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1  |   THE MAMMALIAN 
CIRCADIAN SYSTEM

The beginnings of biological rhythms research go back to 
the 18th century when Carl Linnaeus developed the ‘flower 
clock’ to predict time based on the flowering plants across the 
solar day. Nevertheless, chronobiology is a relatively young 
field with its molecular basics having been discovered only 

about 50 years ago. Today it is well accepted that endoge-
nous circadian clocks serve to anticipate daily environmental 
changes, most importantly the light-dark cycle, to optimize 
the temporal coordination of physiology and behaviour. 
Thus, the increasing awareness about the crucial importance 
of circadian systems for human health, well-being and gen-
eral physiology has cumulated in the 2017 Nobel Prize for 
circadian research, awarded to M. Rosbash, M. Young and 
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Abstract
Humans and other mammalian species possess an endogenous circadian clock sys-
tem that has evolved in adaptation to periodically reoccurring environmental changes 
and drives rhythmic biological functions, as well as behavioural outputs with an ap-
proximately 24-hour period. In mammals, body clocks are hierarchically organized, 
encompassing a so-called pacemaker clock in the hypothalamic suprachiasmatic nu-
cleus (SCN), non-SCN brain and peripheral clocks, as well as cell-autonomous oscil-
lators within virtually every cell type. A functional clock machinery on the molecular 
level, alignment among body clocks, as well as synchronization between endogenous 
circadian and exogenous environmental cycles has been shown to be crucial for our 
health and well-being. Yet, modern life constantly poses widespread challenges to 
our internal clocks, for example artificial lighting, shift work and trans-meridian 
travel, potentially leading to circadian disruption or misalignment and the emergence 
of associated diseases. For instance many of us experience a mismatch between sleep 
timing on work and free days (social jetlag) in our everyday lives without being 
aware of health consequences that may arise from such chronic circadian misalign-
ment, Hence, this review provides an overview of the organization and molecular 
built-up of the mammalian circadian system, its interactions with the outside world, 
as well as pathologies arising from circadian disruption and misalignment.
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JC. Hall for their discovery of the molecular mechanisms 
controlling circadian rhythms.1,2

Circadian clocks are believed to have evolved in adap-
tation to periodically reoccurring environmental Zeitgebers 
(German for ‘time giver’), for example light-dark, nutritional 
and temperature cycles.3 Indeed, being ‘circadian’ provides 
a fitness advantage to organisms,4 probably because it guar-
antees the temporal coordination of behaviour with ambient 
conditions, thereby optimizing survival-related activities 
such as foraging or encounters of predators and mating part-
ners. In addition, endogenous clocks self-sustain rhythmic 
physiology even when environmental entrainment signals are 
absent, thereby temporally separating incompatible biologi-
cal processes such as sleep and wakefulness or anabolism and 
catabolism. Experimental studies have accumulated evidence 
for the adaptive value of circadian systems. Most notewor-
thy, early chronobiological experiments using cyanobacteria 
strains with different circadian periods clearly demonstrated 

that resonance between environmental and intrinsic circadian 
rhythms provides a fitness advantage to bacteria with periods 
that match the external light-dark cycle.5 Similarly, studies in 
mammalian species have demonstrated that functional circa-
dian clocks are crucial for survival: behaviourally arrhythmic 
animals are exposed to increased predator attacks or mistime 
their hibernation.6-8 Moreover, under laboratory conditions, 
housing of mice in abnormal light-dark cycles leads to in-
creased mortality, emphasizing the importance of living in 
resonance with the outside world.9

2  |   SYSTEM-LEVEL 
ORGANIZATION OF MAMMALIAN 
CLOCK NETWORKS

In mammals, including humans, the circadian system is 
hierarchically organized with the suprachiasmatic nucleus 

F I G U R E  1   Organization of mammalian circadian systems. Mammalian circadian clocks are organized hierarchically. The suprachiasmatic 
nucleus (SCN) or pacemaker clock is superior to other body clocks as it is required for entrainment of the mammalian circadian system to the 
environmental light-dark cycle, as well as for driving rhythms in locomotor activity and hormones. Photic entrainment information, mainly sensed 
by intrinsically photosensitive retinal ganglion cells in the retina, is transmitted to the SCN via the retinohypothalamic tract (RHT). Subsequently 
the SCN aligns body clocks with each other and with the light-dark cycle by forming efferent connections that regulate endocrine and behavioural 
rhythms. In addition, peripheral clocks can entrain to rest-activity, feeding-fasting and (body) temperature cycles that may or may not be driven by 
the SCN. If and how body clocks exchange mutual time information or give feedback about their entrainment state to the pacemaker clock remains 
to be investigated in detail. Figure created with BioRender
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(SCN) on top (Figure 1). In the 1970s, the SCN was dis-
covered as endogenous mammalian clock that governs 
hormonal and behavioural rhythms.10-12 As pacemaker 
clock, the SCN is very important for photic entrainment 
and transmission of light-dark signals to downstream tissue 
clocks. It consists of two bilaterally paired clusters made 
up by several thousand densely packed neurons located 
in the anterior hypothalamus superior to the optic chiasm. 
Organization and circuitry of the SCN are complex, com-
prising many different cell types, afferent and efferent con-
nections, as well as heterogenous circadian gene expression 
and neuropeptide signalling.13,14 Each SCN is divided into 
core and shell with region-specific functional roles that re-
main to be explored in detail.13 Briefly, the SCN core con-
tains vasoactive intestinal polypeptide (VIP) expressing 
neurons, which are important for light-perception via the 
retinohypothalamic tract (RHT) and tissue synchrony. The 
shell region, rich in arginine vasopressin (AVP) expressing 
neurons, is innervated by the hypothalamus, limbic areas 
and the SCN core and appears to be involved in setting the 
phase of non-SCN brain and peripheral body clocks.15

Diurnal changes in light intensity are transmitted to the 
SCN and intergeniculate leaflet (IGL) via intrinsically pho-
tosensitive retinal ganglion cells (ipRGC). These ipRGC are 
specialized neurons within the retina that, unlike other ret-
inal ganglion cells, express the photopigment melanopsin 
(OPN4) and mediate light responses even when rod and cone 
photoreceptors are non-functional.16-18 Interestingly, ectopic 
expression of melanopsin renders also peripheral cells pho-
tosensitive and enables phase shifts of circadian oscillations 
in response to light.19,20 ipRGC are required for SCN driven 
photoentrainment of mammalian circadian systems to the 
environmental light-dark cycle21,22 and even IGL-SCN cir-
cuit dependent non-photic entrainment to food in the early 
postnatal period.23 At pre-synaptic connections from the 
RHT to the SCN electrical are transformed into biochemical 
signals resulting in the release of the neurotransmitters pitu-
itary adenylate cyclase-activating polypeptide (PACAP) and 
glutamate, which activate receptor dependent kinase signal-
ling and induce the elevation of intracellular calcium (Ca2+) 
and cyclic AMP (cAMP) levels.24 Ultimately, this results in 
the immediate early induction of the so-called clock genes 
Period1 (Per1) and Period2 (Per2),25,26 as well as subsequent 
time-of-day dependent phase responses of the SCN clock, 
thereby enabling entrainment to the light-dark cycle.

Predominantly, the SCN forms efferent connections to 
intermediate neurons in other brain regions, mainly the hy-
pothalamus, which then innervate endocrine neurons passing 
on SCN-derived information to non-SCN brain clocks and 
the periphery by rhythmic hormone release.27 Alternatively, 
the SCN may project directly to endocrine or pre-autonomic 
neurons to regulate neuroendocrine responses. In addition 
to neuronal outputs, the SCN produces diffusible signals. 

Transplantation of encapsulated SCN, has been demon-
strated as sufficient for the restoration of behavioural but not 
endocrine rhythms,28,29 suggesting that SCN derived para-
crine factors can signal to surrounding brain regions to reg-
ulate circadian locomotor activity rhythms. The origin and 
mechanism of diffusible SCN output signals are still mostly 
unknown, but prokineticin 2 (PK2), transforming growth fac-
tor alpha (TGF-α), cardiotrophin-like cytokine (CLC) and 
more recently neuronal-myocyte-specific enhancer factor 2D 
(MEF2D) have been proposed as candidate factors regulating 
behavioural rhythmicity.30-33

In addition to the SCN, virtually all peripheral and non-
SCN central tissues possess cell-autonomous and self-sus-
tained circadian oscillators, that can drive cell-type specific, 
rhythmic biological functions independently of the SCN.34-37 
Yet, the pacemaker clock is required to transmit environmen-
tal entrainment signals (from the light-dark cycle) to other, 
light-insensitive, body clocks to align their rhythms within 
the body and with the outside world. Without the SCN, phases 
of peripheral tissue rhythms drift apart.36 As mentioned 
above, precise mechanisms and efferent connections under-
lying SCN-driven peripheral synchronization are still under 
investigation, but both, neuronal and humoral pathways are 
involved (Figure 1). In 2013, Gerber et al suggested that an 
unknown factor, rhythmically present in blood, may function 
as systemic synchronization signal through activating serum 
response factor, an important transcription factor inducing 
the immediate early expression of clock genes, for example 
Per2.38 Whether or not abundance of this unknown serum 
factor is regulated by the SCN, remains to be investigated.

SCN-driven behavioural activity rhythms may lead to en-
trainment of peripheral clocks by regulating feeding-fasting, 
rest-activity and body temperature cycles. In vivo, restricted 
feeding, as well as voluntary (wheel running) and forced 
(treadmill exercise) activity cycles can serve as entrainment 
signals for peripheral clocks.39-42 Mechanisms of food and 
activity driven entrainment remain to be explored in detail, 
however, rhythms in glucocorticoids (GC) appear to act as 
potent Zeitgebers for peripheral oscillators.43,44 The SCN 
drives circadian glucocorticoid production directly via the 
hypothalamic-pituitary-adrenal (HPA) axis or indirectly via 
the autonomic nervous system.45 However, rhythms in GC re-
lease may also be driven by local adrenal clocks, be induced 
during stress and physical exercise or following the ingestion 
of a meal via the activation of the HPA. Glucocorticoids act 
as resetting signal for circadian clocks by altering the molec-
ular clock machinery.46-48 Interestingly, glucocorticoid recep-
tors have been found in peripheral tissues but not the SCN,49 
suggesting that GC act as entrainment signals specifically 
for peripheral clocks.46 Indeed, presentation of feeding sig-
nals in anti-phase to rest-activity cycles (driven by the SCN) 
induces desynchrony among the SCN and peripheral body 
clocks.39,50,51
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In addition to GC, feeding-related hormones and metabo-
lites, as well as metabolic and redox states may transmit nutri-
tional signals to circadian clocks.52 Endogenous fluctuations 
in nicotinamide adenine dinucleotide (NAD+) cofactors and 
H2O2,

53,54 as well as the activity of the NAD+ sensing protein 
deacetylase SIRT155-57 can regulate circadian clocks. Insulin 
may alter circadian dynamics by inducing kinase depending 
signalling, including protein kinase B (AKT), mitogen-ac-
tivated protein kinase (MAPK) and phosphatidylinositol 
3-kinase (PI3K) pathways.58,59 Moreover, gastrointestinal 
hormones, for example glucagon-like peptide 1 (GLP-1), 
vasoactive intestinal peptide (VIP), oxyntomodulin (OXM), 
gastrin, ghrelin and cholecystokinin (CCK) are rhythmically 
secreted and may regulate peripheral circadian clocks.60-63 
Recently, the mechanistic target of rapamycin (mTOR) path-
way has been proposed as important link between feeding, 
metabolic state and peripheral circadian clock function.64,65

As mentioned beforehand, besides feeding-fasting and 
rest-activity cycles, the SCN governs rhythms in body tem-
perature. Temperature cycles can entrain rhythms of periph-
eral tissues ex vivo and in vivo.66,67 Transcriptional regulation 
of heat shock enhancer elements (HSE) by heat shock factor 
1 (HSF1) or translational regulation of RNAs by cold-induc-
ible RNA-binding protein (CRIP) are involved in temperature 
entrainment and responses of peripheral clocks to tempera-
ture pulses.68-73

The contribution of mutual interactions between non-SCN 
clocks, as well as of peripheral-to-central feedback mech-
anisms to the regulation of mammalian circadian systems 
on the organismal level are currently not well understood 
(Figure 1). Yet, progress in elucidating organizational levels 
of circadian networks has been made by targeted genetic (in)
activation of selected tissue clocks. Koronowski et al (2019) 
showed that reconstituted liver clocks, in otherwise clock-less 
animals, are able to maintain circadian metabolism, whereas 
the majority of other rhythmic liver functions were lost. This 
suggested that full circadian tissue function requires input 
from other body clocks.74 Interestingly, similar results were 
reported by Welz et al (2019) regarding the independence 
of skin circadian clock function.75 Moreover, tissue-specific 
disruption of circadian clock function may result in alter-
ations of the molecular clock machinery or circadian reg-
ulated transcriptomes in other tissues or even behavioural 
changes. An adipocyte-specific deletion of the core clock 
gene Bmal1 (Arntl) has been reported to induce a shift in 
diurnal food intake and obesity in mice, likely by promot-
ing altered neuropeptide expression in the hypothalamus.76 
However, when interpreting the effects of tissue-specific 
clock disruptions, one must recognize that gentic tools used 
to generate such models may not be completely specific and 
may induce off-target effects, for example due to overlapping 
tissue expression of promoters used to drive the expression 
of transgenes . For example, the aP2 (Fabp4) gene promoter, 

used to knock-out Bmal1 specifically in adipocytes,displays 
limited expression in the brain77,78, which may have impacted 
observed hypothalamic changes. Many cancerous tissues 
appear to emit signals that disrupt the molecular clock ma-
chinery at remote sites, inducing chrono-disruption of body 
clocks.79-81 Moreover, the role of the microbiome as circadian 
regulator has gained interest in the last years. Intestinal mi-
crobiota compositions display circadian fluctuation. Mutual 
interaction between the gut microbiome and circadian clocks 
are known to alter host metabolism,82,83 potentially via short 
chain fatty acids (SCFA) derived from bacterial fermenta-
tion.84-86 Interestingly, SCFAs constitute a regulatory link to 
pancreatic islet cellular clocks by stimulating glucagon-like 
peptide-1 (GLP-1) secretion,87 which can synchronize α- 
and β-cell oscillators.88 In addition, gut microbiota-derived 
SCFAs act as Zeitgeber for mouse peripheral tissues.85

3  |   THE MOLECULAR CLOCK 
MACHINERY

Circadian clocks can be found in virtually all cell types. 
Cellular oscillators are autonomous and self-sustained. This is 
because on the molecular level, circadian oscillations are gen-
erated and maintained by interlocked transcriptional-transla-
tional feedback loops (TTFL) between genes and their own 
protein products (Figure 2).89 The so-called core loop consists 
of BMAL1 and CLOCK proteins that, as heterodimers, drive 
the expression of Period (Per1-3) and Cryptochrome (Cry1-
2) genes by binding to E-box DNA sequences in the genes’ 
promoters. After a defined time delay, necessary to generate 
about 24-hour oscillations, PERs and CRYs, as part of large 
macromolecular protein complexes,90,91 translocate back into 
the nucleus and suppress the activity of their own activators 
BMAL1 and CLOCK. Interaction of PER and CRY proteins 
with casein kinase 1ε and 1δ (CK1ε/δ) is crucial for the gen-
eration of circadian rhythms as it regulates PER protein abun-
dance, localization and half-life. Expression of casein kinase 
mutants is associated with altered circadian periods and sleep 
disorders.92,93

In addition to the core clock loop, accessory loops, con-
sisting of RORs, REV-ERBs (NR1D1-2), DBP and NFIL3 
(E4BP4) (Figure 2), fine-tune circadian oscillations generated 
by the core loop (periods and amplitudes). Besides Pers and 
Crys, BMAL1/CLOCK heterodimers drive the E-box depen-
dent transcription of the retinoic acid-related orphan nuclear 
receptors Rev-erb-α/β, the RAR-related orphan receptor Ror-
α/β, as well as of the D site albumin promoter binding protein 
Dbp. Expression of both, Nfil3 and Bmal1, is regulated by the 
competitive action of REV-ERBs and RORs on their ROR/
REV-ERB (RRE) enhancer elements. Depletion or loss-of-
function of REV-ERBs and RORs leads to a shortened pe-
riod of locomotor activity rhythms in mice under free-running 
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conditions.94-96 In addition, DBP and NFIL3 proteins compet-
itively regulate D-box dependent gene expression of Rev-erb, 
Ror and Per genes. Because of their anti-phasic expression and 
antagonistic transcriptional activity, DBP and NFIL3 have been 
proposed to regulate amplitudes of circadian oscillations.97,98

Besides the molecular TTFL, the rhythmic regulation 
of tissue-specific biological processes is controlled via the 
activation of clock-controlled enhancer elements (CCE), 
for example E-boxes, D-boxes and RREs, in the promoters 
of clock-controlled genes. Indeed, 5%-20% of transcripts, 
proteins and metabolites exhibit circadian rhythms in a 
tissue-specific fashion.99-107 Interestingly however, rhyth-
mic protein expression is not always correlated with rhyth-
mic transcription, suggesting that post-transcriptional and 
post-translational processes are involved in driving circadian 
oscillations on the cellular level.108-110

4  |   DEVELOPMENT OF 
CIRCADIAN CLOCKS

The mammalian circadian system develops gradually 
throughout development (for review see111). Whereas circa-
dian rhythmicity, despite the expression of clock genes, has 
not been observed in germ line cells, zygotes, early embryos, 
as well as embryonic and induced pluripotent stem cells,112-

116 foetuses show circadian rhythms in behaviour (foetal 
breathing and limb movement), humoral factors and cardio-
vascular function (foetal heart rate). To what extent foetal 
circadian rhythms are self-sustained or driven by maternal 
circadian rhythms, as well as which communication factors 
promote synchronization between mother and foetus, is still 
under investigation. In vitro studies suggest that the cell-au-
tonomous generation of circadian oscillations depends on the 

F I G U R E  2   The molecular clock machinery in mammals. Circadian oscillations on the cellular level are generated by negative auto-regulatory 
feedback loops, so-called transcriptional-translational feedback loops (TTFL), between genes and their protein products. The rhythm generating 
core loop consists of BMAL1/CLOCK heterodimers that drive the E-box dependent and rhythmic expression of their target genes Period (Per1-3) 
and Cryptochrome (Cry1-2). After a biological delay, necessary for the generation of circadian rhythms, PER and CRY proteins, as part of large 
macromolecular protein assemblies, including casein kinase 1 (CK1), translocate back into the nucleus and suppress BMAL1/CLOCK activity. 
Two accessory loops, including the D-box regulators Dbp and Nfil3, as well as the RRE regulators Rev-erb-α/β, Ror-α/β, serve to fine-tune rhythms 
generated by the core loop via the transcriptional regulation of core clock genes. Tissue-specific circadian outputs are generated by the interplay of 
rhythmic transcriptional, post-transcriptional and post-translational processes (CCE = clock-controlled enhancer element, CCG = clock-controlled 
gene). This Figure was created with BioRender. 
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cellular differentiation status with embryonic tissue and foe-
tal SCN rhythms emerging around day 15 post-fertilization 
(in mice).115,117-119 Precise mechanisms of circadian rhythm 
emergence, however, remain elusive. It has been suggested 
that (relative) clock genes expression levels are related to 
the robustness of circadian rhythms. In addition, post-tran-
scriptional modulation of molecular clock components, for 
example suppression of CLOCK expression via the endonu-
clease-microprocessor complex DICER/DGRC8, may regu-
late circadian clock development.120-122 Catheterized foetal 
models and fluid sampling have shown that human, monkey 
and sheep foetuses display 24-hour rhythms in hormones, 
behaviour and cardiovascular function.123 Melatonin, gluco-
corticoids and dopamine have been proposed as candidate 
factors mediating maternal entrainment of foetal circadian 

clocks during pregnancy.124 In addition, Sletten et al (2018) 
reported that circadian rhythms in human foetal heart rate 
are modified by gestational age, foetal gender, maternal 
physical activity and season.125,126 If truly circadian and not 
imposed by the maternal circadian system, foetal rhythms 
should persist after birth and independently of environmen-
tal Zeitgebers. Studies report that circadian rhythms in body 
temperature and heart rate can be detected in about 50% of 
preterm infants in intensive care units (constant light and 
temperature conditions, 2-hour feeding intervals), as well as 
to a greater percentage in full-term neonates 2 days postna-
tally.127,128 However, such rhythms displayed large variabil-
ity with respect to acrophase, suggesting that synchronization 
with the environment is beginning at later postnatal ages.128 
Circadian rhythms of cortisol are established 2-4  months 

F I G U R E  3   Modern life challenges to mammalian circadian clocks. Circadian clocks regulate rhythmic physiological and behavioural 
processes that are important for human health and well-being. Modern lifestyle encompasses many challenges to the endogenous circadian system 
that can induce circadian disruption and misalignment, as well as promote the development of associated diseases. For example a mismatch 
between endogenous circadian and social clocks (work/school schedules) promotes social jetlag, whereas trans-meridian travel causes travel-
related jetlag, abnormal dietary habits and the gut microbiome impact rhythmic metabolic and gastrointestinal functions and may lead to metabolic 
syndrome or gastrointestinal pathologies, immune responses to pathogens are affected by the state of our circadian system, and neurodegenerative 
and tumorigenic diseases may arise from ageing-related clock changes. In addition, disruption/misalignment of body clocks feeds back to 
rhythmically regulated physiological and behavioural processes, thereby enhancing susceptibility to chrono-disruptive stimuli and aggravating 
associated pathologies. This Figure was created with BioRender. 
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after birth and rhythms in melatonin 48-52 weeks post-con-
ception (for review see129).

5  |   MODERN LIFE CHALLENGES 
TO THE HUMAN CIRCADIAN 
SYSTEM

Mammalian circadian systems regulate numerous physi-
ological and behavioural functions. Perturbation of the mo-
lecular clock machinery, for example because of mutations or 
gene deletions, as well as misalignment between endogenous 
circadian and exogenous environmental cycles, for example 
because of travel across time zones, artificial lighting or shift 
work, can result in acute or chronic ‘circadian disruption’ 
(Figure  3; for review see130). To date, many severe health 
conditions, including metabolic syndrome, diabetes, psychi-
atric and autoimmune disorders, cardiovascular diseases and 
even cancer have been associated with disruption of the cir-
cadian system.131,132

6  |   ‘SOCIAL CLOCKS’

The period of human circadian clocks varies between indi-
viduals resulting in distinct ‘phase-relationships’ between 
internal and external rhythms. Such phase-relationships are 
referred to as chronotypes, simply put, the preference to be-
have as night owl (late types), morning lark (early types), 
or in-between. Most human populations display a slight ten-
dency towards late chronotypes,133 especially during teen-
age years, favouring the development of social jetlag, that is 
the discrepancy between sleep timing on work/school days 
versus work-free days arising from social obligations.134,135 
Trying to compensate for the mismatch between the endog-
enous circadian and exogenous rhythms has been reported 
to cause sleep deprivation136,137 accompanied by sleep loss 
induced pathologies like immunodeficiency, cognitive and 
mood disorders, or obesity.138-140 In mice, chronic jetlag 
protocols have been found to shift the temporal expression 
of clock genes in the SCN and peripheral clocks, to disrupt 
locomotor activity and feeding rhythms, to induce leptin re-
sistance and dysregulation of the immune system, as well as 
to promote tumour growth, metastasis, weight/fat gain and 
metabolic disruption.141-146 In particular, shift work, one of 
the major causes of chronic social jetlag, has been associ-
ated with increased mortality, as well as the development of 
metabolic disorders, for example reduced insulin sensitivity 
or even type 2 diabetes.147-149 Exploring the role of inter-in-
dividual differences in chronotypes for the development of 
pathologies, as well as for individualized medical treatment 
plans and prevention has gained major attention in the field 
of chronobiology.150,151 In recent years, researchers have 

been working on the establishment of practical, yet accu-
rate, sensitive and reliable methods for the determination of 
endogenous circadian clock time. Such ‘chrono-diagnostic’ 
tools will help to develop recommendations not only for cli-
nicians, for example for the optimization of drug treatment 
times and clinical study designs, but also for general politi-
cal decisions, like consolidation of flextime (at the workplace 
and at schools) or chronotype-matched work schedules.

With respect to misalignment between endogenous and 
exogenous cycles, the impact of Daylight Saving Time 
(DST) on the human circadian system has become a highly 
debated topic.152 While the European Commission decided 
on the abolishment of the biannual switch between DST and 
Standard Time (ST), it is currently debated whether DST or 
ST will be fixed as new annual time and whether all member 
states have to stick to the same standard. During the summer 
months (DST), social clocks are advanced by 1 hour, whereas 
sun clocks (daily progression of the sun) remain the same. 
As endogenous circadian clocks are predominantly set by the 
light-dark cycle, DST may promote misalignment between 
social and body clocks and further enhance social jetlag (for 
review see153,154). Moreover, acute DST-ST switching can 
promote sleepiness. Thus, not surprisingly it has been cor-
related with an increased risk of accidents, hospitalization 
and cardiovascular incidents.155-157 Constitutive DST on the 
other hand may result in chronic health effects, comparable to 
chronic social jetlag.156 From a chronobiological perspective 
referring to natural clock time (sunset and sunrise) as new 
annual standard and in a region-specific manner may be most 
advisable for EU member states.

In contrast to social jetlag, travel induced jetlag is tran-
sient and caused by misalignment of our endogenous cir-
cadian system with the new light-dark cycle of the travel 
destination. Trans-meridian travel has been associated with 
sleep-wake disorders, daytime sleepiness, general malaise, 
impaired alertness and motivation, as well as gastrointestinal 
upset with severity of symptoms depending on the number 
and direction of time zones crossed.159-161 In addition, body 
clocks may adjust to the new light-dark cycle with different 
rates, thereby aggravating symptoms resulting from circa-
dian misalignment rather than from poor sleep. Commonly, 
jetlag is perceived to be worse when travelling eastward 
rather than westward. This was supported by a study look-
ing at performance of professional Baseball players, who 
displayed impaired parameters of home-team offensive, as 
well as home and away defensive performance following 
mainly eastward travel.162 Using computational models, 
Diekman and Bose (2018) report that this east-west asym-
metry stems from a combination of endogenous clock period 
(commonly >24 hours in humans) and external day length 
and predict that changes in day length may even induce jetlag 
when travelling from north to south.163 On the other hand, 
Zhang et al (2020) reported that west-to-east jetlag induced 
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brain and neuroendocrine changes that were related to jet-
lag symptoms.164 Noteworthy, repeated long distance travel, 
as experienced by aircrews, may induce more severe health 
consequences than less extensive trans-meridian travel. For 
example, flight attendants display more variable melatonin 
rates (potentially correlated with menstrual irregularities), 
higher salivary cortisol levels, as well as exacerbation of cog-
nitive and psychiatric disorders.165-168

7  |   CLOCKS AND METABOLISM

In addition to the light-dark cycle, other environmental cues 
have been discovered to act as important entrainment signals 
for mammalian circadian systems (see above). Meal timing 
acts as Zeitgeber for circadian clocks and time-restricted 
feeding can uncouple peripheral clocks from the SCN.50,51,169 
Many studies focus on the impact of time-restricted and mis-
timed feeding on health and well-being. Hypercaloric diet in 
mice has been shown to alter molecular and locomotor activ-
ity rhythms, as well as entrainment to the light-dark cycle.170-

172 Sundaram et al (2020) reported that high-fat diet alters 
circadian rhythms in mammary glands of pubertal mice,173 
potentially contributing to early childhood puberty in girls. 
Moreover, Sato et al (2018) showed that nutritional timing al-
ters tissue-specific metabolomic profiles in a time-of-day-de-
pendent fashion,174 indicating that feeding-related cues play 
an important role for rhythmic metabolic organ functions.

On the other hand, circadian clocks temporally regulate 
metabolic processes and energy expenditure,175,176 thus it 
does not only matter what and how much we eat but also 
when we eat. Indeed, genetic disruption of endogenous 
clocks by mutation of the Clock gene results in hyperphagia 
and development of metabolic syndrome in mice.177 In ad-
dition, misalignment of endogenous and exogenous cycles, 
for example during shift work, promotes the development of 
metabolic morbidities.176 Recently, it has been demonstrated 
that, besides lunch and dinner, an additional meal in the late 
evening, rather than in the morning, attenuates overnight 
lipid catabolism,178 potentially counteracting weight loss. In 
mice, pathological consequences of high-fat diet, that ismet-
abolic disruption and obesity, depend on the time of food in-
take rather than calories consumed.179-181

Shift work promotes unhealthy snacking behaviour, as 
well as abnormal glucose tolerance,182-186 thereby increasing 
the risk for obesity and type 2 diabetes. In addition, circadian 
disruption because of genetic perturbation or misalignment of 
endogenous and exogenous rhythms has been found to cause 
dysbiosis of the gut microbiome.187-190 Vice versa, changes to 
the microbiome, for example by antibiotics, altered diet, age 
or stress, may disrupt endogenous clock functions of the gas-
trointestinal tract and promote metabolic disease.191 Gut mi-
crobiota and host circadian rhythms are intertwined by their 

concomitant regulation of the host's metabolism and their 
response to feeding-related signals. Drivers of a so-called 
‘microbiome-circadian clock-axis’ are still under investi-
gation. However, as mentioned earlier, microbiota-derived 
short chain fatty acids (SCFA), as well as microbiota modi-
fied host bile acids (BA) have been reported to regulate host 
metabolism and energy balance, as well as to be altered upon 
changes in feeding regimens.83 Kuang et al (2020) recently 
demonstrated that intestinal microbiota regulate diurnal met-
abolic rhythms of the host by inducing the epithelial expres-
sion of histone deacetylate 3 (HDAC3).192 Ku et al (2020) 
showed 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 
3-phenylpropionic acid (PPA), two metabolites derived from 
Clostridium sporogenes, induce changes in the molecular 
clock machinery in a fibroblast model of peripheral clocks.193 
Thus, maintenance of cyclic variations in gut microbiota may 
play an important role for the prevention of metabolic and 
gastrointestinal pathologies.194

Lastly, diets may reprogram glucocorticoid (GC) rhythms, 
another important entrainment signal for peripheral circadian 
clocks. In mice, glucocorticoid receptors (GR) regulate rhyth-
mic metabolism through time-dependent target gene induc-
tion and rhythms in GR target genes are altered by high-fat 
diet.195 This may be a consequence of arrhythmic corticoste-
rone levels following high-fat diet as shown by Appiakannan 
et al (2019).196 In humans, shift work at young adult age 
has been found to be associated with elevated cortisol lev-
els, which were further correlated with increased body mass 
index.197 Interestingly, in patients with Cushing's disease, 
caused by hypercortisolism and commonly accompanied by 
weight gain and metabolic syndrome, rhythmic clock gene 
expression is impaired.198 These findings highlight the in-
terplay between the circadian, glucocorticoid and metabolic 
system. Thus, not surprisingly prolonged administration of 
synthetic glucocorticoids, for example in systemic and topic 
anti-inflammatory therapy, is often accompanied by severe 
side effects, such as hyperglycaemia, hepatosteatosis or in-
creased body fat accumulation.199 Moreover, abnormal GC 
levels may cause the disruption of intrinsic circadian clocks 
and promote associated pathologies.200

8  |   CLOCKS AND INFECTION

In the light of the 2020 SARS-CoV-2 pandemic, the inter-
play between the circadian and immune system has become 
more relevant than ever. As other bodily cell types, cells of 
the immune system possess circadian oscillators that drive 
rhythms in synthesis and release of cytokines, chemokines 
and cytolytic factors, thereby gating rhythmic innate and 
adaptive immune responses.201-203 On the molecular level 
circadian clock components acts as transcription factors driv-
ing cyclic expression of important immune genes, but also 
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clock regulated post-translational modifications (eg histone 
acetylation and methylation) or direct interaction with in-
flammatory pathways (eg the NFκB pathways) play a role 
in controlling inflammatory processes and immune cell traf-
ficking.204,205 Through gating immune functions, the circa-
dian system governs time-of-day susceptibility to pathogens. 
Generally, circadian variability in severity of infections ap-
pears to be related to differences in pathogen burden result-
ing from daytime dependent inflammatory responses.206-208 
Sengupta et al (2019) showed that endogenous rhythms af-
fect survival in influenza infection by altering the host toler-
ance, leading to worse outcomes when mice where infected 
just prior to their active phase.209 Thus, the time of infection 
with SARS-CoV-2 may predict disease outcomes and better 
knowledge about such dynamics may help to optimize treat-
ment strategies. On the other hand, inflammatory processes 
may induce complex re-organization of cellular and molecu-
lar circadian rhythms.210 Circadian disruption, often accom-
panied by sleep deprivation, alters the immune response to 
pathogen challenge,211-213 potentially leading to an excess 
risk for SARS-CoV-2 infection among shift workers, includ-
ing health care professionals.214,215 In addition, prolonged so-
cial distancing and home stay to counteract the spread of the 
pandemic may affect circadian health by reducing daylight 
exposure from outdoor activities or altering meal timing, 
diets and physical activity.216

Besides virus infections, parasitic infections are the cause 
of a tremendous burden of disease, with malaria causing the 
most deaths globally. Even today, about 660.000 people per 
year, mostly young children, die from malaria infections (ac-
cording to CDC, Centers of Disease Control and Prevention). 
Many parasitic infections display rhythmic daily patterns, 
potentially to predict circadian environments and coordi-
nate the parasite's metabolism, life cycle and transmission 
with the host's circadian rhythm.217,218 Malaria parasites 
(Plasmodium) exhibit circadian rhythms during replication 
and transmission. Recently, Rijo-Ferreira et al (2020) demon-
strated that Plasmodium chabaudi possesses flexible and 
intrinsic circadian clocks that can be adjusted to the host's 
circadian rhythm and persist despite the absence of rhythmic 
feeding signals or functional circadian clocks in the host.219 
Similarly, two other studies published in recent years re-
ported that Plasmodium cell cycle occurs in synchrony with 
the host's circadian cycle. However, while Hirako et al (2018) 
show that rhythms of systemic TNFα production and host 
food intake govern synchronization of Plasmodium stages 
with the host,220 Subudhi et al (2020) report that malaria par-
asites are at least partly responsible for generating about 24-
hour rhythms in their intra-erythrocytic developmental cycle 
and coordinating their developmental cycle with their host.221

9  |   CLOCKS AND AGEING

Today, one of the most prevalent population trends is age-
ing. This is mainly because of an increased life expectancy 
(better nutrition, health care, sanitation, education) and 
reduced birth rates. The United Nations Population Fund 
predicts that by 2050, almost 22% of the global population 
will be older than 60  years. Ageing not only alters sleep 
timing, duration and quality, it also affects the circadian 
system leading to differences in entrainment, reduced am-
plitudes and altered phases of endogenous rhythms.222,223 
Such changes may stem from altered transmission of clock 
resetting blue light, for example because of yellowing of 
the lens with age,224,225 from changes to electrical activity, 
neuropeptide expression and intercellular coupling within 
the SCN,226-231 or from altered clock gene expression232-234 
(for review see 235,236). Interestingly, Bmal1 knock-out 
mice display phenotypes resembling premature ageing, 
including sarcopenia, cataracts, reduced subcutaneous fat 
and organ shrinkage.235 However, except for irradiation in-
duced premature ageing in Clock mutant mice,238 no other 
clock gene mutant models display ageing-related pheno-
types comparable to Bmal1 knock-out mice, suggesting 
that phenotypic changes may be a consequence of pleio-
tropic functions of Bmal1 rather than circadian disruption. 
Other prevalent pathologies related to old age, and possi-
bly resulting circadian disruption, are neurodegenerative 
diseases and cancer.111,239,240 In older people, decreased 
activity rhythms (with respect to robustness, amplitude 
and mesor) have been associated with higher likelihoods 
of developing dementia, mild cognitive impairment, or 
Parkinson disease.240,241 Alzheimer's and Parkinson dis-
ease, commonly occurring during later stages in life, have 
been linked to single nucleotide polymorphisms in the 
clock genes BMAL1, PER1 and CLOCK242-245 and are usu-
ally accompanied by disruptions of sleep-wake cycles.246 
Moreover, it has been reported that the absolute expression 
levels and day-night differences of AVP mRNA, as well as 
the density of AVP/VIP- and MT1 (melatonin receptor)-
expressing neurons in the human SCN are diminished in 
Alzheimer's patients.247,248 Sirtuin 1 (SIRT1), an NAD-
dependent deacetylase known to regulate circadian clock 
components, appears to be involved in both, ageing and 
circadian-clock regulation. While in aged mice, SIRT1 lev-
els in the SCN are decreased, in young mice lack of SIRT1 
promotes premature ageing and ageing-related circadian 
phenotypes.249,250 In addition, age-related neoplasms have 
been associated with aberrant levels of SIRT1, potentially 
promoting circadian and cell cycle disruption, as well as 
tumorigenesis.251-254



10 of 19  |      FINGER and KRAMER

10  |   CLOCKS IN SPACE (A BRIEF 
PERSPECTIVE)

Space Extrapolation Technologies Corp. (SpaceX), an 
American aerospace manufacturer and space transportation ser-
vice, is the first private company to have launched astronauts 
into orbit. Considering that space transportation may someday 
be available to the broader public, dissecting interactions be-
tween weightlessness in space and human circadian systems 
may be worthwhile.255 During space flight, astronauts are 
exposed to changes in basically all environmental Zeitgebers 
experienced on earth. Sunrise and sunset occur approximately 
every 45 minutes, instead of every 24-hours, diets and poten-
tially feeding-fasting cycles are altered, and microgravity en-
tails prolonged muscle unloading and induces a fluid shift in the 
human body, impacting the metabolic, mechano-skeletal and 
cardiovascular systems.256,257 Interestingly, however, circadian 
rhythms in blood pressure have been shown persist in space 
with lower pressure during sleep.258-260 A study conducted in 
a Drosophila model of space travel showed that rhythms of 
clock genes, as well as fly locomotor activity and sleep are 
maintained during space flight.261 Additionally, a study in 21 
astronauts collected over almost 9  years demonstrated that 
alignment of the sleep schedule to the endogenous circadian 
cycle (estimated using the Circadian Performance Simulation 
software) enhances sleep time and quality, as well as reduces 
the use of medication.262 Together these findings suggest that 
maintaining ‘circadian health’ during space travel is beneficial 
for astronaut's physiology and performance and may be able to 
improve health deterioration during prolonged weightlessness.

11  |   CONCLUSIONS

In summary, modern life poses widespread challenges 
to our circadian systems. Social jetlag, abnormal diets, 
ageing-related processes and infections can disturb cir-
cadian clock systems and prevent a correct entrainment 
to periodically changing environmental conditions, most 
importantly the light-dark cycle. Disruption of and mis-
alignment between internal and external rhythms has been 
associated with numerous health consequences, including 
metabolic and cardiovascular diseases, psychiatric disor-
ders, cancer or even increased mortality.130,132,152,263,264 
For most of these ‘circadian pathologies’, molecular 
mechanisms are not well understood. Thus, elucidation of 
molecular links between circadian clocks and human pa-
thologies should enable the development of personalized 
preventative and therapeutic strategies. Along that way, 
continuous progress in biomarker testing to determine 
people's chronotypes,265,266 in human study designs to as-
sess the impact of feeding-fasting and shift work cycles on 
our well-being,149,267-269 as well as in studying molecular 

oscillator properties in vitro and in vivo270 will help to 
achieve harmony between our body clocks and the outside 
world.
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