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Parts and Wholes in Scene Processing
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Abstract

W During natural vision, our brains are constantly exposed to
complex, but regularly structured, environments. Real-world
scenes are defined by typical part-whole relationships, where
the meaning of the whole scene emerges from configurations of
localized information present in individual parts of the scene. Such
typical part-whole relationships suggest that information from
individual scene parts is not processed independently, but that
there are mutual influences between the parts and the whole
during scene analysis. Here, we review recent research that used
a straightforward, but effective approach to study such mutual
influences: By dissecting scenes into multiple arbitrary pieces,
these studies provide new insights into how the processing of
whole scenes is shaped by their constituent parts and, conversely,

INTRODUCTION

The ability to efficiently parse visual environments is
critical for successful human behavior. Efficient scene
analysis is supported by a specialized brain network span-
ning the occipital and temporal cortices (Epstein & Baker,
2019; Baldassano, Esteva, Fei-Fei, & Beck, 2016; Epstein,
2014). Over the last decade, functional neuroimaging has
revealed that this network represents multiple key proper-
ties of visual scenes, including basic-level scene category
(e.g., a beach vs. a mountain; Walther, Chai, Caddigan,
Beck, & Fei-Fei, 2011; Walther, Caddigan, Fei-Fei, & Beck,
2009), high-level visual characteristics of the scene (e.g.,
how open or cluttered a scene is; Henriksson, Mur, &
Kriegeskorte, 2019; Park, Konkle, & Oliva, 2015), and the
type of actions that can be performed within a specific en-
vironment (e.g., in which directions people can navigate
within the scene; Park & Park, 2020; Bonner & Epstein,
2017). Complementary magnetoencephalogaphy (MEG)
and EEG studies have shown that many of these properties
are computed within only a few hundred milliseconds
(Henriksson et al., 2019; Groen et al., 2018; Lowe, Rajsic,
Ferber, & Walther, 2018; Cichy, Khosla, Pantazis, & Oliva,
2017), demonstrating that critical scene information is
extracted already early during visual analysis in the brain.
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how the processing of individual parts is determined by their role
within the whole scene. We highlight three facets of this research:
First, we discuss studies demonstrating that the spatial configura-
tion of multiple scene parts has a profound impact on the neural
processing of the whole scene. Second, we review work showing
that cortical responses to individual scene parts are shaped by the
context in which these parts typically appear within the environ-
ment. Third, we discuss studies demonstrating that missing scene
parts are interpolated from the surrounding scene context.
Bridging these findings, we argue that efficient scene processing
relies on an active use of the scene’s part-whole structure, where
the visual brain matches scene inputs with internal models of
what the world should look like.

Scene analysis inherently relies on the typical part—
whole structure of the scene: Many key properties of
scenes cannot be determined from localized scene parts
alone—they rather become apparent through the analysis
of meaningful configurations of features across different
parts of the whole scene.! Such configurations arise from
the typical spatial distribution of low-level visual attributes
(Purves, Wojtach, & Lotto, 2011; Geisler, 2008; Torralba &
Oliva, 2003), environmental surfaces (Henriksson et al.,
2019; Lescroart & Gallant, 2019; Spelke & Lee, 2012), and
objects (Castelhano & Krzys, 2020; Kaiser, Quek, Cichy, &
Peelen, 2019; V6, Boettcher, & Draschkow, 2019). For in-
stance, the navigability of a scene can only be determined
by integrating a set of complimentary features that appear
in different characteristic parts of the scene (Bonner &
Epstein, 2018): The lower parts of the scene convey infor-
mation about horizontal surfaces near us, which determine
our immediate options for navigational movement.
Conversely, the upper parts of the scene contain informa-
tion about more distant obstacles and passageways that are
often constrained by vertical boundaries, which determine
our subsequent options for navigating the scene. Thus, to
successfully analyze the possibilities for navigating the en-
vironment, the visual system needs to analyze and inte-
grate different pieces of information across the different
scene parts. The need for analyzing such configurations
of information across scene parts prompts the hypothesis
that scenes and their individual constituent parts are not
processed independently. Instead, they mutually influence
each other: The representation of a scene should be
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Figure 1. Approaches to
studying part-whole
relationships in natural scenes.
The characteristic distribution
of visual information across
scenes prompts the hypothesis
that the representation of whole
scenes and their individual parts
hinges on typically experienced
part—whole relationships. Here,
we review three complimentary
approaches to test this
hypothesis: (1) studies that
used “jumbling” paradigms to
investigate the role of coherent
multipart structure on scene-
selective cortical responses,

(2) studies that presented
fragmented inputs to infer how
the representation of individual

scene "jumbling"

fragmented inputs missing inputs

scene parts is determined by

their role in the full scene, and (3) studies that obscured scene parts to investigate how missing inputs are interpolated by the visual system. Example
image obtained from https://de.m.wikipedia.org/wiki/Datei:Giessen_Arndtstrasse_2.png under a Creative Commons License.

determined not only by an independent analysis of its
localized parts but also by the way in which these parts
are configured across visual space. In turn, the representa-
tion of a scene part should not be determined by its visual
contents alone, but also by where the part typically appears
in the context of the whole scene.

In this review, we will highlight recent research that
utilized a simple, yet effective approach to investigate such
mutual influences between the whole scene and its constit-
uent parts. In this approach, scene images are dissected
into multiple, arbitrary image parts, which can then be re-
combined into new scenes or presented on their own.
Through variations of this straightforward manipulation,
researchers have now gained novel insights into how
part—whole relationships in natural scenes affect scene anal-
ysis in the brain. We will review three facets of this research
(Figure 1): First, we will discuss how recent studies that
have used “jumbling” paradigms, in which scene parts are
systematically shuffled, have revealed the critical role of
multipart structure for cortical scene processing. Second,
we will review work demonstrating that typical part-whole
structure aids the contextualization of individual, frag-
mented scene parts. Third, we will discuss studies showing
that when parts of a scene are missing, the visual brain uses
typical part-whole structure to “fill in” information that is
currently absent. Synthesizing these findings, we argue that
the mutual influences between the whole scene and its
constituent parts are well captured by a framework of
scene processing in which the visual system actively
matches visual inputs with internal models of the world.

MULTIPART STRUCTURE IN
SCENE PROCESSING

To reveal how the spatial configuration of scene parts
shapes the representation of the whole scene, researchers

have used “jumbling” paradigms (Biederman, 1972), in
which scenes are dissected into multiple parts that are
then either re-assembled into their typical configurations
or shuffled to appear in atypical configurations. If the
part—whole structure of a scene indeed plays a critical role
for its cortical representation, then we should expect that
such manipulations profoundly impair scene processing.
Classical studies have shown that scene jumbling reduces
behavioral performance in scene and object categoriza-
tion (Biederman, Rabinowitz, Glass, & Stacy, 1974;
Biederman, 1972), as well as object recognition within a
scene (Biederman, Glass, & Stacy, 1973). More recently,
jumbling paradigms have been used to demonstrate that
change detection performance benefits from coherent
scene structure (Zimmermann, Schnier, & Lappe, 2010;
Varakin & Levin, 2008; Yokosawa & Mitsumatsu, 2003).
Together, these studies show that scene perception
benefits from typical part—-whole relationships across the
scene.

From such behavioral results, one predicts that re-
sponses in scene-selective visual cortex should also be
sensitive to part-whole structure. A recent neuroimaging
study (Kaiser, Hiberle, & Cichy, 2020a) put this predic-
tion to the test. In this study, participants viewed intact
and jumbled scenes (Figure 2A) while their brain activity
was recorded with fMRI and EEG. Using multivariate clas-
sification analysis, the intact and jumbled scenes were
discriminable across early and scene-selective cortex
(fMRI) and across processing time (EEG), revealing that
the visual system is broadly sensitive to the scenes’ part—
whole structure (Figure 2B). Interestingly, a much greater
difference between intact and jumbled scenes was
found when the scenes were presented in their upright
orientation, compared to when they were presented
upside—down. In the fMRI, such an inversion effect was
specifically found in scene-selective occipital place area
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Figure 2. Sensitivity to part-whole structure revealed by scene jumbling. (A) In this study, intact and jumbled versions of natural scenes were created
by placing the four quadrants of scenes in their typical or atypical positions. Quadrants were always taken from four different scene exemplars to
equate the presence of visual discontinuities. All scenes were presented upright and upside—down. (B) To reveal sensitivity to typical part—-whole
structure, linear classifiers were used to decode between intact and jumbled scenes, either based on multivoxel fMRI response patterns (left)

or on multi-electrode EEG response patterns (right). Intact and jumbled scenes were discriminable across visual regions of interest (fMRI) and
in a temporally sustained way (EEG). Critically, this sensitivity to scene structure was more pronounced for upright than inverted scenes in
scene-selective regions OPA and parahippocampal place area (PPA), and around 250 msec of processing. (C) In a follow-up EEG study, multivariate
decoding was used to track the accumulation of category information over time. Category information was accumulating faster for intact than for
jumbled scenes, starting within the first 200 msec of processing. However, when the scenes were inverted, no such effect of scene structure was
found. All significance markers donate differences between upright and inverted. Panels were reproduced from Kaiser et al. (2020a, 2020b).

(OPA) and parahippocampal place area, whereas, in the
EEG, this difference emerged at around 250 msec, shortly
after the time during which scene-selective waveform
components are first observed (Harel, Groen, Kravitz,
Deouell, & Baker, 2016). The timing and localization of
these effects suggests that they occur during the early
stages of scene representation in specialized regions of
the visual cortex, showing that, already, the initial percep-
tual coding of a scene—rather than only postperceptual
processes such as attentional engagement—is altered
depending on the availability of scene structure. The
inversion effects therefore indicate that scene-selective
responses are fundamentally sensitive to the part—-whole
structure of scenes that we frequently experience in the
world, rather than only to visual differences between
intact and jumbled scenes.

Although these results reveal a strong sensitivity to
scene structure for typically oriented scenes, it is unclear
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whether they also index a richer representation of up-
right and structured scenes. Specifically, does the typical
structure of a scene facilitate the analysis of its contents?
To resolve this question, a follow-up EEG study (Kaiser,
Hiberle, & Cichy, 2020b) tested whether coherent scene
structure facilitates the emergence of scene category in-
formation. In this study, scene category (e.g., whether
the participant had seen an image of a church or a super-
market) could indeed be decoded more accurately from
EEG response patterns within the first 200 msec of pro-
cessing when the image was intact than when it was jum-
bled (Figure 2C). Critically, this benefit was restricted to
upright scenes: When the scenes were inverted, category
decoding was highly similar for intact and jumbled
scenes. This suggests that the scene structure specifically
available in intact and upright scenes facilitates the rapid
readout of meaningful category information from the
scene.
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The enhanced representation of typically structured
scenes may indicate that the brain integrates information
from different parts of the scene, but only when these
parts are positioned correctly. On a mechanistic level,
this integration of information across the scene may be
achieved by neural assemblies that have a shared tuning
for both the content of the individual parts and their rel-
ative positioning across the scene. Such shared tuning
could be prevalent in scene-selective regions of the visual
cortex, where neurons’ large receptive field coverage
(Silson, Chan, Reynolds, Kravitz, & Baker, 2015) enables
them to simultaneously receive and integrate information
across different parts of the scene. If the neurons are sen-
sitive to the typical multipart structure of the scene, they
would specifically integrate information across the scene
when the scene is arranged in a typical way. Because of
the additional involvement of such neurons in the analy-
sis of typically configured scenes, the resulting scene rep-
resentation will be qualitatively different from the
representations of the individual parts. In fMRI response
patterns, such information integration can become ap-
parent in nonlinearities in the way that responses to mul-
tiple parts approximate the response to the whole
(Kaiser, Quek, et al., 2019; Kubilius, Baeck, Wagemans,
& Op de Beeck, 2015): Whenever multiple, unrelated
stimuli are presented, the response patterns to the whole
display can be predicted by a linear combination of the
response patterns to the constituent stimuli (Kliger &
Yovel, 2020; MacEvoy & Epstein, 2009). By contrast,
when the stimuli form meaningful configurations, re-
sponse patterns to the whole display become different
from the linear combination of individual response
patterns. When the meaningful whole is presented,
additional tuning to the stimulus configuration cannot
be predicted by a linear combination of the individual
patterns—although the response patterns to the pairs
are themselves reliable across participants. Such integra-
tive effects have been shown in object-selective cortex,
for multi-object displays that convey meaningful real-
world relationships (Kaiser & Peelen, 2018; Baldassano,
Beck, & Fei-Fei, 2017; Baeck, Wagemans, & Op de
Beeck, 2013), suggesting that meaningful object groups
are indeed represented as a whole rather than indepen-
dently. Similar conclusions have been reached using
fMRI adaptation techniques (Hayworth, Lescroart, &
Biederman, 2011). One study has so far looked into multi-
object processing within complex scenes (MacEvoy &
Epstein, 2011). This study revealed that in object-selective
cortex, responses to scenes that contain multiple objects
can be approximated by a linear combination of the re-
sponses to the individual objects in isolation. By contrast,
in scene-selective cortex, the scene response was not well
approximated by the same linear combination. This result
suggests that object responses are not linearly combined in
scene-selective cortex when the objects are part of a com-
plex natural environment. Whether, and to which extent,
this absence of an effect can be attributed to integration

processes that are enabled by typical multi-object relation-
ships within the scene needs to be investigated in future
studies.

More generally, the tuning to typical part—-whole struc-
ture reinforces the view that the visual system is funda-
mentally shaped by visual input statistics (Purves et al.,
2011). Adaptations to typically structured inputs can be
observed across the visual hierarchy, from simple fea-
tures (Geisler, 2008) to objects (Kaiser, Quek, et al.,
2019) and people (Papeo, 2020). The findings reviewed
here show that such experience-based adaptations ex-
tend to natural scenes. On what timescale these adapta-
tions emerge during development and how flexibly they
can be altered during adulthood needs to be addressed
in future studies.

In summary, the reviewed findings show that typical
part—whole structure plays a critical role in scene repre-
sentation. They establish that multiple scene parts are
represented as a meaningful configuration, rather than
as independently coded pieces of information. Next, we
turn to studies that probed the representation of individ-
ual scene parts and discuss how typical part-whole struc-
ture aids the visual system in coping with situations in
which only fragments of a scene are available for momen-
tary analysis.

DEALING WITH FRAGMENTED INPUTS

During natural vision, we do not have simultaneous ac-
cess to all the visual information in our surroundings.
Important pieces of information become visible or invis-
ible as we navigate the environment and as we attend
to spatially confined pieces of information. At each
moment, we therefore only have access to an incomplete
snapshot of the world. How are these snapshots put
into the context of the current environment? To experi-
mentally mimic this situation, researchers presented
individual scene parts of natural scenes in isolation and
subsequently looked at how cortical responses to these
isolated parts are shaped by the role the parts play in
the context of the whole scene.

When individual scene parts are presented on their
own, they are not only defined by their content, but they
also carry implicit information about where that content
typically appears within the environment. As a conse-
quence of the typical part-whole structure of natural
scenes, specific scene parts reliably appear in specific
parts of the visual field: Skies are more often encoun-
tered in the upper regions of the visual field, whereas
grass appears in the lower regions of the visual field.
To study whether such statistical associations between
scene parts and visual-field locations influence process-
ing, researchers probed cortical responses to individual
scene parts across the visual field. If the visual system
is tuned to the typical positioning of individual scene
parts, responses in visual cortex should be stronger when
the parts are shown in visual-field positions that
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correspond to the positions in which we encounter them
during natural vision. In a recent fMRI study (Mannion,
2015), multiple small fragments of a scene were pre-
sented in their typical locations in the visual field (e.g.,
a piece of sky in the upper visual field, in which it is typ-
ically encountered when viewed under real-world condi-
tions), or in atypical locations (e.g., a piece of sky in the
lower visual field). The positioning of these scene frag-
ments determined activations in retinotopically orga-
nized early visual cortex, with stronger overall responses
to typically positioned fragments than to atypically posi-
tioned ones. Complementary evidence comes from stud-
ies that probed the processing of basic visual features that
are typically found in specific parts of a scene and thus
most often fall into specific parts of the visual field.
These studies found that distributions of basic visual fea-
tures across natural environments are associated with pro-
cessing asymmetries in visual cortex. For example, low
spatial frequencies are more commonly found in the lower
visual field, whereas high spatial frequencies are more
common in the upper visual field. Following this natural
distribution, discrimination of low spatial frequencies is
better in the lower visual field, and discrimination of high
spatial frequencies is better in the upper visual field; this
pattern was associated with response asymmetries in
near- and far-preferring columns of visual area V3 (Nasr
& Tootell, 2020). Other tentative associations between nat-
ural feature distributions and cortical response asymme-
tries have been reported for cortical visual responses to
stimulus orientation (Mannion, McDonald, & Clifford,
2010), texture density (Herde, Uhl, & Rauss, 2020), and
surface geometry (Vaziri & Connor, 2016). Together, such
findings suggest that areas in retinotopic early visual cortex
exhibit a tuning to the typical visual-field location in which
parts—and their associated features—appear within the
whole scene. To date, such tuning has not been shown
for scene-selective regions in high-level visual cortex.
However, stronger activations to typically positioned
stimuli have been shown in other category-selective
regions, such as object-selective lateral occipital cortex
(Kaiser & Cichy, 2018) and in face- and body-selective
regions of the occipitotemporal cortex (de Haas et al.,
2016; Chan, Kravitz, Truong, Arizpe, & Baker, 2010),
suggesting that similar tuning properties could also be
present in scene-selective areas.

A complementary way to study how the multipart
structure of scenes determines the representation of
their individual parts is to test how responses to scene
parts vary solely as a function of where they should
appear in the world. Here, instead of experimentally
varying the location of scene parts across the visual field,
all parts are presented in the same location. The key
prediction is that parts stemming from similar real-world
locations are coded similarly in the visual system, be-
cause they share a link to a common real-world position
(Figure 3A). Two recent studies support this prediction
(Kaiser, Inciuraite, & Cichy, 2020; Kaiser, Turini, &
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Cichy, 2019): In these studies, cortical representations
are more similar among parts that stem from the same
locations along the vertical scene axis, for instance, an
image displaying the sky is coded more similarly to an
image displaying a ceiling than to an image displaying a
floor. Such effects were apparent in fMRI response
patterns in scene-selective OPA (Kaiser, Turini, et al.,
2019), as well as in EEG response patterns after 200 msec
of processing (Kaiser, Inciuraite, et al., 2020; Kaiser,
Turini, et al., 2019; Figure 3B). Critically, these effects
were not accounted for by low-level visual feature differ-
ences between these fragments, such as possible color or
orientation differences between scene parts appearing in
different locations within the scene context. It rather
seems like the brain uses an intrinsic mapping between
the varied content of scene parts and their typical real-
world locations to sort inputs according to their position
within the whole scene. Interestingly, such a sorting is
strongly found along the vertical dimension, where infor-
mation in the world and the behaviors this information
affords diverge as a function of distance in visual space
(Yang & Purves, 2003; Previc, 1990). Alternatively, statis-
tical regularities may be less prevalent or more subtle
along the horizontal dimension: For instance, gravity or-
ganizes contents very strongly along the vertical axis,
whereas the positioning of objects along the horizontal
axis is often arbitrary. To arbitrate between these differ-
ent accounts, future studies could study situations where
the organization along the horizontal axis is indeed
meaningful (e.g., in road traffic).

These results point toward an active use of scenes’
part—-whole structure, whereby the visual system contex-
tualizes inputs with respect to the typical composition of
the environment. This contextualization does not just
constitute a representational organization by categorical
content—it rather constitutes an organization that is
based on our typical visual impression of the world.
This is consistent with ideas from Bayesian theories of
vision, where inputs are interpreted with respect to
experience-based priors about the structure of the world
(Yuille & Kersten, 2006; Kayser, Kording, & Konig, 2004).
In this case, the observer has a prior of where the current
fragment of visual information should appear in the con-
text of the environment, and the representation of the
fragment is then determined by this prior: Fragments
that yield similar priors for their typical location are con-
sequently coded in a similar way. This representational
organization also yields predictions for behavior, where
scene fragments stemming from different real-world loca-
tions should be better discriminable than those stem-
ming from similar locations.

It is worth noting that many of the part-whole regulari-
ties in scenes, such as mutual relationships among objects,
are conveyed in a world-centered frame of reference (i.e.,
they are largely preserved when viewpoints are changed).
By contrast, the normalization process discussed here is
contingent on a viewer-centered reference frame:
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Figure 3. Representations of
fragmented inputs are sorted
with respect to the scene’s
part-whole structure. (A) In this
study, the incomplete inputs
received during natural vision
were mimicked by centrally
presenting isolated parts from
different locations in a scene.
The key prediction was that
cortical representations of

the scene parts would reflect
their typical, implicit location
within the world, based on how
scenes are normally structured.
This should be visible in a
greater similarity among
representations of parts that
appear in similar vertical
locations within the scenes.
(B) To test this prediction,
similarities among response

present
fragments

patterns in the fMRI (left) and B How well does typical vertical location predict representations?
EEG (right) were modelled as a
function of the parts’ similarity 01y = s 03l ' | —— -
in vertical location. Vertical . . “ 1
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model of visual categorization.
These analyses suggest that

. o i B vertical location
differences in simple visual

region of interest
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features across the scene parts

cannot explain the differences in cortical representations. There rather seems to be an intrinsic mapping between visual content and typical
real-world locations that persists across a range of visually diverse scenes. Significance markers denote significant prediction of response patterns by

vertical location. Panels were reproduced from Kaiser, Turini, et al. (2019).

Fragmented inputs are organized in the visual system in
the same way as they are spatially organized in a typical
viewer-centered perspective, most likely one that we
have experienced pertinently in the past. This normaliza-
tion process allows us to assemble the whole environ-
ment from the different visual snapshots we accumulate
over time: By organizing the individual snapshots by their
spatial position in the world, it becomes easier to piece
them together in a coherent representation of the world
around us. Additionally, representing scene information
in a typical viewer-centered perspective also allows us
to readily make inferences about current behavioral
possibilities: For instance, the typical location of an
object in the world—rather than its current location in
the visual field—offers additional information on which
actions can be performed on it. Although normalizing
scene inputs to concur with typical real-life views may
be a beneficial processing strategy in many everyday sit-
uations, it also alters representations so that they become
less veridical.

Such alterations of representations become apparent
in another pervasive phenomenon in scene perception:
In boundary extension, the visual system extrapolates in-
formation outside the currently available view of the
scene, leading participants to report additional content
around the scene when subsequently remembering it
(Park, Intraub, Yi, Widders, & Chun, 2007; Intraub,
Bender, & Mangels, 1992; Intraub & Richardson, 1989).
Interestingly, recent findings show that the degree of
boundary extension is stimulus-dependent (Park,
Josephs, & Konkle, 2021; Bainbridge & Baker, 2020):
For some scene images, their original boundaries are in-
deed extended during scene recall, whereas, for others,
boundaries are contracted. This pattern of results may
arise as a consequence of adjusting scene inputs to their
typically experienced structure, relative to a typical view-
point: When the scene view is narrower than typically ex-
perienced, boundaries are extended, and when it is wider
than typically experienced, boundaries are compressed.
This result fits well with an active use of scene structure
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in organizing cortical representations, where scene in-
puts are “normalized” to a typical real-world view. How
much this normalization changes as a function of internal
states and current task demands needs to be explored in
more detail.

Together, these results show that the representation of
individual scene parts is actively influenced by their role
within the typical part—-whole structure of the full scene.
If the part—-whole structure of scenes indeed influences
the representation of their parts, the effect of the whole
on the representation of local information should also be
apparent when a part of the scene is missing. We turn to
research addressing this issue in the next section.

DEALING WITH MISSING INPUTS

The notion that part-whole structure is actively used by
the visual system is most explicitly tested in studies that
probe visual processing under conditions where inputs
from parts of the scene are absent. In such cases, can
the visual system use typical scene structure to interpo-
late the missing content?

We know from neurophysiological studies that neu-
rons in early visual cortex actively exploit context to inter-
polate the nature of missing inputs (Albright & Stoner,
2002). This is strikingly illustrated by studies of visual
“filling-in” (Komatsu, 2006; de Weerd, Gattass,
Desimone, & Ungerleider, 1995): For instance, even V1
neurons whose receptive fields are unstimulated display
orientation-specific responses, driven by neurons that re-
spond to orientation information in the surrounding spa-
tial context. Such cortical filling-in of information for
unstimulated regions of the retina is well established
for low-level attributes such as orientation. Can similar
cortical filling-in effects from contextual information be
observed for high-level contents? If the visual system ac-
tively uses information about the part—whole structure of
scenes, then we should be able to find neural correlates
of a contextual filling-in process, in which the missing in-
put is compensated by a cortical representation of what
should be there.

A series of recent fMRI studies has probed such contex-
tual effects in scene vision (Morgan, Petro, & Muckli,
2019; Muckli et al., 2015; Smith & Muckli, 2010). In these
studies, participants viewed scenes in which a quarter of
the image was occluded. Using retinotopic mapping tech-
niques, the authors then measured multivariate response
patterns across voxels in early visual cortex that were spe-
cifically responsive to the occluded quadrant but not sur-
rounding areas of visual space (Figure 4A). What they
found is that these voxels still allowed linear classifiers
to discriminate between the different scenes, suggesting
that information from the stimulated quadrants leads the
visual system to fill in scene-specific information for the
unstimulated quadrant (Figure 4B). In another study
(Morgan et al., 2019), the authors could show that the
information represented in the obscured quadrant
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concurs with participants’ expectations of what should
be appearing in this part of the scene: Participants’
drawings of the expected content of the occluded quad-
rant predicted cortical activations in the retinotopically
corresponding region of V1.

From where does the interpolated information found
in early visual cortex originate? One possibility is that
downstream regions in visual cortex provide content-
specific feedback to early visual cortex. Using cortical
layer-specific analysis of 7 T fMRI recordings, Muckli
et al. (2015) provided evidence that such filling-in pro-
cesses are mediated by top—down connections. By per-
forming decoding analyses across cortical depth, they
found that multivoxel response patterns in the superficial
layer allowed for discriminating the scenes, even when
again looking at only the unstimulated portion of V1
(Figure 4C). In the superficial layer, top—down connec-
tions to V1 terminate, suggesting that cortical responses
for the missing input are interpolated by means of feed-
back information from higher cortical areas. This result
thus suggests that the typically experienced multipart
structure of a scene allows the visual system to actively
feed back information that is missing in the input.
Although these effects are observed in early visual areas,
they are mediated by top—down connections that carry
information about which information should be there.

What enables the visual brain to feed back the missing
information accurately? In low-level feature filling-in,
missing information is typically interpolated by means
of the surrounding information—the same feature pres-
ent in the stimulated regions of the visual field is filled
into neighboring unstimulated regions (Komatsu,
20006). This mechanism is not sufficient for interpolating
missing information in natural scenes, which not only are
defined by complex features, but for which these features
also vary drastically across different parts of the scene.
Missing information thus needs to be interpolated from
more downstream regions, presumably from memory
and knowledge systems where detailed scene schemata
are stored. Candidate regions for schema storage are
memory regions of the medial temporal lobe, as well as
a recently discovered memory-related system in anterior
scene-selective cortex (Steel, Billings, Silson, & Robertson,
2021). Whether these regions indeed feed back missing
scene information to early visual cortex needs to be
tested in future studies.

CONCLUSION AND OUTLOOK

Together, the recent findings establish that parts and
wholes substantially influence each other during scene
processing, which suggests that the efficiency of
real-world scene vision lends itself to the exploitation of
typical distributions of information across the environ-
ment. From the reviewed work, we distill out two key
conclusions.
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Figure 4. Missing scene inputs
are filled in via cortical feedback
connections. (A) In a series

of fMRI studies, participants
viewed scenes, in which

one quadrant was occluded.
Using retinotopic mapping
techniques, the authors could
isolate regions of early visual
cortex that precisely responded
to the occluded area, but

not surrounding areas of

visual space. (B) Multivoxel
patterns across V1 and V2,
corresponding to the occluded
areas, allowed for accurately
decoding between different

scenes, both when the area " )
was occluded and when it was nnae
fully visible. Cross-decoding .?

analysis revealed that cortical
representations in both cases
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on the nonoccluded condition could accurately discriminate the scenes in which the quadrant was missing, suggesting that the filled-in information
accurately approximates the information that is actually present. (C) In a high-field fMRI study, these effects were dissected across cortical depth
(color-coded). Whereas nonoccluded scenes could be discriminated from V1 response patterns across cortical depth, the occluded scenes were

only discriminable from patterns in the superficial layers of V1. As cortical top—down connections terminate in superficial layers of the cortex, this
result suggests that missing scene parts are filled in via cortical feedback connections. Panels were reproduced from Smith and Muckli (2010) and

Muckli et al. (2015).

First, these studies highlight the importance of typical
part—-whole structure for cortical processing of natural
scenes. When their part—-whole structure is broken,
scenes are represented less efficiently; when scene parts
are presented in isolation, part—whole structure is used
to actively contextualize them; and when information
from scene parts is missing, typical part-whole structure
is used to infer the missing content. These findings are
reminiscent of similar findings in the brain’s face and
body processing systems, in which neurons are tuned
to typical part-whole configurations (Brandman &
Yovel, 2016; Liu, Harris, & Kanwisher, 2010), and where
representations of individual face and body parts are
determined by their role in the full face or body, respec-
tively (de Haas, Sereno, & Schwarzkopf, 2021; de Haas
et al., 2016; Henriksson, Mur, & Kriegeskorte, 2015;
Chan et al.,, 2010). The current work therefore suggests
a similarity between the analysis of the “parts and
wholes” in face recognition (Tanaka & Simonyi, 2016)
and scene processing, and hints toward a configural
mode of processing in the scene network that needs to
be explored further. Contrary to faces and bodies, how-
ever, the individual parts of a scene are not so straightfor-
ward to define, and the reviewed work has used an
arguably quite coarse approach to define arbitrary parts
of a scene. In reality, scenes vary in more intricate ways
and across a multitude of dimensions, including typical
distributions of low- and mid-level scene properties
(Groen, Silson, & Baker, 2017; Nasr, Echavarria, &
Tootell, 2014; Watson, Hartley, & Andrews, 2014), the
category and locations of objects contained in the scene

(Bilali¢, Lindig, & Turella, 2019; Kaiser, Stein, & Peelen,
2014; Kim & Biederman, 2011), relationships between
objects and the scene context (Faivre, Dubois, Schwartz,
& Mudrik, 2019; Preston, Guo, Das, Giesbrecht, &
Eckstein, 2013; V6 & Wolfe, 2013; Mudrik, Lamy, &
Deouell, 2010), and scene geometry (Henriksson et al.,
2019; Lescroart & Gallant, 2019; Harel, Kravitz, & Baker,
2013; Kravitz, Peng, & Baker, 2011). At this point, a system-
atic investigation of how regularities across these dimen-
sions contribute to efficient information analysis across
natural scenes is still lacking. Another defining aspect of
face perception is that it is sensitive not only to the relative
positioning of different face features but also to their pre-
cise distances (Maurer, Le Grand, & Mondloch, 2002).
This distance-based feature organization is also apparent
in responses in the face processing network (Henriksson
et al., 2015; Loffler, Yourganov, Wilkinson, & Wilson,
2005). In our recent study (Kaiser, Turini, et al., 2019), we
have shown that also the typical Euclidean distance be-
tween coarse scene parts can explain the representational
organization of the individual scene parts presented in iso-
lation. Whether more fine-grained typical distances be-
tween different scene elements (e.g., distances between
individual objects) similarly shape representations in
scene-selective visual cortex needs further investigation.
Second, the reviewed findings support a view on which
scene vision is accomplished by matching sensory inputs
with internal models of the world, derived from our ex-
perience with natural scene structure. This idea has first
been highlighted by schema theories (Mandler, 1984;
Biederman, Mezzanotte, & Rabinowitz, 1982), which
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assume that the brain maintains internal representations
that carry knowledge of the typical composition of real-
world environments. More recently, theories of Bayesian
inference reinforced this view, suggesting that priors
about the statistical composition of the world determine
the representation of visual inputs (Yuille & Kersten,
2006; Kayser et al., 2004). The reviewed studies indeed
suggest that the coding of fragmented and incomplete
inputs is constrained by the typical part-whole structure
of scenes. On a mechanistic level, this process may be
implemented through active mechanisms of neural pre-
diction: Efficient coding of scenes may be achieved by a
convergence between the bottom-up input and top-
down predictions about the structure of this input
(Keller & Mrsic-Flogel, 2018; Clark, 2013; Huang & Rao,
2011). Establishing the precise mechanisms that govern
this convergence is a key challenge for future research.
Empirical results with simple visual stimuli suggest that
expected stimuli can be processed efficiently because
top—down predictions suppress sensory signals that are
inconsistent with current expectations, leading to a
sharpening of neural responses (de Lange, Heilbron, &
Kok, 2018; Kok, Jehee, & de Lange, 2012). However,
what needs further exploration is how the brain balances
between the need for efficiently processing expected in-
puts and the complimentary need for detecting novel
and unexpected stimuli that violate our expectations—
after all, reacting fast and accurately to the unexpected
is critical in many real-life situations (e.g., while driving).
To find the right balance between favoring the expected
and the novel, the brain may dynamically adjust the rela-
tive weights assigned to visual inputs and to top—down
predictions, for example, based on current internal men-
tal states (Herz, Baror, & Bar, 2020) and the precision of
both the visual input and our predictions in a given
situation (Yon & Frith, 2021). A recent complimentary
account suggests that during the perceptual processing
cascade, processing is, in turn, biased toward the expected
and then the surprising (Press, Kok, & Yon, 2020). When
and how natural vision is biased toward the expected
structure of the world and toward novel, unexpected
information and how this balance is controlled on a neu-
ral level are exciting questions for future investigation.

In summary, our review highlights that the cortical
scene processing system analyzes the meaning of natural
scenes by strongly considering their typical part—-whole
structure. The reviewed research also highlights that
natural vision is an active process that strongly draws
from prior knowledge about the world. By further scruti-
nizing this process, future research can bring us closer to
successfully modelling and predicting perceptual effi-
ciency in real-life situations.
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