Identification and Functional Characterization of Novel Plasma Cell-Specific Surface Antigens in Multiple Myeloma

Dissertation zur Erlangung des akademischen Grades der Doktorin der Naturwissenschaften (Dr. rer. nat.)

Eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von
Dipl. Ing. (Biotechnologie) Sabine Friedl
Berlin, Juni 2006
1. Gutachterin: Frau Prof. Petra Knaus

Datum der Disputation: 23.11.2006
Acknowledgements

My deepest gratitude is to my parents Gabi and Diether Friedl, who always supported and encouraged me in all my decisions. Thank you for never losing trust in me.

I would like to thank Prof. Dr. Bernd Dörken for the opportunity to carry out this project in his group at the MDC, Berlin. Thank you also to Dr. Kurt Bommert and Prof. Dr. Ralf Bargou from the Dörken group (now University of Würzburg) for their supervision and support.

For her readiness to read and appraise this work, I would like to thank Prof. Petra Knaus, Department of Biochemistry at the Free University of Berlin.

Thank you to Dr. Axel Greiner, Institute of Pathology at the University of Würzburg for performing the immunohistochemistry. For providing the bispecific single chain antibodies, I would like to thank Dr. Peter Kufer and Micromet AG, Munich.

I am thankful to all members of the Dörken lab at the MDC, for the friendly and sociable working atmosphere. I am especially grateful to Andreas Lietz for providing me with loads of good music and many opportunities to laugh when I rather felt like crying and most importantly for saving me countless times from a computational "Super-GAU". Thank you also to Dr. Martin Janz for various helpful discussions. For their technical support, I would like to thank Ute Nitzschke (MDC, Berlin) and Daniela Dietrich (University of Würzburg).

I greatly appreciate that my friends were not deterred by my frequent mood-swings during the past 4 years. Sometimes there was a lot they had to put up with! Thanks for sticking by me nonetheless.

Finally, my special thank is to Dr. Anne Mayer-Scholl and Dr. Carsten Poetzsch for being such good friends. Thank you for many pleasant stays in Tramnitz, for looking after Lara so many times, and for reminding me that there is a life outside the lab.
Abstract

Multiple myeloma (MM) is a clonal B-cell tumour of differentiated and usually slowly proliferating plasma cells, mainly located in the bone marrow. MM is still an incurable disease with a median survival of about 3 to 5 years, and it is responsible for about one percent of all cancer-related deaths in Western countries. However, the precise molecular events causing multiple myeloma are still not fully understood.

Immunotherapeutic approaches are playing an increasing role in the development of novel treatment strategies of various malignancies. In particular, the use of recombinant bispecific single-chain antibodies (bssc-ABs) is gaining in importance, because these molecules possess exceptional biological properties. However, to date the lack of suitable plasma cell-specific surface antigens has hindered the development of antibody-based treatment strategies for MM. In order to identify such plasma cell-specific antigens hybridoma supernatants (generated by Dr. Axel Greiner, University of Würzburg) were screened by flow cytometry with a panel of human multiple myeloma-, plasma cell leukaemia-, and B-cell lymphoma cell lines. Three supernatants were found reactive with human MM cell line RPMI-8226. Western blot analysis revealed a band of ~25kDa. A single specific spot was identified with two-dimensional SDS-PAGE and Western blotting of RPMI-8226 membrane proteins and this protein-spot was further analysed by MALDI/MS. Database comparison of the peptide sequence identified the putative plasma cell-specific antigen as human lambda (\(\lambda\))-light chain.

Recently a novel monoclonal antibody (mAB), designated anti-Wue-1, has been generated which specifically binds to the cell surface of normal and malignant human plasma cells (PC) and mucosa-associated lymphoid tissue (MALT) lymphoma with PC differentiation. On basis of the anti-Wue-1 mAB, a novel MM directed recombinant bispecific single-chain antibody was engineered, designated bssc-anti-Wue-1xCD3 or MT105. Part of this project was to analyze the biological properties of bssc-anti-Wue-1xCD3, using the MM cell line NCI-H929 co-cultured with effector T-cells, isolated from buffy coats of healthy donors. It was demonstrated that bssc-anti-Wue-1xCD3 induces efficient T-cell mediated cell death of NCI-H929 cells. In contrast to conventional bispecific antibodies, bssc-anti-Wue-1xCD3 was efficacious at low effector to target (E:T) ratios and without any additional T-cell stimulation.

The third part of this PhD project was dedicated to the identification, cloning and functional characterization of the novel WUE-1 antigen. First, WUE-1 positive MM cell lines were
identified, using flow cytometry. However, further characterization of the antigen by standard methods such as Western blot analysis or immunoprecipitation kept failing. Subsequently, the attempt was undertaken to isolate the antigen by means of expression cloning and immunoselection with anti-Wue-1 mAB ("panning"). The isolated clones were analyzed by sequencing, Northern blotting, and flow cytometry, but the clones turned out to contain only non-specific inserts.

Since the efficacy of the single-chain (sc) anti-Wue-1 antibody and its advantages over the parental mAB were successfully shown, a recombinant chimeric T-cell receptor (TCR) was generated, comprising the variable single chain (Fv sc) anti-Wue-1 antibody domain, attached to a human IgG Fc sequence, the transmembrane CD28 moiety, and an intracellular CD3ζ signalling domain. This WUE-1 specific TCR was used to develop a novel assay for use in a multiple myeloma expression library screen. Jurkat (T-) cells transfected with the chimeric TCR served as bioindicators. Specific TCR crosslinking with an antigen results in MHC-independent effector cell activation, which can be monitored by cytokine ELISA. Here, expression of the WUE-1 specific TCR on grafted Jurkat cells was successfully demonstrated by triggering the interferon gamma (IFN-γ) release by addition of Fc specific anti-human IgG antibody. However, IFN-γ could not be detected in co-cultures of transfected Jurkat effector cells and WUE-1 positive target cells.

Although the molecular structure of the WUE-1 antigen is still unclear, it was shown that its expression profile and biochemical characteristics discriminate WUE-1 from other plasma cell-associated antigens described so far. Moreover, it was demonstrated that bssc-anti-Wue-1xCD3 induces efficient T-cell mediated cell death at low E:T ratios, and without any additional T-cell stimulation. WUE-1 therefore represents a very promising candidate for use in the development of novel immunotherapeutic treatment strategies of multiple myeloma.
Index

ACKNOWLEDGEMENTS 3

ABSTRACT 4

INDEX 6

1 INTRODUCTION 12

1.1 MULTIPLE MYELOMA (MM) 12
 1.1.1 Course of the disease 12
 1.1.2 Clinical features and pathogenesis of multiple myeloma 14
 1.1.3 Normal and malignant plasma cell development 15
 1.1.4 Cytogenetic alterations and mutations 16
 1.1.5 Adhesion molecules, growth factors and bone marrow (BM) microenvironment 17
 1.1.6 Cell-surface antigens 18

1.2 TREATMENT OF MULTIPLE MYELOMA 19
 1.2.1 Conventional therapies 20
 1.2.2 Novel targets 20
 1.2.3 Immunotherapies 22
 1.2.3.1 Anti-tumour vaccination 23
 1.2.3.2 Specific monoclonal antibodies 23
 1.2.3.3 Bispecific single-chain antibodies (bssc-ABs) 24
 1.2.3.4 Bispecific T-cell engagers (BiTEs) 26
 1.2.4 Chimeric T-cell receptors (TCRs) 27

1.3 WUE-1, A POTENTIALLY PLASMA CELL-SPECIFIC ANTIGEN 28

1.4 OBJECTIVE 30

2 METHODS 31

2.1 CELL CULTURE 31
 2.1.1 Standard cell culture 31
 2.1.2 T-cell isolation from human buffy coats 31

2.2 PREPARATIVE PROTEIN TECHNIQUES 32
 2.2.1 Production and purification of anti-Wue-1 antibody 32
 2.2.1.1 Production and isotyping 32
 2.2.1.2 Purification of anti-Wue-1 from ascites fluid 32
 2.2.1.2.1 Removal of oil and fat 32
 2.2.1.2.2 Affinity chromatography 32
 2.2.1.2.3 Dialysis 33
 2.2.1.3 Determination of antibody concentration by ELISA 33

3
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1.4 Biotinylation of purified anti-Wue-1 antibody</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2 Generation of bispecific single-chain (bssc) anti-Wue-1 x anti-CD3</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3 Protein preparations</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3.1 Preparation of membrane proteins</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3.1.1 Acetone precipitation</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3.2 Preparation of total cell proteins</td>
<td>36</td>
</tr>
<tr>
<td>2.2.3.2.1 NP40 lysis</td>
<td>36</td>
</tr>
<tr>
<td>2.2.3.2.2 SDS lysis</td>
<td>36</td>
</tr>
<tr>
<td>2.2.3.2.3 Hypotonic lysis</td>
<td>36</td>
</tr>
<tr>
<td>2.2.3.3 Determination of protein concentration</td>
<td>37</td>
</tr>
<tr>
<td>2.2.3.3.1 "BCA Protein Assay Kit" (Pierce)</td>
<td>37</td>
</tr>
<tr>
<td>2.2.3.3.2 Bradford assay (BioRad)</td>
<td>37</td>
</tr>
<tr>
<td>2.3 ANALYTICAL PROTEIN TECHNIQUES</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1 FACS analysis (flow cytometry)</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2 SDS PAGE and Western blotting</td>
<td>38</td>
</tr>
<tr>
<td>2.3.2.1 Conventional one-dimensional gels</td>
<td>38</td>
</tr>
<tr>
<td>2.3.2.2 Precast one-dimensional gradient gels (Novex)</td>
<td>38</td>
</tr>
<tr>
<td>2.3.2.3 Precast two-dimensional gels (Novex)</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2.4 Western blot analysis</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2.5 Staining of SDS-PAGE gels</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2.5.1 Conventional Coomassie</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2.5.2 Colloidal Coomassie</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2.5.3 Silver nitrate</td>
<td>40</td>
</tr>
<tr>
<td>2.3.3 Immunoprecipitation</td>
<td>40</td>
</tr>
<tr>
<td>2.3.3.1 Paramagnetic beads (Dynabeads®)</td>
<td>40</td>
</tr>
<tr>
<td>2.3.3.1.1 Protein A Dynabeads®</td>
<td>40</td>
</tr>
<tr>
<td>2.3.3.1.2 Pan Mouse IgG Dynabeads®</td>
<td>41</td>
</tr>
<tr>
<td>2.3.3.1.3 "CELLection™ Pan Mouse IgG Kit" (Dynal)</td>
<td>42</td>
</tr>
<tr>
<td>2.3.3.2 Immobilized NeutrAvidin™</td>
<td>42</td>
</tr>
<tr>
<td>2.3.3.3 Metabolic labelling with L-[^55]S]-methionine</td>
<td>43</td>
</tr>
<tr>
<td>2.3.3.4 Biotin labelling</td>
<td>44</td>
</tr>
<tr>
<td>2.3.3.4.1 FACS analysis of biotinylated cells</td>
<td>45</td>
</tr>
<tr>
<td>2.3.3.4.2 Affinity chromatography</td>
<td>45</td>
</tr>
<tr>
<td>2.3.3.5 ProFound™ sulfo-SBED label transfer</td>
<td>46</td>
</tr>
<tr>
<td>2.3.4 Biochemical characterization of anti-Wue-1 mAB</td>
<td>48</td>
</tr>
<tr>
<td>2.3.4.1 Depletion</td>
<td>49</td>
</tr>
<tr>
<td>2.3.4.2 Zenon™ dye</td>
<td>49</td>
</tr>
<tr>
<td>2.3.5 Biochemical characterization of the WUE-1 antigen</td>
<td>50</td>
</tr>
<tr>
<td>2.3.5.1 Protease digestion</td>
<td>50</td>
</tr>
<tr>
<td>2.3.5.2 Phospholipase C treatment</td>
<td>50</td>
</tr>
<tr>
<td>2.3.5.3 Carbohydrate ELISA</td>
<td>51</td>
</tr>
<tr>
<td>2.3.5.4 Periodate oxidation</td>
<td>51</td>
</tr>
<tr>
<td>2.3.5.5 Blocking with lectins</td>
<td>52</td>
</tr>
</tbody>
</table>
2.4 RNA TECHNIQUES

2.4.1 Preparation of RNA
- 2.4.1.1 Small scale preparations of total RNA 53
- 2.4.1.2 Large-scale preparations of total RNA 54
- 2.4.1.3 Isolation of polyA⁺ mRNA 54

2.4.2 Northern blot analysis
- 2.4.2.1 RNA agarose gelelectrophoresis 55
- 2.4.2.2 RNA transfer 55
- 2.4.2.3 Generation of RNA probes 55
- 2.4.2.4 Generation of DNA probes 56
- 2.4.2.5 Northern blot hybridization 56

2.5 DNA TECHNIQUES
- 2.5.1 General DNA protocols 57
- 2.5.2 Conventional PCR 57
- 2.5.3 PCR screen of bacteria 57
- 2.5.4 Sequencing 58

2.6 EXPRESSION LIBRARY CONSTRUCTION
- 2.6.1 ARH77 "Lambda ZAP®-CMV XR" library 59
- 2.6.2 Multiple Myeloma "Lambda ZAP®-CMV XR" library 60
 - 2.6.2.1 Titration and amplification of the library 60
 - 2.6.2.2 Conversion of the ARH77 "Lambda ZAP®-CMX XR" primary library 61
- 2.6.3 ARH77 "pCMV-Script® XR" plasmid library 62

2.7 EXPRESSION CLONING (IMMUNOSELECTION)
- 2.7.1 Principle of "panning" using mAB 63
 - 2.7.1.1 Coating of the plates with anti-Wue-1 antibody 65
 - 2.7.1.2 Transfection of COS7 cells (DEAE-dextran/chloroquine method) 65
 - 2.7.1.3 Panning 66
 - 2.7.1.4 Isolation of the plasmid DNA ("Hirt" method) 66
 - 2.7.1.5 Electroporation of E. coli 67
 - 2.7.1.6 Transfection of COS7 cells using spheroplast fusion 67

2.8 FUNCTIONAL ASSAYS
- 2.8.1 T-cell reporter assay 68
 - 2.8.1.1 WUE-1 specific "T-bodies" 70
 - 2.8.1.1.1 Generation of κ-scWue-1 and κ-HA-scWue-1 71
 - 2.8.1.1.2 Construction of the κ-(HA)-scWue-1 expression vector 73
 - 2.8.1.2 Transfection, transformation 74
 - 2.8.1.3 Co-culture 75
 - 2.8.1.4 IFN-γ ELISA 75
- 2.8.2 Cytotoxicity assay 75
3 RESULTS

3.1 FUNCTIONAL ASSAYS

3.1.1 Bispecific single-chain anti-Wue-1xCD3 antibody induces antigen-specific T-cell mediated lysis

3.1.2 A chimeric WUE-1-specific TCR was not triggered by WUE-1 positive cells, but with Fe-specific anti-human IgG

3.2 WUE-1 EXPRESSION PROFILE

3.3 IMMUNOPRECIPITATION (IP) AND CROSSLINKING EXPERIMENTS

3.3.1 Immunoprecipitation with paramagnetic beads

3.3.1.1 "Protein A" Dynabeads®

3.3.1.2 "Pan Mouse IgG" Dynabeads®

3.3.2 Anti-Wue-1 crosslinked to metabolically $[^{35}S]$ labelled cells

3.3.3 IP with immobilized NeutrAvidin™

3.3.4 WUE-1 affinity chromatography

3.3.5 Advanced biotin label transfer (sulfo-SBED-biotin)

3.4 BIOCHEMICAL ANALYSIS

3.4.1 Characterization of the anti-Wue-1 antibody

3.4.1.1 Depletion of anti-Wue-1 from ascites fluid abolishes FACS signal

3.4.1.2 Biotinylation of anti-Wue-1 does not interfere with antigen binding

3.4.1.3 Anti-Wue-1 is stably bound to the cell surface

3.4.2 Analysis of the WUE-1 antigen

3.4.2.1 The WUE-1 antigen is sensitive to Pronase digestion

3.4.2.2 The WUE-1 antigen is not affected by PI-Phospholipase C treatment

3.4.2.3 Anti-Wue-1 binds to β-D-glucose and β-D-galactose but not to blood group antigens

3.4.2.4 Oxidation of vicinal OH-groups does not alter anti-Wue-1 binding

3.4.2.5 Binding of anti-Wue-1 to ARH77 is not blocked by lectins

3.5 EXPRESSION LIBRARIES

3.5.1 ARH77 pCMV® plasmid library

3.5.2 ARH77 "Lambda ZAP®-CMV XR" expression library

3.5.2.1 Conversion of the ARH77 λ-ZAP® primary library into a plasmid library

3.5.3 MM expression library

3.5.4 Analysis of selected clones from cDNA library screens

3.5.4.1 Immunoselection with anti-Wue-1 yields non-specific results

3.5.4.2 Northern blot analysis of clones identified by panning with anti-Wue-1 does not reveal specific expression in Wue-1 positive cell lines

3.5.4.3 FACS analysis of clones identified by panning with anti-Wue-1 does not identify a specific WUE-1 positive clone

3.6 IDENTIFICATION OF THE OF MUE-1 ANTIGEN
4 DISCUSSION

4.1 INVESTIGATING PLASMA CELL-SPECIFIC ANTIBODIES AND ANTIGENS

4.1.1 Screening of hybridoma supernatants

4.1.2 Anti-Wue-1 is highly specific for human plasma cells

4.1.3 ARH77 and NCI-H929 cell lines are used for studies of WUE-1

4.1.4 Western blot or immunoprecipitation failed to identify WUE-1

4.1.5 Is the anti-Wue-1 binding affinity sufficient for analytical assays?

4.1.6 Is WUE-1 a carbohydrate antigen?

4.1.7 Is WUE-1 a protein?

4.2 EUKARYOTIC SCREENING OF EXPRESSION LIBRARIES

4.2.1 Expression cloning and immunoselection failed to identify WUE-1

4.2.2 Functional screening with a WUE-1 specific chimeric T-cell receptor lacks sufficient sensitivity

4.3 CONCLUSION: WHAT WE HAVE LEARNED ABOUT THE WUE-1 ANTIGEN

5 MATERIALS

5.1 KITS AND CONSUMABLES

5.2 CHEMICALS

5.2.1 Protein applications

5.2.2 Nucleic acid applications

5.3 ANTIBODIES

5.4 ENZYMES

5.5 PLASMIDS

5.6 OLIGONUCLEOTIDES AND RADIONUCLEOTIDES

5.6.1 General Oligonucleotides

5.6.2 Cloning Oligonucleotides

5.6.3 Sequencing Oligonucleotides

5.6.4 Radionucleotides and radiochemicals

5.7 BUFFERS AND SOLUTIONS

5.7.1 Western blotting and immunoprecipitation

5.7.2 Lysis buffers

5.7.3 Protease inhibitors

5.7.4 RNA, DNA and Northern blotting

5.7.5 FACS

5.7.6 ELISA

5.7.7 Immunoselection

5.7.8 Ready made solutions and buffers
Index

5.8 CELLS
- 5.8.1 Mammalian cells 137
- 5.8.2 Bacteria 138

5.9 MEDIA
- 5.9.1 Basic cell culture medium 139
- 5.9.2 Special cell culture medium 139
- 5.9.3 Bacterial medium 139
- 5.9.4 Antibiotics 139

5.10 APPLIANCES 140

5.11 SOFTWARE 140

6 LITERATURE 141

7 APPENDIX I 147
- 7.1 DNA SEQUENCE OF scWUE-1 147
- 7.2 SEQUENCE OF THE PBULLET-κ-HA-scWUE1 EXPRESSION CASSETTE 148
- 7.3 PROTEIN SEQUENCE OF κ-HA-scWUE1-Fc-CD28-CD3ζ 148
- 7.4 PHYSICAL MAP OF PBULLET-607 149
- 7.5 SEQUENCE OF THE PBULLET-607 EXPRESSION CASSETTE 150

8 APPENDIX II 151
- 8.1 ABBREVIATIONS 151
- 8.2 ZUSAMMENFASSUNG 153
- 8.3 CURRICULUM VITAE 155
- 8.4 REFERENCES 156
- 8.5 PUBLICATIONS AND POSTERS 157
- 8.6 DECLARATION 158