively, on the path integral optimization program. In
this chapter, we give an overview of these developments, setting the stage for our unification
of these concepts in the next chapter.

9.1 Circuit complexity

The question what complexity means in the (boundary) CFT (or more generally QFT) was
first addressed from a geometric circuit perspective in [45] and [46]. As it becomes obvious
from our discussions around eq. (8.3), this requires (i) the definition of a reference and target
state, (ii) the selection of a set of gates, and (iii) a distance measure or cost function to evaluate
the minimal configuration of gates in the continuous circuit. As usual for QFT quantities, one
has to regulate UV divergences, which will provide a way to compare the singularity structure
with the holographic results (8.7).
In [45], Jefferson and Myers developed such a geometric approach based on the quantum circuit
design of Nielsen and collaborators [399–401]. The basic ingredient is to write the continuous
circuit 𝑈 as a path-ordered exponential in the form

𝑈(𝜎) = 𝒫 exp

(︂
−𝑖
∫︁ 𝜎

0

d𝑠𝐺(𝑠)

)︂
with 𝐺(𝑠) =

∑︁
𝐼

𝑌 𝐼(𝑠)𝑂𝐼 . (9.1)

Here, 𝑠 is parameterizing infinitesimal layers on the circuit for some intermediate value 𝜎 ∈
[0, 𝑠𝑓 ], and 𝐺(𝑠) are iterating generators. The latter are written as a sum over control functions
𝑌 𝐼(𝑠) and operators (gates) 𝑂𝐼 . From a geometric viewpoint, 𝑌 𝐼(𝑠) can be seen as a tangential
velocity component along the path 𝑠. The path-ordering symbol 𝒫 denotes that gates at
smaller value of 𝑠 act first, i.e. the circuit is built from “right to left”. In Nielsen’s original
QMB context, the role of 𝑠 is played by the time 𝑡, whereas 𝐺(𝑠) is given by the Hamiltonian
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𝐻(𝑡), which is expanded in generalized Pauli matrices acting on qubits. In the present QFT
context, we instead assume that the operators act on wavefunctions and that the auxiliary
parameter 𝑠 enumerates these gates. 71 Whereas in Nielsen’s proposal the discrete gate setup
was reformulated in the language of continuous differential geometry, the generalization to the
QFT context requires careful considerations on how to define discrete gates. It then amounts
to define a cost function 𝒟, which measures the length of a path specified by the application
of gates onto the reference wavefunction to prepare the desired target state. Its minimization
yields the complexity of the optimal circuit. As pointed out in [45], there is a considerable
amount of freedom in choosing a particular length functional. A typical choice directly related
to gate counting is for example the 𝐿1 norm

𝒟1 =

∫︁ 𝑠𝑓

0

d𝑠
∑︁
𝐼

|𝑌 𝐼 |, (9.2)

whereas the 𝐿2 norm is defined as

𝒟2 =

∫︁ 𝑠𝑓

0

d𝑠

√︃∑︁
𝐼𝐽

𝜂𝐼𝐽𝑌 𝐼𝑌 𝐽 (9.3)

for some positive-definite matrix 𝜂𝐼𝐽 . A common generalization is given by the family of cost
functions

𝒟𝜅 =

∫︁ 𝑠𝑓

0

d𝑠
∑︁
𝐼

|𝑌 𝐼 |𝜅 (9.4)

for some positive power 𝜅 ≥ 1, which, however, is not reparametrization invariant under
changes of 𝑠. Demanding 𝒟 to be smooth (or at least continuous), positive, homogeneous, and
satisfying the triangle inequality, then the cost functional defines a Finsler manifold, which
represents a more general class than Riemannian geometry, in the sense that the norm is not
necessarily induced by a metric tensor. Hence, the determination of the optimal circuit in
the 𝐿2 case is translated into finding extremal curves, i.e. geodesics, whose length is identified
with the complexity. As an extension to the upper cost definitions, one can in principle also
introduce penalty factors, which give different weights to the individual velocity components
𝑌 𝐼(𝑠).

In [45], this general framework was applied to a free 𝐷-dimensional scalar field theory, defined
by the Hamiltonian

𝐻 =
1

2

∫︁
d𝐷−1𝑥

[︁
𝜋(𝑥)2 + ∇⃗𝜑(𝑥)2 +𝑚2𝜑(𝑥)2

]︁
, (9.5)

which is transformed into a family of coupled harmonic oscillators by regulating it on a lattice

71Note that in [402] an interpretation of holographic spacetimes as quantum circuits of path integrations was
proposed which related the physical time to the auxiliary parameter.
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with spacing 𝛿. Motivated by the cMERA [120], the authors considered a factorized Gaussian
state for |Ψ𝑅⟩ (which leaves different lattice points unentangled) and the groundstate of the
theory for |Ψ𝑇 ⟩, and chose scaling and entangling gates constructed from the momentum and
position operator as a set of unitaries. When solving the geodesic equation for the 𝒟2 cost
function, the leading divergence of the associated complexity 𝒞2 was found as 𝒞2 ∼ (𝑉/𝛿𝐷−1)1/2,
which differs to the holographic CV result in (8.7) by the square root. In contrast, the 𝜅 cost
function (9.4) was found to lead to the following behavior

𝒞𝜅 =
𝑉

𝛿𝐷−1

⃒⃒⃒⃒
log

(︂
1

𝜔0𝛿

)︂⃒⃒⃒⃒𝜅
, (9.6)

where 𝜔0 is a scale characterizing the reference state. Interestingly, in the case of 𝜅 = 1, the
result resembles the holographic CA proposal in (8.7) upon the identification 𝑙 = 1/𝜔0. This
result is remarkable since a free theory with only one degree of freedom is compared to a
strongly-coupled holographic theory in the large-𝑁 limit.

This picture is backed up by the complementary study in [46]. Therein, the authors study the
same underlying theory but in momentum space with a UV cutoff. Instead of Nielsen’s gate
counting framework, a Fubini-Study approach is employed, which defines a geometry on the
state space itself. Here, the line element

d𝑠𝐹𝑆(𝜎) = d𝜎
√︀

|𝜕𝜎 |Ψ(𝜎)⟩|2 − |⟨Ψ(𝜎)| 𝜕𝜎 |Ψ(𝜎)⟩|2 (9.7)

is defined for a state |Ψ(𝜎)⟩ = 𝑈(𝜎) |Ψ𝑅⟩ and integrated along the circuit (parametrized by 𝑠)
whose minimization yields the complexity. In contrast to the Nielsen approach, the complexity
is now accumulated through infinitesimal changes of the state along the circuit. Individual
gates therefore may have different costs. In particular, overall phase changes do not contribute
to the complexity. It should be emphasized that the complexity resulting from the infinitesimal
distance (9.7) can be different from the Hilbert space distance of finitely separated states, since
the current construction is restricted to unitary gates. Remarkably, up to some normalization
factor, the resulting leading divergence takes the same form as in (9.6) when identifying the
reference and regulator scales with each other. Interestingly, the optimal path is always given
by a straight line circuit and only in case of 𝜅 = 1, the minimal cost is coinciding with the one
from the cMERA TN.

Based on these two pioneering approaches, several follow-up works explored circuit complexity
in further QFT contexts. For example, the work [403] extended the framework to excited
(coherent) states. In [257], the TFD state, which provided the starting point in the AdS/CFT
setup, was analyzed. A careful comparison [404] of its complexity time evolution in all holo-
graphic and QFT proposals came to the conclusion that the holographic volume conjecture
and Nielsen’s method on the QFT side are more correlated than the other proposals. Simi-
lar analyses extended these circuit approaches to fermionic [405] and charged [406,407] TFD
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states. While all these discussions are for pure states, it was proposed that mixed state com-
plexity could be defined either from minimal purifications [408] or based on Fisher information
geometry for covariance matrices [409]. Inspired by thermodynamic laws, the works [410,411]
analyzed the variation of circuit complexity and found that it depends only on the endpoint
of the optimal path, thus realizing a first law of complexity. A renormalization procedure for
circuit complexity based on the Suzuki–Trotter decomposition was proposed in [412]. Sub-
sequent studies extended the circuit approach to richer field theory contents. For example,
in [413,414] fermionic field theories were considered while [415] analyzed interacting QFTs and
relations to the RG group. Recently, the paper [416] studied complexity for CFTs in arbitrary
dimensions based on unitary representations of the Lorentzian conformal group. Even in a
cosmological context, the authors of [417] have shown that circuit complexity can serve as
a probe to distinguish different models of the early universe from primordial perturbations.
Despite this tremendous progress, the precise nature of circuit complexity for general QFTs
is still not yet understood. Further developments are necessary to fully understand the prop-
erties and differences between several approaches or proposals. One such program is based
on path integral optimization, which originally was developed independently as we describe in
the following section.

9.2 Complexity from path integral optimization

The path integral optimization program [116–118], which we briefly introduced in section 3.7.3,
provides an independent framework to define and calculate complexity of QFTs. In that
context, we consider the unnormalized thermal density matrix

𝜌𝛽 = e−𝛽𝐻 , (9.8)

where we assume 𝐻 to be the Hamiltonian of a 2𝐷 CFT on a line. When seen as an operator,
𝜌𝛽 represents a thermal state in the CFT, and projects (for a CFT on a circle) onto the ground
state (3.44) in the limit 𝛽 → ∞. On a strip of flat geometry,

d𝑠20 = 𝜖−2
(︀
d𝜏 2 + d𝑥2

)︀
, (9.9)

its matrix elements can be calculated from the Euclidean path integral with width 𝛽 in the 𝜏
direction as

⟨𝜑(𝛽, 𝑥)| 𝜌𝛽 |𝜑(0, 𝑥)⟩ =

∫︁ 𝜑(𝛽,𝑥)=𝜑(𝛽,𝑥)

𝜑(0,𝑥)=𝜑(0,𝑥)

𝒟𝜑 e−𝑆CFT[𝜑] . (9.10)

Here, the fields of the theory with action 𝑆CFT are denoted by 𝜑, and 𝜑 are particular eigenstates
of field operators. For example in a 𝑐 = 1 free scalar CFT, this is just the scalar field profile.
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Figure 9.1: Representation of the Euclidean geometry over which the path integral (9.10) is
performed. The left panel represents the flat geometry (9.9), while the right panel represents
the Weyl-rescaled background (9.11). The boundary conditions at 𝜏 = 0 and 𝜏 = 𝛽 are kept
fixed, guaranteeing to produce the same operator 𝜌𝛽 , up to an overall normalization governed
by the exponent of the Liouville action (9.13). Figure taken from [5].

When deforming the background geometry by a Weyl factor 𝜔(𝜏, 𝑥),

d𝑠2𝜔 = 𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 = e2𝜔(𝜏,𝑥)
(︀
d𝜏 2 + d𝑥2

)︀
, (9.11)

such that 𝜔(𝜏 = 0, 𝑥) = 𝜔(𝜏 = 𝛽, 𝑥) = 0 and e2𝜔(𝜏=𝜖,𝑥) = 1/𝜖2 (flat space at the boundaries),
then the change in the path integral measure is known to take the form [418,419][︁

𝒟𝜑
]︁
d𝑠2𝜔

= e𝑆𝐿 ·
[︁
𝒟𝜑
]︁
d𝑠20

. (9.12)

In the exponent, 𝑆𝐿 is the Liouville action

𝑆𝐿 =
𝑐

24𝜋

∫︁ 𝛽

0

d𝜏

∫︁ ∞

−∞
d𝑥
[︀
Λ e2𝜔 +𝜔̇2 + 𝜔′2]︀ , (9.13)

which contains the central charge 𝑐 in the prefactor, and derivatives of 𝜔 w.r.t. 𝜏 and 𝑥 in the
integrand, denoted by ˙ and ′, respectively. The variable Λ ∼ 𝜖−2 is expressed in terms of the
real-space UV cutoff, i.e. lattice spacing 𝜖. This overall setup is illustrated in Fig. 9.1.

Since 𝑆𝐿 governs the prefactor in (9.12), the authors of [117,118] argue that the Liouville action
represents the unique functional 𝐼Ψ[𝑔(𝜏, 𝑥)] = 𝑆𝐿[𝜔(𝜏, 𝑥)] for 2𝐷 CFTs whose minimization is
equivalent to the optimization of the Euclidean path integral. To perform the optimization, we
consider the equation of motion of the Liouville action, 4𝜕𝑧𝜕𝑧𝜔 = e2𝜔, for which we introduced
𝑧 ≡ 𝜏 + 𝑖𝑥 and 𝑧 ≡ 𝜏 − 𝑖𝑥. Its solution reads e2𝜔 = 4(𝑧 + 𝑧)−2 = 𝜏−2, giving rise to the
hyperbolic plane metric

d𝑠2 =
d𝜏 2 + d𝑥2

𝜏 2
, (9.14)

representing a time slice in AdS3 as the dual to the CFT2 vacuum after optimization. Heuris-
tically, the Liouville exponent in (9.12) counts the number of repetitions of discretized path
integral operations. This observation lead to the conjecture that its minimum corresponds to
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Figure 9.2: Principle of TNR for the discretized Euclidean path integral. The infinite
2𝐷 TN diagram of e−𝛽𝐻 follows from the Suzuki–Trotter decomposition and prepares the
groundstate of 𝐻 in the limit 𝛽 → ∞ (left panel). It consists of 2-site gates 𝑈𝑖 ≡ e−𝑑𝜏ℎ𝑖,𝑖+1

which are transformed into a uniform TN (small blue circles in the middle panel) by splitting
the 𝑈𝑖 using SVDs and reassembling them as indicated by the red frame. The TNR step
(right panel) removes short-range entanglement by introducing a layer of MERA into the
TN and coarsegraining 4 uniform tensors (indicated by the green frame) into one new one
(large blue circles in the right panel). The iteration of this process produces the full MERA
network.

the computational complexity 𝒞Ψ0 of the ground state Ψ0. For Weyl-rescaled geometries, it
assumes the value

𝒞Ψ0 = min
𝜔
𝑆𝐿[𝜔(𝜏, 𝑥)] =

𝑐 𝑙

12𝜋𝜖
, (9.15)

where we defined 𝑙 ≡
∫︀

d𝑥. Interestingly, the divergence structure ∼ 𝜖−1 agrees with the one
of the holographic volume proposal in (8.7), independent from the particular CFT under con-
sideration. In the present context, this complexity is also denoted as path integral complexity.
The optimization procedure which we discussed so far was based on the modification of the
background metric over which the Euclidean path integral is performed. As such, it was inter-
preted in [117,118] as a continuous generalization of the TNR algorithm [99,100] summarized
in Fig. 9.2. For the latter we assume that the TN diagram shown in the left panel approximates
the ground state wavefunction of the QMB system using the Suzuki–Trotter decomposition
of 2-site gates. A judicious reassembling of the tensors transforms this TN into the uniform
network shown in the middle panel. The insertion of disentanglers and isometries in the TNR
step shown in the right panel sequentially produces the MERA TN. From a computational
viewpoint, the MERA circuit contains less tensors and therefore possesses a smaller complexity.
In the continuum, this modification of the tensor structure corresponds to the deformation of
the background geometry discussed above, yielding versions of the cMERA wavefunction [116].
The concrete amount of complexity in the discrete TN during the TNR procedure was heuris-
tically estimated in [118,121]. In particular, it was argued that the potential term ∼

∫︀
e2𝜔

measures the number of disentanglers (i.e. unitaries), when attributing a unit area to each
tensor, while the kinetic term ∼

∫︀
(𝜕𝜔)2 approximates the number of isometries. Both terms

together resemble the Liouville action and therefore provide further evidence that this action
represents the relevant functional governing the path integral complexity.
In summary, we have seen that the path integral optimization program provides an alternative
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framework to obtain the complexity of ground states in two-dimensional CFTs. The Liouville
action is the proposed functional whose minimization yields the complexity by modifying the
background metric. Beyond the vacuum case, in which optimized metrics are given by AdS3

time slices, it was additionally observed in [117,118] that the finite temperature TFD state
yields the ERB as the optimized geometry, which was heuristically argued to grow linearly in
time in accordance with the holographic counterpart. Overall, the path integral complexity was
worked out as an attempt to find a continuous version of TN interpretations of the AdS/CFT
correspondence. At this point, the relation to the circuit complexity framework is, however,
an open problem. We close this gap through our considerations in the next chapter by showing
that, up to an irrelevant overall normalization, 𝑆𝐿 represents only an approximation to a cost
function for a precise gate counting within the circuit complexity approach.
Before proceeding in this direction, it seems instructive to highlight two further properties of
the Liouville action. First, 𝑆𝐿 is a properly covariant expression, which in arbitrary coordinates
𝜉𝜇 takes the form [418]

𝑆𝐿 =
𝑐

24𝜋

∫︁
d2𝜉

√
𝑔

[︂
Λ +

1

4
𝜕𝜇𝜒𝜕

𝜇𝜒

]︂
. (9.16)

Here, the scalar 𝜒 is given by the covariant albeit nonlocal expression

𝜒(𝜉) =

∫︁
d2𝜉

√︁
𝑔(𝜉)�−1(𝜉, 𝜉)𝑅(𝜉), (9.17)

where 𝑅 is the Ricci scalar and �−1 the propagator for a massless scalar field. 72 From the
expression (9.13), one can deduce that a different relative normalization between the 𝜔̇2 and 𝜔′2

terms would not give rise to the covariant form (9.16). The second remark is that the Liouville
action can be regarded as consisting of the two leading terms in a derivative expansion w.r.t. 𝜖:
The cosmological constant term Λ ∼ 𝒪(𝜖−2) originates from the renormalization of the energy-
momentum tensor and diverges in the continuum. On the other hand, the nonlocal term is of
order𝒪(𝜖0) and the source of the trace anomaly. Any further terms would come for dimensional
reasons with positive powers of 𝜖 and hence vanish in the continuum limit 𝜖→ 0. We therefore
ignore such terms in the following circuit approach to the path integral optimization.

72For uniqueness, it is imposed that 𝜒 vanishes at the boundaries.





10 Path integral optimization as
circuit complexity

The discussion of the previous chapter highlighted that the QFT dual of holographic complexity
is not yet fully understood. Both the circuit and path integral approach provide a framework
to either define a proper cost function or identify the Liouville action as functionals whose
minimization yields the complexity of a state. These two viewpoints, however, are based on
rather different setups and a possible connection between them seems nontrivial. Moreover,
when analyzing the divergence structure as discussed above, the circuit complexity approach
seems to favor the holographic action proposal, whereas the path integral complexity shares
similarities with the volume proposal. It is therefore highly desirable to try to unify these two
concepts, to understand better their relations and decide whether they are indeed competing
concepts with different physical implications.

In this chapter we pursue this path by interpreting the Euclidean path integral on Weyl-
rescaled geometries as a circuit in the sense of a path ordered exponential, defined by eq. (9.1).
At first, we will outline the general setup based on coordinate transformations in section 10.1,
and then describe in section 10.2 how the Liouville action can be derived from a particular
cost function.

10.1 Euclidean path integrals as circuits

The basis for the circuit identification of Euclidean path integrals is a formula developed
in [106,107] in the context of geometrical interpretations of TNs preparing path integrals.
In particular, we consider a Euclidean path integral of a 2𝐷 CFT in generic background
coordinates

d𝑠2 =
[︀
𝑎(𝑡, 𝑦)2 + 𝑏(𝑡, 𝑦)2

]︀
d𝑡2 + 2 𝑏(𝑡, 𝑦) d𝑡 d𝑦 + d𝑦2, (10.1)

in which constant Euclidean time 𝑡 slices are flat lines w.r.t. the coordinate 𝑦. The relevant
statement then is that this path integral computes, up to an unimportant normalization, the
matrix elements of the nonunitary operator

𝑉 = 𝒫 exp

{︂
−
∫︁ 𝑡𝑓

𝑡𝑖

d𝑡

∫︁
d𝑦 [𝑎(𝑡, 𝑦)ℎ(𝑦) + 𝑖 𝑏(𝑡, 𝑦) 𝑝(𝑦)]

}︂
. (10.2)
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Figure 10.1: Geometric interpretation of the (𝑡, 𝑦) coordinate system (10.1) in comparison
to the (𝜏, 𝑥) coordinates in (9.11). Σ𝜏 and Σ𝑡 denote time slices of the respective background
geometries. The right side of the figure illustrates the geometrical interpretation of the
parameters 𝑎 and 𝑏 in the metric (10.1) as distances to intersections of constant coordinate
slices. At a given point, the function 𝜎(𝜏, 𝑥) defines the Euclidean angle between tangents
to Σ𝑡 and Σ𝜏 , cf. eq. (10.9). Figure taken from [5].

Here, ℎ ≡ 𝑇𝑡𝑀 𝑡𝑀 and 𝑝 ≡ 𝑇𝑡𝑀𝑦 are the Hamiltonian and momentum stress tensor components in
Minkowski spacetime with line element d𝑠2 = − d𝑡2𝑀 +d𝑦2, and the path ordering refers to the
integration over 𝑡. A geometric interpretation of this expression in the new (𝑡, 𝑦) coordinates
is given in Fig. 10.1.

The operator 𝑉 in eq. (10.2) has the same form as the circuit (9.1) when identifying the time 𝑡
as the circuit parameter and the energy-momentum tensor components as the gates/operators
𝑂𝐼 . In contrast to the usual setting in both QMB systems and QFTs, we now work with
both Hermitian (Euclidean) and unitary transformations, generated by the operators ℎ and
𝑖𝑝, respectively. 73 The index 𝐼 differentiates between these two gates and runs over the full
range of the 𝑦 coordinate. The path integral (10.2) can be interpreted as a bilinear map acting
on the Hilbert space on a slice of Euclidean time 𝑡. To connect it to the Euclidean path
integral on a Weyl-rescaled geometry, we need to identify coordinate transformations from the
(𝜏, 𝑥) coordinates in the metric (9.11) to the (𝑡, 𝑦) coordinates in (10.1). To do so, we at first
build up some intuition for a restricted case and then discuss the most general coordinate
transformation that achieves this task.

10.1.1 Intuitive understanding of coordinate transformations

Suppose that we perform a transformation only on the spatial coordinate, i.e. 𝑡 = 𝜏 and
𝑦 = 𝑦(𝜏, 𝑥), such that d𝑦 = 𝑦̇ d𝜏 + 𝑦′ d𝑥. The metric (9.11) transforms under this coordinate
change into

d𝑠2 =
e2𝜔(𝜏,𝑥(𝑦))

𝑦′2
(︀
(𝑦′2 + 𝑦̇2) d𝜏 2 − 2𝑦̇ d𝑦 d𝜏 + d𝑦2

)︀
. (10.3)

73This can also be understood from the fact that the Wick rotation to Euclidean time places the 𝑡𝑡 and 𝑡𝑦
components of the energy-momentum tensor on different footing.
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Demanding agreement with the metric form (10.1) amounts to the condition e2𝜔(𝜏,𝑥(𝑦)) /𝑦′2 = 1,
which is solved by the coordinate transformation

𝑦 =

∫︁ 𝑥

0

d𝛾 e𝜔(𝜏,𝛾) +𝑓(𝜏) (10.4)

for an arbitrary function 𝑓(𝜏), which we are allowed to set 𝑓(𝜏) ≡ 0. The metric components
𝑎 and 𝑏 can be read off as

𝑎 = 𝑦′ = e𝜔(𝜏,𝑥) and 𝑏 = −𝑦̇ = −
∫︁ 𝑥

0

d𝛾 e𝜔(𝜏,𝛾) 𝜔̇(𝜏, 𝛾). (10.5)

The path-ordered exponential (10.2) can be rewritten explicitly using these expressions. In-
corporating a Jacobian factor 𝐽 = e2𝜔 when passing to the (𝜏, 𝑥) coordinates, we obtain

𝑉 = 𝒫 exp

{︂
−
∫︁ 𝛽

0

d𝜏

∫︁ ∞

−∞
d𝑥

[︂
ℎ(𝑥) −

(︂
e−𝜔(𝜏,𝑥)

∫︁ 𝑥

0

d𝛾 𝜔̇(𝜏, 𝛾) e𝜔(𝜏,𝛾)
)︂
𝑖 𝑝(𝑥)

]︂}︂
. (10.6)

This expression can be understood intuitively when viewed as a linear map generated by
the path integral on the metric (9.11) from some time slice 𝜏 to a time slice 𝜏 + 𝛿𝜏 . The
Hamiltonian time evolution is generated by the first term, whereas the second term accounts
for the change of the geometry in the transverse direction when moving from one time slice
to the other. To see the latter property, we consider an infinitesimal, position-dependent
translation 𝑥→ 𝑥+ 𝑢(𝑥) 𝛿𝜏 and equate the change in the transverse direction with the action
of this translation, i.e.

e2𝜔(𝜏+𝛿𝜏,𝑥) d𝑥2 = e2𝜔(𝜏,𝑥+𝑢(𝑥)𝛿𝜏) d(𝑥+ 𝑢(𝑥)𝛿𝜏)2 . (10.7)

Expanding this expression to first order in 𝛿𝜏 and solving it for 𝑢(𝑥) yields precisely the second
term in (10.6) multiplying the generator 𝑖𝑝.

10.1.2 The general case

In the most general case, the coordinate transformation can be parametrized by a diffeomor-
phism 𝑡 = 𝑡(𝜏, 𝑥), 𝑦 = 𝑦(𝜏, 𝑥). The same steps as in the previous simpler case give rise to the
following solutions for 𝑎 and 𝑏 in terms of 𝑡 and 𝑦:

𝑎 =
𝑡 𝑦′ − 𝑡′ 𝑦̇

𝑡2 + 𝑡′2
and 𝑏 = −𝑡 𝑦̇ + 𝑡′ 𝑦′

𝑡2 + 𝑡′2
. (10.8)

The boundary conditions are translated into 𝑦(0, 𝑥)=𝑦(𝛽, 𝑥)=𝑥, and 𝑡(0, 𝑥)≡const, 𝑡(𝛽, 𝑥)≡
const. While the functions 𝑎 and 𝑏 specify the circuit (10.2), generic choices of them would
not prepare, up to normalization, the operator 𝜌𝛽 in (9.8) on a Weyl-rescaled geometry. Only
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the specific relations in (10.8) that follow from the coordinate transformation guarantee this.

For the following calculations, we will introduce a convenient variable. We define the angle 𝜎
as

− 𝑡′

𝑡
= −d𝜏

d𝑥
=: tan𝜎, (10.9)

whose geometric interpretation is explained in Fig. 10.1. Demanding that the overall prefactor
in front of the metric (10.1) equals one after the coordinate transformation, relates derivatives
of 𝑡 and 𝑦 to the Weyl factor 𝜔 in the following way

𝑦′ = e𝜔 sec𝜎 − 𝑦̇ tan𝜎. (10.10)

Based on these relations, we now want to count gates through appropriate cost functionals of
𝑎 and 𝑏. To reformulate the path integral complexity in the circuit complexity approach, our
goal is to recover the Liouville action from a particular, so far unknown, cost function. For
a proper identification, we aim to reexpress our results in dependence on 𝜔 and the new free
(gauge) parameter 𝜎.

10.2 Cost functions and the Liouville action

Having identified the circuit (10.2) for the particular functions in (10.8), which prepares the
Euclidean path integral, we can define cost functions whose minimization yield the circuit
complexity. As discussed in section 9.1, there are many possible choices in the geometrical
approach to circuit complexity. We will discuss at first the 𝐿1 and 𝜅 = 2 norm and outline
their shortcomings, before moving on to a more general class of cost function, which we find
to reproduce the Liouville action.

10.2.1 Properties of 𝐿1 cost functions

The 𝐿1 norm as defined in (9.2) implies in the simplest case a direct counting of 𝑎 and 𝑏 in
the circuit as

𝒟1 ≃
∫︁

d𝑡 d𝑦 (|𝑎| + 𝜂𝑏|𝑏|) , (10.11)

where we do not account for an overall normalization. The counting of 𝑎 means that we
always associate a cost to advancing in the time direction along the circuit. Costs for moving
along the transverse direction are counted by 𝑏 with a penalty factor 𝜂𝑏 ≥ 0. 74 Already for the
simplified coordinate transformation 𝜎 = 0 in (10.5), this can result in complicate dependencies
on 𝜔. From a physical perspective, it makes sense not to assign any cost to uniform space
translations. We therefore choose 𝜂𝑏 = 0.

74A detailed discussion of penalty factors in this context is available in [45].
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More generally, it is a totally valid choice to include also derivative terms in the cost function.
However, for a proper identification of circuit complexity, we exclude derivatives w.r.t. the
time coordinate, since these would assign a cost to “acceleration” along the path. A more
sophisticated version of the 𝐿1 norm hence reads

𝒟1 ≃
∫︁

d𝑡 d𝑦
1

𝜖2
(|𝑎| + 𝜖 𝜂𝜕𝑎|𝜕𝑦𝑎| + 𝜖 𝜂𝜕𝑏|𝜕𝑦𝑏| + . . .) . (10.12)

Here, we have weighted dimensionful derivative terms with the UV regulator 𝜖 and accordingly
included an overall factor 𝜖−2 from the integration measure. Possible penalty factors are
denotes as 𝜂𝜕𝑎 and 𝜂𝜕𝑏, and ellipsis stand for terms of order 𝒪(𝜖0) and higher, which vanish in
the continuum limit. The cost of uniform applications of ℎ is accounted for by |𝑎|, while the
derivative terms correspond to inhomogeneous translations in space and time. In principle,
it would be also possible to include mixed terms of the form |𝜕𝑦𝑎 + 𝜕𝑦𝑏|; we however neglect
these in the following discussion.

In the next step we want to express the 𝒟1 cost function (10.12) in the (𝜏, 𝑥) coordinates by
taking the Jacobian 𝐽 = 𝑡𝑦′− 𝑡′𝑦̇ = e𝜔 𝑡 sec𝜎 into account. The result takes a relatively simple
form in terms of 𝜔 and 𝜎,

𝒟1 ≃
∫︁ 𝛽

0

d𝜏

∫︁ ∞

−∞
d𝑥

e𝜔

𝜖2

{︂
e𝜔 + 𝜖 𝜂𝜕𝑎 |(𝜔̇ − 𝜎′) sin𝜎 + (𝜔′ + 𝜎̇) cos𝜎|

+ 𝜖 𝜂𝜕𝑏 |(𝜔′ + 𝜎̇) sin𝜎 − (𝜔̇ − 𝜎′) cos𝜎| + . . .

}︂
. (10.13)

Obviously, this cost function is not able to recover the Liouville action. Moreover, it depends
explicitly on the foliation into constant time slices via 𝜎 and hence is not diffeomorphism-
invariant of the metric 𝑔𝜇𝜈 . Even in the flat space case, 𝜔 = 0, 𝒟1 is still nontrivial and
foliation-dependent.

To close this section, we now consider the special case of a translation-invariant Weyl factor,
𝜔 = 𝜔(𝜏) and the choice 𝜎 = 0. Eq. (10.13) then reduces to

𝒟1 ≃
∫︁ 𝛽

0

d𝜏
1

𝜖

{︀
e2𝜔 +𝜖 𝜂𝜕𝐵| e𝜔 𝜔̇|

}︀
, (10.14)

where higher-order terms and an unimportant prefactor are neglected. Keeping in mind the
boundary condition 𝜔 = 0 at 𝜏 = 0 and 𝜏 = 𝛽, the optimal path of this cost function can be
deduced with relative ease. Observe in particular that the first term is minimized for 𝜔 → −∞.
The kinetic term, on the other hand, is only the absolute value of a total derivative d

d𝜏
e𝜔 and

therefore does not penalize this run-away behavior. It is not sensitive to how fast the function
changes but only piecewise to total changes. The optimal circuit is consequently given by
an almost infinite dilatation at the boundaries and a piece of Euclidean time evolution with
an extremely coarse-grained Hamiltonian in between. This situation is similar to the TNR
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outlined above, in whose context the MERA was identified as almost infinite dilations, while
the Euclidean time evolution corresponds to a single layer of Euclideons [100] (cf. Fig. 9.2).

10.2.2 Properties of 𝜅 = 2 cost functions

Another common choice of cost function is the 𝜅 = 2 norm following from the definition
(9.4). 75 Based on the general principles of gate counting as for the 𝐿1 norm, it comprises the
following quadratic gate counting

𝒟𝜅=2 ≃
∫︁

d𝑡 d𝑦

{︂
1

𝜖2
𝑎2 + 𝜂(𝜕𝑎)2(𝜕𝑦𝑎)2 + 𝜂(𝜕𝑏)2(𝜕𝑦𝑏)

2 + . . .

}︂
, (10.15)

containing possible penalty factors 𝜂(𝜕𝑎)2 and 𝜂(𝜕𝑦)2 . Again, higher-order derivatives ∼ 𝜖𝑛𝜕𝑛𝑦

are omitted since they vanish for 𝜖 → 0, while mixed terms of the form 1
𝜖
𝑎𝜕𝑦𝑏 or 𝜕𝑦𝑎𝜕𝑦𝑏 are

possible but we neglect them similarly. In its general form, the 𝜅 = 2 norm can be expressed
as

𝒟𝜅=2 ≃
∫︁

d𝑡
∑︁
𝐼𝐽

𝜂𝐼𝐽𝑌
𝐼𝑌 𝐽 , (10.16)

where the metric 𝜂𝐼𝐽 takes the form

𝜂𝐼𝐽 =

(︃
(−𝜕2𝑦 + 1

𝜖2
)𝛿(𝑦 − 𝑦′) 0

0 −𝜕2𝑦𝛿(𝑦 − 𝑦′)

)︃
. (10.17)

The gate counting is reformulated as

𝒟𝜅=2 ≃
∫︁

d𝑡

∫︁
d𝑦

∫︁
d𝑦′

(︁
𝑎(𝑦) 𝑏(𝑦)

)︁
𝜂𝐼𝐽

(︃
𝑎(𝑦′)

𝑏(𝑦′)

)︃
, (10.18)

where we have suppressed penalty factors and rewritten the sum
∑︀

𝐼𝐽 as a double integral
over 𝑦 and a summation over 𝑎 and 𝑏. Minimization of the cost function in this form hence
corresponds to finding geodesics in a Riemannian geometry.

In Weyl-rescaled coordinates, the 𝜅 = 2 cost function takes the form

𝒟𝜅=2 ≃
∫︁ 𝛽

0

d𝜏

∫︁ ∞

−∞
d𝑥

e𝜔 cos𝜎

𝑡

{︂
e2𝜔

𝜖2
+ 𝜂(𝜕𝑎)2(𝜎

′ − 𝜔̇)2 + 𝜂(𝜕𝑎)2(𝜎̇ + 𝜔′)2
}︂

(10.19)

for equal penalty factors 𝜂(𝜕𝑎)2 = 𝜂(𝜕𝑏)2 . The important lesson here is that this cost func-
tion depends explicitly on the diffeomorphism 𝑡(𝜏, 𝑥), i.e. the time foliation in the circuit
parametrization, via the derivative 𝑡 appearing in the denominator. Contrary to the previous
𝐿1 norm and the more general class in the next section, we here have 𝜔, 𝜎 and 𝑡 as optimization

75In a mathematical strict sense, it is not really a norm. Such subtleties will, however, not be relevant for our
explorations.
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parameters. Their equations of motion are complicated and do not decouple. An attempt to
reproduce the Liouville action in each power of 𝜖 does not yield consistent conditions for the
time slice 𝑡(𝜏, 𝑥). 76 An exception can be found for the special case of a translational invariant
circuit 𝜔 = 𝜔(𝜏). In this case, we can choose 𝜎 = 0 and 𝑡 = e𝜔(𝜏), which cancels the prefactor
in (10.19) and reproduces the Liouville action.

10.2.3 Liouville action from a more general class of cost functions

The outcome of our discussions on the 𝐿1 and 𝜅 = 2 norm is that both these common choices
do not recover the Liouville action in the most general case of coordinate transformations. The
same conclusions holds for the 𝒟2 cost function, which is even more subtle since the integral
over 𝑦 appears under a square root, which does not yield natural expressions in terms of 𝜔
and 𝜎 in dependence of 𝜏 and 𝑥. It turns out that an appropriate choice giving rise to the
Liouville action is given by the intermediate definition

𝒟1/2 ≃
∫︁

d𝑡 d𝑦
1

𝜖2

√︁
𝑎2 + 𝜖2𝜂(𝜕𝑎)2(𝜕𝑦𝑎)2 + 𝜖2 𝜂(𝜕𝑏)2(𝜕𝑦𝑏)2 + . . ., (10.20)

which we denote as 𝒟1/2 cost function, referring to a class, which is known as Schatten p-
norms [420]. We neglect here mixed terms as discussed before, as well as higher-order derivative
terms (denoted by ellipses). In full generality, 𝒟1/2 does not represent a diffeomorphism-
invariant (i.e., 𝜎-independent) cost function. However, for equal penalty factors, 𝜂(𝜕𝑎)2 = 𝜂(𝜕𝑏)2 ,
a Taylor expansion up to next-to-leading order in 𝜖 yields the result

𝒟1/2 ≃
∫︁

d𝜏 d𝑥

{︂
e2𝜔

𝜖2
+

1

2
𝜂(𝜕𝑎)2

(︀
𝜔̇2 + 𝜔′2)︀+

1

2
𝜂(𝜕𝑎)2

(︀
𝜎̇2 + 𝜎′2)︀+ 𝜂(𝜕𝑎)2(𝜔

′𝜎̇ − 𝜔̇𝜎′) + . . .

}︂
.

(10.21)
The last term is only a total derivative. Hence, the resulting equations of motion for 𝜔 and 𝜎,

− e2𝜔

𝜖2
+ 𝜔′′ + 𝜔̈ = 0 and 𝜎′′ + 𝜎̈ = 0, (10.22)

decouple (here written for unit penalty factor). This means that the optimization over 𝜔 is
independent from the choice of 𝜎, since the second equation for the latter is solved by any
holomorphic or anti-holomorphic function. We can observe that the 𝜔-dependent first part
in (10.21) is precisely the Liouville action. As a result, using the 𝒟1/2 cost function, we
could achieve the task of giving the path integral complexity based on the Liouville action
a precise interpretation as an approximation within the circuit complexity approach. This
new perspective implies, however, that the Liouville action is not fundamental in quantifying
complexity of CFTs, since it only arises after some fine-tuning of a particular cost function.

76Note, however, that we neglected for that statement intricate subtleties like total derivatives when comparing
to the Liouville action.
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This bears a striking resemblance to a similar observation in [402], where the Liouville action
was obtained when expanding a bulk gravitational action with a boundary term in AdS3 with
a position dependent cutoff in 𝜖 in the next-to-leading order. A further analogy comes from the
fact that the cost function (10.20) resembles for 𝜎 = 0 a Dirac–Born–Infeld (DBI) action [421]
for the field 𝜔. In terms of the field 𝜒 in (9.17), it takes the form

𝒟DBI ≃
∫︁

d2𝜒
√︁

det (𝑔𝜇𝜈 + 𝜖2𝜕𝜇𝜒𝜕𝜈𝜒). (10.23)

10.3 Discussion and outlook

In this chapter we have shown that path integral complexity can be embedded into the circuit
approach to complexity by demonstrating that the Liouville action arises as an approximation
to a genuine gate counting for a particular class of cost functions. From a broader perspective,
we were motivated in our explorations to define circuit complexity in QFT as a direct functional
of sources that are present in the underlying Euclidean path integral. In contrast to earlier
attempts to circuit complexity in QFTs (cf. section 9.1), we explicitly employed only local
gates and treated the background metric as the source.

The genuine cost function 𝒟1/2 in (10.20) is not covariant w.r.t. the underlying metric anymore
since it is defined for a particular time foliation. However, covariance is recovered in the
approximation (10.22), which arises as the next-to-leading order expansion in the UV cutoff.
In this way, the Liouville action is obtained. Demanding both covariance and a proper gate
counting seems to impose quite severe restrictions on allowed metric functionals. In this
context, let us remark that the path integral optimization procedure only varies the cost
function w.r.t. the Weyl factor 𝜔. In a general covariant setting, one should, however, also vary
the other metric components, which leads to further constraint equations. We also would like to
emphasize that the optimization of the Liouville action is not equivalent to the optimization
of of the 𝒟1/2 cost function. The reason is that solutions of the equations of motion set
respectively different terms to order 𝒪(1), causing a breakdown of of the 𝜖 expansion. This
again motivates further explorations on cost functionals for path integral complexity that are
covariant to all orders. The DBI form of the cost function in (10.23) could provide a starting
point for rigorous analyzes in this direction.

In our studies, we have defined cost functions up to an overall prefactor. This means that
we are not sensitive to the central charge appearing in the proper definition of the Liouville
action in (9.13). Although it would be possible to include 𝑐 either ad hoc in the normalization
or as penalty factors, we do not see a particular justification for doing so. Hence, our results
are valid up to an overall normalization or prefactor.

Based on the works [106,107], which provided the conceptual background for our coordinate
transformations, we can interpret our results from a TN perspective. The original path inte-
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gral optimization program was derived as a continuous generalization of the TNR algorithm,
in which a uniform TN consisting of Euclideons is transformed into the MERA circuit (cf.
Fig. 9.2). However, the generalized path ordered exponential (10.2) can implement more gen-
eral forms of the MERA. In particular, for 𝑎 = 1 and 𝑏 ∼ 𝑦, one gets a Euclidean MERA on
a hyperbolic background geometry, which consists of layers of Euclideons that intersect the
usual MERA layers. An example of such a circuit is illustrated in the right panel of Fig. 3.10.
This exemplifies that optimal paths can take more complicate forms and do not necessarily
correspond to the bare MERA circuit, which was heuristically obtained from optimizing the
Liouville action alone. In some preliminary analyses, we tried to discretize the general form
of the path-ordered exponential (10.2) uniformly using the TEBD algorithm to prepare the
groundstate of a critical Ising Hamiltonian. This, however, revealed the problem that the uni-
tary term in it destroys convergence for any finite value of 𝛽 < ∞. A more rigorous analysis
on that front could allow to analyze optimal circuits numerically using TN simulations.

Our work has also several implications on complexity in general. As discussed in our review
on holographic and QFT proposals for complexity in chapters 8 and 9, a clear proof and
understanding on the correctness of these competing proposals is not yet available. However,
we want to put forward here the idea that this challenge could be achieved by equating bulk
and boundary Euclidean partition functions, whose interface is governed by the boundary QFT
sources. This line of reasoning is very much in the spirit of the original operator/field map
(cf. section 2.5.2) of the AdS/CFT correspondence. The works [410,422–424] already go in this
direction, but our explorations in this chapter, in fact, provide the first rigorous attempt in this
vein by constructing genuine cost functions for particular source configurations. Moreover, we
want to point out that the original path integral optimization program optimizes the Liouville
action alone but neglects higher-order corrections in 𝜖. Since we could recover the Liouville
action only approximately for a particular cost function, we should expect that optimal circuits
or geometries from a genuine circuit approach to QFTs might take a different form than the
ones obtained by considering the Liouville action alone as in the path integral complexity.

The line of research in this chapter can be extended in several directions. While we were fo-
cusing on the original path integral optimization program for CFTs [116–118], the work [425]
extended it to include 𝑇𝑇 deformations, while [426] derived warped spacetimes from a chi-
ral Liouville action, and [427] considered inhomogeneous CFTs. It would be interesting to
consider our circuit approach also in these more intricate cases and connect it to the recent
holographic proposal of path integral optimization, which is based on the maximization of the
Hartle–Hawking wave function [428,429]. Moreover, it seems important to understand the con-
nection to circuit complexity when using the Fubini-Study distance for the cost functional as
considered by the works [430–433], which employ explicitly stress tensor insertions as unitary
Virasoro generators in 2𝐷 CFTs. From a more general perspective, the recent work [434] pro-
poses that the full gravitational action represents the complexity of any holographic spacetime
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region. In this setup, the Liouville action merely appears as the leading two terms when taking
the continuum limit w.r.t. a UV cutoff, and hence the problem of deriving a covariant cost
functional which yields the Liouville action alone could be avoided for a circuit interpretation
thereof.



11 Summary and discussion

In this thesis we have theoretically studied physical systems at the intersection of holography
and quantum field theory (QFT), using methods based on tensor networks (TNs) and, more
generally, quantum information science and quantum simulation (QS). We were primarily
driven by the quest to understand fundamental matter under extreme conditions, such as in
the interior of black holes (BHs) or during heavy-ion collisions (HICs) in nuclear accelerators.
Over the last decade, TN based methods and concepts became increasingly important in
an interdisciplinary effort to understand such systems. Having been developed originally in
the context of condensed matter physics, they also offer computational advantages to study
QFTs as in particle physics. They therefore open the avenue to rigorously analyze physical
systems under challenging conditions that were previously (including ourselves) studied with
applied methods and models from the gauge/gravity duality. At the same time, there are
several frameworks that conjecture how TNs can provide a discrete interpretation of the anti-
de Sitter/conformal field theory (AdS/CFT) correspondence itself, which provides new insights
into quantum gravitational aspects and the emergence of spacetime.

In this vein, we formulated in our overview chapter 1 two motivating questions. First, we
asked how TN simulations and related methods can help us in understanding equilibration
processes similar to those in HICs. Second, we were interested what role complexity plays at
the intersection of TNs, QFT and holography.

After discussing the foundations of the gauge/gravity duality and TNs in part I of this thesis, we
addressed the first question in part II. In particular, we studied nontrivial (1+1)-dimensional
QFTs arising in the IR limit of quantum spin chain models. In chapter 4, we reviewed mo-
tivating aspects of QCD and HICs and identified retarded thermal equilibrium correlators
governing linear response theory as an important tool to characterize relaxation and ther-
malization properties of quantum many-body (QMB) systems and QFTs. In this context,
we developed a new method that combines matrix product operator (MPO) simulations for
intermediate time scales with a signal analysis procedure using the Prony method. This setup
allowed us to extract the analytic correlator structure in the complex frequency plane. The
underlying singularity structure can be generically divided into branch cuts and single poles,
whereby for the latter one can differentiate between hydrodynamic (long-lived) and transient
(decaying) poles. Motivated by previous holographic results and a kinetic theory study, we
predicted that for nonintegrable interacting parameter ranges of the Ising QFT (4.40), tran-
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sient singularities do not alter their singularity structure in comparison to the integrable free
fermion regime. Moreover, we could identify meson poles as a signature of nonperturbative
bound states in the system. When the temperature is raised, we observe the appearance of
poles corresponding to their mass differences. This study demonstrates that we can extract
highly nontrivial dynamical properties of collective QFT states in an ab initio fashion from
our TN simulations in combination with signal analysis techniques.

As an extension of this line of research, we then incorporated in chapter 5 scaling operators from
an analytic wavelet solution of the multiscale entanglement renormalization ansatz (MERA)
to analyze if this coarsegrained discretization scheme allows for a more precise encoding of
thermal correlation functions in comparison to the bare Ising model. In this conceptually
different setting, we found that to lowest-order in the physical dimension, the MERA based
TN simulations allow an extraction of QFT data at most as precise as the bare system. From
a broader perspective, it would be interesting to pursue these investigations further for higher
physical dimensions, since the related problem of finding optimal discretization schemes of
QFTs is also relevant for QS.

These thermal correlator studies highlighted the importance of meson states for the under-
standing of dynamical properties in QMB systems and QFTs. In chapter 6, we studied a related
effect, the melting of meson bound states in the nonintegrable ferromagnetic phase of the Ising
QFT, in detail. Our explorations are motivated by QCD, where this phenomenon is important
for the understanding of HICs and hence the physics of the early universe. We reviewed phe-
nomenological QCD approaches as well as holographic models, in which the sequential melting
process is signalled by a thermal broadening of the in-medium spectral function. In our TN
simulations, we instead initiated a new paradigm for its description by analyzing entanglement
measures in a static and dynamical situation. In particular, we found that the second Rényi
entropy density of a thermal state scales at high temperatures as in a CFT, where no meson
masses are present and the only scale is set by the temperature. In the dynamical case, we
simulated thermal quantum quenches in the thermodynamic limit and analyzed the growth
and behavior of reflected entropies, which can be calculated directly from a translational in-
variant MPO ansatz. At low effective temperatures, we observe entanglement oscillations, i.e.
an oscillatory behavior with frequencies given by the meson masses. In contrast, at high ef-
fective temperatures, an observed linear growth behavior is consistent with expectations from
a quasiparticle model, which is valid for (integrable) theories without meson states. From
these findings, we conclude that mesons have been melted as soon as the temperature is high
enough. Even simple entanglement measures can characterize and signal the meson melting
effect. We put forward the vision to incorporate this idea also into the QCD context, which,
in our opinion, can provide new insights about meson melting as a phenomenon that is not yet
completely understood from a detailed microscopic perspective. This idea fits nicely into the
recent progress and growing interest of the TN and QS community to address topics originating
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from particle physics, in particular for gauge theories.

TN simulations are classical methods based on entanglement properties in a QMB system. As
such, they are closely related to QS, in which either digital or analog simulations of quantum
systems themselves open the avenue to controlled studies of fundamental physical systems
beyond the capability of classical resources. Inspired by our meson studies and the recent
rapid progress in experimental technologies, we explored in chapter 7 prospects for identifying
relativistic meson spectra on trapped ion devices. Focusing on the E8 regime of the Ising QFT,
we used numerical diagonalization techniques to show that for sufficiently strong long-range
suppression, experimentally realizable spin chain models allow for the identification of the low-
lying meson excitations even in small systems. We provided a protocol for its detection via
absorption spectroscopy. With these theoretical studies, we would like to promote the idea for
the experimental realization of our proposal, which can be achieved with existing technologies.
We are convinced that this would be an valuable contribution in the understanding of meson
physics.

In view of our first motivating question, we can fairly conclude that TN simulations allowed us
to learn important lessons about both static and dynamical properties of (1+1)-dimensional
QFTs at zero and finite temperature. The same holds for our explorations on QS, which ad-
ditionally open the prospect to outperform classical computations and therefore shine light
on new physical effects and properties. In both cases, the most interesting extension of our
work, which we would like to highlight at this point, would be to go beyond the realm of spin
chain models and their underlying QFTs. Most relevantly, we would like to motivate future
studies in the same spirit but for relativistic lattice gauge theories, which are directly relevant
to the standard model in particle physics. While we focused on simulations in (1+1) dimen-
sions, it would be accordingly desirable to perform simulations also in higher dimensions. One
obvious computational difficulty arising in this endeavour is the even more severe limitation
to early times due to entanglement production under real-time evolutions. However, from
the TN perspective, recent years have shown a tremendous progress in both algorithm devel-
opments and simulating (relatively simple) gauge theories with 2-dimensional ansätze. Even
the first 3-dimensional simulations are available, which could already avoid the sign problem
of conventional Monte Carlo methods. In a similar fashion, gauge principles of QFTs were
successfully implemented via experimental QS. Based on the recent progress in these direc-
tions, we see the potential that our addressed problems and questions can be studied also in
more complicate theories with these techniques in the medium-term future. On this route to
standard model physics, we see our studies as a first step, which is relevant since it provides a
controlled setup to study physical effects with new ideas and concepts for (1+1)-dimensional
QFTs in challenging parameter regimes. Moreover, some of our phenomenological observations
(such as entanglement measures at high temperatures) and analysis methods (Prony method
for a one-dimensional signal originating from arbitrary theories) are directly relevant also for
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higher-dimensional computations.
In part III of this thesis we addressed our second motivating question. From the quantum
computational viewpoint, we introduced in chapter 8 complexity as a concept to quantify the
difficulty to realize a quantum circuit from a reference to a target state. We then reviewed the
volume and action proposal as competing conjectured duals to this quantity that probe the
interior of the eternal AdS BH. As discussed in chapter 9, the QFT side of this holographic
correspondence is less understood. There are two independent proposals: While the circuit
approach is based on a geometric gate counting procedure in a continuous circuit (expressed
as a path-ordered exponential), the path integral complexity is resting on an optimization
of Euclidean path integrals in a Weyl-rescaled background geometry, realizing a continuous
generalization of the tensor network renormalization (TNR). In chapter 10 we bridged the gap
between these two proposals for 2𝐷 CFTs. Our calculations are based on a coordinate trans-
formation, which allowed us to reexpress the path-ordered exponential in a generalized form.
The Liouville action, which was heuristically argued to govern the path integral complexity,
then arises only as an approximation to a judicious gate counting. As a consequence, optimal
circuits can take upon discretization more general forms than the MERA, which was obtained
from a TNR interpretation of the original path integral optimization procedure.
By constructing cost functions for particular source configurations, we go the first step into
equating bulk and boundary Euclidean partition functions, which we argue could provide a way
of ultimately proving holographic complexity conjectures. At the same time, we want to stress
that, although we related the circuit approach of complexity to the path integral optimization
program, the question of the precise definition and meaning of complexity in QFTs is not
yet answered. A starting point for achieving this goal could be provided by connecting our
geometric gate counting to the Fubini-Study approach, which was complementarily developed
within the circuit framework. Moreover, while our analyses were based on 2𝐷 CFTs, it would
be a promising future direction to study also more general QFTs. A natural extension could be
to consider for example 𝑇𝑇 deformed CFTs, for which the path integral optimization procedure
was recently worked out. Eventually, this research direction could lead to a rigorous circuit
interpretation of holographic complexity interpretations, which is directly originating from the
QFT viewpoint.
Overall, our discussed topics in this thesis demonstrate that TNs are at the center of of an
interdisciplinary and vibrant effort to understand fundamental physics, ranging from hologra-
phy and quantum information to QFT and QS. We therefore hope that the presented ideas
are of service to a broader community of particle, condensed matter and quantum information
physicists, and can inspire them to new theoretical and experimental research studies.



A Demonstration of the Prony
method in a holographic example

In chapter 4 we employ the Prony method on numerically calculated retarded thermal two-
point functions from MPO simulations. The extracted singularity structure in the underlying
(1+1)-dimensional QFT has an exact dual holographic interpretation as (2+1)-dimensional BH
QNMs in the conformal (CFT) case. In this appendix, instead, we would like to demonstrate
the applicability of our signal analysis method to a higher-dimensional holographic scenario
as the point of departure, similar to the motivating discussion in section 4.3.
In particular, we consider the holographic model studied in [435]. 77 In this work, the authors
analyze the time dependence of shear viscosity in the far from equilibrium initial stage of a
HIC from a holographic perspective, resting on a Einstein–Maxwell model. In more detail, the
following (3+1)-dimensional action is considered 78

𝑆 =

∫︁
d4𝑥

√−𝑔
(︃

1

16𝜋𝐺
(4)
N

(𝑅 + 6) − 1

4
𝐹𝑚𝑛𝐹𝑚𝑛

)︃
+ 𝑆𝑚𝑎𝑡𝑡𝑒𝑟, (A.1)

where the field strength tensor contains an Abelian gauge field. Using an asymptotic AdS
spacetime ansatz and the general perturbation theory framework outlined in section 4.3, the
authors calculate the time dependent profile of the spatial off-diagonal component ⟨𝑇 𝑥𝑦⟩(𝑡) in
the dual (2+1)-dimensional QFT. The nontrivial element is the realization of a rapid mass
infall on a black brane, which is realized by the time-dependent matter action 𝑆𝑚𝑎𝑡𝑡𝑒𝑟, and
corresponds to an energy deposition on the QFT side. As a result, the system is driven out of
equilibrium and (thermodynamic) quantities become time-dependent. Making use of the fact
that ⟨𝑇 𝑥𝑦⟩ is proportional to the correlator 𝐺𝑥𝑦,𝑥𝑦

𝑅 itself for a localized metric perturbation,
this was then used in [435] to calculate the shear viscosity from Kubo’s formula in Fourier
space.
Here, we instead would like to analyze the function ⟨𝑇 𝑥𝑦⟩(𝑡) in real-time with the Prony
method. The profile of its absolute value is shown in Fig.A.1. The function exhibits decaying
oscillations over many orders of magnitude. From the time 𝑡 = −1 to 𝑡 = +1, energy is
deposited into the system. By that, the QNM frequencies become time-dependent, which is
77I thank Michael Florian Wondrak and Matthias Kaminski for discussions and provision of the numerical

data.
78We refer to the original publication [435] for details.
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Figure A.1: Time dependence of the energy-momentum tensor component |⟨𝑇 𝑥𝑦⟩(𝑡)| in
the holographic model of [435] (in arbitrary units). In the interval −1 ≤ 𝑡 ≤ 1, the energy
density is increased by 10 %, causing a change in the ring-down frequencies.

in great contrast to the MPO equilibrium calculations in chapter 4. We are interested in the
question, whether our Prony signal analysis method is capable of identifying this feature. In
the present case, the overall time interval 𝑡 = −16 . . . 16 is available, while the quench period
is taking place only in a small time period. We therefore choose a time window ∆𝑡 = 6.4 for
the signal analysis, which is small enough to capture the pre-quench and post-quench regimes
individually, and, on the other hand, large enough to provide a reliable signal identification in
the complex frequency plane. The resulting Prony plot is shown in Fig.A.2. One can clearly
identify the first three black brane QNMs in the lower half plane. For each level, there are
slightly displaced modes identifiable. In particular, the green pole at the first level corresponds
to the thermodynamic mode before the quench and the red one to its post-quench counterpart.
A similar feature is visible for the higher order singularities of the retarded thermal correlator,
albeit with less accuracy due to the faster decay.

To analyze the position of the first QNM 𝜔1 in more detail, we extract its time-dependent
real and imaginary part in Fig.A.3 from the Prony analysis. The “jump” of the frequency
towards larger real and lower imaginary values as an effect of the quench is visible. The pre
and post-quench regimes are numerically extremely stable: The first QNM is modified from
Re(𝜔𝑝𝑟𝑒

1 ) = 2.33012 to Re(𝜔𝑝𝑜𝑠𝑡
1 ) = 2.40534 and Im(𝜔𝑝𝑟𝑒

1 ) = −3.35624 to Im(𝜔𝑝𝑜𝑠𝑡
1 ) = −3.46458.

The position of these values in the complex frequency plane is marked by circles in Fig.A.2.
The real part agrees exactly with a simple numerical estimate of the time period from the
zeros of the function ⟨𝑇 𝑥𝑦⟩(𝑡). Obviously, the Prony method provides the advantage of giving
additionally also access to the imaginary part of 𝜔1 and the values of higher order transient
modes.

The time evolution in the quench period −1 ≤ 𝑡 ≤ 1 can be identified less accurately with the
Prony method. One reason is that due to the finite length of the time window, the frequencies
cannot be matched with a unique time value. However, from Fig.A.3 it becomes visible that
𝑡𝑠𝑡𝑎𝑟𝑡 ≈ 𝑡− 1, i.e. the starting point of the Prony window agrees with the absolute time upon a
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Figure A.2: Prony reconstruction of the energy-momentum tensor component ⟨𝑇 𝑥𝑦⟩(𝑡) in
the holographic model of [435] in the complex 𝜔 plane. Identified modes within a particular
time window are shown as dots according to the colorbar. The dashed circle marks the first
QNM 𝜔1 before the quench, the continuous circle after the quench period.
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Figure A.3: Real (left) and imaginary (right) part of the first QNM 𝜔1 in dependence on
the signal analysis window. The lower axis indicates the starting point of the Prony time
window, the upper axis its endpoint.

small shift. The time-dependent frequencies in the short quench interval are overlapping with
the pre and post-quench values in any Prony analysis window covering this period. This effect
causes several spurious outliers in the identified frequencies. Numerically, the Prony method
seems to favor the identification of the pre-quench mode with larger (negative) imaginary part,
since it is less suppressed.
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In summary, we have shown that our signal analysis technique provides reliable results even
in nonequilibrium situations. Time dependent frequencies can be detected, at least for con-
trolled quench protocols in which the pre and post-quench regimes are long enough to be seen
individually.



B Acronyms

AdS anti-de Sitter
BH black hole
CFT conformal field theory
cMERA continuous multiscale entanglement renormalization ansatz
DMRG density matrix renormalization group
ERB Einstein–Rosen bridge
HIC heavy-ion collision
IR infra-red
iMPO infinite matrix product operator
iMPS infinite matrix product state
iTEBD infinite time-evolving block decimation
LGT lattice gauge theory
LR long-range
MERA multiscale entanglement renormalization ansatz
MPO matrix product operator
MPS matrix product state
NN nearest-neighbor
obc open boundary conditions
OPE operator product expansion
pbc periodic boundary conditions
PEPS projected entangled pair states
QCD quantum chromodynamics
QFT quantum field theory
QGP quark-gluon plasma
QMB quantum many-body
QNM quasinormal mode
QPM quasiparticle model
QS quantum simulation
RG renormalization group
SUSY supersymmetry
SVD singular value decomposition
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178 B Acronyms

SYM super Yang–Mills
TEBD time-evolving block decimation
TFD thermofield double
TN tensor network
TNR tensor network renormalization
TTN tree tensor network
UV ultraviolet
WDW Wheeler–DeWitt
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