Identification and Functional Characterization of Novel Plasma Cell-Specific Surface Antigens in Multiple Myeloma

Dissertation zur Erlangung des akademischen Grades der Doktorin der Naturwissenschaften (Dr. rer. nat.)

Eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

> vorgelegt von Dipl. Ing. (Biotechnologie) Sabine Friedl Berlin, Juni 2006

1. Gutachterin: Frau Prof. Petra Knaus

2. Gutachter: Herr Priv. Doz. Ralf C. Bargou

Datum der Disputation: 23.11.2006

Acknowledgements

My deepest gratitude is to my parents **Gabi** and **Diether Friedl**, who always supported and encouraged me in all my decisions. Thank you for never losing trust in me.

I would like to thank **Prof. Dr. Bernd Dörken** for the opportunity to carry out this project in his group at the MDC, Berlin. Thank you also to **Dr. Kurt Bommert** and **Prof. Dr. Ralf Bargou** from the Dörken group (now University of Würzburg) for their supervision and support.

For her readiness to read and appraise this work, I would like to thank **Prof. Petra Knaus**, Department of Biochemistry at the Free University of Berlin.

Thank you to **Dr. Axel Greiner**, Institute of Pathology at the University of Würzburg for performing the immunohistochemistry. For providing the bispecific single chain antibodies, I would like to thank **Dr. Peter Kufer** and **Micromet AG**, Munich.

I am thankful to all members of the **Dörken lab** at the MDC, for the friendly and sociable working atmosphere. I am especially grateful to **Andreas Lietz** for providing me with loads of good music and many opportunities to laugh when I rather felt like crying and most importantly for saving me countless times from a computational "Super-GAU". Thank you also to **Dr. Martin Janz** for various helpful discussions. For their technical support, I would like to thank **Ute Nitzschke** (MDC, Berlin) and **Daniela Dietrich** (University of Würzburg).

I greatly appreciate that my **friends** were not deterred by my frequent mood-swings during the past 4 years. Sometimes there was a lot they had to put up with! Thanks for sticking by me nonetheless.

Finally, my special thank is to **Dr. Anne Mayer-Scholl** and **Dr. Carsten Poetzsch** for being such good friends. Thank you for many pleasant stays in Tramnitz, for looking after Lara so many times, and for reminding me that there is a life outside the lab.

Abstract

Multiple myeloma (MM) is a clonal B-cell tumour of differentiated and usually slowly proliferating plasma cells, mainly located in the bone marrow. MM is still an incurable disease with a median survival of about 3 to 5 years, and it is responsible for about one percent of all cancer-related deaths in Western countries. However, the precise molecular events causing multiple myeloma are still not fully understood.

Immunotherapeutic approaches are playing an increasing role in the development of novel treatment strategies of various malignancies. In particular, the use of recombinant bispecific single-chain antibodies (bssc-ABs) is gaining in importance, because these molecules possess exceptional biological properties. However, to date the lack of suitable plasma cell-specific surface antigens has hindered the development of antibody-based treatment strategies for MM. In order to identify such plasma cell-specific antigens hybridoma supernatants (generated by Dr. Axel Greiner, University of Würzburg) were screened by flow cytometry with a panel of human multiple myeloma-, plasma cell leukaemia-, and B-cell lymphoma cell lines. Three supernatants were found reactive with human MM cell line RPMI-8226. Western blot analysis revealed a band of ~25kDa. A single specific spot was identified with two-dimensional SDS-PAGE and Western blotting of RPMI-8226 membrane proteins and this protein-spot was further analysed by MALDI/MS. Database comparison of the peptide sequence identified the putative plasma cell-specific antigen as human lambda (λ)-light chain.

Recently a novel monoclonal antibody (mAB), designated anti-Wue-1, has been generated which specifically binds to the cell surface of normal and malignant human plasma cells (PC) and mucosa-associated lymphoid tissue (MALT) lymphoma with PC differentiation. On basis of the anti-Wue-1 mAB, a novel MM directed recombinant bispecific single-chain antibody was engineered, designated bssc-anti-Wue-1xCD3 or MT105. Part of this project was to analyze the biological properties of bssc-anti-Wue-1xCD3, using the MM cell line NCI-H929 co-cultured with effector T-cells, isolated from buffy coats of healthy donors. It was demonstrated that bssc-anti-Wue-1xCD3 induces efficient T-cell mediated cell death of NCI-H929 cells. In contrast to conventional bispecific antibodies, bssc-anti-Wue-1xCD3 was efficacious at low effector to target (E:T) ratios and without any additional T-cell stimulation.

The third part of this PhD project was dedicated to the identification, cloning and functional characterization of the novel WUE-1 antigen. First, WUE-1 positive MM cell lines were

identified, using flow cytometry. However, further characterization of the antigen by standard methods such as Western blot analysis or immunoprecipitation kept failing. Subsequently, the attempt was undertaken to isolate the antigen by means of expression cloning and immunoselection with anti-Wue-1 mAB ("panning"). The isolated clones were analyzed by sequencing, Northern blotting, and flow cytometry, but the clones turned out to contain only non-specific inserts.

Since the efficacy of the single-chain (sc) anti-Wue-1 antibody and its advantages over the parental mAB were successfully shown, a recombinant chimeric T-cell receptor (TCR) was generated, comprising the variable single chain (Fv sc) anti-Wue-1 antibody domain, attached to a human IgG Fc sequence, the transmembrane CD28 moiety, and an intracellular CD3 ζ signalling domain. This WUE-1 specific TCR was used to develop a novel assay for use in a multiple myeloma expression library screen. Jurkat (T-) cells transfected with the chimeric TCR served as bioindicators. Specific TCR crosslinking with an antigen results in MHC-independent effector cell activation, which can be monitored by cytokine ELISA. Here, expression of the WUE-1 specific TCR on grafted Jurkat cells was successfully demonstrated by triggering the interferon gamma (IFN- γ) release by addition of Fc specific anti-human IgG antibody. However, IFN- γ could not be detected in co-cultures of transfected Jurkat effector cells and WUE-1 positive target cells.

Although the molecular structure of the WUE-1 antigen is still unclear, it was shown that its expression profile and biochemical characteristics discriminate WUE-1 from other plasma cell-associated antigens described so far. Moreover, it was demonstrated that bssc-anti-Wue-1xCD3 induces efficient T-cell mediated cell death at low E:T ratios, and without any additional T-cell stimulation. WUE-1 therefore represents a very promising candidate for use in the development of novel immunotherapeutic treatment strategies of multiple myeloma.

Index

ACKNOWLEDGEMENTS	
ABSTRACT	4
INDEX	6
1 INTRODUCTION	12
1.1 MULTIPLE MYELOMA (MM)	12
1.1.1 Course of the disease	12
1.1.2 Clinical features and pathogenesis of multiple myeloma	14
1.1.3 Normal and malignant plasma cell development	15
1.1.4 Cytogenetic alterations and mutations	16
1.1.5 Adhesion molecules, growth factors and bone marrow (BM) microenvironment	17
1.1.6 Cell-surface antigens	18
1.2 TREATMENT OF MULTIPLE MYELOMA	19
1.2.1 Conventional therapies	20
1.2.2 Novel targets	20
1.2.3 Immunotherapies	22
1.2.3.1 Anti-tumour vaccination	23
1.2.3.2 Specific monoclonal antibodies	23
1.2.3.3 Bispecific single-chain antibodies (bssc-ABs)	24
1.2.3.4Bispecific T-cell engagers (BiTEs)	26
1.2.4 Chimeric T-cell receptors (TCRs)	27
1.3 WUE-1, A POTENTIALLY PLASMA CELL-SPECIFIC ANTIGEN	28
1.4 OBJECTIVE	30
2 METHODS	31
2.1 CELL CULTURE	31
2.1.1 Standard cell culture	31
2.1.2 T-cell isolation from human buffy coats	31
2.2 PREPARATIVE PROTEIN TECHNIQUES	32
2.2.1 Production and purification of anti-Wue-1 antibody	32
2.2.1.1 Production and isotyping	32
2.2.1.2 Purification of anti-Wue-1 from ascites fluid	32
2.2.1.2.1 Removal of oil and fat	32
2.2.1.2.2 Affinity chromatography	32
2.2.1.2.3 Dialysis	33
2.2.1.3 Determination of antibody concentration by ELISA	33

2.2.1.4	Biotinylation of purified anti-Wue-1 antibody	34
2.2.2 G	eneration of bispecific single-chain (bssc) anti-Wue-1 x anti-CD3	34
2.2.3 Pr	rotein preparations	35
2.2.3.1	Preparation of membrane proteins	35
2.2.3.	1.1 Acetone precipitation	35
2.2.3.2	Preparation of total cell proteins	36
2.2.3.	2.1 NP40 lysis	36
2.2.3.	2.2 SDS lysis	36
2.2.3.	2.3 Hypotonic lysis	36
2.2.3.3	Determination of protein concentration	37
2.2.3.	3.1 "BCA Protein Assay Kit" (Pierce)	37
2.2.3.	3.2 Bradford assay (BioRad)	37
2.3 ANA	LYTICAL PROTEIN TECHNIQUES	37
2.3.1 F	ACS analysis (flow cytometry)	37
2.3.2 SI	DS PAGE and Western blotting	38
2.3.2.1	Conventional one-dimensional gels	38
2.3.2.2	Precast one-dimensional gradient gels (Novex)	38
2.3.2.3	Precast two-dimensional gels (Novex)	39
2.3.2.4	Western blot analysis	39
2.3.2.5	Staining of SDS-PAGE gels	40
2.3.2.	5.1 Conventional Coomassie	40
2.3.2.	5.2 Colloidal Coomassie	40
2.3.2.	5.3 Silver nitrate	40
2.3.3 In	nmunoprecipitation	40
2.3.3.1	Paramagnetic beads (Dynabeads®)	40
2.3.3.	1.1 Protein A Dynabeads®	40
2.3.3.	1.2 Pan Mouse IgG Dynabeads®	41
2.3.3.	1.3 "CELLection [™] Pan Mouse IgG Kit" (Dynal)	42
2.3.3.2	Immobilized NeutrAvidin [™]	43
2.3.3.3	Metabolic labelling with L-[³⁵ S]-methionine	44
2.3.3.4	Biotin labelling	45
2.3.3.	4.1 FACS analysis of biotinylated cells	45
2.3.3.	4.2 Affinity chromatography	46
2.3.3.5	ProFound [™] sulfo-SBED label transfer	48
2.3.4 Bi	ochemical characterization of anti-Wue-1 mAB	49
2.3.4.1	Depletion	49
2.3.4.2	Zenon TM dye	49
2.3.5 Bi	ochemical characterization of the WUE-1 antigen	50
2.3.5.1	Protease digestion	50
2.3.5.2	Phospholipase C treatment	50
2.3.5.3	Carbohydrate ELISA	51
2.3.5.4	Periodate oxidation	51
2.3.5.5	Blocking with lectins	52

2.3.5.6	Cellular ELISA	52
2.4 RNA 7	ECHNIQUES	53
2.4.1 Prep	paration of RNA	53
2.4.1.1	Small scale preparations of total RNA	53
2.4.1.2	Large-scale preparations of total RNA	54
2.4.1.3	Isolation of polyA ⁺ mRNA	54
2.4.2 Nor	thern blot analysis	55
2.4.2.1	RNA agarose gelelectrophoresis	55
2.4.2.2	RNA transfer	55
2.4.2.3	Generation of RNA probes	55
2.4.2.4	Generation of DNA probes	56
2.4.2.5	Northern blot hybridization	56
2.5 DNA	TECHNIQUES	57
2.5.1 Gen	eral DNA protocols	57
2.5.2 Con	ventional PCR	57
2.5.3 PCF	2 screen of bacteria	57
2.5.4 Sequ	iencing	58
2.6 EXPRE	SSION LIBRARY CONSTRUCTION	58
2.6.1 ARH	177 "Lambda ZAP®-CMV XR" library	59
2.6.2 Mul	tiple Myeloma "Lambda ZAP®-CMV XR" library	60
2.6.2.1	Titration and amplification of the library	60
2.6.2.2	Conversion of the ARH77 "Lambda ZAP®-CMX XR" primary library	61
2.6.3 ARH	177 "pCMV-Script® XR" plasmid library	62
2.7 EXPRE	SSION CLONING (IMMUNOSELECTION)	63
2.7.1 Prin	ciple of "panning" using mAB	63
2.7.1.1	Coating of the plates with anti-Wue-1 antibody	65
2.7.1.2	Transfection of COS7 cells (DEAE-dextran/chloroquine method)	65
2.7.1.3	Panning	66
2.7.1.4	Isolation of the plasmid DNA ("Hirt" method)	66
2.7.1.5	Electroporation of E. coli	67
2.7.1.6	Transfection of COS7 cells using spheroplast fusion	67
2.8 FUNCT	IONAL ASSAYS	68
2.8.1 T-ce	ll reporter assay	68
2.8.1.1	WUE-1 specific "T-bodies"	70
2.8.1.1.	Generation of κ-scWue-1 and κ-HA-scWue-1	71
2.8.1.1.2	2 Construction of the κ -(HA)-scWue-1 expression vector	73
2.8.1.2	Transfection, transformation	74
2.8.1.3	Co-culture	75
2.8.1.4	IFN-γ ELISA	75
2.8.2 Cyte	otoxicity assay	75

3	RESULT	ſS	77
	3.1 FUN	CTIONAL ASSAYS	77
	3.1.1 Bi ly:	specific single-chain anti-Wue-1xCD3 antibody induces antigen-specific T-cell mediated sis	77
	3.1.2 A	chimeric WUE-1-specific TCR was not triggered by WUE-1 positive cells, but with Fc-	
	sp	ecific anti-human IgG	80
	3.2 WUI	E-1 EXPRESSION PROFILE	82
	3.3 IMM	UNOPRECIPITATION (IP) AND CROSSLINKING EXPERIMENTS	84
	3.3.1 In	munoprecipitation with paramagnetic beads	85
	3.3.1.1	"Protein A" Dynabeads®	85
	3.3.1.2	"Pan Mouse IgG" Dynabeads®	85
	3.3.2 Ar	ti-Wue-1 crosslinked to metabolically [³⁵ S] labelled cells	87
	3.3.3 IP	P with immobilized NeutrAvidin TM	88
	3.3.4 W	UE-1 affinity chromatography	89
	3.3.5 Ad	lvanced biotin label transfer (sulfo-SBED-biotin)	91
	3.4 BIOC	CHEMICAL ANALYSIS	91
	3.4.1 Cl	haracterization of the anti-Wue-1 antibody	92
	3.4.1.1	Depletion of anti-Wue-1 from ascites fluid abolishes FACS signal	92
	3.4.1.2	Biotinylation of anti-Wue-1 does not interfere with antigen binding	93
	3.4.1.3	Anti-Wue-1 is stably bound to the cell surface	94
	3.4.2 Ar	nalysis of the WUE-1 antigen	96
	3.4.2.1	The WUE-1 antigen is sensitive to Pronase digestion	96
	3.4.2.2	The WUE-1 antigen is not affected by PI-Phospholipase C treatment	97
	3.4.2.3	Anti-Wue-1 binds to β -D-glucose and β -D-galactose but not to blood group antigens	98
	3.4.2.4	Oxidation of vicinal OH-groups does not alter anti-Wue-1 binding	100
	3.4.2.5	Binding of anti-Wue-1 to ARH77 is not blocked by lectins	100
	3.5 EXPI	RESSION LIBRARIES	102
	3.5.1 Al	RH77 pCMV® plasmid library	103
	3.5.2 Al	RH77 "Lambda ZAP®-CMV XR" expression library	104
	3.5.2.1	Conversion of the ARH77 λ -ZAP® primary library into a plasmid library	105
	3.5.3 M	M expression library	105
	3.5.4 Ar	nalysis of selected clones from cDNA library screens	106
	3.5.4.1	Immunoselection with anti-Wue-1 yields non-specific results	106
	3.5.4.2	Northern blot analysis of clones identified by panning with anti-Wue-1 does not reveal specific	109
	3.5.4.3	expression in Wue-1 positive cell lines FACS analysis of clones identified by panning with anti-Wue-1 does not identify a specific WUE-1 positive clone	108 109
	3.6 IDEN	ITIFICATION OF THE OF MUE-1 ANTIGEN	110

4	DIS	CUSSION	114
	4.1	INVESTIGATING PLASMA CELL-SPECIFIC ANTIBODIES AND ANTIGENS	115
	4.1.1	Screening of hybridoma supernatants	115
	4.1.2	Anti-Wue-1 is highly specific for human plasma cells	116
	4.1.3	ARH77 and NCI-H929 cell lines are used for studies of WUE-1	117
	4.1.4	Western blot or immunoprecipitation failed to identify WUE-1	117
	4.1.5	Is the anti-Wue-1 binding affinity sufficient for analytical assays?	118
	4.1.6	Is WUE-1 a carbohydrate antigen?	119
	4.1.7	Is WUE-1 a protein?	122
	4.2	EUKARYOTIC SCREENING OF EXPRESSION LIBRARIES	123
	4.2.1	Expression cloning and immunoselection failed to identify WUE-1	123
	4.2.2	Functional screening with a WUE-1 specific chimeric T-cell receptor lacks sufficient sensitivity	124
	4.3	CONCLUSION: WHAT WE HAVE LEARNED ABOUT THE WUE-1 ANTIGEN	127
5	MA'	ΓERIALS	129
	5.1	KITS AND CONSUMABLES	129
	5.2	CHEMICALS	131
	5.2		131
	5.2.1	Protein applications Nucleic acid applications	131
	5.3	ANTIBODIES	132
	5.4	ENZYMES	132
	5.5	PLASMIDS	133
	5.6	OLIGONUCLEOTIDES AND RADIONUCLEOTIDES	133
	5.6.1	General Oligonucleotides	133
	5.6.2	Cloning Oligonucleotides	133
	5.6.3	Sequencing Oligonucleotides	133
	5.6.4	Radionucleotides and radiochemicals	134
	5.7	BUFFERS AND SOLUTIONS	134
	5.7.1	Western blotting and immunoprecipitation	134
	5.7.2	Lysis buffers	134
	5.7.3	Protease inhibitors	135
	5.7.4	RNA, DNA and Northern blotting	135
	5.7.5	FACS	136
	5.7.6	ELISA	136
	5.7.7	Immunoselection	136
	5.7.8	Ready made solutions and buffers	137

	5.8	CELLS	137
	5.8.1	Mammalian cells	137
	5.8.2	Bacteria	138
	5.9	MEDIA	138
	5.9.1	Basic cell culture medium	139
	5.9.2	Special cell culture medium	139
	5.9.3	Bacterial medium	139
	5.9.4	Antibiotics	139
	5.10	APPLIANCES	140
	5.11	SOFTWARE	140
6	LIT	ERATURE	141
7	7 APPENDIX I		147
	7.1	DNA SEQUENCE OF SCWUE-1	147
	7.2	SEQUENCE OF THE PBULLET- κ -HA-SCWUE1 EXPRESSION CASSETTE	148
	7.3	PROTEIN SEQUENCE OF κ -HA-SCWUE1-FC-CD28-CD3 ζ	148
	7.4	PHYSICAL MAP OF PBULLET-607	149
	7.5	SEQUENCE OF THE PBULLET-607 EXPRESSION CASSETTE	150
8	APP	PENDIX II	151
	8.1	ABBREVIATIONS	151
	8.2	ZUSAMMENFASSUNG	153
	8.3	CURRICULUM VITAE	155
	8.4	REFERENCES	156
	8.5	PUBLICATIONS AND POSTERS	157
	8.6	DECLARATION	158